1
|
Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Karsuntseva EK, Chadin AV, Reshetov IV, Stepanova OV, Chekhonin VP. The Use of Neurotrophic Factors as a Promising Strategy for the Treatment of Neurodegenerative Diseases (Review). Bull Exp Biol Med 2024:10.1007/s10517-024-06218-5. [PMID: 39266924 DOI: 10.1007/s10517-024-06218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 09/14/2024]
Abstract
The review considers the use of exogenous neurotrophic factors in the treatment of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and others. This group of diseases is associated with the death of neurons and dysfunction of the nervous tissue. Currently, there is no effective therapy for neurodegenerative diseases, and their treatment remains a serious problem of modern medicine. A promising strategy is the use of exogenous neurotrophic factors. Targeted delivery of these factors to the nervous tissue can improve survival of neurons during the development of neurodegenerative processes and ensure neuroplasticity. There are methods of direct injection of neurotrophic factors into the nervous tissue, delivery using viral vectors, as well as the use of gene cell products. The effectiveness of these approaches has been studied in numerous experimental works and in a number of clinical trials. Further research in this area could provide the basis for the creation of an alternative treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- G A Fursa
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
- Pirogov Russian National Research Medical University, Moscow, Russia.
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - S S Andretsova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V S Shishkina
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A D Voronova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E K Karsuntseva
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Chadin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Reshetov
- University Clinical Hospital No. 1, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Academy of Postgraduate Education, Federal Research and Clinical Center of Specialized Types of Health Care and Medical Technology of the Federal Medical and Biological Agency, Moscow, Russia
| | - O V Stepanova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
2
|
Barik D, Shyamal S, Das K, Jena S, Dash M. Glycoprotein Injectable Hydrogels Promote Accelerated Bone Regeneration through Angiogenesis and Innervation. Adv Healthc Mater 2023; 12:e2301959. [PMID: 37712303 DOI: 10.1002/adhm.202301959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/27/2023] [Indexed: 09/16/2023]
Abstract
Glycoproteins are gaining prominence as multifunctional biomaterials. The study reports development of glycoprotein mucin as biomaterial promoting bone regeneration. Mucin 1 deletion has resulted in stiffer femoral bones with scarce presence of osteoblasts in trabecular linings and its role has been established in determining bone mass and mineralization. Limited information about its structure limits its processability, exploration as biomaterial, which is discussed in this study. The role of mucin in ECM (extracellular cellular matrix) formation validated by RNA sequencing analysis of human bone marrow derived mesenchymal stem cells is reported. The structure and stability of mucins is dependent on the presence of glycans in its structure. A thermosensitive hydrogel acquired from thermosensitive Poly (N-isopropyl acrylamide)-(PNIPAM) modified mucin and collagen is developed. The hydrogel demonstrates porous structure and mechanical strength. Newly formed bone tissue is observed at 8 weeks post-implantation in the hydrogel treated groups. The formation of blood vessels, nerves, and bone is observed with upregulation of angiopoietin (ANG), neurofilament heavy chain (NF-H), and osteoadherin (OSAD) or osteocalcin (OCN) respectively in rat calvarial defects. The outcome demonstrates that the thermosensitive injectable hydrogel accelerates repair and healing in calvarial bone defects making it a promising biodegradable biomaterial capable of regenerating bone by promoting angiogenesis and innervation.
