1
|
Choi SI, Jin Y, Choi Y, Seong BL. Beyond Misfolding: A New Paradigm for the Relationship Between Protein Folding and Aggregation. Int J Mol Sci 2024; 26:53. [PMID: 39795912 PMCID: PMC11720324 DOI: 10.3390/ijms26010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Aggregation is intricately linked to protein folding, necessitating a precise understanding of their relationship. Traditionally, aggregation has been viewed primarily as a sequential consequence of protein folding and misfolding. However, this conventional paradigm is inherently incomplete and can be deeply misleading. Remarkably, it fails to adequately explain how intrinsic and extrinsic factors, such as charges and cellular macromolecules, prevent intermolecular aggregation independently of intramolecular protein folding and structure. The pervasive inconsistencies between protein folding and aggregation call for a new framework. In all combined reactions of molecules, both intramolecular and intermolecular rate (or equilibrium) constants are mutually independent; accordingly, intrinsic and extrinsic factors independently affect both rate constants. This universal principle, when applied to protein folding and aggregation, indicates that they should be treated as two independent yet interconnected processes. Based on this principle, a new framework provides groundbreaking insights into misfolding, Anfinsen's thermodynamic hypothesis, molecular chaperones, intrinsic chaperone-like activities of cellular macromolecules, intermolecular repulsive force-driven aggregation inhibition, proteome solubility maintenance, and proteinopathies. Consequently, this paradigm shift not only refines our current understanding but also offers a more comprehensive view of how aggregation is coupled to protein folding in the complex cellular milieu.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
| | - Yoontae Jin
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yura Choi
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea
| | - Baik L. Seong
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Dissecting the stability determinants of a challenging de novo protein fold using massively parallel design and experimentation. Proc Natl Acad Sci U S A 2022; 119:e2122676119. [PMID: 36191185 PMCID: PMC9564214 DOI: 10.1073/pnas.2122676119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Designing entirely new protein structures remains challenging because we do not fully understand the biophysical determinants of folding stability. Yet, some protein folds are easier to design than others. Previous work identified the 43-residue ɑββɑ fold as especially challenging: The best designs had only a 2% success rate, compared to 39 to 87% success for other simple folds [G. J. Rocklin et al., Science 357, 168-175 (2017)]. This suggested the ɑββɑ fold would be a useful model system for gaining a deeper understanding of folding stability determinants and for testing new protein design methods. Here, we designed over 10,000 new ɑββɑ proteins and found over 3,000 of them to fold into stable structures using a high-throughput protease-based assay. NMR, hydrogen-deuterium exchange, circular dichroism, deep mutational scanning, and scrambled sequence control experiments indicated that our stable designs fold into their designed ɑββɑ structures with exceptional stability for their small size. Our large dataset enabled us to quantify the influence of universal stability determinants including nonpolar burial, helix capping, and buried unsatisfied polar atoms, as well as stability determinants unique to the ɑββɑ topology. Our work demonstrates how large-scale design and test cycles can solve challenging design problems while illuminating the biophysical determinants of folding.
Collapse
|
3
|
Abstract
The hypervariable residues that compose the major part of proteins’ surfaces are generally considered outside evolutionary control. Yet, these “nonconserved” residues determine the outcome of stochastic encounters in crowded cells. It has recently become apparent that these encounters are not as random as one might imagine, but carefully orchestrated by the intracellular electrostatics to optimize protein diffusion, interactivity, and partner search. The most influential factor here is the protein surface-charge density, which takes different optimal values across organisms with different intracellular conditions. In this study, we examine how far the net-charge density and other physicochemical properties of proteomes will take us in terms of distinguishing organisms in general. The results show that these global proteome properties not only follow the established taxonomical hierarchy, but also provide clues to functional adaptation. In many cases, the proteome–property divergence is even resolved at species level. Accordingly, the variable parts of the genes are not as free to drift as they seem in sequence alignment, but present a complementary tool for functional, taxonomic, and evolutionary assignment.
Collapse
|
4
|
Naganathan AN, Kannan A. A hierarchy of coupling free energies underlie the thermodynamic and functional architecture of protein structures. Curr Res Struct Biol 2021; 3:257-267. [PMID: 34704074 PMCID: PMC8526763 DOI: 10.1016/j.crstbi.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
Protein sequences and structures evolve by satisfying varied physical and biochemical constraints. This multi-level selection is enabled not just by the patterning of amino acids on the sequence, but also via coupling between residues in the native structure. Here, we employ an energetically detailed statistical mechanical model with millions of microstates to extract such long-range structural correlations, i.e. thermodynamic coupling free energies, from a diverse family of protein structures. We find that despite the intricate and anisotropic distribution of coupling patterns, the majority of residues (>70%) are only marginally coupled contributing to functional motions and catalysis. Physical origins of ‘sectors’, determinants of native ensemble heterogeneity in extant, ancient and designed proteins, and the basis for allostery emerge naturally from coupling free energies. The statistical framework highlights how evolutionary selection and optimization occur at the level of global interaction network for a given protein fold impacting folding, function, and allosteric outputs. Evolution of protein structures occurs at the level of global interaction network. More than 70% of the protein residues are weakly or marginally coupled. Functional ‘sector’ regions are a manifestation of marginal coupling. Coupling indices vary across the entire proteins in extant-ancient and natural-designed pairs. The proposed methodology can be used to understand allostery and epistasis.
Collapse
Affiliation(s)
- Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Adithi Kannan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
5
|
Houben B, Rousseau F, Schymkowitz J. Protein structure and aggregation: a marriage of necessity ruled by aggregation gatekeepers. Trends Biochem Sci 2021; 47:194-205. [PMID: 34561149 DOI: 10.1016/j.tibs.2021.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
Protein aggregation propensity is a pervasive and seemingly inescapable property of proteomes. Strikingly, a significant fraction of the proteome is supersaturated, meaning that, for these proteins, their native conformation is less stable than the aggregated state. Maintaining the integrity of a proteome under such conditions is precarious and requires energy-consuming proteostatic regulation. Why then is aggregation propensity maintained at such high levels over long evolutionary timescales? Here, we argue that the conformational stability of the native and aggregated states are correlated thermodynamically and that codon usage strengthens this correlation. As a result, the folding of stable proteins requires kinetic control to avoid aggregation, provided by aggregation gatekeepers. These unique residues are evolutionarily selected to kinetically favor native folding, either on their own or by coopting chaperones.
Collapse
Affiliation(s)
- Bert Houben
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
A Conceptual Framework for Integrating Cellular Protein Folding, Misfolding and Aggregation. Life (Basel) 2021; 11:life11070605. [PMID: 34202456 PMCID: PMC8304792 DOI: 10.3390/life11070605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
How proteins properly fold and maintain solubility at the risk of misfolding and aggregation in the cellular environments still remains largely unknown. Aggregation has been traditionally treated as a consequence of protein folding (or misfolding). Notably, however, aggregation can be generally inhibited by affecting the intermolecular interactions leading to aggregation, independently of protein folding and conformation. We here point out that rigorous distinction between protein folding and aggregation as two independent processes is necessary to reconcile and underlie all observations regarding the combined cellular protein folding and aggregation. So far, the direct attractive interactions (e.g., hydrophobic interactions) between cellular macromolecules including chaperones and interacting polypeptides have been widely believed to mainly stabilize polypeptides against aggregation. However, the intermolecular repulsions by large excluded volume and surface charges of cellular macromolecules can play a key role in stabilizing their physically connected polypeptides against aggregation, irrespective of the connection types and induced conformational changes, underlying the generic intrinsic chaperone activity of cellular macromolecules. Such rigorous distinction and intermolecular repulsive force-driven aggregation inhibition by cellular macromolecules could give new insights into understanding the complex cellular protein landscapes that remain uncharted.
