1
|
Minagawa Y, Yabuta M, Su'etsugu M, Noji H. Self-growing protocell models in aqueous two-phase system induced by internal DNA replication reaction. Nat Commun 2025; 16:1522. [PMID: 40011432 PMCID: PMC11865487 DOI: 10.1038/s41467-025-56172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025] Open
Abstract
The bottom-up reconstitution of self-growing artificial cells is a critical milestone toward realizing autonomy and evolvability. However, building artificial cells that exhibit self-growth coupled with internal replication of gene-encoding DNA has not been achieved yet. Here, we report self-growing artificial cell models based on dextran-rich droplets in an aqueous two-phase system of poly(ethylene glycol) (PEG) and dextran (DEX). Motivated by the finding that DNA induces the generation of DEX-rich droplets, we integrate DNA amplification system with DEX-rich droplets, which exhibited active self-growth. We implement the protocells with cell-free transcription-translation systems coupled with DNA amplification/replication, which also show active self-growth. Considering the simplicities in terms of the chemical composition and the mechanism, these results underscore the potential of DEX droplets as a foundational platform for engineering protocells, giving implications for the emergence of protocells under prebiotic conditions.
Collapse
Affiliation(s)
- Yoshihiro Minagawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Moe Yabuta
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masayuki Su'etsugu
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.
- UT7 Next Life Research Group, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Chu W, Guo Y, Wu Y, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Enhancing Cellular and Enzymatic Properties Through In Vivo Continuous Evolution. Chembiochem 2024; 25:e202400564. [PMID: 39248206 DOI: 10.1002/cbic.202400564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Directed evolution seeks to evolve target genes at a rate far exceeding the natural mutation rate, thereby endowing cellular and enzymatic properties with desired traits. In vivo continuous directed evolution achieves these purposes by generating libraries within living cells, enabling a continuous cycle of mutant generation and selection, enhancing the exploration of gene variants. Continuous evolution has become powerful tools for unraveling evolution mechanism and improving cellular and enzymatic properties. This review categorizes current continuous evolution into three distinct classes: non-targeted chromosomal, targeted chromosomal, and extra-chromosomal hypermutation approaches. It also compares various continuous evolution strategies based on different principles, providing a reference for selecting suitable methods for specific evolutionary goals. Furthermore, this review discusses the two primary limitations for further widespread application of in vivo continuous evolution, which are lack of general applicability and insufficient mutagenic capability. We envision that developing generally applicable mutagenic components and methods to enhance mutation rates for in vivo continuous evolution are promising future directions for wide range applications of continuous evolution.
Collapse
Affiliation(s)
- Weiran Chu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaxin Guo
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaokang Wu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Abil Z, Restrepo Sierra AM, Stan AR, Châne A, Del Prado A, de Vega M, Rondelez Y, Danelon C. Darwinian Evolution of Self-Replicating DNA in a Synthetic Protocell. Nat Commun 2024; 15:9091. [PMID: 39433731 PMCID: PMC11494085 DOI: 10.1038/s41467-024-53226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Replication, heredity, and evolution are characteristic of Life. We and others have postulated that the reconstruction of a synthetic living system in the laboratory will be contingent on the development of a genetic self-replicator capable of undergoing Darwinian evolution. Although DNA-based life dominates, the in vitro reconstitution of an evolving DNA self-replicator has remained challenging. We hereby emulate in liposome compartments the principles according to which life propagates information and evolves. Using two different experimental configurations supporting intermittent or semi-continuous evolution (i.e., with or without DNA extraction, PCR, and re-encapsulation), we demonstrate sustainable replication of a linear DNA template - encoding the DNA polymerase and terminal protein from the Phi29 bacteriophage - expressed in the 'protein synthesis using recombinant elements' (PURE) system. The self-replicator can survive across multiple rounds of replication-coupled transcription-translation reactions in liposomes and, within only ten evolution rounds, accumulates mutations conferring a selection advantage. Combined data from next-generation sequencing with reverse engineering of some of the enriched mutations reveal nontrivial and context-dependent effects of the introduced mutations. The present results are foundational to build up genetic complexity in an evolving synthetic cell, as well as to study evolutionary processes in a minimal cell-free system.
Collapse
Affiliation(s)
- Zhanar Abil
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
- Department of Biology, University of Florida, 882 Newell Dr, Gainesville, USA
| | - Ana María Restrepo Sierra
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Andreea R Stan
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Amélie Châne
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Alicia Del Prado
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera, 1, Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera, 1, Madrid, Spain
| | - Yannick Rondelez
- Laboratoire Gulliver, UMR7083 CNRS/ESPCI Paris-PSL Research University, 10 rue Vauquelin, Paris, France
| | - Christophe Danelon
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
4
|
Tian R, Rehm FBH, Czernecki D, Gu Y, Zürcher JF, Liu KC, Chin JW. Establishing a synthetic orthogonal replication system enables accelerated evolution in E. coli. Science 2024; 383:421-426. [PMID: 38271510 DOI: 10.1126/science.adk1281] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/28/2023] [Indexed: 01/27/2024]
Abstract
The evolution of new function in living organisms is slow and fundamentally limited by their critical mutation rate. Here, we established a stable orthogonal replication system in Escherichia coli. The orthogonal replicon can carry diverse cargos of at least 16.5 kilobases and is not copied by host polymerases but is selectively copied by an orthogonal DNA polymerase (O-DNAP), which does not copy the genome. We designed mutant O-DNAPs that selectively increase the mutation rate of the orthogonal replicon by two to four orders of magnitude. We demonstrate the utility of our system for accelerated continuous evolution by evolving a 150-fold increase in resistance to tigecycline in 12 days. And, starting from a GFP variant, we evolved a 1000-fold increase in cellular fluorescence in 5 days.
Collapse
Affiliation(s)
- Rongzhen Tian
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Fabian B H Rehm
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Dariusz Czernecki
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Yangqi Gu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jérôme F Zürcher
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kim C Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
5
|
Williams RL, Liu CC. Accelerated evolution of chosen genes. Science 2024; 383:372-373. [PMID: 38271527 DOI: 10.1126/science.adn3434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Orthogonal replication enables rapid continuous biomolecular evolution in Escherichia coli.