Collapse
Affiliation(s)
- Debyashreeta Barik
- Therapeutics Biomaterials Team, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Sharmistha Shyamal
- RNA Biology Lab, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Kapilash Das
- Therapeutics Biomaterials Team, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Sarita Jena
- Animal House Facility, DBT-Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Mamoni Dash
- Therapeutics Biomaterials Team, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
3
|
Palasz E, Wilkaniec A, Stanaszek L, Andrzejewska A, Adamczyk A. Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. Int J Mol Sci 2023; 24:ijms24076321. [PMID: 37047292 PMCID: PMC10094105 DOI: 10.3390/ijms24076321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neurotrophic factors (NTFs) play an important role in maintaining homeostasis of the central nervous system (CNS) by regulating the survival, differentiation, maturation, and development of neurons and by participating in the regeneration of damaged tissues. Disturbances in the level and functioning of NTFs can lead to many diseases of the nervous system, including degenerative diseases, mental diseases, and neurodevelopmental disorders. Each CNS disease is characterized by a unique pathomechanism, however, the involvement of certain processes in its etiology is common, such as neuroinflammation, dysregulation of NTFs levels, or mitochondrial dysfunction. It has been shown that NTFs can control the activation of glial cells by directing them toward a neuroprotective and anti-inflammatory phenotype and activating signaling pathways responsible for neuronal survival. In this review, our goal is to outline the current state of knowledge about the processes affected by NTFs, the crosstalk between NTFs, mitochondria, and the nervous and immune systems, leading to the inhibition of neuroinflammation and oxidative stress, and thus the inhibition of the development and progression of CNS disorders.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| | - Anna Wilkaniec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Andrzejewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Agata Adamczyk
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| |
Collapse
|
4
|
Malerba F. Why Are We Scientists? Drawing Inspiration From Rita Levi-Montalcini. Front Cell Neurosci 2022; 15:741984. [PMID: 35126056 PMCID: PMC8814914 DOI: 10.3389/fncel.2021.741984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/02/2021] [Indexed: 11/15/2022] Open
Abstract
In 2007, drawing inspiration from her previous experiments on chick embryos, Rita Levi-Montalcini, at the age of 98, proposed a new project, and a research group, in which I was included, was formed at the European Brain Research Institute (EBRI). Looking back on this experience, I can say that Professor Levi-Montalcini’s approach and the relationships she formed with my colleagues and me, contributed to my growth as a researcher. With her welcoming and warm-hearted disposition, she taught me how to consider other people’s ideas without prejudice, to reason and not to exclude any hypothesis. I also learned from her how to overcome those difficulties that are so frequent in the research field, always keeping in mind the starting point and looking toward the objective, with a factual optimism. I was just a young researcher and deeply flattered that a Nobel Laureate, with an incredible career and extraordinary life, treated me as her equal. My experience with Professor Levi-Montalcini has also provided me with a reliable path to follow, and when I encounter difficulties and challenges, I ask myself what would she have done. This approach has always helped me to move forward. Indeed, I believe the best way to celebrate Rita Levi-Montalcini as a woman in neuroscience is to recount how her exceptional example is a constant reminder as to why I have chosen to be a scientist. I hope she will always continue to be a source of inspiration for scientists in the future.
Collapse
|
5
|
Effects of Yiqi Huoxue Decoction on Post-Myocardial Infarction Cardiac Nerve Remodeling and Cardiomyocyte Hypertrophy in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5168574. [PMID: 34471416 PMCID: PMC8405294 DOI: 10.1155/2021/5168574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Myocardial infarction can lead to ventricular remodeling and arrhythmia, which is closely related to nerve remodeling. Our previous study found that Yiqi Huoxue decoction (YQHX) can improve ventricular remodeling and reduce myocardial damage. Therefore, in this study, we observed the effect of YQHX on cardiac neural remodeling and cardiomyocyte hypertrophy and its possible mechanism. This research is composed of two parts: animal and H9c2 cells experiments. The animal model of acute myocardial infarction was established by ligating the left anterior descending coronary artery in Sprague Dawley (SD) rats. H9c2 cells were placed in 94% N2, 5% CO2, and 1% O2 hypoxic environment for 12 hours to replicate the hypoglycemic hypoxia model. The experimental results showed that, compared with the MI group, YQHX can significantly improve heart function after myocardial infarction and reduce nerve remodeling and myocardial hypertrophy. Pathological structure observation demonstrated reducing myocardial tissue damage and decreasing of cell cross-sectional area, diameter, and circumference. The positive rate of TH declined apparently, and the sympathetic nerve density was lower than that of the MI group. After YQHX was given for 28 days, the proneural remodeling factors TH, NGF, and GAP43 in the marginal zone of infarction and stellate ganglion decreased obviously while the inhibitory nerve remodeling factor Sema-3A increased. The myocardial hypertrophic protein ANP and β-MHC were also significantly inhibited with p-ERK1/2 protein expression level prominently reduced. There was no difference between the YQHX group and the Meto group. After myocardial infarction, nerve remodeling was seen in the marginal area of infarction and stellate ganglion, and the neuropeptides released by which promoted myocardial hypertrophy. The mechanism may be related to the ERK1/2 signaling pathway. YQHX could regulate the ERK1/2 signaling pathway, inhibit the release of nerve remodeling factors and myocardial hypertrophy protein to reduce nerve remodeling, and relieve myocardial hypertrophy.
