1
|
Nóvoa-Medina Y, Marcelino-Rodriguez I, Suárez NM, Barreiro-Bautista M, Rivas-García E, Sánchez-Alonso S, González-Martínez G, Quinteiro-González S, Domínguez Á, Cabrera M, López S, Pavlovic S, Flores C, Wägner AM. Does HLA explain the high incidence of childhood-onset type 1 diabetes in the Canary Islands? The role of Asp57 DQB1 molecules. BMC Pediatr 2024; 24:569. [PMID: 39243072 PMCID: PMC11378579 DOI: 10.1186/s12887-024-04983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024] Open
Abstract
The Canary Islands inhabitants, a recently admixed population with significant North African genetic influence, has the highest incidence of childhood-onset type 1 diabetes (T1D) in Spain and one of the highest in Europe. HLA accounts for half of the genetic risk of T1D. AIMS To characterize the classical HLA-DRB1 and HLA-DQB1 alleles in children from Gran Canaria with and without T1D. METHODS We analyzed classic HLA-DRB1 and HLA-DQB1 alleles in childhood-onset T1D patients (n = 309) and control children without T1D (n = 222) from the island of Gran Canaria. We also analyzed the presence or absence of aspartic acid at position 57 in the HLA-DQB1 gene and arginine at position 52 in the HLA-DQA1 gene. Genotyping of classical HLA-DQB1 and HLA-DRB1 alleles was performed at two-digit resolution using Luminex technology. The chi-square test (or Fisher's exact test) and odds ratio (OR) were computed to assess differences in allele and genotype frequencies between patients and controls. Logistic regression analysis was also used. RESULTS Mean age at diagnosis of T1D was 7.4 ± 3.6 years (46% female). Mean age of the controls was 7.6 ± 1.1 years (55% female). DRB1*03 (OR = 4.2; p = 2.13-13), DRB1*04 (OR = 6.6; p ≤ 2.00-16), DRB1* 07 (OR = 0.37; p = 9.73-06), DRB1*11 (OR = 0.17; p = 6.72-09), DRB1*12, DRB1*13 (OR = 0.38; p = 1.21-05), DRB1*14 (OR = 0.0; p = 0.0024), DRB1*15 (OR = 0.13; p = 7.78-07) and DRB1*16 (OR = 0.21; p = 0.003) exhibited significant differences in frequency between groups. Among the DQB1* alleles, DQB1*02 (OR: 2.3; p = 5.13-06), DQB1*03 (OR = 1.7; p = 1.89-03), DQB1*05 (OR = 0.64; p = 0.027) and DQB1*06 (OR = 0.19; p = 6.25-14) exhibited significant differences. A total of 58% of the studied HLA-DQB1 genes in our control population lacked aspartic acid at position 57. CONCLUSIONS In this population, the overall distributions of the HLA-DRB1 and HLA-DQB1 alleles are similar to those in other European populations. However, the frequency of the non-Asp-57 HLA-DQB1 molecules is greater than that in other populations with a lower incidence of T1D. Based on genetic, historical and epidemiological data, we propose that a common genetic background might help explain the elevated pediatric T1D incidence in the Canary Islands, North-Africa and middle eastern countries.
Collapse
Affiliation(s)
- Yeray Nóvoa-Medina
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Asociación Canaria para la Investigación Pediátrica (ACIP canarias), Las Palmas, Spain.
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Itahisa Marcelino-Rodriguez
- Preventive Medicine and Public Health Area, University of La Laguna, Santa Cruz de Tenerife, Spain
- Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Nicolás M Suárez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marta Barreiro-Bautista
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Eva Rivas-García
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Santiago Sánchez-Alonso
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Gema González-Martínez
- Servicio de Inmunología, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sofía Quinteiro-González
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ángela Domínguez
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - María Cabrera
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sara López
- Unidad de Endocrinología Pediátrica, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Svetlana Pavlovic
- Servicio de Pediatría Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Carlos Flores
- Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Ana M Wägner
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias de la Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
2
|
Huang Y, Zhu W, Zhou J, Huang Q, Zeng G. Navigating the Evolving Landscape of Primary Hyperoxaluria: Traditional Management Defied by the Rise of Novel Molecular Drugs. Biomolecules 2024; 14:511. [PMID: 38785918 PMCID: PMC11117870 DOI: 10.3390/biom14050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Primary hyperoxalurias (PHs) are inherited metabolic disorders marked by enzymatic cascade disruption, leading to excessive oxalate production that is subsequently excreted in the urine. Calcium oxalate deposition in the renal tubules and interstitium triggers renal injury, precipitating systemic oxalate build-up and subsequent secondary organ impairment. Recent explorations of novel therapeutic strategies have challenged and necessitated the reassessment of established management frameworks. The execution of diverse clinical trials across various medication classes has provided new insights and knowledge. With the evolution of PH treatments reaching a new milestone, prompt and accurate diagnosis is increasingly critical. Developing early, effective management and treatment plans is essential to improve the long-term quality of life for PH patients.