Collapse
Affiliation(s)
- Rory L Williams
- Department of Biomedical Engineering and Center for Synthetic Biology, University of California, Irvine, CA, USA
| | - Chang C Liu
- Department of Biomedical Engineering and Center for Synthetic Biology, University of California, Irvine, CA, USA
| |
Collapse
|
6
|
Tian R, Zhao R, Guo H, Yan K, Wang C, Lu C, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Engineered bacterial orthogonal DNA replication system for continuous evolution. Nat Chem Biol 2023; 19:1504-1512. [PMID: 37443393 DOI: 10.1038/s41589-023-01387-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Continuous evolution can generate biomolecules for synthetic biology and enable evolutionary investigation. The orthogonal DNA replication system (OrthoRep) in yeast can efficiently mutate long DNA fragments in an easy-to-operate manner. However, such a system is lacking in bacteria. Therefore, we developed a bacterial orthogonal DNA replication system (BacORep) for continuous evolution. We achieved this by harnessing the temperate phage GIL16 DNA replication machinery in Bacillus thuringiensis with an engineered error-prone orthogonal DNA polymerase. BacORep introduces all 12 types of nucleotide substitution in 15-kilobase genes on orthogonally replicating linear plasmids with a 6,700-fold higher mutation rate than that of the host genome, the mutation rate of which is unchanged. Here we demonstrate the utility of BacORep-based continuous evolution by generating strong promoters applicable to model bacteria, Bacillus subtilis and Escherichia coli, and achieving a 7.4-fold methanol assimilation increase in B. thuringiensis. BacORep is a powerful tool for continuous evolution in prokaryotic cells.
Collapse
Affiliation(s)
- Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Runzhi Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Haoyu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Kun Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Chenyun Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Cheng Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, China.
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
7
|
Godino E, Restrepo Sierra AM, Danelon C. Imaging Flow Cytometry for High-Throughput Phenotyping of Synthetic Cells. ACS Synth Biol 2023. [PMID: 37155828 PMCID: PMC10367129 DOI: 10.1021/acssynbio.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The reconstitution of basic cellular functions in micrometer-sized liposomes has led to a surge of interest in the construction of synthetic cells. Microscopy and flow cytometry are powerful tools for characterizing biological processes in liposomes with fluorescence readouts. However, applying each method separately leads to a compromise between information-rich imaging by microscopy and statistical population analysis by flow cytometry. To address this shortcoming, we here introduce imaging flow cytometry (IFC) for high-throughput, microscopy-based screening of gene-expressing liposomes in laminar flow. We developed a comprehensive pipeline and analysis toolset based on a commercial IFC instrument and software. About 60 thousands of liposome events were collected per run starting from one microliter of the stock liposome solution. Robust population statistics from individual liposome images was performed based on fluorescence and morphological parameters. This allowed us to quantify complex phenotypes covering a wide range of liposomal states that are relevant for building a synthetic cell. The general applicability, current workflow limitations, and future prospects of IFC in synthetic cell research are finally discussed.
Collapse
Affiliation(s)
- Elisa Godino
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629HZ Delft, The Netherlands
| | - Ana Maria Restrepo Sierra
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629HZ Delft, The Netherlands
| | - Christophe Danelon
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629HZ Delft, The Netherlands
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| |
Collapse
|
8
|
Herianto S, Chien PJ, Ho JAA, Tu HL. Liposome-based artificial cells: From gene expression to reconstitution of cellular functions and phenotypes. BIOMATERIALS ADVANCES 2022; 142:213156. [PMID: 36302330 DOI: 10.1016/j.bioadv.2022.213156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Bottom-up approaches in creating artificial cells that can mimic natural cells have significant implications for both basic research and translational application. Among various artificial cell models, liposome is one of the most sophisticated systems. By encapsulating proteins and associated biomolecules, they can functionally reconstitute foundational features of biological cells, such as the ability to divide, communicate, and undergo shape deformation. Yet constructing liposome artificial cells from the genetic level, which is central to generate self-sustained systems remains highly challenging. Indeed, many studies have successfully established the expression of gene-coded proteins inside liposomes. Further, recent endeavors to build a direct integration of gene-expressed proteins for reconstituting molecular functions and phenotypes in liposomes have also significantly increased. Thus, this review presents the development of liposome-based artificial cells to demonstrate the process of gene-expressed proteins and their reconstitution to perform desired molecular and cell-like functions. The molecular and cellular phenotypes discussed here include the self-production of membrane phospholipids, division, shape deformation, self-DNA/RNA replication, fusion, and intercellular communication. Together, this review gives a comprehensive overview of gene-expressing liposomes that can stimulate further research of this technology and achieve artificial cells with superior properties in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Jen Chien
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ja-An Annie Ho
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan; BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
9
|
Okauchi H, Ichihashi N. Continuous Cell-Free Replication and Evolution of Artificial Genomic DNA in a Compartmentalized Gene Expression System. ACS Synth Biol 2021; 10:3507-3517. [PMID: 34781676 DOI: 10.1021/acssynbio.1c00430] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In all living organisms, genomic DNA continuously replicates by the proteins encoded in itself and undergoes evolution through many generations of replication. This continuous replication coupled with gene expression and the resultant evolution are fundamental functions of living things, but they have not previously been reconstituted in cell-free systems. In this study, we combined an artificial DNA replication scheme with a reconstituted gene expression system and microcompartmentalization to realize these functions. Circular DNA replicated through rolling-circle replication followed by homologous recombination catalyzed by the proteins, phi29 DNA polymerase, and Cre recombinase expressed from the DNA. We encapsulated the system in microscale water-in-oil droplets and performed serial dilution cycles. Isolated circular DNAs at Round 30 accumulated several common mutations, and the isolated DNA clones exhibited higher replication abilities than the original DNA due to its improved ability as a replication template, increased polymerase activity, and a reduced inhibitory effect of polymerization by the recombinase. The artificial genomic DNA, which continuously replicates using self-encoded proteins and autonomously improves its sequence, provides a useful starting point for the development of more complex artificial cells.
Collapse
Affiliation(s)
- Hiroki Okauchi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
10
|
Lechuga A, Kazlauskas D, Salas M, Redrejo-Rodríguez M. Unlimited Cooperativity of Betatectivirus SSB, a Novel DNA Binding Protein Related to an Atypical Group of SSBs From Protein-Primed Replicating Bacterial Viruses. Front Microbiol 2021; 12:699140. [PMID: 34267740 PMCID: PMC8276246 DOI: 10.3389/fmicb.2021.699140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022] Open
Abstract
Bam35 and related betatectiviruses are tail-less bacteriophages that prey on members of the Bacillus cereus group. These temperate viruses replicate their linear genome by a protein-primed mechanism. In this work, we have identified and characterized the product of the viral ORF2 as a single-stranded DNA binding protein (hereafter B35SSB). B35SSB binds ssDNA with great preference over dsDNA or RNA in a sequence-independent, highly cooperative manner that results in a non-specific stimulation of DNA replication. We have also identified several aromatic and basic residues, involved in base-stacking and electrostatic interactions, respectively, that are required for effective protein-ssDNA interaction. Although SSBs are essential for DNA replication in all domains of life as well as many viruses, they are very diverse proteins. However, most SSBs share a common structural domain, named OB-fold. Protein-primed viruses could constitute an exception, as no OB-fold DNA binding protein has been reported. Based on databases searches as well as phylogenetic and structural analyses, we showed that B35SSB belongs to a novel and independent group of SSBs. This group contains proteins encoded by protein-primed viral genomes from unrelated viruses, spanning betatectiviruses and Φ29 and close podoviruses, and they share a conserved pattern of secondary structure. Sensitive searches and structural predictions indicate that B35SSB contains a conserved domain resembling a divergent OB-fold, which would constitute the first occurrence of an OB-fold-like domain in a protein-primed genome.