Collapse
|
6
|
Wang JX, White MD. Mechanical forces in avian embryo development. Semin Cell Dev Biol 2021; 120:133-146. [PMID: 34147339 DOI: 10.1016/j.semcdb.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Research using avian embryos has led to major conceptual advances in developmental biology, virology, immunology, genetics and cell biology. The avian embryo has several significant advantages, including ready availability and ease of accessibility, rapid development with marked similarities to mammals and a high amenability to manipulation. As mechanical forces are increasingly recognised as key drivers of morphogenesis, this powerful model system is shedding new light on the mechanobiology of embryonic development. Here, we highlight progress in understanding how mechanical forces direct key morphogenetic processes in the early avian embryo. Recent advances in quantitative live imaging and modelling are elaborating upon traditional work using physical models and embryo manipulations to reveal cell dynamics and tissue forces in ever greater detail. The recent application of transgenic technologies further increases the strength of the avian model and is providing important insights about previously intractable developmental processes.
Collapse
Affiliation(s)
- Jian Xiong Wang
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Melanie D White
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Abstract
By examining the development of lateralization in the sensory and motor systems of the human fetus and chick embryo, this paper debates which lateralized functions develop first and what interactions may occur between the different sensory and motor systems during development. It also discusses some known influences of inputs from the environment on the development of lateralization, particularly the effects of light exposure on the development of visual and motor lateralization in chicks. The effects of light on the human fetus are related in this context. Using the chick embryo as a model to elucidate the genetic and environmental factors involved in development of lateralization, some understanding has been gained about how these lateralized functions emerge. At the same time, the value of carrying out much more research on the development of the various types of lateralization has become apparent.
Collapse
|
8
|
Makarevich PI, Efimenko AY, Tkachuk VA. Biochemical Regulation of Regenerative Processes by Growth Factors and Cytokines: Basic Mechanisms and Relevance for Regenerative Medicine. BIOCHEMISTRY (MOSCOW) 2020; 85:11-26. [PMID: 32079514 DOI: 10.1134/s0006297920010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regenerative medicine that had emerged as a scientific and medical discipline at end of 20th century uses cultured cells and tissue-engineered structures for transplantation into human body to restore lost or damaged organs. However, practical achievements in this field are far from the promising results obtained in laboratory experiments. Searching for new directions has made apparent that successful solution of practical problems is impossible without understanding the fundamental principles of the regulation of development, renewal, and regeneration of human tissues. These aspects have been extensively investigated by cell biologists, physiologists, and biochemists working in a specific research area often referred to as regenerative biology. It is known that during regeneration, growth factors, cytokines, and hormones act beyond the regulation of individual cell functions, but rather activate specific receptor systems and control pivotal tissue repair processes, including cell proliferation and differentiation. These events require numerous coordinated stimuli and, therefore, are practically irreproducible using single proteins or low-molecular-weight compounds, i.e., cannot be directed by applying classical pharmacological approaches. Our review summarizes current concepts on the regulatory mechanisms of renewal and regeneration of human tissues with special attention to certain general biological and evolutionary aspects. We focus on the biochemical regulatory mechanisms of regeneration, in particular, the role of growth factors and cytokines and their receptor systems. In a separate section, we discussed practical approaches for activating regeneration using small molecules and stem cell secretome containing a broad repertoire of growth factors, cytokines, peptides, and extracellular vesicles.