Collapse
Affiliation(s)
- Yueqi Huang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
| | - Wei Zhu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China;
| | - Jia Zhou
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
| | - Qiulin Huang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
| | - Guohua Zeng
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China;
| |
Collapse
|
3
|
Nieto-Romero V, García-Torralba A, Molinos-Vicente A, Moya FJ, Rodríguez-Perales S, García-Escudero R, Salido E, Segovia JC, García-Bravo M. Restored glyoxylate metabolism after AGXT gene correction and direct reprogramming of primary hyperoxaluria type 1 fibroblasts. iScience 2024; 27:109530. [PMID: 38577102 PMCID: PMC10993186 DOI: 10.1016/j.isci.2024.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/18/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare inherited metabolic disorder characterized by oxalate overproduction in the liver, resulting in renal damage. It is caused by mutations in the AGXT gene. Combined liver and kidney transplantation is currently the only permanent curative treatment. We combined locus-specific gene correction and hepatic direct cell reprogramming to generate autologous healthy induced hepatocytes (iHeps) from PH1 patient-derived fibroblasts. First, site-specific AGXT corrected cells were obtained by homology directed repair (HDR) assisted by CRISPR-Cas9, following two different strategies: accurate point mutation (c.731T>C) correction or knockin of an enhanced version of AGXT cDNA. Then, iHeps were generated, by overexpression of hepatic transcription factors. Generated AGXT-corrected iHeps showed hepatic gene expression profile and exhibited in vitro reversion of oxalate accumulation compared to non-edited PH1-derived iHeps. This strategy set up a potential alternative cellular source for liver cell replacement therapy and a personalized PH1 in vitro disease model.
Collapse
Affiliation(s)
- Virginia Nieto-Romero
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Aida García-Torralba
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Andrea Molinos-Vicente
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Francisco José Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)-ISCIII, Research Institute Hospital 12 de Octubre (imas12)-University Hospital 12 de Octubre, 28040 Madrid, Spain
| | - Eduardo Salido
- Pathology Department, Hospital Universitario de Canarias, Universidad La Laguna, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 38320 Tenerife, Spain
| | - José-Carlos Segovia
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - María García-Bravo
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
4
|
Vankova P, Pacheco-Garcia JL, Loginov DS, Gómez-Mulas A, Kádek A, Martín-Garcia JM, Salido E, Man P, Pey AL. Insights into the pathogenesis of primary hyperoxaluria type I from the structural dynamics of alanine:glyoxylate aminotransferase variants. FEBS Lett 2024; 598:485-499. [PMID: 38243391 DOI: 10.1002/1873-3468.14800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Primary hyperoxaluria type I (PH1) is caused by deficient alanine:glyoxylate aminotransferase (AGT) activity. PH1-causing mutations in AGT lead to protein mistargeting and aggregation. Here, we use hydrogen-deuterium exchange (HDX) to characterize the wild-type (WT), the LM (a polymorphism frequent in PH1 patients) and the LM G170R (the most common mutation in PH1) variants of AGT. We provide the first experimental analysis of AGT structural dynamics, showing that stability is heterogeneous in the native state and providing a blueprint for frustrated regions with potentially functional relevance. The LM and LM G170R variants only show local destabilization. Enzymatic transamination of the pyridoxal 5-phosphate cofactor bound to AGT hardly affects stability. Our study, thus, supports that AGT misfolding is not caused by dramatic effects on structural dynamics.
Collapse
Affiliation(s)
- Pavla Vankova
- Institute of Biotechnology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | | | - Dmitry S Loginov
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | | | - Alan Kádek
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - José Manuel Martín-Garcia
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de la Laguna, Tenerife, Spain
| | - Petr Man
- Institute of Microbiology - BioCeV, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Spain
| |
Collapse
|
5
|
Metry EL, Garrelfs SF, Deesker LJ, Acquaviva C, D’Ambrosio V, Bacchetta J, Beck BB, Cochat P, Collard L, Hogan J, Ferraro PM, Franssen CF, Harambat J, Hulton SA, Lipkin GW, Mandrile G, Martin-Higueras C, Mohebbi N, Moochhala SH, Neuhaus TJ, Prikhodina L, Salido E, Topaloglu R, Oosterveld MJ, Groothoff JW, Peters-Sengers H. Determinants of Kidney Failure in Primary Hyperoxaluria Type 1: Findings of the European Hyperoxaluria Consortium. Kidney Int Rep 2023; 8:2029-2042. [PMID: 37849991 PMCID: PMC10577369 DOI: 10.1016/j.ekir.2023.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Primary hyperoxaluria type 1 (PH1) has a highly heterogeneous disease course. Apart from the c.508G>A (p.Gly170Arg) AGXT variant, which imparts a relatively favorable outcome, little is known about determinants of kidney failure. Identifying these is crucial for disease management, especially in this era of new therapies. Methods In this retrospective study of 932 patients with PH1 included in the OxalEurope registry, we analyzed genotype-phenotype correlations as well as the impact of nephrocalcinosis, urolithiasis, and urinary oxalate and glycolate excretion on the development of kidney failure, using survival and mixed model analyses. Results The risk of developing kidney failure was the highest for 175 vitamin-B6 unresponsive ("null") homozygotes and lowest for 155 patients with c.508G>A and c.454T>A (p.Phe152Ile) variants, with a median age of onset of kidney failure of 7.8 and 31.8 years, respectively. Fifty patients with c.731T>C (p.Ile244Thr) homozygote variants had better kidney survival than null homozygotes (P = 0.003). Poor outcomes were found in patients with other potentially vitamin B6-responsive variants. Nephrocalcinosis increased the risk of kidney failure significantly (hazard ratio [HR] 3.17 [2.03-4.94], P < 0.001). Urinary oxalate and glycolate measurements were available in 620 and 579 twenty-four-hour urine collections from 117 and 87 patients, respectively. Urinary oxalate excretion, unlike glycolate, was higher in patients who subsequently developed kidney failure (P = 0.034). However, the 41% intraindividual variation of urinary oxalate resulted in wide confidence intervals. Conclusion In conclusion, homozygosity for AGXT null variants and nephrocalcinosis were the strongest determinants for kidney failure in PH1.