Collapse
|
7
|
Liu Z, Fu X, Yuan M, Liang Q, Zhu C, Mou H. Surface charged amino acid-based strategy for rational engineering of kinetic stability and specific activity of enzymes: Linking experiments with computational modeling. Int J Biol Macromol 2021; 182:228-236. [PMID: 33831449 DOI: 10.1016/j.ijbiomac.2021.03.198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022]
Abstract
A rational workflow for engineering kinetically stable enzymes with good specific activity by surface charged amino acids engineering was proposed based on systematically analyzing the results of mutating 44 negatively charged surface amino acids of a thermophilic β-mannanase (ManAK). Computational data, combined with experimental results indicated that percentage side-chain solvent accessibility (PSSA), changes in Gibbs free energy of unfolding (∆∆Gmut) and root-mean-square fluctuations (RMSF) could be suitable for screening kinetically stable mutants. A combinational standard (∆∆Gmut < -0.5 kJ/mol and RMSF >0.68 Å) resulted a decrease in the proportion of destabilizing mutants to 12.5%. The perturbations of substrate affinity and specific activity caused by mutation were weakened as the shortest distance from Cα of mutated site to Cα of catalytic sites (DsCα-Cα) increased. Results indicated that hotspot zones contributing to the local stability and integrity of catalytic motif at elevated temperatures might be widely distributed across spatial structure of the protein, while the mutation perturbation on enzyme specific activity demonstrated a gradually weakening trend from the catalytic core to the protein surface. These findings further our understanding of the structural-functional relationships of protein and highlight a deduced workflow to engineering industrially useful enzymes.
Collapse
Affiliation(s)
- Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mingxue Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
8
|
Sörensen T, Leeb S, Danielsson J, Oliveberg M. Polyanions Cause Protein Destabilization Similar to That in Live Cells. Biochemistry 2021; 60:735-746. [PMID: 33635054 PMCID: PMC8028048 DOI: 10.1021/acs.biochem.0c00889] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Indexed: 12/25/2022]
Abstract
The structural stability of proteins is found to markedly change upon their transfer to the crowded interior of live cells. For some proteins, the stability increases, while for others, it decreases, depending on both the sequence composition and the type of host cell. The mechanism seems to be linked to the strength and conformational bias of the diffusive in-cell interactions, where protein charge is found to play a decisive role. Because most proteins, nucleotides, and membranes carry a net-negative charge, the intracellular environment behaves like a polyanionic (Z:1) system with electrostatic interactions different from those of standard 1:1 ion solutes. To determine how such polyanion conditions influence protein stability, we use negatively charged polyacetate ions to mimic the net-negatively charged cellular environment. The results show that, per Na+ equivalent, polyacetate destabilizes the model protein SOD1barrel significantly more than monoacetate or NaCl. At an equivalent of 100 mM Na+, the polyacetate destabilization of SOD1barrel is similar to that observed in live cells. By the combined use of equilibrium thermal denaturation, folding kinetics, and high-resolution nuclear magnetic resonance, this destabilization is primarily assigned to preferential interaction between polyacetate and the globally unfolded protein. This interaction is relatively weak and involves mainly the outermost N-terminal region of unfolded SOD1barrel. Our findings point thus to a generic influence of polyanions on protein stability, which adds to the sequence-specific contributions and needs to be considered in the evaluation of in vivo data.
Collapse
Affiliation(s)
- Therese Sörensen
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Sarah Leeb
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Pittas T, Zuo W, Boersma AJ. Engineering crowding sensitivity into protein linkers. Methods Enzymol 2020; 647:51-81. [PMID: 33482994 DOI: 10.1016/bs.mie.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The intracellular environment contains a high concentration of biomacromolecules that present steric barriers and ample surface area for weak chemical interactions. Consequently, these forces influence protein conformations and protein self-assembly, with an outcome that depends on the sum of the effects resulting from crowding. Linkers are disordered domains that lack tertiary structure, and this flexible nature would render them susceptible to compression or extension under crowded conditions, compared to the equilibrium conformation in a dilute buffer. The change in distance between the linked proteins can become essential where it attenuates protein activity. In this chapter, we first discuss the experimental findings in vitro and in the cell on how linkers and other relevant macromolecules are affected by crowding. We focus on the dependence on the linker's size, flexibility, and the intra- and intermolecular interactions. Although the experimental data on the systematic variation of proteins in a buffer and cells is limited, extrapolating the available insights allows us to propose a protocol on how to engineer the directionality of crowding effects in the linker. Finally, we describe a straightforward experimental protocol on the determination of crowding sensitivity in a buffer and cell.
Collapse
Affiliation(s)
- Theodoros Pittas
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Weiyan Zuo
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
10
|
Casier R, Duhamel J. Effect of Like Charges on the Conformation and Internal Dynamics of Polypeptides Probed by Pyrene Excimer Fluorescence. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo N2L3G1, Ontario, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo N2L3G1, Ontario, Canada
| |
Collapse
|
11
|
Houben B, Michiels E, Ramakers M, Konstantoulea K, Louros N, Verniers J, van der Kant R, De Vleeschouwer M, Chicória N, Vanpoucke T, Gallardo R, Schymkowitz J, Rousseau F. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. EMBO J 2020; 39:e102864. [PMID: 32237079 PMCID: PMC7265246 DOI: 10.15252/embj.2019102864] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Many chaperones favour binding to hydrophobic sequences that are flanked by basic residues while disfavouring acidic residues. However, the origin of this bias in protein quality control remains poorly understood. Here, we show that while acidic residues are the most efficient aggregation inhibitors, they are also less compatible with globular protein structure than basic amino acids. As a result, while acidic residues allow for chaperone-independent control of aggregation, their use is structurally limited. Conversely, we find that, while being more compatible with globular structure, basic residues are not sufficient to autonomously suppress protein aggregation. Using Hsp70, we show that chaperones with a bias towards basic residues are structurally adapted to prioritize aggregating sequences whose structural context forced the use of the less effective basic residues. The hypothesis that emerges from our analysis is that the bias of many chaperones for basic residues results from fundamental thermodynamic and kinetic constraints of globular structure. This also suggests the co-evolution of basic residues and chaperones allowed for an expansion of structural variety in the protein universe.
Collapse
Affiliation(s)
- Bert Houben
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Emiel Michiels
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Katerina Konstantoulea
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Joffré Verniers
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Rob van der Kant
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Matthias De Vleeschouwer
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Nuno Chicória
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Thomas Vanpoucke
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Rodrigo Gallardo
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| |
Collapse
|
12
|
Koopman MB, Rüdiger SG. Behind closed gates - chaperones and charged residues determine protein fate. EMBO J 2020; 39:e104939. [PMID: 32350912 DOI: 10.15252/embj.2020104939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Charged residues flanking aggregation-prone regions play a role in protein folding and prevention of aggregation. In this issue of The EMBO Journal, Houben et al exploit the role of such charged gatekeepers in aggregation suppression and find that negative charges are more effective than positive ones. Strikingly, the prominent Hsp70 chaperone has a strong preference for the less effective, basic gate keepers. This implies co-adaptation of chaperone specificity and composition of protein sequences in evolution.