Collapse
Affiliation(s)
- P I Makarevich
- Lomonosov Moscow State University, Institute for Regenerative Medicine, Medical Research and Education Center, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, 119991, Russia
| | - A Yu Efimenko
- Lomonosov Moscow State University, Institute for Regenerative Medicine, Medical Research and Education Center, Moscow, 119991, Russia.,Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, 119991, Russia
| | - V A Tkachuk
- Lomonosov Moscow State University, Institute for Regenerative Medicine, Medical Research and Education Center, Moscow, 119991, Russia.,Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, 119991, Russia.,Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow, 121552, Russia
| |
Collapse
|
9
|
Iimura A, Nishida E, Kusakabe M. Role of TrkA signaling during tadpole tail regeneration and early embryonic development in
Xenopus laevis. Genes Cells 2019; 25:86-99. [DOI: 10.1111/gtc.12740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Akira Iimura
- Department of Cell and Developmental Biology Graduate School of Biostudies Kyoto University Kyoto Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology Graduate School of Biostudies Kyoto University Kyoto Japan
- RIKEN Center for Biosystems Dynamics Research Kobe Japan
| | - Morioh Kusakabe
- Department of Cell and Developmental Biology Graduate School of Biostudies Kyoto University Kyoto Japan
| |
Collapse
|
10
|
Tarsani E, Kranis A, Maniatis G, Avendano S, Hager-Theodorides AL, Kominakis A. Discovery and characterization of functional modules associated with body weight in broilers. Sci Rep 2019; 9:9125. [PMID: 31235723 PMCID: PMC6591351 DOI: 10.1038/s41598-019-45520-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Aim of the present study was to investigate whether body weight (BW) in broilers is associated with functional modular genes. To this end, first a GWAS for BW was conducted using 6,598 broilers and the high density SNP array. The next step was to search for positional candidate genes and QTLs within strong LD genomic regions around the significant SNPs. Using all positional candidate genes, a network was then constructed and community structure analysis was performed. Finally, functional enrichment analysis was applied to infer the functional relevance of modular genes. A total number of 645 positional candidate genes were identified in strong LD genomic regions around 11 genome-wide significant markers. 428 of the positional candidate genes were located within growth related QTLs. Community structure analysis detected 5 modules while functional enrichment analysis showed that 52 modular genes participated in developmental processes such as skeletal system development. An additional number of 14 modular genes (GABRG1, NGF, APOBEC2, STAT5B, STAT3, SMAD4, MED1, CACNB1, SLAIN2, LEMD2, ZC3H18, TMEM132D, FRYL and SGCB) were also identified as related to body weight. Taken together, current results suggested a total number of 66 genes as most plausible functional candidates for the trait examined.
Collapse
Affiliation(s)
- Eirini Tarsani
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| | - Andreas Kranis
- Aviagen Ltd., Newbridge, Midlothian, EH28 8SZ, UK.,The Roslin Institute, University of Edinburgh, EH25 9RG, Midlothian, United Kingdom
| | | | | | - Ariadne L Hager-Theodorides
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Antonios Kominakis
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| |
Collapse
|
11
|
Zhou H, Ma J, Shan Y, Qi X, Wang H, Jia L. A combination of chicken embryo extract and a nutritional supplement protect a rat model of aging againstd-galactose-induced dysfunction of mitochondria and autophagy. Food Funct 2019; 10:2774-2784. [DOI: 10.1039/c8fo01734d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aging process is usually associated with increased oxidative stress and deficiency of tissues and organs, which causes a decline in the life quality of individuals.