Collapse
Affiliation(s)
- Ana Lechuga
- Centro de Biologiìa Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, Vilnius, Lithuania
| | - Margarita Salas
- Centro de Biologiìa Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Modesto Redrejo-Rodríguez
- Centro de Biologiìa Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| |
Collapse
|
11
|
Csibra E, Renders M, Pinheiro VB. Bacterial Cell Display as a Robust and Versatile Platform for Engineering Low-Affinity Ligands and Enzymes. Chembiochem 2020; 21:2844-2853. [PMID: 32413179 PMCID: PMC7586821 DOI: 10.1002/cbic.202000203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Indexed: 12/31/2022]
Abstract
Directed evolution has been remarkably successful at expanding the chemical and functional boundaries of biology. That progress is heavily dependent on the robustness and flexibility of the available selection platforms, given the significant cost to (re)develop a given platform to target a new desired function. Bacterial cell display has a significant track record as a viable strategy for the engineering of mesophilic enzymes, as enzyme activity can be probed directly and free from interference from the cellular milieu, but its adoption has lagged behind other display-based methods. Herein, we report the development of SNAP as a quantitative reporter for bacterial cell display, which enables fast troubleshooting and the systematic development of the display-based selection platform, thus improving its robustness. In addition, we demonstrate that even weak interactions between displayed proteins and nucleic acids can be harnessed for the specific labelling of bacterial cells, allowing functional characterisation of DNA binding proteins and enzymes, thus making it a highly flexible platform for these biochemical functions. Together, this establishes bacterial display as a robust and flexible platform, ideally suited for the systematic engineering of ligands and enzymes needed for XNA molecular biology.
Collapse
Affiliation(s)
- Eszter Csibra
- University College LondonDepartment of Structural and Molecular BiologyGower StreetLondonWC1E 6BTUK
- Current address: Imperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Marleen Renders
- Rega Institute for Medical ResearchKU LeuvenHerestraat, 49 box 10413000LeuvenBelgium
- Current address: Touchlight Genetics Ltd. Morelands & Riverdale BuildingsLower Sunbury RoadHamptonTW12 2ERUK
| | - Vitor B. Pinheiro
- University College LondonDepartment of Structural and Molecular BiologyGower StreetLondonWC1E 6BTUK
- Rega Institute for Medical ResearchKU LeuvenHerestraat, 49 box 10413000LeuvenBelgium
- Institute of Structural and Molecular BiologyBirkbeck CollegeUniversity of LondonMalet StreetLondonWC1E 7HXUK
| |
Collapse
|
12
|
Okauchi H, Sakatani Y, Otsuka K, Ichihashi N. Minimization of Elements for Isothermal DNA Replication by an Evolutionary Approach. ACS Synth Biol 2020; 9:1771-1780. [PMID: 32674580 DOI: 10.1021/acssynbio.0c00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA replication is one of the central functions of the cell. The complexity of modern DNA replication systems raises a question: is it possible to achieve a simpler continuous isothermal DNA replication using fewer proteins? Here, we searched such replication using an evolutionary approach. Through a long-term serial dilution experiment with phi29 DNA polymerase, we found that large repetitive DNAs spontaneously appear and continuously replicate. The repetitive sequence is critical for replication. Arbitrary sequences can replicate if they contain many repeats. We also demonstrated continuous DNA replication using expressed polymerase from the DNA for 10 rounds. This study revealed that continuous isothermal DNA replication can be achieved in a scheme simpler than that employed by modern organisms, providing an alternative strategy for simpler artificial cell synthesis and a clue to possible primitive forms of DNA replication.
Collapse
Affiliation(s)
- Hiroki Okauchi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yoshihiro Sakatani
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kensuke Otsuka
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
13
|
Su X, Gong Y, Gou H, Jing X, Xu T, Zheng X, Chen R, Li Y, Ji Y, Ma B, Xu J. Rational Optimization of Raman-Activated Cell Ejection and Sequencing for Bacteria. Anal Chem 2020; 92:8081-8089. [PMID: 32401011 DOI: 10.1021/acs.analchem.9b05345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Raman-activated cell ejection and sequencing (RACE-Seq), success rate and sequence coverage have generally been low for shotgun sequencing of individual post-RACE cells. Here we quantitatively evaluated the influence of cell lysis condition, nucleic acid amplification condition, and parameters of Raman measurement on RACE-Seq performance. Variations in laser energy input during Raman signal acquisition, but not duration of alkaline lysate lysis, temperature, or measurement under dry or aqueous conditions, are vital to the success of multiple displacement amplification (MDA). In fact, laser irradiation is reversely linked to MDA product quality. However, introduction of oils prior to MDA, by mitigating such negative effects of Raman irradiation, elevates genome coverage of post-RACE Escherichia coli cells from <20% to ∼50%, while greatly improving the success rate of RACE-Seq for soil microbiota. Our findings provide a practical solution for enhancing RACE-Seq performance and pinpoint protection of cells from laser irradiation as a priority in method development.
Collapse
Affiliation(s)
- Xiaolu Su
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Honglei Gou
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.,University of Chinese Academy of Sciences, Beijing 100000, China
| | - Xiaoshan Zheng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Rongze Chen
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.,University of Chinese Academy of Sciences, Beijing 100000, China
| | - Yuandong Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.,University of Chinese Academy of Sciences, Beijing 100000, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.,University of Chinese Academy of Sciences, Beijing 100000, China
| |
Collapse
|
14
|
The Loop of the TPR1 Subdomain of Phi29 DNA Polymerase Plays a Pivotal Role in Primer-Terminus Stabilization at the Polymerization Active Site. Biomolecules 2019; 9:biom9110648. [PMID: 31653090 PMCID: PMC6921018 DOI: 10.3390/biom9110648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage Phi29 DNA polymerase belongs to the protein-primed subgroup of family B DNA polymerases that use a terminal protein (TP) as a primer to initiate genome replication. The resolution of the crystallographic structure showed that it consists of an N-terminal domain with the exonuclease activity and a C-terminal polymerization domain. It also has two subdomains specific of the protein-primed DNA polymerases; the TP Regions 1 (TPR1) that interacts with TP and DNA, and 2 (TPR2), that couples both processivity and strand displacement to the enzyme. The superimposition of the structures of the apo polymerase and the polymerase in the polymerase/TP heterodimer shows that the structural changes are restricted almost to the TPR1 loop (residues 304–314). In order to study the role of this loop in binding the DNA and the TP, we changed the residues Arg306, Arg308, Phe309, Tyr310, and Lys311 into alanine, and also made the deletion mutant Δ6 lacking residues Arg306–Lys311. The results show a defective TP binding capacity in mutants R306A, F309A, Y310A, and Δ6. The additional impaired primer-terminus stabilization at the polymerization active site in mutants Y310A and Δ6 allows us to propose a role for the Phi29 DNA polymerase TPR1 loop in the proper positioning of the DNA and TP-priming 3’-OH termini at the preinsertion site of the polymerase to enable efficient initiation and further elongation steps during Phi29 TP-DNA replication.