Collapse
Affiliation(s)
- Margreet B Koopman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Stefan Gd Rüdiger
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Science for Life, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Choi SI. A Simple Principle for Understanding the Combined Cellular Protein Folding and Aggregation. Curr Protein Pept Sci 2020; 21:3-21. [DOI: 10.2174/1389203720666190725114550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/27/2022]
Abstract
Proteins can undergo kinetic/thermodynamic partitioning between folding and aggregation. Proper protein folding and thermodynamic stability are crucial for aggregation inhibition. Thus, proteinfolding principles have been widely believed to consistently underlie aggregation as a consequence of conformational change. However, this prevailing view appears to be challenged by the ubiquitous phenomena that the intrinsic and extrinsic factors including cellular macromolecules can prevent aggregation, independently of (even with sacrificing) protein folding rate and stability. This conundrum can be definitely resolved by ‘a simple principle’ based on a rigorous distinction between protein folding and aggregation: aggregation can be controlled by affecting the intermolecular interactions for aggregation, independently of the intramolecular interactions for protein folding. Aggregation is beyond protein folding. A unifying model that can conceptually reconcile and underlie the seemingly contradictory observations is described here. This simple principle highlights, in particular, the importance of intermolecular repulsive forces against aggregation, the magnitude of which can be correlated with the size and surface properties of molecules. The intermolecular repulsive forces generated by the common intrinsic properties of cellular macromolecules including chaperones, such as their large excluded volume and surface charges, can play a key role in preventing the aggregation of their physically connected polypeptides, thus underlying the generic intrinsic chaperone activity of soluble cellular macromolecules. Such intermolecular repulsive forces of bulky cellular macromolecules, distinct from protein conformational change and attractive interactions, could be the puzzle pieces for properly understanding the combined cellular protein folding and aggregation including how proteins can overcome their metastability to amyloid fibrils in vivo.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Bianco V, Alonso-Navarro M, Di Silvio D, Moya S, Cortajarena AL, Coluzza I. Proteins are Solitary! Pathways of Protein Folding and Aggregation in Protein Mixtures. J Phys Chem Lett 2019; 10:4800-4804. [PMID: 31373499 DOI: 10.1021/acs.jpclett.9b01753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a computational and experimental study on the folding and aggregation in solutions of multiple protein mixtures at different concentrations. We show how in protein mixtures each component is capable of maintaining its folded state at densities greater than the one at which they would precipitate in single-species solutions. We demonstrate the generality of our observation over many different proteins using computer simulations capable of fully characterizing the cross-aggregation phase diagram of all the mixtures. Dynamic light scattering experiments were performed to evaluate the aggregation of two proteins, bovine serum albumin (BSA) and consensus tetratricopeptide repeat (CTPR), in solutions of one or both proteins. The experiments confirm our hypothesis and the simulations. These findings elucidate critical aspects of the cross-regulation of expression and aggregation of proteins exerted by the cell and on the evolutionary selection of folding and non-aggregating protein sequences, paving the way for new experimental tests.
Collapse
Affiliation(s)
- Valentino Bianco
- Faculty of Chemistry, Chemical Physics Deprtment, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | | | | | - Sergio Moya
- CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Aitziber L Cortajarena
- CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Ivan Coluzza
- CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
15
|
Basile W, Salvatore M, Bassot C, Elofsson A. Why do eukaryotic proteins contain more intrinsically disordered regions? PLoS Comput Biol 2019; 15:e1007186. [PMID: 31329574 PMCID: PMC6675126 DOI: 10.1371/journal.pcbi.1007186] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 08/01/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Intrinsic disorder is more abundant in eukaryotic than prokaryotic proteins. Methods predicting intrinsic disorder are based on the amino acid sequence of a protein. Therefore, there must exist an underlying difference in the sequences between eukaryotic and prokaryotic proteins causing the (predicted) difference in intrinsic disorder. By comparing proteins, from complete eukaryotic and prokaryotic proteomes, we show that the difference in intrinsic disorder emerges from the linker regions connecting Pfam domains. Eukaryotic proteins have more extended linker regions, and in addition, the eukaryotic linkers are significantly more disordered, 38% vs. 12-16% disordered residues. Next, we examined the underlying reason for the increase in disorder in eukaryotic linkers, and we found that the changes in abundance of only three amino acids cause the increase. Eukaryotic proteins contain 8.6% serine; while prokaryotic proteins have 6.5%, eukaryotic proteins also contain 5.4% proline and 5.3% isoleucine compared with 4.0% proline and ≈ 7.5% isoleucine in the prokaryotes. All these three differences contribute to the increased disorder in eukaryotic proteins. It is tempting to speculate that the increase in serine frequencies in eukaryotes is related to regulation by kinases, but direct evidence for this is lacking. The differences are observed in all phyla, protein families, structural regions and type of protein but are most pronounced in disordered and linker regions. The observation that differences in the abundance of three amino acids cause the difference in disorder between eukaryotic and prokaryotic proteins raises the question: Are amino acid frequencies different in eukaryotic linkers because the linkers are more disordered or do the differences cause the increased disorder? Intrinsic disorder is essential for various functions in eukaryotic cells and is a signature of eukaryotic proteins. Here, we try to understand the origin of the difference in disorder between eukaryotic and prokaryotic proteins. We show that eukaryotic proteins contain more extended linker regions and that these linker regions are significantly more disordered. Further, we show, for the first time, that the difference in disorder originates from a systematic difference in amino acid frequencies between eukaryotic and prokaryotic proteins. Three amino acids contribute to the difference in disorder; serine and proline are more abundant in eukaryotic linkers, while isoleucine is less frequent. These shifts in frequencies are observed in all phyla, protein families, structural regions and type of protein but are most pronounced in disordered and linker regions. It is tempting to speculate that the increase in serine frequencies in eukaryotes is related to regulation by kinases, but direct evidence for this is lacking. Anyhow the widespread of the shifts in abundance indicates that the differences are ancient and caused be some yet not fully understood selective difference acting on eukaryotic and prokaryotic proteins.
Collapse
Affiliation(s)
- Walter Basile
- Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Marco Salvatore
- Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Claudio Bassot
- Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Arne Elofsson
- Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Swedish e-Science Research Center (SeRC), Stockholm, Sweden
- * E-mail:
| |
Collapse
|
16
|
Conversion of a soluble protein into a potent chaperone in vivo. Sci Rep 2019; 9:2735. [PMID: 30804538 PMCID: PMC6389997 DOI: 10.1038/s41598-019-39158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/18/2019] [Indexed: 01/31/2023] Open
Abstract
Molecular chaperones play an important role in cellular protein-folding assistance and aggregation inhibition. As a different but complementary model, we previously proposed that, in general, soluble cellular macromolecules with large excluded volume and surface charges exhibit intrinsic chaperone activity to prevent aggregation of their connected polypeptides irrespective of the connection type, thereby contributing to efficient protein folding. As a proof of concept, we here demonstrated that a model recombinant protein with a specific sequence-binding domain robustly exerted chaperone activity toward various proteins harbouring a short recognition tag of 7 residues in Escherichia coli. The chaperone activity of this protein was comparable to that of representative E. coli chaperones in vivo. Furthermore, in vitro refolding experiments confirmed the in vivo results. Our findings reveal that a soluble protein exhibits the intrinsic chaperone activity to prevent off-pathway aggregation of its interacting proteins, leading to more productive folding while allowing them to fold according to their intrinsic folding pathways. This study gives new insights into the plausible chaperoning role of soluble cellular macromolecules in terms of aggregation inhibition and indirect folding assistance.