Collapse
Affiliation(s)
- Huimin Zhou
- College of Laboratory Medicine
- Dalian Medical University
- Dalian 116044
- China
- Department of Microbiology
| | - Jia Ma
- College of Laboratory Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Yujia Shan
- College of Laboratory Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Xia Qi
- College of Laboratory Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Huaxin Wang
- Department of Pathology
- Dalian Medical University
- Dalian 116044
- China
| | - Li Jia
- College of Laboratory Medicine
- Dalian Medical University
- Dalian 116044
- China
| |
Collapse
|
12
|
Sarnat HB. Academic productivity after retirement in pediatric neurology and neuropathology. Neurology 2018; 91:36-40. [PMID: 29802168 DOI: 10.1212/wnl.0000000000005743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/20/2018] [Indexed: 12/30/2022] Open
Abstract
Many academic neurologists and neuropathologists who retire at the peak of their careers continue to be productive in research and teaching, enhanced by years of experience and mature perspective. The early 20th-century model of institutions depending upon the generosity of such individuals to donate their time and efforts without proper recognition or compensation, despite the service, prestige, and recognition they bring to their institutions, should be reconsidered in the early 21st century in the context of fairness, honesty, dignity, and increased longevity. University pensions do not distinguish retirees who continue to contribute from those who stop working. This essay represents the author's personal reflections and experience, reinforced by similar thoughts and encouragement by numerous distinguished colleagues named at the end of the text. Funding of stipends for active emeritus professors lacks precedent but should be sought.
Collapse
Affiliation(s)
- Harvey B Sarnat
- From the Departments of Paediatrics, Pathology and Laboratory Medicine (Neuropathology), and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute, Calgary, Canada.
| |
Collapse
|
13
|
Li Y, Grover H, Dai E, Yang K, Chen Z. Probing the Roles of Physical Forces in Early Chick Embryonic Morphogenesis. J Vis Exp 2018. [PMID: 29939170 DOI: 10.3791/57150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Embryonic development is traditionally studied from the perspective of biomolecular genetics, but the fundamental importance of mechanics in morphogenesis is becoming increasingly recognized. In particular, the embryonic chick heart and brain tube, which undergo drastic morphological changes as they develop, are among the prime candidates to study the role of physical forces in morphogenesis. Progressive ventral bending and rightward torsion of the tubular embryonic chick brain happen at the earliest stage of organ-level left-right asymmetry in chick embryonic development. The vitelline membrane (VM) constrains the dorsal side of the embryo and has been implicated in providing the force necessary to induce torsion of the developing brain. Here we present a combination of new ex-ovo experiments and physical modeling to identify the mechanics of brain torsion. At Hamburger-Hamilton stage 11, embryos are harvested and cultured ex ovo (in media). The VM is subsequently removed using a pulled capillary tube. By controlling the level of the fluid and subjecting the embryo to a fluid-air interface, the fluid surface tension of the media can be used to replace the mechanical role of the VM. Microsurgery experiments were also performed to alter the position of the heart to find the resultant change in the chirality of brain torsion. Results from this protocol illustrate the fundamental roles of mechanics in driving morphogenesis.
Collapse
Affiliation(s)
- Yan Li
- Thayer School of Engineering, Dartmouth College
| | | | - Eric Dai
- Department of Bioengineering, University of Pennsylvania
| | - Kevin Yang
- Thayer School of Engineering, Dartmouth College
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College;
| |
Collapse
|
14
|
BAKIR B, KOCAMIŞ H, KARADAĞ SARI E. EXPRESSION OF THE NERVE GROWTH FACTOR DURING EMBRYONIC GROWTH PERIOD OF JAPANESE QUAIL (COTURNIX COTURNIX JAPONICA). MEHMET AKIF ERSOY ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2016. [DOI: 10.24880/maeuvfd.287346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
15
|
Chen Z, Guo Q, Dai E, Forsch N, Taber LA. How the embryonic chick brain twists. J R Soc Interface 2016; 13:20160395. [PMID: 28334695 PMCID: PMC5134006 DOI: 10.1098/rsif.2016.0395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
During early development, the tubular embryonic chick brain undergoes a combination of progressive ventral bending and rightward torsion, one of the earliest organ-level left-right asymmetry events in development. Existing evidence suggests that bending is caused by differential growth, but the mechanism for the predominantly rightward torsion of the embryonic brain tube remains poorly understood. Here, we show through a combination of in vitro experiments, a physical model of the embryonic morphology and mechanics analysis that the vitelline membrane (VM) exerts an external load on the brain that drives torsion. Our theoretical analysis showed that the force is of the order of 10 micronewtons. We also designed an experiment to use fluid surface tension to replace the mechanical role of the VM, and the estimated magnitude of the force owing to surface tension was shown to be consistent with the above theoretical analysis. We further discovered that the asymmetry of the looping heart determines the chirality of the twisted brain via physical mechanisms, demonstrating the mechanical transfer of left-right asymmetry between organs. Our experiments also implied that brain flexure is a necessary condition for torsion. Our work clarifies the mechanical origin of torsion and the development of left-right asymmetry in the early embryonic brain.