Collapse
|
15
|
de la Torre I, Quiñones V, Salas M, del Prado A. Tyrosines involved in the activity of φ29 single-stranded DNA binding protein. PLoS One 2019; 14:e0217248. [PMID: 31107918 PMCID: PMC6527236 DOI: 10.1371/journal.pone.0217248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
The genome of Bacillus subtilis phage ϕ29 consists of a linear double-stranded DNA with a terminal protein (TP) covalently linked to each 5’ end (TP-DNA). ϕ29 DNA polymerase is the enzyme responsible for viral DNA replication, due to its distinctive properties: high processivity and strand displacement capacity, being able to replicate the entire genome without requiring the assistance of processivity or unwinding factors, unlike most replicases. ϕ29 single-stranded DNA binding protein (SSB) is encoded by the viral gene 5 and binds the ssDNA generated in the replication of the ϕ29 TP-DNA. It has been described to stimulate the DNA elongation rate during the DNA replication. Previous studies proposed residues Tyr50, Tyr57 and Tyr76 as ligands of ssDNA. The role of two of these residues has been determined in this work by site-directed mutagenesis. Our results showed that mutant derivative Y57A was unable to bind to ssDNA, to stimulate the DNA elongation and to displace oligonucleotides annealed to M13 ssDNA, whereas mutant Y50A behaved like the wild-type SSB.
Collapse
Affiliation(s)
- Iván de la Torre
- Centro de Biología Molecular “Severo Ochoa,” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Victor Quiñones
- Centro de Biología Molecular “Severo Ochoa,” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa,” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, Madrid, Spain
- * E-mail:
| | - Alicia del Prado
- Centro de Biología Molecular “Severo Ochoa,” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, Madrid, Spain
| |
Collapse
|
16
|
Ichihashi N. What can we learn from the construction of in vitro replication systems? Ann N Y Acad Sci 2019; 1447:144-156. [PMID: 30957237 DOI: 10.1111/nyas.14042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 01/08/2023]
Abstract
Replication is a central function of living organisms. Several types of replication systems have been constructed in vitro from various molecules, including peptides, DNA, RNA, and proteins. In this review, I summarize the progress in the construction of replication systems over the past few decades and discuss what we can learn from their construction. I introduce various types of replication systems, supporting the feasibility of the spontaneous appearance of replication early in Earth's history. In the latter part of the review, I focus on parasitic replicators, one of the largest obstacles for sustainable replication. Compartmentalization is discussed as a possible solution.
Collapse
Affiliation(s)
- Norikazu Ichihashi
- Graduate School of Arts and Sciences and Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Self-replication of circular DNA by a self-encoded DNA polymerase through rolling-circle replication and recombination. Sci Rep 2018; 8:13089. [PMID: 30166584 PMCID: PMC6117322 DOI: 10.1038/s41598-018-31585-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
A major challenge in constructing artificial cells is the establishment of a recursive genome replication system coupled with gene expression from the genome itself. One of the simplest schemes of recursive DNA replication is the rolling-circle replication of a circular DNA coupled with recombination. In this study, we attempted to develop a replication system based on this scheme using self-encoded phi29 DNA polymerase and externally supplied Cre recombinase. We first identified that DNA polymerization is significantly inhibited by Cre recombinase. To overcome this problem, we performed in vitro evolution and obtained an evolved circular DNA that can replicate efficiently in the presence of the recombinase. We also showed evidence that during replication of the evolved DNA, the circular DNA was reproduced through recombination by Cre recombinase. These results demonstrate that the evolved circular DNA can reproduce itself through gene expression of a self-encoded polymerase. This study provides a step forward in developing a simple recursive DNA replication system for use in an artificial cell.
Collapse
|
18
|
van Nies P, Westerlaken I, Blanken D, Salas M, Mencía M, Danelon C. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nat Commun 2018; 9:1583. [PMID: 29679002 PMCID: PMC5910420 DOI: 10.1038/s41467-018-03926-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
Replication of DNA-encoded information and its conversion into functional proteins are universal properties of life. In an effort toward the construction of a synthetic minimal cell, we implement here the DNA replication machinery of the Φ29 virus in a cell-free gene expression system. Amplification of a linear DNA template by self-encoded, de novo synthesized Φ29 proteins is demonstrated. Complete information transfer is confirmed as the copied DNA can serve as a functional template for gene expression, which can be seen as an autocatalytic DNA replication cycle. These results show how the central dogma of molecular biology can be reconstituted and form a cycle in vitro. Finally, coupled DNA replication and gene expression is compartmentalized inside phospholipid vesicles providing the chassis for evolving functions in a prospective synthetic cell relying on the extant biology.
Collapse
Affiliation(s)
- Pauline van Nies
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Ilja Westerlaken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Duco Blanken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Margarita Salas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, 28049, Spain
| | - Mario Mencía
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, 28049, Spain
| | - Christophe Danelon
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, The Netherlands.
| |
Collapse
|
19
|
Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat Commun 2017; 8:84. [PMID: 28729688 PMCID: PMC5519541 DOI: 10.1038/s41467-017-00128-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/02/2017] [Indexed: 01/13/2023] Open
Abstract
Microbial single-cell genomics can be used to provide insights into the metabolic potential, interactions, and evolution of uncultured microorganisms. Here we present WGA-X, a method based on multiple displacement amplification of DNA that utilizes a thermostable mutant of the phi29 polymerase. WGA-X enhances genome recovery from individual microbial cells and viral particles while maintaining ease of use and scalability. The greatest improvements are observed when amplifying high G+C content templates, such as those belonging to the predominant bacteria in agricultural soils. By integrating WGA-X with calibrated index-cell sorting and high-throughput genomic sequencing, we are able to analyze genomic sequences and cell sizes of hundreds of individual, uncultured bacteria, archaea, protists, and viral particles, obtained directly from marine and soil samples, in a single experiment. This approach may find diverse applications in microbiology and in biomedical and forensic studies of humans and other multicellular organisms. Single-cell genomics can be used to study uncultured microorganisms. Here, Stepanauskas et al. present a method combining improved multiple displacement amplification and FACS, to obtain genomic sequences and cell size information from uncultivated microbial cells and viral particles in environmental samples.