Collapse
Affiliation(s)
- Elisabeth L. Metry
- Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander F. Garrelfs
- Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa J. Deesker
- Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cecile Acquaviva
- Service de Biochimie et Biologie Moléculaire, UM Pathologies Héréditaires du Métabolisme et du Globule Rouge, Hospices Civils de Lyon, France
| | - Viola D’Ambrosio
- Department of Nephrology, Catholic University of the Sacred Heart, Rome, Italy
| | - Justine Bacchetta
- Centre de Référence des Maladies Rares Néphrogones, Hospices Civils de Lyon et Université Claude-Bernard Lyon 1, Lyon, France
| | - Bodo B. Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany
- Center for Rare and Hereditary Kidney Disease Cologne, University Hospital of Cologne, Cologne, Germany
| | - Pierre Cochat
- Centre de Référence des Maladies Rares Néphrogones, Hospices Civils de Lyon et Université Claude-Bernard Lyon 1, Lyon, France
| | - Laure Collard
- Department of Pediatric Nephrology, Center Hospitalier Universitaire Liège, Liège, Belgium
| | - Julien Hogan
- Department of Pediatric Nephrology, Assistance Publique–Hôpitaux de Paris Robert-Debré, University of Paris, Paris, France
| | | | - Casper F.M. Franssen
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jérôme Harambat
- Department of Pediatrics, Pediatric Nephrology Unit, Bordeaux University Hospital, Bordeaux, France
| | - Sally-Anne Hulton
- Department of Nephrology, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Graham W. Lipkin
- Department of Nephrology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Giorgia Mandrile
- Genetic Unit and Thalassemia Center, San Luigi University Hospital, Orbassano, Italy
| | - Cristina Martin-Higueras
- Institute of Biomedical Technology, CIBERER, University of Laguna, San Cristóbal de La Laguna, Spain
| | - Nilufar Mohebbi
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | | | - Thomas J. Neuhaus
- Department of Pediatrics, Children’s Hospital Lucerne, Lucerne, Switzerland
| | - Larisa Prikhodina
- Department of Inherited and Acquired Kidney Diseases, Veltishev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Eduardo Salido
- Department of Pathology, Center for Biomedical Research on Rare Diseases, Hospital Universitario Canarias, Universidad La Laguna, Tenerife, Spain
| | - Rezan Topaloglu
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Michiel J.S. Oosterveld
- Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap W. Groothoff
- Department of Pediatric Nephrology, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Mandrile G, Beck B, Acquaviva C, Rumsby G, Deesker L, Garrelfs S, Gupta A, Bacchetta J, Groothoff J. Genetic assessment in primary hyperoxaluria: why it matters. Pediatr Nephrol 2023; 38:625-634. [PMID: 35695965 PMCID: PMC9842587 DOI: 10.1007/s00467-022-05613-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 01/21/2023]
Abstract
Accurate diagnosis of primary hyperoxaluria (PH) has important therapeutic consequences. Since biochemical assessment can be unreliable, genetic testing is a crucial diagnostic tool for patients with PH to define the disease type. Patients with PH type 1 (PH1) have a worse prognosis than those with other PH types, despite the same extent of oxalate excretion. The relation between genotype and clinical phenotype in PH1 is extremely heterogeneous with respect to age of first symptoms and development of kidney failure. Some mutations are significantly linked to pyridoxine-sensitivity in PH1, such as homozygosity for p.G170R and p.F152I combined with a common polymorphism. Although patients with these mutations display on average better outcomes, they may also present with CKD stage 5 in infancy. In vitro studies suggest pyridoxine-sensitivity for some other mutations, but confirmatory clinical data are lacking (p.G47R, p.G161R, p.I56N/major allele) or scarce (p.I244T). These studies also suggest that other vitamin B6 derivatives than pyridoxine may be more effective and should be a focus for clinical testing. PH patients displaying the same mutation, even within one family, may have completely different clinical outcomes. This discordance may be caused by environmental or genetic factors that are unrelated to the effect of the causative mutation(s). No relation between genotype and clinical or biochemical phenotypes have been found so far in PH types 2 and 3. This manuscript reviews the current knowledge on the genetic background of the three types of primary hyperoxaluria and its impact on clinical management, including prenatal diagnosis.