Collapse
Affiliation(s)
- Zi Chen
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350108, People's Republic of China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fuzhou 350108, People's Republic of China
| | - Eric Dai
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| | - Nickolas Forsch
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
16
|
NGF in Early Embryogenesis, Differentiation, and Pathology in the Nervous and Immune Systems. Curr Top Behav Neurosci 2015; 29:125-152. [PMID: 26695167 DOI: 10.1007/7854_2015_420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The physiology of NGF is extremely complex, and although the study of this neurotrophin began more than 60 years ago, it is far from being concluded. NGF, its precursor molecule pro-NGF, and their different receptor systems (i.e., TrkA, p75NTR, and sortilin) have key roles in the development and adult physiology of both the nervous and immune systems. Although the NGF receptor system and the pathways activated are similar for all types of cells sensitive to NGF, the effects exerted during embryonic differentiation and in committed mature cells are strikingly different and sometimes opposite. Bearing in mind the pleiotropic effects of NGF, alterations in its expression and synthesis, as well as variations in the types of receptor available and in their respective levels of expression, may have profound effects and play multiple roles in the development and progression of several diseases. In recent years, the use of NGF or of inhibitors of its receptors has been prospected as a therapeutic tool in a variety of neurological diseases and injuries. In this review, we outline the different roles played by the NGF system in various moments of nervous and immune system differentiation and physiology, from embryonic development to aging. The data collected over the past decades indicate that NGF activities are highly integrated among systems and are necessary for the maintenance of homeostasis. Further, more integrated and multidisciplinary studies should take into consideration these multiple and interactive aspects of NGF physiology in order to design new therapeutic strategies based on the manipulation of NGF and its intracellular pathways.
Collapse
|
17
|
Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons. Neuroscience 2014; 277:679-89. [PMID: 25088915 DOI: 10.1016/j.neuroscience.2014.07.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/12/2014] [Accepted: 07/02/2014] [Indexed: 01/02/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.
Collapse
|
18
|
Taber LA. Morphomechanics: transforming tubes into organs. Curr Opin Genet Dev 2014; 27:7-13. [PMID: 24791687 PMCID: PMC4125444 DOI: 10.1016/j.gde.2014.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/24/2014] [Accepted: 03/05/2014] [Indexed: 01/05/2023]
Abstract
After decades focusing on the molecular and genetic aspects of organogenesis, researchers are showing renewed interest in the physical mechanisms that create organs. This review deals with the mechanical processes involved in constructing the heart and brain, concentrating primarily on cardiac looping, shaping of the primitive brain tube, and folding of the cerebral cortex. Recent studies suggest that differential growth drives large-scale shape changes in all three problems, causing the heart and brain tubes to bend and the cerebral cortex to buckle. Relatively local changes in form involve other mechanisms such as differential contraction. Understanding the mechanics of organogenesis is central to determining the link between genetics and the biophysical creation of form and structure.