Collapse
|
20
|
Salas M. My scientific life. BACTERIOPHAGE 2017; 6:e1271250. [PMID: 28090390 DOI: 10.1080/21597081.2016.1271250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Margarita Salas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma , Canto Blanco , Madrid, Spain
| |
Collapse
|
21
|
Torres L, Krüger A, Csibra E, Gianni E, Pinheiro VB. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem 2016; 60:393-410. [PMID: 27903826 PMCID: PMC5264511 DOI: 10.1042/ebc20160013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
Abstract
Biocontainment comprises any strategy applied to ensure that harmful organisms are confined to controlled laboratory conditions and not allowed to escape into the environment. Genetically engineered microorganisms (GEMs), regardless of the nature of the modification and how it was established, have potential human or ecological impact if accidentally leaked or voluntarily released into a natural setting. Although all evidence to date is that GEMs are unable to compete in the environment, the power of synthetic biology to rewrite life requires a pre-emptive strategy to tackle possible unknown risks. Physical containment barriers have proven effective but a number of strategies have been developed to further strengthen biocontainment. Research on complex genetic circuits, lethal genes, alternative nucleic acids, genome recoding and synthetic auxotrophies aim to design more effective routes towards biocontainment. Here, we describe recent advances in synthetic biology that contribute to the ongoing efforts to develop new and improved genetic, semantic, metabolic and mechanistic plans for the containment of GEMs.
Collapse
Affiliation(s)
- Leticia Torres
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
| | - Antje Krüger
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Eszter Csibra
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Edoardo Gianni
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Vitor B Pinheiro
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
- Birkbeck, Department of Biological Sciences, University of London, Malet Street, WC1E 7HX, U.K
| |
Collapse
|
22
|
Gella P, Salas M, Mencía M. Engineering Permissive Insertion Sites in the Bacteriophage Phi29 DNA-Linked Terminal Protein. PLoS One 2016; 11:e0164901. [PMID: 27780219 PMCID: PMC5079584 DOI: 10.1371/journal.pone.0164901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/03/2016] [Indexed: 12/02/2022] Open
Abstract
Many different DNA delivery vehicles have been developed and tested, all with their advantages and disadvantages. The bacteriophage phi29 terminal protein (TP) is covalently linked to the 5’ ends of the phage genome during the DNA replication process. Our approach is to utilize this TP as a platform to incorporate different protein or peptide modules that can target the DNA to the interior of the cell, to the nucleus, or even to subcellular compartments. In order to be able to insert different peptide modules on the TP sequence to endow it with desired functions and/or eliminate unwanted regions of the protein, we have carried out a transposition screening to detect insertion-permissive points on the sequence of the TP. We report the functional characterization of 12 insertion mutants of the TP, and the identification of one site at position 38 that allows the insertion of peptides up to 17 amino acids in length while maintaining the ability of the TP to support DNA amplification in vitro. A protein with one insertion at that position containing a cysteine residue, a linker, and a thrombin recognition site was purified and its amplification activity was optimized.
Collapse
Affiliation(s)
- Pablo Gella
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- * E-mail: (MS); (MM)
| | - Mario Mencía
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas–Universidad Autónoma de Madrid), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- * E-mail: (MS); (MM)
| |
Collapse
|
23
|
Berjón-Otero M, Villar L, Salas M, Redrejo-Rodríguez M. Disclosing early steps of protein-primed genome replication of the Gram-positive tectivirus Bam35. Nucleic Acids Res 2016; 44:9733-9744. [PMID: 27466389 PMCID: PMC5175343 DOI: 10.1093/nar/gkw673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 01/29/2023] Open
Abstract
Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in a number of linear genomes of viruses, linear plasmids and mobile elements. By this mechanism, a so-called terminal protein (TP) primes replication and becomes covalently linked to the genome ends. Bam35 belongs to a group of temperate tectiviruses infecting Gram-positive bacteria, predicted to replicate their genomes by a protein-primed mechanism. Here, we characterize Bam35 replication as an alternative model of protein-priming DNA replication. First, we analyze the role of the protein encoded by the ORF4 as the TP and characterize the replication mechanism of the viral genome (TP-DNA). Indeed, full-length Bam35 TP-DNA can be replicated using only the viral TP and DNA polymerase. We also show that DNA replication priming entails the TP deoxythymidylation at conserved tyrosine 194 and that this reaction is directed by the third base of the template strand. We have also identified the TP tyrosine 172 as an essential residue for the interaction with the viral DNA polymerase. Furthermore, the genetic information of the first nucleotides of the genome can be recovered by a novel single-nucleotide jumping-back mechanism. Given the similarities between genome inverted terminal repeats and the genes encoding the replication proteins, we propose that related tectivirus genomes can be replicated by a similar mechanism.
Collapse
Affiliation(s)
- Mónica Berjón-Otero
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Laurentino Villar
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Modesto Redrejo-Rodríguez
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
24
|
Abstract
The requirement of DNA polymerases for a 3'-hydroxyl (3'-OH) group to prime DNA synthesis raised the question about how the ends of linear chromosomes could be replicated. Among the strategies that have evolved to handle the end replication problem, a group of linear phages and eukaryotic and archaeal viruses, among others, make use of a protein (terminal protein, TP) that primes DNA synthesis from the end of their genomes. The replicative DNA polymerase recognizes the OH group of a specific residue in the TP to initiate replication that is guided by an internal 3' nucleotide of the template strand. By a sliding-back mechanism or variants of it the terminal nucleotide(s) is(are) recovered and the TP becomes covalently attached to the genome ends. Bacillus subtilis phage ϕ29 is the organism in which such a mechanism has been studied more extensively, having allowed to lay the foundations of the so-called protein-primed replication mechanism. Here we focus on the main biochemical and structural features of the two main proteins responsible for the protein-primed initiation step: the DNA polymerase and the TP. Thus, we will discuss the structural determinants of the DNA polymerase responsible for its ability to use sequentially a TP and a DNA as primers, as well as for its inherent capacity to couple high processive synthesis to strand displacement. On the other hand, we will review how TP primes initiation followed by a transition step for further DNA-primed replication by the same polymerase molecule. Finally, we will review how replication is compartmentalized in vivo.
Collapse
Affiliation(s)
- M Salas
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | - M de Vega
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| |
Collapse
|
25
|
Del Prado A, Lázaro JM, Longás E, Villar L, de Vega M, Salas M. Insights into the Determination of the Templating Nucleotide at the Initiation of φ29 DNA Replication. J Biol Chem 2015; 290:27138-27145. [PMID: 26400085 PMCID: PMC4646400 DOI: 10.1074/jbc.m115.682278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/21/2015] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage φ29 from Bacillus subtilis starts replication of its terminal protein (TP)-DNA by a protein-priming mechanism. To start replication, the DNA polymerase forms a heterodimer with a free TP that recognizes the replication origins, placed at both 5' ends of the linear chromosome, and initiates replication using as primer the OH-group of Ser-232 of the TP. The initiation of φ29 TP-DNA replication mainly occurs opposite the second nucleotide at the 3' end of the template. Earlier analyses of the template position that directs the initiation reaction were performed using single-stranded and double-stranded oligonucleotides containing the replication origin sequence without the parental TP. Here, we show that the parental TP has no influence in the determination of the nucleotide used as template in the initiation reaction. Previous studies showed that the priming domain of the primer TP determines the template position used for initiation. The results obtained here using mutant TPs at the priming loop where Ser-232 is located indicate that the aromatic residue Phe-230 is one of the determinants that allows the positioning of the penultimate nucleotide at the polymerization active site to direct insertion of the initiator dAMP during the initiation reaction. The role of Phe-230 in limiting the internalization of the template strand in the polymerization active site is discussed.