Collapse
|
17
|
Farías-Rico JA, Ruud Selin F, Myronidi I, Frühauf M, von Heijne G. Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome. Proc Natl Acad Sci U S A 2018; 115:E9280-E9287. [PMID: 30224455 PMCID: PMC6176590 DOI: 10.1073/pnas.1812756115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
During the last five decades, studies of protein folding in dilute buffer solutions have produced a rich picture of this complex process. In the cell, however, proteins can start to fold while still attached to the ribosome (cotranslational folding) and it is not yet clear how the ribosome affects the folding of protein domains of different sizes, thermodynamic stabilities, and net charges. Here, by using arrest peptides as force sensors and on-ribosome pulse proteolysis, we provide a comprehensive picture of how the distance from the peptidyl transferase center in the ribosome at which proteins fold correlates with protein size. Moreover, an analysis of a large collection of mutants of the Escherichia coli ribosomal protein S6 shows that the force exerted on the nascent chain by protein folding varies linearly with the thermodynamic stability of the folded state, and that the ribosome environment disfavors folding of domains of high net-negative charge.
Collapse
Affiliation(s)
| | - Frida Ruud Selin
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ioanna Myronidi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marie Frühauf
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden
| |
Collapse
|
18
|
Size and topology modulate the effects of frustration in protein folding. Proc Natl Acad Sci U S A 2018; 115:9234-9239. [PMID: 30150375 DOI: 10.1073/pnas.1801406115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The presence of conflicting interactions, or frustration, determines how fast biomolecules can explore their configurational landscapes. Recent experiments have provided cases of systems with slow reconfiguration dynamics, perhaps arising from frustration. While it is well known that protein folding speed and mechanism are strongly affected by the protein native structure, it is still unknown how the response to frustration is modulated by the protein topology. We explore the effects of nonnative interactions in the reconfigurational and folding dynamics of proteins with different sizes and topologies. We find that structural correlations related to the folded state size and topology play an important role in determining the folding kinetics of proteins that otherwise have the same amount of nonnative interactions. In particular, we find that the reconfiguration dynamics of α-helical proteins are more susceptible to frustration than β-sheet proteins of the same size. Our results may explain recent experimental findings and suggest that attempts to measure the degree of frustration due to nonnative interactions might be more successful with α-helical proteins.
Collapse
|
19
|
Upadhyay A, Mishra A. Amyloids of multiple species: are they helpful in survival? Biol Rev Camb Philos Soc 2018; 93:1363-1386. [DOI: 10.1111/brv.12399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan 342011 India
| |
Collapse
|
20
|
Zhou HX, Pang X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem Rev 2018; 118:1691-1741. [PMID: 29319301 DOI: 10.1021/acs.chemrev.7b00305] [Citation(s) in RCA: 571] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Charged and polar groups, through forming ion pairs, hydrogen bonds, and other less specific electrostatic interactions, impart important properties to proteins. Modulation of the charges on the amino acids, e.g., by pH and by phosphorylation and dephosphorylation, have significant effects such as protein denaturation and switch-like response of signal transduction networks. This review aims to present a unifying theme among the various effects of protein charges and polar groups. Simple models will be used to illustrate basic ideas about electrostatic interactions in proteins, and these ideas in turn will be used to elucidate the roles of electrostatic interactions in protein structure, folding, binding, condensation, and related biological functions. In particular, we will examine how charged side chains are spatially distributed in various types of proteins and how electrostatic interactions affect thermodynamic and kinetic properties of proteins. Our hope is to capture both important historical developments and recent experimental and theoretical advances in quantifying electrostatic contributions of proteins.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago , Chicago, Illinois 60607, United States.,Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| | - Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
21
|
Arai M. Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins. Biophys Rev 2018; 10:163-181. [PMID: 29307002 PMCID: PMC5899706 DOI: 10.1007/s12551-017-0346-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Extensive experimental and theoretical studies have advanced our understanding of the mechanisms of folding and binding of globular proteins, and coupled folding and binding of intrinsically disordered proteins (IDPs). The forces responsible for conformational changes and binding are common in both proteins; however, these mechanisms have been separately discussed. Here, we attempt to integrate the mechanisms of coupled folding and binding of IDPs, folding of small and multi-subdomain proteins, folding of multimeric proteins, and ligand binding of globular proteins in terms of conformational selection and induced-fit mechanisms as well as the nucleation–condensation mechanism that is intermediate between them. Accumulating evidence has shown that both the rate of conformational change and apparent rate of binding between interacting elements can determine reaction mechanisms. Coupled folding and binding of IDPs occurs mainly by induced-fit because of the slow folding in the free form, while ligand binding of globular proteins occurs mainly by conformational selection because of rapid conformational change. Protein folding can be regarded as the binding of intramolecular segments accompanied by secondary structure formation. Multi-subdomain proteins fold mainly by the induced-fit (hydrophobic collapse) mechanism, as the connection of interacting segments enhances the binding (compaction) rate. Fewer hydrophobic residues in small proteins reduce the intramolecular binding rate, resulting in the nucleation–condensation mechanism. Thus, the folding and binding of globular proteins and IDPs obey the same general principle, suggesting that the coarse-grained, statistical mechanical model of protein folding is promising for a unified theoretical description of all mechanisms.
Collapse
Affiliation(s)
- Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
22
|
Cohen-Khait R, Dym O, Hamer-Rogotner S, Schreiber G. Promiscuous Protein Binding as a Function of Protein Stability. Structure 2017; 25:1867-1874.e3. [DOI: 10.1016/j.str.2017.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/25/2017] [Accepted: 11/03/2017] [Indexed: 11/28/2022]
|
23
|
Meisl G, Yang X, Dobson CM, Linse S, Knowles TPJ. Modulation of electrostatic interactions to reveal a reaction network unifying the aggregation behaviour of the Aβ42 peptide and its variants. Chem Sci 2017; 8:4352-4362. [PMID: 28979758 PMCID: PMC5580342 DOI: 10.1039/c7sc00215g] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/03/2017] [Indexed: 01/07/2023] Open
Abstract
The aggregation of the amyloid β peptide (Aβ42), which is linked to Alzheimer's disease, can be altered significantly by modulations of the peptide's intermolecular electrostatic interactions. Variations in sequence and solution conditions have been found to lead to highly variable aggregation behaviour. Here we modulate systematically the electrostatic interactions governing the aggregation kinetics by varying the ionic strength of the solution. We find that changes in the solution ionic strength induce a switch in the reaction pathway, altering the dominant mechanisms of aggregate multiplication. This strategy thereby allows us to continuously sample a large space of different reaction mechanisms and develop a minimal reaction network that unifies the experimental kinetics under a wide range of different conditions. More generally, this universal reaction network connects previously separate systems, such as charge mutants of the Aβ42 peptide, on a continuous mechanistic landscape, providing a unified picture of the aggregation mechanism of Aβ42.