Collapse
Affiliation(s)
- Larry A Taber
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
19
|
Nerve growth factor and its receptor in schizophrenia. BBA CLINICAL 2014; 1:24-9. [PMID: 26675984 PMCID: PMC4633968 DOI: 10.1016/j.bbacli.2014.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/03/2014] [Accepted: 05/08/2014] [Indexed: 01/18/2023]
Abstract
Promising studies suggest that defects in synaptic plasticity detected in schizophrenia may be linked to neurodevelopmental and neurodegenerative abnormalities and contribute to disease-associated cognitive impairment. We aimed to clarify the role of the synaptic plasticity regulatory proteins, nerve growth factor (NGF) and its receptor (NGFR) in the pathogenesis of schizophrenia by comparative analysis of their blood levels and functional single nucleotide polymorphisms (SNPs) in genes encoding these proteins (NGF and NGFR) in schizophrenia-affected and healthy subjects. Relationships between the selected SNPs' genotypes and NGF and NGFR plasma levels were also assessed. Our results demonstrated a positive association between schizophrenia and the NGF rs6330 as well as the NGFR rs11466155 and rs2072446 SNPs. Also, a negative association between this disorder and NGF rs4839435 as well as NGFR rs734194 was found. In both, haloperidol-treated and antipsychotic-free patients decreased blood levels of the NGF and NGFR were found, and a positive interrelation between rs6330 and rs2072446 carriage and decreased NGF and NGFR levels, respectively, was revealed. In conclusion, our results demonstrate association of schizophrenia with the rs6330, rs4839435 and rs734194, rs11466155, rs2072446 as well as with the decreased blood levels of corresponding proteins. Our findings indicate the implication of alterations in NGFR and NGFR genes in schizophrenia, particularly, in defects of synaptic plasticity. Furthermore, the data obtained suggests that at least in Armenian population the NGF rs6330*T and NGFR rs11466155*T, rs2072446*T alleles might be nominated as risk factors, whereas the NGF rs4839435*A and NGFR rs734194*G alleles might be protective against developing schizophrenia. The NGF and NGFR functional polymorphisms in schizophrenia-affected and healthy subjects were studied. Blood plasma levels of these proteins were also evaluated. Decreased NGF and NGFR levels in schizophrenia patients were detected. The rs6330*T and rs2072446*T carriage was interrelated with low NGF and NGFR levels, respectively. The NGF rs6330*T and NGFR rs11466155*T, rs2072446*T alleles might be nominated as risk factors.
Collapse
|
20
|
Petruska JC, Barker DF, Garraway SM, Trainer R, Fransen JW, Seidman PA, Soto RG, Mendell LM, Johnson RD. Organization of sensory input to the nociceptive-specific cutaneous trunk muscle reflex in rat, an effective experimental system for examining nociception and plasticity. J Comp Neurol 2014; 522:1048-71. [PMID: 23983104 PMCID: PMC3945951 DOI: 10.1002/cne.23461] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/18/2013] [Accepted: 08/14/2013] [Indexed: 12/21/2022]
Abstract
Detailed characterization of neural circuitries furthers our understanding of how nervous systems perform specific functions and allows the use of those systems to test hypotheses. We have characterized the sensory input to the cutaneous trunk muscle (CTM; also cutaneus trunci [rat] or cutaneus maximus [mouse]) reflex (CTMR), which manifests as a puckering of the dorsal thoracolumbar skin and is selectively driven by noxious stimuli. CTM electromyography and neurogram recordings in naïve rats revealed that CTMR responses were elicited by natural stimuli and electrical stimulation of all segments from C4 to L6, a much greater extent of segmental drive to the CTMR than previously described. Stimulation of some subcutaneous paraspinal tissue can also elicit this reflex. Using a selective neurotoxin, we also demonstrate differential drive of the CTMR by trkA-expressing and nonexpressing small-diameter afferents. These observations highlight aspects of the organization of the CTMR system that make it attractive for studies of nociception and anesthesiology and plasticity of primary afferents, motoneurons, and the propriospinal system. We use the CTMR system to demonstrate qualitatively and quantitatively that experimental pharmacological treatments can be compared with controls applied either to the contralateral side or to another segment, with the remaining segments providing controls for systemic or other treatment effects. These data indicate the potential for using the CTMR system as both an invasive and a noninvasive quantitative assessment tool providing improved statistical power and reduced animal use.