Collapse
Affiliation(s)
- Alicia Del Prado
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - José M Lázaro
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Elisa Longás
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Laurentino Villar
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Miguel de Vega
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | - Margarita Salas
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
26
|
Holguera I, Muñoz-Espín D, Salas M. Dissecting the role of the ϕ29 terminal protein DNA binding residues in viral DNA replication. Nucleic Acids Res 2015; 43:2790-801. [PMID: 25722367 PMCID: PMC4357725 DOI: 10.1093/nar/gkv127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Phage ϕ29 DNA replication takes place by a protein-priming mechanism in which the viral DNA polymerase catalyses the covalent linkage of the initiating nucleotide to a specific serine residue of the terminal protein (TP). The N-terminal domain of the ϕ29 TP has been shown to bind to the host DNA in a sequence-independent manner and this binding is essential for the TP nucleoid localisation and for an efficient viral DNA replication in vivo. In the present work we have studied the involvement of the TP N-terminal domain residues responsible for DNA binding in the different stages of viral DNA replication by assaying the in vitro activity of purified TP N-terminal mutant proteins. The results show that mutation of TP residues involved in DNA binding affects the catalytic activity of the DNA polymerase in initiation, as the Km for the initiating nucleotide is increased when these mutant proteins are used as primers. Importantly, this initiation defect was relieved by using the ϕ29 double-stranded DNA binding protein p6 in the reaction, which decreased the Km of the DNA polymerase for dATP about 130–190 fold. Furthermore, the TP N-terminal domain was shown to be required both for a proper interaction with the DNA polymerase and for an efficient viral DNA amplification.
Collapse
Affiliation(s)
- Isabel Holguera
- Instituto de Biología Molecular 'Eladio Viñuela' (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Muñoz-Espín
- Instituto de Biología Molecular 'Eladio Viñuela' (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular 'Eladio Viñuela' (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
27
|
Redrejo-Rodríguez M, Salas M. Multiple roles of genome-attached bacteriophage terminal proteins. Virology 2014; 468-470:322-329. [PMID: 25232661 DOI: 10.1016/j.virol.2014.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022]
Abstract
Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer.
Collapse
Affiliation(s)
- Modesto Redrejo-Rodríguez
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad de Madrid), Universidad Autónoma, Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad de Madrid), Universidad Autónoma, Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
28
|
Gella P, Salas M, Mencía M. Improved artificial origins for phage Φ29 terminal protein-primed replication. Insights into early replication events. Nucleic Acids Res 2014; 42:9792-806. [PMID: 25081208 PMCID: PMC4150772 DOI: 10.1093/nar/gku660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The replication machinery of bacteriophage Φ29 is a paradigm for protein-primed replication and it holds great potential for applied purposes. To better understand the early replication events and to find improved origins for DNA amplification based on the Φ29 system, we have studied the end-structure of a double-stranded DNA replication origin. We have observed that the strength of the origin is determined by a combination of factors. The strongest origin (30-fold respect to wt) has the sequence CCC at the 3' end of the template strand, AAA at the 5' end of the non-template strand and 6 nucleotides as optimal unpairing at the end of the origin. We also show that the presence of a correctly positioned displaced strand is important because origins with 5' or 3' ssDNA regions have very low activity. Most of the effect of the improved origins takes place at the passage between the terminal protein-primed and the DNA-primed modes of replication by the DNA polymerase suggesting the existence of a thermodynamic barrier at that point. We suggest that the template and non-template strands of the origin and the TP/DNA polymerase complex form series of interactions that control the critical start of terminal protein-primed replication.
Collapse
Affiliation(s)
- Pablo Gella
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Mario Mencía
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
29
|
Gillis A, Mahillon J. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future. Viruses 2014; 6:2623-72. [PMID: 25010767 PMCID: PMC4113786 DOI: 10.3390/v6072623] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/19/2014] [Accepted: 06/18/2014] [Indexed: 01/18/2023] Open
Abstract
Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
30
|
Revisiting the genome packaging in viruses with lessons from the "Giants". Virology 2014; 466-467:15-26. [PMID: 24998349 DOI: 10.1016/j.virol.2014.06.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/23/2022]
Abstract
Genome encapsidation is an essential step in the life cycle of viruses. Viruses either use some of the most powerful ATP-dependent motors to compel the genetic material into the preformed capsid or make use of the positively charged proteins to bind and condense the negatively charged genome in an energy-independent manner. While the former is a hallmark of large DNA viruses, the latter is commonly seen in small DNA and RNA viruses. Discoveries of many complex giant viruses such as mimivirus, megavirus, pandoravirus, etc., belonging to the nucleo-cytoplasmic large DNA virus (NCLDV) superfamily have changed the perception of genome packaging in viruses. From what little we have understood so far, it seems that the genome packaging mechanism in NCLDVs has nothing in common with other well-characterized viral packaging systems such as the portal-terminase system or the energy-independent system. Recent findings suggest that in giant viruses, the genome segregation and packaging processes are more intricately coupled than those of other viral systems. Interestingly, giant viral packaging systems also seem to possess features that are analogous to bacterial and archaeal chromosome segregation. Although there is a lot of diversity in terms of host range, type of genome, and genome size among viruses, they all seem to use three major types of independent innovations to accomplish genome encapsidation. Here, we have made an attempt to comprehensively review all the known viral genome packaging systems, including the one that is operative in giant viruses, by proposing a simple and expanded classification system that divides the viral packaging systems into three large groups (types I-III) on the basis of the mechanism employed and the relatedness of the major packaging proteins. Known variants within each group have been further classified into subgroups to reflect their unique adaptations.
Collapse
|
31
|
Bakhshinejad B, Sadeghizadeh M. Bacteriophages as vehicles for gene delivery into mammalian cells: prospects and problems. Expert Opin Drug Deliv 2014; 11:1561-74. [PMID: 24955860 DOI: 10.1517/17425247.2014.927437] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The identification of more efficient gene delivery vehicles (GDVs) is essential to fulfill the expectations of clinical gene therapy. Bacteriophages, due to their excellent safety profile, extreme stability under a variety of harsh environmental conditions and the capability for being genetically manipulated, have drawn a flurry of interest to be applied as a newly arisen category of gene delivery platforms. AREAS COVERED The incessant evolutionary interaction of bacteriophages with human cells has turned them into a part of our body's natural ecosystem. However, these carriers represent several barriers to gene transduction of mammalian cells. The lack of evolvement of specialized machinery for targeted cellular internalization, endosomal, lysosomal and proteasomal escape, cytoplasmic entry, nuclear localization and intranuclear transcription poses major challenges to the expression of the phage-carried gene. In this review, we describe pros and cons of bacteriophages as GDVs, provide an insight into numerous barriers that bacteriophages face for entry into and subsequent trafficking inside mammalian cells and elaborate on the strategies used to bypass these barriers. EXPERT OPINION Tremendous genetic flexibility of bacteriophages to undergo numerous surface modifications through phage display technology has proven to be a turning point in the uncompromising efforts to surmount the limitations of phage-mediated gene expression. The revelatory outcomes of the studies undertaken within the recent years have been promising for phage-mediated gene delivery to move from concept to reality.