Collapse
Affiliation(s)
- Georg Meisl
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK . ;
| | - Xiaoting Yang
- Chemistry Department and Molecular Protein Science , Lund University , P. O. Box 124 , SE221 00 Lund , Sweden .
| | - Christopher M Dobson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK . ;
| | - Sara Linse
- Chemistry Department and Molecular Protein Science , Lund University , P. O. Box 124 , SE221 00 Lund , Sweden .
| | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK . ;
| |
Collapse
|
24
|
Physicochemical code for quinary protein interactions in Escherichia coli. Proc Natl Acad Sci U S A 2017; 114:E4556-E4563. [PMID: 28536196 DOI: 10.1073/pnas.1621227114] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How proteins sense and navigate the cellular interior to find their functional partners remains poorly understood. An intriguing aspect of this search is that it relies on diffusive encounters with the crowded cellular background, made up of protein surfaces that are largely nonconserved. The question is then if/how this protein search is amenable to selection and biological control. To shed light on this issue, we examined the motions of three evolutionary divergent proteins in the Escherichia coli cytoplasm by in-cell NMR. The results show that the diffusive in-cell motions, after all, follow simplistic physical-chemical rules: The proteins reveal a common dependence on (i) net charge density, (ii) surface hydrophobicity, and (iii) the electric dipole moment. The bacterial protein is here biased to move relatively freely in the bacterial interior, whereas the human counterparts more easily stick. Even so, the in-cell motions respond predictably to surface mutation, allowing us to tune and intermix the protein's behavior at will. The findings show how evolution can swiftly optimize the diffuse background of protein encounter complexes by just single-point mutations, and provide a rational framework for adjusting the cytoplasmic motions of individual proteins, e.g., for rescuing poor in-cell NMR signals and for optimizing protein therapeutics.
Collapse
|
25
|
The Role of Evolutionary Selection in the Dynamics of Protein Structure Evolution. Biophys J 2017; 112:1350-1365. [PMID: 28402878 DOI: 10.1016/j.bpj.2017.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 02/05/2023] Open
Abstract
Homology modeling is a powerful tool for predicting a protein's structure. This approach is successful because proteins whose sequences are only 30% identical still adopt the same structure, while structure similarity rapidly deteriorates beyond the 30% threshold. By studying the divergence of protein structure as sequence evolves in real proteins and in evolutionary simulations, we show that this nonlinear sequence-structure relationship emerges as a result of selection for protein folding stability in divergent evolution. Fitness constraints prevent the emergence of unstable protein evolutionary intermediates, thereby enforcing evolutionary paths that preserve protein structure despite broad sequence divergence. However, on longer timescales, evolution is punctuated by rare events where the fitness barriers obstructing structure evolution are overcome and discovery of new structures occurs. We outline biophysical and evolutionary rationale for broad variation in protein family sizes, prevalence of compact structures among ancient proteins, and more rapid structure evolution of proteins with lower packing density.
Collapse
|
26
|
Makhatadze GI. Linking computation and experiments to study the role of charge-charge interactions in protein folding and stability. Phys Biol 2017; 14:013002. [PMID: 28169222 DOI: 10.1088/1478-3975/14/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past two decades there has been an increase in appreciation for the role of surface charge-charge interactions in protein folding and stability. The perception shifted from the belief that charge-charge interactions are not important for protein folding and stability to the near quantitative understanding of how these interactions shape the folding energy landscape. This led to the ability of computational approaches to rationally redesign surface charge-charge interactions to modulate thermodynamic properties of proteins. Here we summarize our progress in understanding the role of charge-charge interactions for protein stability using examples drawn from my own laboratory and touch upon unanswered questions.
Collapse
Affiliation(s)
- George I Makhatadze
- Center for Biotechnology and Interdisciplinary Studies, and Department of Biological Sciences, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 USA
| |
Collapse
|
27
|
Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I, Rosay M, Donovan KJ, Michael B, Wall J, Linse S, Griffin RG. Atomic Resolution Structure of Monomorphic Aβ42 Amyloid Fibrils. J Am Chem Soc 2016; 138:9663-74. [PMID: 27355699 PMCID: PMC5389415 DOI: 10.1021/jacs.6b05129] [Citation(s) in RCA: 640] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyloid-β (Aβ) is a 39-42 residue protein produced by the cleavage of the amyloid precursor protein (APP), which subsequently aggregates to form cross-β amyloid fibrils that are a hallmark of Alzheimer's disease (AD). The most prominent forms of Aβ are Aβ1-40 and Aβ1-42, which differ by two amino acids (I and A) at the C-terminus. However, Aβ42 is more neurotoxic and essential to the etiology of AD. Here, we present an atomic resolution structure of a monomorphic form of AβM01-42 amyloid fibrils derived from over 500 (13)C-(13)C, (13)C-(15)N distance and backbone angle structural constraints obtained from high field magic angle spinning NMR spectra. The structure (PDB ID: 5KK3 ) shows that the fibril core consists of a dimer of Aβ42 molecules, each containing four β-strands in a S-shaped amyloid fold, and arranged in a manner that generates two hydrophobic cores that are capped at the end of the chain by a salt bridge. The outer surface of the monomers presents hydrophilic side chains to the solvent. The interface between the monomers of the dimer shows clear contacts between M35 of one molecule and L17 and Q15 of the second. Intermolecular (13)C-(15)N constraints demonstrate that the amyloid fibrils are parallel in register. The RMSD of the backbone structure (Q15-A42) is 0.71 ± 0.12 Å and of all heavy atoms is 1.07 ± 0.08 Å. The structure provides a point of departure for the design of drugs that bind to the fibril surface and therefore interfere with secondary nucleation and for other therapeutic approaches to mitigate Aβ42 aggregation.
Collapse
Affiliation(s)
- Michael T. Colvin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Silvers
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Qing Zhe Ni
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thach V. Can
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ivan Sergeyev
- Bruker BioSpin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Melanie Rosay
- Bruker BioSpin, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Kevin J. Donovan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Brian Michael
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joseph Wall
- Brookhaven National Laboratory, 50 Bell Avenue, Building 463, Upton, New York 11973-5000, United States
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, SE22100 Lund, Sweden
| | - Robert G. Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
28
|
Højgaard C, Kofoed C, Espersen R, Johansson KE, Villa M, Willemoës M, Lindorff-Larsen K, Teilum K, Winther JR. A Soluble, Folded Protein without Charged Amino Acid Residues. Biochemistry 2016; 55:3949-56. [PMID: 27307139 DOI: 10.1021/acs.biochem.6b00269] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable side chains can maintain solubility, stability, and function. As a model, we used a cellulose-binding domain from Cellulomonas fimi, which, among proteins of more than 100 amino acids, presently is the least charged in the Protein Data Bank, with a total of only four titratable residues. We find that the protein shows a surprising resilience toward extremes of pH, demonstrating stability and function (cellulose binding) in the pH range from 2 to 11. To ask whether the four charged residues present were required for these properties of this protein, we altered them to nontitratable ones. Remarkably, this chargeless protein is produced reasonably well in Escherichia coli, retains its stable three-dimensional structure, and is still capable of strong cellulose binding. To further deprive this protein of charges, we removed the N-terminal charge by acetylation and studied the protein at pH 2, where the C-terminus is effectively protonated. Under these conditions, the protein retains its function and proved to be both soluble and have a reversible folding-unfolding transition. To the best of our knowledge, this is the first time a soluble, functional protein with no titratable side chains has been produced.