Collapse
Affiliation(s)
- Jeffrey C. Petruska
- University of Louisville, Department of Anatomical Sciences and Neurobiology, 500 S. Preston St., Louisville, KY 40202
- University of Louisville, Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery
| | - Darrell F. Barker
- SUNY Stony Brook, Dept. Neurobiology and Behavior, 550 Life Sciences Building, Stony Brook, NY 11794-5230
| | - Sandra M. Garraway
- Emory University School of Medicine, Department of Physiology, 615 Michael Street, Atlanta, GA 30322-3110,
| | - Robert Trainer
- SUNY Stony Brook, Department of Anesthesiology, School of Medicine, Stony Brook, NY 11794-8081
| | - James W. Fransen
- University of Louisville, Department of Anatomical Sciences and Neurobiology, 500 S. Preston St., Louisville, KY 40202
| | - Peggy A. Seidman
- SUNY Stony Brook, Department of Anesthesiology, School of Medicine, Stony Brook, NY 11794-8081
| | - Roy G. Soto
- SUNY Stony Brook, Department of Anesthesiology, School of Medicine, Stony Brook, NY 11794-8081
| | - Lorne M. Mendell
- SUNY Stony Brook, Dept. Neurobiology and Behavior, 550 Life Sciences Building, Stony Brook, NY 11794-5230
| | - Richard D. Johnson
- University of Florida, Dept. Physiological Sciences, JHMHC Box 100144, Gainesville, FL 32210-0144
| |
Collapse
|
21
|
Abstract
Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/.
Collapse
|
22
|
Affiliation(s)
- Moses V Chao
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
23
|
Melino G, Benedetti B, Bazan N. On Rita Levi-Montalcini. Mol Neurobiol 2013; 47:443-5. [PMID: 23389287 PMCID: PMC3589620 DOI: 10.1007/s12035-013-8407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gerry Melino
- University of Rome Tor Vergata, Rome, Italy
- MRC Toxicology Unit, Leicester, UK
| | | | - Nicolas Bazan
- LSU Health Sciences Center, Neuroscience Center of Excellence, New Orleans, LA USA
| |
Collapse
|
24
|
Affiliation(s)
- Leslie Lars Iversen
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom.
| |
Collapse
|
25
|
|
26
|
Cooper EL, Balamurugan M, Huang CY, Tsao CR, Heredia J, Tommaseo-Ponzetta M, Paoletti MG. Earthworms dilong: ancient, inexpensive, noncontroversial models may help clarify approaches to integrated medicine emphasizing neuroimmune systems. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:164152. [PMID: 22888362 PMCID: PMC3410320 DOI: 10.1155/2012/164152] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/20/2012] [Accepted: 04/01/2012] [Indexed: 01/22/2023]
Abstract
Earthworms have provided ancient cultures with food and sources of medicinal cures. Ayurveda, traditional Chinese medicine (TCM), and practices in Japan, Vietnam, and Korea have focused first on earthworms as sources of food. Gradually fostering an approach to potential beneficial healing properties, there are renewed efforts through bioprospecting and evidence-based research to understand by means of rigorous investigations the mechanisms of action whether earthworms are used as food and/or as sources of potential medicinal products. Focusing on earthworms grew by serendipity from an extensive analysis of the earthworm's innate immune system. Their immune systems are replete with leukocytes and humoral products that exert credible health benefits. Their emerging functions with respect to evolution of innate immunity have long been superseded by their well-known ecological role in soil conservation. Earthworms as inexpensive, noncontroversial animal models (without ethical concerns) are not vectors of disease do not harbor parasites that threaten humans nor are they annoying pests. By recognizing their numerous ecological, environmental, and biomedical roles, substantiated by inexpensive and more comprehensive investigations, we will become more aware of their undiscovered beneficial properties.
Collapse
Affiliation(s)
- Edwin L. Cooper
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
- Laboratory of Comparative Neuroimmunology, Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095-1763, USA
| | - Mariappan Balamurugan
- Division of Vermibiotechnology, Department of Zoology, Annamalai University, Annamalai Nagar-608002, India
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science and Graduate Institute of Chinese Medical Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Clara R. Tsao
- Department of Biology and Department of Sociology, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Jesus Heredia
- Department of Linguistics, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | | | - Maurizio G. Paoletti
- Department of Biology, University of Padua, Via U. Bassi, 58/b, 35121-Padua, Italy
| |
Collapse
|
27
|
Shi CG, Lin K, Xu XB, Zhang SC, Wang N, Fan M. Evidence for the involvement of NGF in human sperm motility. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbise.2012.59066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|