Collapse
Affiliation(s)
- Giorgia Mandrile
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, University of Torino, Orbassano, TO, Italy
| | - Bodo Beck
- Institute of Human Genetics, Center for Molecular Medicine Cologne, and Center for Rare and Hereditary Kidney Disease, University Hospital of Cologne, CologneCologne, Germany
| | - Cecile Acquaviva
- Service de Biochimie Et Biologie Moléculaire, Hospices Civils de Lyon, UM Pathologies Héréditaires du Métabolisme Et du Globule Rouge, Lyon, France
| | - Gill Rumsby
- Department of Clinical Biochemistry, University College London Hospitals NHS Foundation Trust | UCLH, Kintbury, UK
| | - Lisa Deesker
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Sander Garrelfs
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands
| | - Asheeta Gupta
- Department of Nephrology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Justine Bacchetta
- Reference Center for Rare Renal Diseases, Pediatric Nephrology-Rheumatology-Dermatology Unit, Hospices Civils de Lyon, Femme Mere Enfant Hospital, Lyon 1 University, Bron, France
| | - Jaap Groothoff
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
7
|
Phosphorylation of Thr9 Affects the Folding Landscape of the N-Terminal Segment of Human AGT Enhancing Protein Aggregation of Disease-Causing Mutants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248762. [PMID: 36557898 PMCID: PMC9786777 DOI: 10.3390/molecules27248762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The mutations G170R and I244T are the most common disease cause in primary hyperoxaluria type I (PH1). These mutations cause the misfolding of the AGT protein in the minor allele AGT-LM that contains the P11L polymorphism, which may affect the folding of the N-terminal segment (NTT-AGT). The NTT-AGT is phosphorylated at T9, although the role of this event in PH1 is unknown. In this work, phosphorylation of T9 was mimicked by introducing the T9E mutation in the NTT-AGT peptide and the full-length protein. The NTT-AGT conformational landscape was studied by circular dichroism, NMR, and statistical mechanical methods. Functional and stability effects on the full-length AGT protein were characterized by spectroscopic methods. The T9E and P11L mutations together reshaped the conformational landscape of the isolated NTT-AGT peptide by stabilizing ordered conformations. In the context of the full-length AGT protein, the T9E mutation had no effect on the overall AGT function or conformation, but enhanced aggregation of the minor allele (LM) protein and synergized with the mutations G170R and I244T. Our findings indicate that phosphorylation of T9 may affect the conformation of the NTT-AGT and synergize with PH1-causing mutations to promote aggregation in a genotype-specific manner. Phosphorylation should be considered a novel regulatory mechanism in PH1 pathogenesis.
Collapse
|
8
|
Soliman NA, Elmonem MA, Abdelrahman SM, Nabhan MM, Fahmy YA, Cogal A, Harris PC, Milliner DS. Clinical and molecular characterization of primary hyperoxaluria in Egypt. Sci Rep 2022; 12:15886. [PMID: 36151119 PMCID: PMC9508166 DOI: 10.1038/s41598-022-17980-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Primary hyperoxaluria (PH) is an autosomal recessive disorder of oxalate metabolism caused by pathogenic variants in either of three genes (AGXT, GRHPR or HOGA1). The study aimed at characterizing the clinical phenotypes as well as the genotypic spectrum of PH in Egypt. We screened 25 Egyptian patients suspected of PH for the three responsible genes by Sanger sequencing. We diagnosed 20 patients from 18 unrelated families, in which the natural history, family history, clinical features and genotypes were evaluated. PH patients were 15 males and 5 females ranging in age from 4 months to 31 years (median 8 years). Fifteen families were consanguineous (83%) and familial clustering was reported in six families (33%). Pathogenic variants in all 40 alleles were in AGXT, with none detected in GRHPR or HOGA1. We detected two novel pathogenic variants c.166-1_172dupGATCATGG (p.Asp58Glyfs*65) and c.766delC (p.Gln256fs*16) and seven previously reported variants in our cohort. This is the first study reporting the genotype of a considerable number of PH1 patients from Egypt. Our detected variants in the AGXT gene could form the basis for future genetic counseling and prenatal diagnosis in Egypt and surrounding populations.
Collapse
Affiliation(s)
- Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation (CPNT), Cairo University, Cairo, Egypt.,EGORD, Egyptian Group of Orphan Renal Diseases, Cairo, Egypt
| | - Mohamed A Elmonem
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt. .,Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt.