Collapse
Affiliation(s)
- Casper Højgaard
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Christian Kofoed
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Roall Espersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Kristoffer Enøe Johansson
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Mara Villa
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Martin Willemoës
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Kaare Teilum
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| | - Jakob R Winther
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen , DK-2200 Copenhagen N, Denmark
| |
Collapse
|
29
|
Eriksson S, Eremina N, Barth A, Danielsson J, Harryson P. Membrane-Induced Folding of the Plant Stress Dehydrin Lti30. PLANT PHYSIOLOGY 2016; 171:932-43. [PMID: 27208263 PMCID: PMC4902575 DOI: 10.1104/pp.15.01531] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/20/2016] [Indexed: 05/02/2023]
Abstract
Dehydrins are disordered proteins that are expressed in plants as a response to embryogenesis and water-related stress. The molecular function and structural action of the dehydrins are yet elusive, but increasing evidence points to a role in protecting the structure and functional dynamics of cell membranes. An intriguing example is the cold-induced dehydrin Lti30 that binds to membranes by its conserved K segments. Moreover, this binding can be regulated by pH and phosphorylation and shifts the membrane phase transition to lower temperatures, consistent with the protein's postulated function in cold stress. In this study, we reveal how the Lti30-membrane interplay works structurally at atomic level resolution in Arabidopsis (Arabidopsis thaliana). Nuclear magnetic resonance analysis suggests that negatively charged lipid head groups electrostatically capture the protein's disordered K segments, which locally fold up into α-helical segments on the membrane surface. Thus, Lti30 conforms to the general theme of structure-function relationships by folding upon binding, in spite of its disordered, atypically hydrophilic and repetitive sequence signatures. Moreover, the fixed and well-defined structure of the membrane-bound K segments suggests that dehydrins have the molecular prerequisites for higher level binding specificity and regulation, raising new questions about the complexity of their biological function.
Collapse
Affiliation(s)
- Sylvia Eriksson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Nadejda Eremina
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Pia Harryson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
30
|
Using the folding landscapes of proteins to understand protein function. Curr Opin Struct Biol 2016; 36:67-74. [PMID: 26812092 DOI: 10.1016/j.sbi.2016.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/31/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022]
Abstract
Proteins fold on a biologically-relevant timescale because of a funnel-shaped energy landscape. This landscape is sculpted through evolution by selecting amino-acid sequences that stabilize native interactions while suppressing stable non-native interactions that occur during folding. However, there is strong evolutionary selection for functional residues and these cannot be chosen to optimize folding. Their presence impacts the folding energy landscape in a variety of ways. Here, we survey the effects of functional residues on folding by providing several examples. We then review how such effects can be detected computationally and be used as assays for protein function. Overall, an understanding of how functional residues modulate folding should provide insights into the design of natural proteins and their homeostasis.
Collapse
|
31
|
Abstract
Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a β-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.
Collapse
|
32
|
De Baets G, Van Doorn L, Rousseau F, Schymkowitz J. Increased Aggregation Is More Frequently Associated to Human Disease-Associated Mutations Than to Neutral Polymorphisms. PLoS Comput Biol 2015; 11:e1004374. [PMID: 26340370 PMCID: PMC4560525 DOI: 10.1371/journal.pcbi.1004374] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/03/2015] [Indexed: 12/22/2022] Open
Abstract
Protein aggregation is a hallmark of over 30 human pathologies. In these diseases, the aggregation of one or a few specific proteins is often toxic, leading to cellular degeneration and/or organ disruption in addition to the loss-of-function resulting from protein misfolding. Although the pathophysiological consequences of these diseases are overt, the molecular dysregulations leading to aggregate toxicity are still unclear and appear to be diverse and multifactorial. The molecular mechanisms of protein aggregation and therefore the biophysical parameters favoring protein aggregation are better understood. Here we perform an in silico survey of the impact of human sequence variation on the aggregation propensity of human proteins. We find that disease-associated variations are statistically significantly enriched in mutations that increase the aggregation potential of human proteins when compared to neutral sequence variations. These findings suggest that protein aggregation might have a broader impact on human disease than generally assumed and that beyond loss-of-function, the aggregation of mutant proteins involved in cancer, immune disorders or inflammation could potentially further contribute to disease by additional burden on cellular protein homeostasis. Protein aggregation has been recognized to contribute to the development of more than 30 human diseases such as Alzheimer and Parkinson disease. Here we have performed an in silico survey of human sequence variations to evaluate whether protein aggregation might impact human disease beyond the above-mentioned aggregation diseases. We find that human disease mutations are more likely to increase the aggregation potential of proteins than non-disease associated mutations. This survey therefore suggests the possibility that protein aggregation is a more widespread disease modifier than previously expected.
Collapse
Affiliation(s)
- Greet De Baets
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Loic Van Doorn
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
- * E-mail: (FR); (JS)
| | - Joost Schymkowitz
- VIB Switch Laboratory, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
- * E-mail: (FR); (JS)
| |
Collapse
|
33
|
Tsai MY, Zheng W, Balamurugan D, Schafer NP, Kim BL, Cheung MS, Wolynes PG. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding. Protein Sci 2015; 25:255-69. [PMID: 26183799 DOI: 10.1002/pro.2751] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/14/2015] [Indexed: 11/09/2022]
Abstract
While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes.
Collapse
Affiliation(s)
- Min-Yeh Tsai
- Department of Chemistry, Rice University, Houston, Texas, 77005.,Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005.,Department of Physics, University of Houston, Houston, Texas, 77204
| | - Weihua Zheng
- Department of Chemistry, Rice University, Houston, Texas, 77005.,Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005
| | - D Balamurugan
- Computation Institute, University of Chicago, Chicago, Illinois, 60637
| | - Nicholas P Schafer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Bobby L Kim
- Department of Chemistry, Rice University, Houston, Texas, 77005.,Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005
| | - Margaret S Cheung
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005.,Department of Physics, University of Houston, Houston, Texas, 77204
| | - Peter G Wolynes
- Department of Chemistry, Rice University, Houston, Texas, 77005.,Center for Theoretical Biological Physics, Rice University, Houston, Texas, 77005.,Physics and Astronomy, Rice University, Houston, Texas, 77005
| |
Collapse
|
34
|
Reddy G, Thirumalai D. Dissecting Ubiquitin Folding Using the Self-Organized Polymer Model. J Phys Chem B 2015; 119:11358-70. [DOI: 10.1021/acs.jpcb.5b03471] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Govardhan Reddy
- Solid
State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka, India 560012
| | - D. Thirumalai
- Biophysics
Program, Institute for Physical Science and Technology, and Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
35
|
English CA, García AE. Charged Termini on the Trp-Cage Roughen the Folding Energy Landscape. J Phys Chem B 2015; 119:7874-81. [DOI: 10.1021/acs.jpcb.5b02040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Charles A. English
- Department of Physics and Astronomy and The Center for
Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Angel E. García
- Department of Physics and Astronomy and The Center for
Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
36
|
Modulation of folding energy landscape by charge-charge interactions: linking experiments with computational modeling. Proc Natl Acad Sci U S A 2015; 112:E259-66. [PMID: 25564663 DOI: 10.1073/pnas.1410424112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The kinetics of folding-unfolding of a structurally diverse set of four proteins optimized for thermodynamic stability by rational redesign of surface charge-charge interactions is characterized experimentally. The folding rates are faster for designed variants compared with their wild-type proteins, whereas the unfolding rates are largely unaffected. A simple structure-based computational model, which incorporates the Debye-Hückel formalism for the electrostatics, was used and found to qualitatively recapitulate the experimental results. Analysis of the energy landscapes of the designed versus wild-type proteins indicates the differences in refolding rates may be correlated with the degree of frustration of their respective energy landscapes. Our simulations indicate that naturally occurring wild-type proteins have frustrated folding landscapes due to the surface electrostatics. Optimization of the surface electrostatics seems to remove some of that frustration, leading to enhanced formation of native-like contacts in the transition-state ensembles (TSE) and providing a less frustrated energy landscape between the unfolded and TS ensembles. Macroscopically, this results in faster folding rates. Furthermore, analyses of pairwise distances and radii of gyration suggest that the less frustrated energy landscapes for optimized variants are a result of more compact unfolded and TS ensembles. These findings from our modeling demonstrates that this simple model may be used to: (i) gain a detailed understanding of charge-charge interactions and their effects on modulating the energy landscape of protein folding and (ii) qualitatively predict the kinetic behavior of protein surface electrostatic interactions.