Collapse
Affiliation(s)
- Babak Bakhshinejad
- Tarbiat Modares University, Department of Genetics, Faculty of Biological Sciences , Tehran , Iran
| | | |
Collapse
|
32
|
Redrejo-Rodríguez M, Muñoz-Espín D, Holguera I, Mencía M, Salas M. Nuclear and nucleoid localization are independently conserved functions in bacteriophage terminal proteins. Mol Microbiol 2013; 90:858-68. [PMID: 24102828 DOI: 10.1111/mmi.12404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
Bacteriophage terminal proteins (TPs) prime DNA replication and become covalently linked to the DNA 5'-ends. In addition, they are DNA-binding proteins that direct early organization of phage DNA replication at the bacterial nucleoid and, unexpectedly, contain nuclear localization signals (NLSs), which localize them to the nucleus when expressed in mammalian cells. In spite of the lack of sequence homology among the phage TPs, these three properties share some common features, suggesting a possible evolutionary common origin of TPs. We show here that NLSs of three different phage TPs, Φ29, PRD1 and Cp-1, are mapped within the protein region required for nucleoid targeting in bacteria, in agreement with a previously proposed common origin of DNA-binding domains and NLSs. Furthermore, previously reported point mutants of Φ29 TP with no nuclear localization still can target the bacterial nucleoid, and Cp-1 TP contains two independent NLSs, only one of them required for nucleoid localization. Altogether, our results show that nucleoid and nucleus localization sequence requirements partially overlap, but they can be uncoupled, suggesting that conservation of both features could have a common origin but, at the same time, they have been independently conserved during evolution.
Collapse
Affiliation(s)
- Modesto Redrejo-Rodríguez
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
33
|
del Prado A, Lázaro JM, Villar L, Salas M, de Vega M. Dual role of φ29 DNA polymerase Lys529 in stabilisation of the DNA priming-terminus and the terminal protein-priming residue at the polymerisation site. PLoS One 2013; 8:e72765. [PMID: 24023769 PMCID: PMC3762793 DOI: 10.1371/journal.pone.0072765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/12/2013] [Indexed: 11/18/2022] Open
Abstract
Resolution of the crystallographic structure of φ29 DNA polymerase binary and ternary complexes showed that residue Lys529, located at the C-terminus of the palm subdomain, establishes contacts with the 3' terminal phosphodiester bond. In this paper, site-directed mutants at this Lys residue were used to analyse its functional importance for the synthetic activities of φ29 DNA polymerase, an enzyme that starts linear φ29 DNA replication using a terminal protein (TP) as primer. Our results show that single replacement of φ29 DNA polymerase residue Lys529 by Ala or Glu decreases the stabilisation of the primer-terminus at the polymerisation active site, impairing both the insertion of the incoming nucleotide when DNA and TP are used as primers and the translocation step required for the next incoming nucleotide incorporation. In addition, combination of the DNA polymerase mutants with a TP derivative at residue Glu233, neighbour to the priming residue Ser232, leads us to infer a direct contact between Lys529 and Glu233 for initiation of TP-DNA replication. Altogether, the results are compatible with a sequential binding of φ29 DNA polymerase residue Lys529 with TP and DNA during replication of TP-DNA.
Collapse
Affiliation(s)
- Alicia del Prado
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - José M. Lázaro
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Laurentino Villar
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
- * E-mail:
| | - Miguel de Vega
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| |
Collapse
|
34
|
Torino D, Martini L, Mansy SS. Piecing Together Cell-like Systems. CURR ORG CHEM 2013; 17:1751-1757. [PMID: 24348089 PMCID: PMC3856425 DOI: 10.2174/13852728113179990082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 05/07/2013] [Accepted: 05/12/2013] [Indexed: 12/03/2022]
Abstract
Several laboratories are pursuing the synthesis of cellular systems from different directions, including those that begin with simple chemicals to those that exploit existing cells. The methods that begin with nonliving components tend to focus on mimicking specific features of life, such as genomic replication, protein synthesis, sensory systems, and compartment formation, growth, and division. Conversely, the more prevalent synthetic biology approaches begin with something that is already alive and seek to impart new behavior on existing cells. Here we discuss advances in building cell-like systems that mimic key features of life with defined components.
Collapse
Affiliation(s)
| | | | - Sheref S. Mansy
- CIBIO, University of Trento, via delle Regole 101, 38123 Mattarello (TN), Italy
| |
Collapse
|
35
|
Redrejo-Rodríguez M, Muñoz-Espín D, Holguera I, Mencía M, Salas M. Nuclear localization signals in phage terminal proteins provide a novel gene delivery tool in mammalian cells. Commun Integr Biol 2013; 6:e22829. [PMID: 23750294 PMCID: PMC3609834 DOI: 10.4161/cib.22829] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 11/21/2022] Open
Abstract
Terminal proteins (TPs) of bacteriophages prime DNA replication and become covalently linked to the genome ends. Unexpectedly, we have found functional eukaryotic nuclear localization signals (NLSs) within the TP sequences of bacteriophages from diverse families and hosts. Given the role of bacteriophages as vehicles for horizontal gene transfer (HGT), we postulated that viral genomes that have covalently linked NLS-containing terminal proteins might behave as vectors for HGT between bacteria and the eukaryotic nucleus. To validate this hypothesis, we profited from the in vitro Φ29 amplification system that allows the amplification of heterologous DNAs producing linear molecules of DNA with TP covalently attached to both 5' ends. Interestingly, these in vitro-generated TP-DNA molecules showed enhanced gene delivery in mammalian cells, supporting a possible role in HGT by transferring genes between prokaryotes and eukaryotes. Moreover, these TP-DNA molecules are a useful tool to amplify and subsequently deliver genes efficiently into the eukaryotic nucleus. Here, we suggest various possible applications and further developments of the technique with biotechnological and therapeutic purposes.