| | - Safaa M Abdelrahman
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation (CPNT), Cairo University, Cairo, Egypt.,EGORD, Egyptian Group of Orphan Renal Diseases, Cairo, Egypt
| | - Marwa M Nabhan
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation (CPNT), Cairo University, Cairo, Egypt.,EGORD, Egyptian Group of Orphan Renal Diseases, Cairo, Egypt
| | - Yosra A Fahmy
- Department of Pediatrics, Center of Pediatric Nephrology and Transplantation (CPNT), Cairo University, Cairo, Egypt.,EGORD, Egyptian Group of Orphan Renal Diseases, Cairo, Egypt
| | - Andrea Cogal
- Division of Nephrology, Departments of Pediatrics and Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Rare Kidney Stone Consortium (RKSC), Rochester, MN, USA
| | - Peter C Harris
- Division of Nephrology, Departments of Pediatrics and Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Rare Kidney Stone Consortium (RKSC), Rochester, MN, USA
| | - Dawn S Milliner
- Division of Nephrology, Departments of Pediatrics and Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Rare Kidney Stone Consortium (RKSC), Rochester, MN, USA
| |
Collapse
|
9
|
Gatticchi L, Grottelli S, Ambrosini G, Pampalone G, Gualtieri O, Dando I, Bellezza I, Cellini B. CRISPR/Cas9-mediated knock-out of AGXT1 in HepG2 cells as a new in vitro model of Primary Hyperoxaluria Type 1. Biochimie 2022; 202:110-122. [PMID: 35964771 DOI: 10.1016/j.biochi.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
Abstract
AGXT1 encodes alanine:glyoxylate aminotransferase 1 (AGT1), a liver peroxisomal pyridoxal 5'-phosphate dependent-enzyme whose deficit causes Primary Hyperoxaluria Type 1 (PH1). PH1 is a rare disease characterized by overproduction of oxalate, first leading to kidney stones formation, and possibly evolving to life-threatening systemic oxalosis. A minority of PH1 patients is responsive to pyridoxine, while the option for non-responders is liver-kidney transplantation. Therefore, huge efforts are currently focused on the identification of new therapies, including the promising approaches based on RNA silencing recently approved. Many PH1-associated mutations are missense and lead to a variety of kinetic and/or folding defects on AGT1. In this context, the availability of a reliable in vitro disease model would be essential to better understand the phenotype of known or newly-identified pathogenic variants as well as to test novel drug candidates. Here, we took advantage of the CRISPR/Cas9 technology to specifically knock-out AGXT1 in HepG2 cells, a hepatoma-derived cell model exhibiting a conserved glyoxylate metabolism. AGXT1-KO HepG2 displayed null AGT1 expression and significantly reduced transaminase activity leading to an enhanced secretion of oxalate upon glycolate challenge. Known pathogenic AGT1 variants expressed in AGXT1-KO HepG2 cells showed alteration in both protein levels and specific transaminase activity, as well as a partial mitochondrial mistargeting when associated with a common polymorphism. Notably, pyridoxine treatment was able to partially rescue activity and localization of clinically-responsive variants. Overall, our data validate AGXT1-KO HepG2 cells as a novel cellular model to investigate PH1 pathophysiology, and as a platform for drug discovery and development.
Collapse
Affiliation(s)
- Leonardo Gatticchi
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy
| | - Silvia Grottelli
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134, Verona, Italy
| | - Gioena Pampalone
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy
| | - Ottavia Gualtieri
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134, Verona, Italy
| | - Ilaria Bellezza
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy
| | - Barbara Cellini
- Department of Medicine and Surgery, Physiology and Biochemistry Section, University of Perugia, 06132, Perugia, Italy.
| |
Collapse
|
10
|
Grottelli S, Annunziato G, Pampalone G, Pieroni M, Dindo M, Ferlenghi F, Costantino G, Cellini B. Identification of Human Alanine-Glyoxylate Aminotransferase Ligands as Pharmacological Chaperones for Variants Associated with Primary Hyperoxaluria Type 1. J Med Chem 2022; 65:9718-9734. [PMID: 35830169 PMCID: PMC9340776 DOI: 10.1021/acs.jmedchem.2c00142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Primary hyperoxaluria type I (PH1) is a rare kidney disease
due
to the deficit of alanine:glyoxylate aminotransferase (AGT), a pyridoxal-5′-phosphate-dependent
enzyme responsible for liver glyoxylate detoxification, which in turn
prevents oxalate formation and precipitation as kidney stones. Many
PH1-associated missense mutations cause AGT misfolding. Therefore,
the use of pharmacological chaperones (PCs), small molecules that
promote correct folding, represents a useful therapeutic option. To
identify ligands acting as PCs for AGT, we first performed a small
screening of commercially available compounds. We tested each molecule
by a dual approach aimed at defining the inhibition potency on purified
proteins and the chaperone activity in cells expressing a misfolded
variant associated with PH1. We then performed a chemical optimization
campaign and tested the resulting synthetic molecules using the same
approach. Overall, the results allowed us to identify a promising
hit compound for AGT and draw conclusions about the requirements for
optimal PC activity.