Collapse
|
37
|
Estácio SG, Leal SS, Cristóvão JS, Faísca PFN, Gomes CM. Calcium binding to gatekeeper residues flanking aggregation-prone segments underlies non-fibrillar amyloid traits in superoxide dismutase 1 (SOD1). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:118-26. [PMID: 25463043 DOI: 10.1016/j.bbapap.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 12/26/2022]
Abstract
Calcium deregulation is a central feature among neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Calcium accumulates in the spinal and brain stem motor neurons of ALS patients triggering multiple pathophysiological processes which have been recently shown to include direct effects on the aggregation cascade of superoxide dismutase 1 (SOD1). SOD1 is a Cu/Zn enzyme whose demetallated form is implicated in ALS protein deposits, contributing to toxic gain of function phenotypes. Here we undertake a combined experimental and computational study aimed at establishing the molecular details underlying the regulatory effects of Ca(2+) over SOD1 aggregation potential. Isothermal titration calorimetry indicates entropy driven low affinity association of Ca(2+) ions to apo SOD1, at pH7.5 and 37°C. Molecular dynamics simulations denote a noticeable loss of native structure upon Ca(2+) association that is especially prominent at the zinc-binding and electrostatic loops, whose decoupling is known to expose the central SOD1 β-barrel triggering aggregation. Structural mapping of the preferential apo SOD1 Ca(2+) binding locations reveals that among the most frequent ligands for Ca(2+) are negatively-charged gatekeeper residues located in boundary positions with respect to segments highly prone to edge-to-edge aggregation. Calcium interactions thus diminish gatekeeping roles of these residues, by shielding repulsive interactions via stacking between aggregating β-sheets, partly blocking fibril formation and promoting amyloidogenic oligomers such as those found in ALS inclusions. Interestingly, many fALS mutations occur at these positions, disclosing how Ca(2+) interactions recreate effects similar to those of genetic defects, a finding with relevance to understand sporadic ALS pathomechanisms.
Collapse
Affiliation(s)
- Sílvia G Estácio
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Sónia S Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Joana S Cristóvão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Patrícia F N Faísca
- Centro de Física da Matéria Condensada, Universidade de Lisboa, Lisboa, Portugal; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| | - Cláudio M Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
38
|
Visualization of protein folding funnels in lattice models. PLoS One 2014; 9:e100861. [PMID: 25010343 PMCID: PMC4091862 DOI: 10.1371/journal.pone.0100861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/31/2014] [Indexed: 11/19/2022] Open
Abstract
Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the new metric. The method was developed in a 27-mer protein lattice model, folded into a 3×3×3 cube. Five sequences were studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use in combination with other approaches are discussed.
Collapse
|
39
|
Echeverria I, Makarov DE, Papoian GA. Concerted Dihedral Rotations Give Rise to Internal Friction in Unfolded Proteins. J Am Chem Soc 2014; 136:8708-13. [DOI: 10.1021/ja503069k] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ignacia Echeverria
- Department
of Chemistry and Biochemistry and Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Dmitrii E. Makarov
- Department
of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Garegin A. Papoian
- Department
of Chemistry and Biochemistry and Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
40
|
Müller A, Garai S, Schäffer C, Merca A, Bögge H, Al-Karawi AJM, Prasad TK. Water repellency in hydrophobic nanocapsules--molecular view on dewetting. Chemistry 2014; 20:6659-64. [PMID: 24782303 DOI: 10.1002/chem.201402216] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 11/11/2022]
Abstract
The hydrophobic effect plays a major role in a variety of important phenomena in chemistry, materials science and biology, for instance in protein folding and protein-ligand interactions. Studies--performed within cavities of the unique metal oxide based porous capsules of the type {(pentagon)12(linker)30}≡{(W)W5}12{Mo2(ligand)}30 with different acetate/water ligand ratios--have provided unprecedented results revealing segregation/repellency of the encapsulated "water" from the internal hydrophobic ligand walls of the capsules, while the disordered water molecules, interacting strongly with each other via hydrogen bonding, form in all investigated cases the same type of spherical shell. The present results can be (formally) compared--but only regarding the repellency effect--with the amazing "action" of the (super)hydrophobic Lotus (Nelumbo) leaves, which are self-cleaning based on water repellency resulting in the formation of water droplets picking up dirt. The present results were obtained by constructing deliberately suitable hydrophobic interiors within the mentioned capsules.
Collapse
Affiliation(s)
- Achim Müller
- Fakultät für Chemie, Universität Bielefeld, Postfach 100131, 33501 Bielefeld (Germany), Fax: (+49) 521-106-6003.
| | | | | | | | | | | | | |
Collapse
|
41
|
De Baets G, Van Durme J, Rousseau F, Schymkowitz J. A genome-wide sequence-structure analysis suggests aggregation gatekeepers constitute an evolutionary constrained functional class. J Mol Biol 2014; 426:2405-12. [PMID: 24735868 DOI: 10.1016/j.jmb.2014.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/27/2014] [Accepted: 04/06/2014] [Indexed: 11/15/2022]
Abstract
Protein aggregation is geared by aggregation-prone regions that self-associate by β-strand interactions. Charged residues and prolines are enriched at the flanks of aggregation-prone regions resulting in decreased aggregation. It is still unclear what drives the overrepresentation of these "aggregation gatekeepers", that is, whether their presence results from structural constraints determining protein stability or whether they constitute a bona fide functional class selectively maintained to control protein aggregation. As functional residues are typically conserved regardless of their cost to protein stability, we compared sequence conservation and thermodynamic cost of these residues in 2659 protein families in Escherichia coli. Across protein families, we find gatekeepers to be under strong selective conservation while at the same time representing a significant thermodynamic cost to protein structure. This finding supports the notion that aggregation gatekeepers are not structurally determined but evolutionary selected to control protein aggregation.