Collapse
|
36
|
Forlin M, Lentini R, Mansy SS. Cellular imitations. Curr Opin Chem Biol 2012; 16:586-92. [DOI: 10.1016/j.cbpa.2012.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/04/2012] [Accepted: 10/12/2012] [Indexed: 01/26/2023]
|
37
|
Abstract
This article is a survey of my scientific work over 52 years. During my postdoctoral stay in Severo Ochoa's laboratory, I determined the direction of reading of the genetic message, and I discovered two proteins that I showed to be involved in the initiation of protein synthesis. The work I have done in Spain with bacteriophage ϕ29 for 45 years has been very rewarding. I can say that I was lucky because I did not expect that ϕ29 would give so many interesting results, but I worked hard, with a lot of dedication and enthusiasm, and I was there when the luck arrived. I would like to emphasize our work on the control of ϕ29 DNA transcription and, in particular, the finding for the first time of a protein covalently linked to the 5'-ends of ϕ29 DNA that we later showed to be the primer for the initiation of phage DNA replication. Very relevant was the discovery of the ϕ29 DNA polymerase, with its properties of extremely high processivity and strand displacement capacity, together with its high fidelity. The ϕ29 DNA polymerase has become an ideal enzyme for DNA amplification, both rolling-circle and whole-genome linear amplification. I am also very proud of the many brilliant students and collaborators with whom I have worked over the years and who have become excellent scientists. This Reflections article is not intended to be the end of my scientific career. I expect to work for many years to come.
Collapse
Affiliation(s)
- Margarita Salas
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
38
|
Rodríguez I, Longás E, de Vega M, Salas M. The essential role of the 3' terminal template base in the first steps of protein-primed DNA replication. PLoS One 2012; 7:e48257. [PMID: 23110220 PMCID: PMC3480470 DOI: 10.1371/journal.pone.0048257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages φ29 and Nf from Bacillus subtilis start replication of their linear genomes at both ends using a protein-primed mechanism by means of which the DNA polymerase initiates replication by adding dAMP to the terminal protein, this insertion being directed by the second and third 3′ terminal thymine of the template strand, respectively. In this work, we have obtained evidences about the role of the 3′ terminal base during the initiation steps of φ29 and Nf genome replication. The results indicate that the absence of the 3′ terminal base modifies the initiation position carried out by φ29 DNA polymerase in such a way that now the third position of the template, instead of the second one, guides the incorporation of the initiating nucleotide. In the case of Nf, although the lack of the 3′ terminal base has no effect on the initiation position, its absence impairs further elongation of the TP-dAMP initiation product. The results show the essential role of the 3′ terminal base in guaranteeing the correct positioning of replication origins at the polymerization active site to allow accurate initiation of replication and further elongation.
Collapse
Affiliation(s)
- Irene Rodríguez
- Instituto de Biología Molecular “Eladio Viñuela” (Centro Superior de Investigaciones Científicas), Centro de Biología Molecular “Severo Ochoa” (Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Elisa Longás
- Instituto de Biología Molecular “Eladio Viñuela” (Centro Superior de Investigaciones Científicas), Centro de Biología Molecular “Severo Ochoa” (Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Miguel de Vega
- Instituto de Biología Molecular “Eladio Viñuela” (Centro Superior de Investigaciones Científicas), Centro de Biología Molecular “Severo Ochoa” (Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular “Eladio Viñuela” (Centro Superior de Investigaciones Científicas), Centro de Biología Molecular “Severo Ochoa” (Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
39
|
Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages. Proc Natl Acad Sci U S A 2012; 109:18482-7. [PMID: 23091024 DOI: 10.1073/pnas.1216635109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A number of prokaryotic proteins have been shown to contain nuclear localization signals (NLSs), although its biological role remains sometimes unclear. Terminal proteins (TPs) of bacteriophages prime DNA replication and become covalently linked to the genome ends. We predicted NLSs within the TPs of bacteriophages from diverse families and hosts and, indeed, the TPs of Φ29, Nf, PRD1, Bam35, and Cp-1, out of seven TPs tested, were found to localize to the nucleus when expressed in mammalian cells. Detailed analysis of Φ29 TP led us to identify a bona fide NLS within residues 1-37. Importantly, gene delivery into the eukaryotic nucleus is enhanced by the presence of Φ29 TP attached to the 5' DNA ends. These findings show a common feature of TPs from diverse bacteriophages targeting the eukaryotic nucleus and suggest a possible common function by facilitating the horizontal transfer of genes between prokaryotes and eukaryotes.
Collapse
|
40
|
Functional specificity of a protein-DNA complex mediated by two arginines bound to the minor groove. J Bacteriol 2012; 194:4727-35. [PMID: 22753063 DOI: 10.1128/jb.00677-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A bacteriophage Ø29 transcriptional regulator, protein p4, interacts with its DNA target by employing two mechanisms: by direct readout of the chemical signatures of only one DNA base and by inducing local modification on the topology of short A tracts (indirect readout). p4 binds as a dimer to targets consisting of imperfect inverted repeats. Here we used molecular dynamic simulation to define interactions of a cluster of 12 positively charged amino acids of p4 with DNA and biochemical assays with modified DNA targets and mutated proteins to quantify the contribution of residues in the nucleoprotein complex. Our results show the implication of Arg54, with non-base-specific interaction in the central A tract, in p4 binding affinity. Despite being chemically equivalent and in identical protein monomers, the two Arg54 residues differed in their interactions with DNA. We discuss an indirect-readout mechanism for p4-DNA recognition mediated by dissimilar interaction of arginines penetrating the minor groove and the inherent properties of the A tract. Our findings extend the current understanding of protein-DNA recognition and contribute to the relevance of the sequence-dependent conformational malleability of the DNA, shedding light on the role of arginines in binding affinity. Characterization of mutant p4R54A shows that the residue is required for the activity of the protein as a transcriptional regulator.
Collapse
|
41
|
del Prado A, Villar L, de Vega M, Salas M. Involvement of residues of the 29 terminal protein intermediate and priming domains in the formation of a stable and functional heterodimer with the replicative DNA polymerase. Nucleic Acids Res 2011; 40:3886-97. [PMID: 22210885 PMCID: PMC3351185 DOI: 10.1093/nar/gkr1283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteriophage Φ29 genome consists of a linear double-stranded DNA with a terminal protein (TP) covalently linked to each 5' end (TP-DNA) that together with a specific sequence constitutes the replication origins. To initiate replication, the DNA polymerase forms a heterodimer with a free TP that recognizes the origins and initiates replication using as primer the hydroxyl group of TP residue Ser232. The 3D structure of the DNA polymerase/TP heterodimer allowed the identification of TP residues that could be responsible for interaction with the DNA polymerase. Here, we examined the role of TP residues Arg158, Arg169, Glu191, Asp198, Tyr250, Glu252, Gln253 and Arg256 by in vitro analyses of mutant derivatives. The results showed that substitution of these residues had an effect on either the stability of the TP/DNA polymerase complex (R158A) or in the functional interaction of the TP at the polymerization active site (R169A, E191A, Y250A, E252A, Q253A and R256A), affecting the first steps of Φ29 TP-DNA replication. These results allow us to propose a role for these residues in the maintenance of the equilibrium between TP-priming domain stabilization and its gradual exit from the polymerization active site of the DNA polymerase as new DNA is being synthesized.
Collapse
Affiliation(s)
- Alicia del Prado
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|