Collapse
Affiliation(s)
- Silvia Grottelli
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Giannamaria Annunziato
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Gioena Pampalone
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Marco Pieroni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Mirco Dindo
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| | - Francesca Ferlenghi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Gabriele Costantino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy
| |
Collapse
|
11
|
Boussetta A, Karray A, Abida N, Jellouli M, Gargah T. Monogenic urinary lithiasis in Tunisian children: 25 years' experience of a referral center. LA TUNISIE MEDICALE 2022; 100:410-415. [PMID: 36206091 PMCID: PMC9552245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To describe the clinical, biochemical and evolutive profile of monogenic urinary lithiasis in Tunisian children followed up in a reference service, during a 25 years period. METHODS This was a single-center retrospective observational study of children with urolithiasis, conducted in the pediatric nephrology department in Charles Nicolle Hospital, Tunis, Tunisia over 25 years (January 1st, 1996 to December 31, 2020). Children≤18 of age with urolithiasis with or without nephrocalcinosis related to a monogenic disease were included in our study. RESULTS A total of 66 children were included in our study. Patients were 5.92±3.48 years of age at the time of urolithiasis diagnosis, and 5.33±3.66 years of age at the time of the underlying pathology diagnosis. The inherited urolithiasis disorders found in our series were: primary hyperoxaluria in 44 cases, cystinuria in 9 cases, Lesch Nyhan syndrome in 5 cases. Renal tubular acidosis was found in 3 cases, and hereditary xanthinuria in 2 cases. Bartter syndrome, adenine phosphoribosyltransferase deficiency and Hereditary hypophosphatemic rickets with hypercalciuria were found in 1 case each. After an average follow-up of 6.45±3.79 years, six patients were in end-stage renal disease. Three patients had died, all of them being followed for primary hyperoxaluria type 1. CONCLUSIONS Monogenic urinary lithiasis, although rare, are most likely under-diagnosed in countries with high consanguinity such as Tunisia. The screening of these diseases seems to be of primary importance because of their significant morbidity.
Collapse
Affiliation(s)
- Abir Boussetta
- 1. Service de pédiatrie, hôpital Charles Nicolle / université de Tunis El Manar, Faculté de Médecine de Tunis,
| | - Amina Karray
- 2. Service de chirurgie pédiatrique A, hôpital d’enfants de Tunis / Université de Tunis el Manar, faculté de médecine de Tunis
| | - Nesrine Abida
- 1. Service de pédiatrie, hôpital Charles Nicolle / université de Tunis El Manar, Faculté de Médecine de Tunis,
| | - Manel Jellouli
- 1. Service de pédiatrie, hôpital Charles Nicolle / université de Tunis El Manar, Faculté de Médecine de Tunis,
| | - Tahar Gargah
- 1. Service de pédiatrie, hôpital Charles Nicolle / université de Tunis El Manar, Faculté de Médecine de Tunis,
| |
Collapse
|
12
|
Fargue S, Acquaviva Bourdain C. Primary hyperoxaluria type 1: pathophysiology and genetics. Clin Kidney J 2022; 15:i4-i8. [PMID: 35592619 PMCID: PMC9113437 DOI: 10.1093/ckj/sfab217] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare genetic form of calcium oxalate kidney stone disease. It is caused by a deficiency in the liver-specific enzyme, alanine:glyoxylate aminotransferase (AGT), a pyridoxal-5'-phosphate (PLP)-dependent enzyme involved in the metabolism of glyoxylate. The excessive endogenous synthesis of oxalate that ensues leads to hyperoxaluria, and the crystallization of the poorly soluble calcium salt of oxalate is responsible for a severe kidney stone disease, which can progress to end-stage renal disease, systemic deposition of oxalate and death. Knowledge about metabolic precursors of glyoxylate and oxalate, molecular pathology of AGT and analytical methods for diagnosis and clinical assessment have allowed a better understanding of the mechanisms underlying PH1 and opened the door to new therapeutic strategies.
Collapse
Affiliation(s)
- Sonia Fargue
- University of Alabama at Birmingham, Department of Urology, Birmingham, AL, USA
| | - Cécile Acquaviva Bourdain
- Service de Biochimie et Biologie Moléculaire, Unité Maladies Héréditaires du Métabolisme, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
13
|
Shee K, Stoller ML. Perspectives in primary hyperoxaluria - historical, current and future clinical interventions. Nat Rev Urol 2021; 19:137-146. [PMID: 34880452 PMCID: PMC8652378 DOI: 10.1038/s41585-021-00543-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
Primary hyperoxalurias are a devastating family of diseases leading to multisystem oxalate deposition, nephrolithiasis, nephrocalcinosis and end-stage renal disease. Traditional treatment paradigms are limited to conservative management, dialysis and combined transplantation of the kidney and liver, of which the liver is the primary source of oxalate production. However, transplantation is associated with many potential complications, including operative risks, graft rejection, post-transplant organ failure, as well as lifelong immunosuppressive medications and their adverse effects. New therapeutics being developed for primary hyperoxalurias take advantage of biochemical knowledge about oxalate synthesis and metabolism, and seek to specifically target these pathways with the goal of decreasing the accumulation and deposition of oxalate in the body. Primary hyperoxalurias are a devastating family of diseases that eventually lead to end-stage renal disease. In this Review, Shee and Stoller discuss current treatment paradigms for primary hyperoxalurias, new therapeutics and their mechanisms of action, and future directions for novel research in the field. Primary hyperoxalurias (PHs) are a devastating family of rare, autosomal-recessive genetic disorders that lead to multisystem oxalate deposition, nephrolithiasis, nephrocalcinosis and end-stage renal disease. Traditional treatment paradigms are limited to conservative management, dialysis and inevitably transplantation of the kidney and liver, which is associated with high morbidity and the need for lifelong immunosuppression. New therapeutics being developed for PHs take advantage of biochemical knowledge about oxalate synthesis and metabolism to specifically target these pathways, with the goal of decreasing the accumulation and deposition of plasma oxalate in the body. New therapeutics can be divided into classes, and include substrate reduction therapy, intestinal oxalate degradation, chaperone therapy, enzyme restoration therapy and targeting of the inflammasome. Lumasiran, a mRNA therapeutic targeting glycolate oxidase, was the first primary hyperoxaluria-specific therapeutic approved by the European Medicines Agency and the FDA in 2020. Future work includes further clinical trials for promising therapeutics in the pipeline, identification of biomarkers of response to PH-directed therapy, optimization of drug development and delivery of new therapeutics.