Collapse
Affiliation(s)
- Greet De Baets
- Switch Laboratory, Flanders Institute for Biotechnology (Vlaams Instituut voor Biotechnologie), 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium; Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Joost Van Durme
- Switch Laboratory, Flanders Institute for Biotechnology (Vlaams Instituut voor Biotechnologie), 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium; Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Frederic Rousseau
- Switch Laboratory, Flanders Institute for Biotechnology (Vlaams Instituut voor Biotechnologie), 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, Flanders Institute for Biotechnology (Vlaams Instituut voor Biotechnologie), 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, University of Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
42
|
Exploring the Minimally Frustrated Energy Landscape of Unfolded ACBP. J Mol Biol 2014; 426:722-34. [DOI: 10.1016/j.jmb.2013.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022]
|
43
|
Sukenik S, Boyarski Y, Harries D. Effect of salt on the formation of salt-bridges in β-hairpin peptides. Chem Commun (Camb) 2014; 50:8193-6. [DOI: 10.1039/c4cc03195d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The formation of salt-bridges in β-hairpin peptides is measured in increasing salt concentrations, indicating a decrease in the salt-bridged population due to charge–charge screening, as well as non-cooperative salt-bridge triads.
Collapse
Affiliation(s)
- Shahar Sukenik
- Institute of Chemistry and The Fritz Haber Research Center
- Hebrew University of Jerusalem
- Jerusalem, Israel
| | - Yoav Boyarski
- Institute of Chemistry and The Fritz Haber Research Center
- Hebrew University of Jerusalem
- Jerusalem, Israel
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber Research Center
- Hebrew University of Jerusalem
- Jerusalem, Israel
| |
Collapse
|
44
|
Vicatos S, Rychkova A, Mukherjee S, Warshel A. An effective Coarse-grained model for biological simulations: Recent refinements and validations. Proteins 2013; 82:1168-85. [DOI: 10.1002/prot.24482] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Spyridon Vicatos
- Department of Chemistry; University of Southern California; Los Angeles California 90089-1062
| | - Anna Rychkova
- Department of Chemistry; University of Southern California; Los Angeles California 90089-1062
| | - Shayantani Mukherjee
- Department of Chemistry; University of Southern California; Los Angeles California 90089-1062
| | - Arieh Warshel
- Department of Chemistry; University of Southern California; Los Angeles California 90089-1062
| |
Collapse
|
45
|
Minde DP, Radli M, Forneris F, Maurice MM, Rüdiger SGD. Large extent of disorder in Adenomatous Polyposis Coli offers a strategy to guard Wnt signalling against point mutations. PLoS One 2013; 8:e77257. [PMID: 24130866 PMCID: PMC3793970 DOI: 10.1371/journal.pone.0077257] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/02/2013] [Indexed: 12/31/2022] Open
Abstract
Mutations in the central region of the signalling hub Adenomatous Polyposis Coli (APC) cause colorectal tumourigenesis. The structure of this region remained unknown. Here, we characterise the Mutation Cluster Region in APC (APC-MCR) as intrinsically disordered and propose a model how this structural feature may contribute to regulation of Wnt signalling by phosphorylation. APC-MCR was susceptible to proteolysis, lacked α-helical secondary structure and did not display thermal unfolding transition. It displayed an extended conformation in size exclusion chromatography and was accessible for phosphorylation by CK1ε in vitro. The length of disordered regions in APC increases with species complexity, from C. elegans to H. sapiens. We speculate that the large disordered region harbouring phosphorylation sites could be a successful strategy to stabilise tight regulation of Wnt signalling against single missense mutations.
Collapse
Affiliation(s)
- David P. Minde
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Martina Radli
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Federico Forneris
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Madelon M. Maurice
- Department of Cell Biology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- * E-mail: (SR); (MMM)
| | - Stefan G. D. Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- * E-mail: (SR); (MMM)
| |
Collapse
|
46
|
Tsytlonok M, Sormanni P, Rowling PJE, Vendruscolo M, Itzhaki LS. Subdomain architecture and stability of a giant repeat protein. J Phys Chem B 2013; 117:13029-37. [PMID: 24053231 DOI: 10.1021/jp402360x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tandem repeat proteins, which are widespread in the human genome, tend to exhibit high stability and favorable expression, and hence, they are emerging as promising protein scaffolds in alternative to antibodies in biotechnology. In order to investigate the origin of the stability of these proteins, we dissect the subdomain architecture of the giant repeat protein PR65/A, which comprises 15 α-helical HEAT repeats, using a series of truncations and deletions. We find that the N (HEAT 1-2) and the C (HEAT 14-15) subdomains are not capable of independent folding, but the addition of HEAT 13 to HEAT 14-15 results in an independently stable C-terminal subdomain (HEAT 13-15), which is in turn further stabilized by the inclusion of HEAT 12 (HEAT 12-15). We also further show that the stability of HEAT 13-15 is enhanced by its fusion to HEAT 1-2, and the artificial 5-HEAT-repeat protein thereby created (HEAT NC) behaves like a cooperative multidomain protein. We construct further variants, lacking one or both of the terminal subdomains, and find that such subdomains function as stabilizing caps within full-length PR65/A as in their absence, the central subdomain of the protein unfolds to form non-native β-sheet-like oligomers. Taken together, our results suggest that in full-length PR65/A, the more unstable regions within the central repeats are protected by the adjacent folded repeats, which thus act as gatekeepers by virtue of their greater stability.
Collapse
Affiliation(s)
- Maksym Tsytlonok
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | |
Collapse
|
47
|
Abstract
Protein aggregation is being found to be associated with an increasing number of human diseases. Aggregation can lead to a loss of function (lack of active protein) or to a toxic gain of function (cytotoxicity associated with protein aggregates). Although potentially harmful, protein sequences predisposed to aggregation seem to be ubiquitous in all kingdoms of life, which suggests an evolutionary advantage to having such segments in polypeptide sequences. In fact, aggregation-prone segments are essential for protein folding and for mediating certain protein-protein interactions. Moreover, cells use protein aggregates for a wide range of functions. Against this background, life has adapted to tolerate the presence of potentially dangerous aggregation-prone sequences by constraining and counteracting the aggregation process. In the present review, we summarize the current knowledge of the advantages associated with aggregation-prone stretches in proteomes and the strategies that cellular systems have developed to control the aggregation process.
Collapse
|
48
|
Separating the effects of internal friction and transition state energy to explain the slow, frustrated folding of spectrin domains. Proc Natl Acad Sci U S A 2012; 109:17795-9. [PMID: 22711800 DOI: 10.1073/pnas.1201793109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The elongated three-helix bundle domains spectrin R16 and R17 fold some two to three orders of magnitude more slowly than their homologue R15. We have shown that this slow folding is due, at least in part, to roughness in the free-energy landscape of R16 and R17. We have proposed that this roughness is due to a frustrated search for the correct docking of partly preformed helices. However, this accounts for only a small part of the slowing of folding and unfolding. Five residues on the A helix of R15, when inserted together into R16 or R17, increase the folding rate constants, reduce landscape roughness, and alter the folding mechanism to one resembling R15. The effect of each of these mutations individually is investigated here. No one mutation causes the behavior seen for the five in combination. However, two mutations, E18F and K25V, significantly increase the folding and unfolding rates of both R16 and R17 but without a concomitant loss in landscape roughness. E18F has the greatest effect on the kinetics, and a Φ-value analysis of the C helix reveals that the folding mechanism is unchanged. For both E18F and K25V the removal of the charge and resultant transition state stabilization is the main origin of the faster folding. Consequently, the major cause of the unusually slow folding of R16 and R17 is the non-native burial of the two charged residues in the transition state. The slowing due to landscape roughness is only about fivefold.
Collapse
|