Collapse
Affiliation(s)
- Kevin Shee
- Department of Urology, UCSF, San Francisco, CA, USA.
| | | |
Collapse
|
14
|
|
15
|
Martin-Higueras C, Garrelfs SF, Groothoff JW, Jacob DE, Moochhala SH, Bacchetta J, Acquaviva C, Zaniew M, Sikora P, Beck BB, Hoppe B. A report from the European Hyperoxaluria Consortium (OxalEurope) Registry on a large cohort of patients with primary hyperoxaluria type 3. Kidney Int 2021; 100:621-635. [PMID: 33865885 DOI: 10.1016/j.kint.2021.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
Outcome data in primary hyperoxaluria type 3 (PH3), described as a less severe form of the PH's with a low risk of chronic kidney disease, are scarce. To investigate this, we retrospectively analyzed the largest PH3 cohort reported so far. Of 95 patients, 74 were followed over a median of six years. Median age of first symptoms and diagnosis were 1.9 and 6.3 years, respectively. Urolithiasis was the major clinical feature observed in 70% of pediatric and 50% of adult patients. At most recent follow-up available for 56 of the 95 patients, 21.4% were in chronic kidney disease stages 2 or more. For better characterization, samples from 49 patients were analyzed in a single laboratory and compared to data from patients with PH1 and PH2 from the same center. Urinary oxalate excretion was not significantly different from PH1 and PH2 (median: 1.37, 1.40 and 1.16 mmol/1.73m2/24hours for PH1 not responsive to vitamin B6, PH2, and PH3, respectively) but was significantly higher than in vitamin B6 responsive patients with PH1. Urinary oxalate excretion did not correlate to stone production rate nor to estimated glomerular filtration rate. Normocitraturia was present even without alkalinisation treatment; hypercalciuria was found rarely. Median plasma oxalate was significantly different only to the vitamin B6-unresponsive PH1 group. Thus, PH3 is more comparable to PH1 and PH2 than so far inferred from smaller studies. It is the most favorable PH type, but not a benign entity as it constitutes an early onset, recurrent stone disease, and kidney function can be impaired.
Collapse
Affiliation(s)
- Cristina Martin-Higueras
- Department of Basic Medical Sciences, Institute of Biomedical Technologies, University of La Laguna, Centre for Biomedical Research in Rare Diseases (CIBERER), Tenerife, Spain
| | - Sander F Garrelfs
- Department of Pediatric Nephrology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jaap W Groothoff
- Department of Pediatric Nephrology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Dorrit E Jacob
- Research School of Earth Sciences, ANU College of Science, The Australian National University, Canberra, Australia
| | - Shabbir H Moochhala
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| | - Justine Bacchetta
- Center of Reference for Rare Renal Diseases, Hospices Civils de Lyon, Centre Hospitalier Universitaire de Lyon, Bron, France
| | - Cecile Acquaviva
- Center of Reference for Rare Renal Diseases, Hospices Civils de Lyon, Centre Hospitalier Universitaire de Lyon, Bron, France
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Przymyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Bodo B Beck
- Department of Human Genetics, University Hospital Cologne, Cologne, Germany; Outpatient Clinics, German Hyperoxaluria Center, Cologne/Bonn, Germany; Center for Molecular Medicine, University Hospital, Cologne, Germany
| | - Bernd Hoppe
- Outpatient Clinics, German Hyperoxaluria Center, Cologne/Bonn, Germany.
| |
Collapse
|
16
|
Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. J Pers Med 2021; 11:jpm11020074. [PMID: 33513899 PMCID: PMC7912158 DOI: 10.3390/jpm11020074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism. PHs classification based on gene mutations parallel a variety of enzymatic defects, and all involve the harmful accumulation of calcium oxalate crystals that produce systemic damage. These geographically widespread rare diseases have a deep impact in the life quality of the patients. Until recently, treatments were limited to palliative measures and kidney/liver transplants in the most severe forms. Efforts made to develop pharmacological treatments succeeded with the biotechnological agent lumasiran, a siRNA product against glycolate oxidase, which has become the first effective therapy to treat PH1. However, small molecule drugs have classically been preferred since they benefit from experience and have better pharmacological properties. The development of small molecule inhibitors designed against key enzymes of glyoxylate metabolism is on the focus of research. Enzyme inhibitors are successful and widely used in several diseases and their pharmacokinetic advantages are well known. In PHs, effective enzymatic targets have been determined and characterized for drug design and interesting inhibitory activities have been achieved both in vitro and in vivo. This review describes the most recent advances towards the development of small molecule enzyme inhibitors in the treatment of PHs, introducing the multi-target approach as a more effective and safe therapeutic option.
Collapse
|
17
|
Kletzmayr A, Ivarsson ME, Leroux JC. Investigational Therapies for Primary Hyperoxaluria. Bioconjug Chem 2020; 31:1696-1707. [PMID: 32539351 DOI: 10.1021/acs.bioconjchem.0c00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent years have brought exciting new insights in the field of primary hyperoxaluria (PH), both on a basic research level as well as through the progress of novel therapeutics in clinical development. To date, very few supportive measures are available for patients suffering from PH, which, together with the severity of the disorder, make disease management challenging. Basic and clinical research and development efforts range from correcting the underlying gene mutations, preventing calcium oxalate crystal-induced kidney damage, to the administration of probiotics favoring the intestinal secretion of excess oxalate. In this review, current advances in the development of those strategies are presented and discussed.
Collapse
Affiliation(s)
- Anna Kletzmayr
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
18
|
Martin-Higueras C, Ludwig-Portugall I, Hoppe B, Kurts C. Targeting kidney inflammation as a new therapy for primary hyperoxaluria? Nephrol Dial Transplant 2020; 34:908-914. [PMID: 30169827 DOI: 10.1093/ndt/gfy239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 12/27/2022] Open
Abstract
The primary hyperoxalurias (PHs) are inborn errors of glyoxylate metabolism characterized by endogenous oxalate overproduction in the liver, and thus elevated urinary oxalate excretion. The urinary calcium-oxalate (CaOx) supersaturation and the continuous renal accumulation of insoluble CaOx crystals yield a progressive decline in renal function that often ends with renal failure. In PH Type 1 (AGXT mutated), the most frequent and severe condition, patients typically progress to end-stage renal disease (ESRD); in PH Type 2 (GRHPR mutated), 20% of patients develop ESRD, while only one patient with PH Type 3 (HOGA1 mutated) has been reported with ESRD so far. Patients with ESRD undergo frequent maintenance (haemo)dialysis treatment, and finally must receive a combined liver-kidney transplantation as the only curative treatment option available in PH Type 1. In experimental models using oxalate-enriched chow, CaOx crystals were bound to renal tubular cells, promoting a pro-inflammatory environment that led to fibrogenesis in the renal parenchyma by activation of a NACHT, LRR and PYD domains-containing protein 3 (NALP3)-dependent inflammasome in renal dendritic cells and macrophages. Chronic fibrogenesis progressively impaired renal function. Targeting the inflammatory response has recently been suggested as a therapeutic strategy to treat not only oxalate-induced crystalline nephropathies, but also those characterized by accumulation of cystine and urate in other organs. Herein, we summarize the pathogenesis of PH, revising the current knowledge of the CaOx-mediated inflammatory response in animal models of endogenous oxalate overproduction. Furthermore, we highlight the possibility of modifying the NLRP3-dependent inflammasome as a new and complementary therapeutic strategy to treat this severe and devastating kidney disease.
Collapse
Affiliation(s)
- Cristina Martin-Higueras
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany.,Department of Pediatrics, Division of Pediatric Nephrology, University Children's Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Isis Ludwig-Portugall
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Bernd Hoppe
- Department of Pediatrics, Division of Pediatric Nephrology, University Children's Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| |
Collapse
|
19
|
García-Nieto VM, Claverie-Martín F, Perdomo-Ramírez A, Cárdoba-Lanus E, Ramos-Trujillo E, Mura-Escorche G, Tejera-Carreño P, Luis-Yanes MI. Consideraciones acerca de las bases moleculares de algunas tubulopatías en relación con la endogamia y los desplazamientos poblacionales. Nefrologia 2020; 40:126-132. [DOI: 10.1016/j.nefro.2019.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023] Open
|
20
|
Estève J, Blouin JM, Lalanne M, Azzi-Martin L, Dubus P, Bidet A, Harambat J, Llanas B, Moranvillier I, Bedel A, Moreau-Gaudry F, Richard E. Targeted gene therapy in human-induced pluripotent stem cells from a patient with primary hyperoxaluria type 1 using CRISPR/Cas9 technology. Biochem Biophys Res Commun 2019; 517:677-683. [PMID: 31402115 DOI: 10.1016/j.bbrc.2019.07.109] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/27/2019] [Indexed: 12/12/2022]
Abstract
Primary hyperoxaluria type 1 (PH1) is an inherited metabolic disorder caused by a deficiency of the peroxisomal enzyme alanine-glyoxylate aminotransferase (AGT), which leads to overproduction of oxalate by the liver and results in urolithiasis, nephrocalcinosis and renal failure. The only curative treatment for PH1 is combined liver and kidney transplantation, which is limited by the lack of suitable organs, significant complications, and the life-long requirement for immunosuppressive agents to maintain organ tolerance. Hepatocyte-like cells (HLCs) generated from CRISPR/Cas9 genome-edited human-induced pluripotent stem cells would offer an attractive unlimited source of autologous gene-corrected liver cells as an alternative to orthotopic liver transplantation (OLT). Here we report the CRISPR/Cas9 nuclease-mediated gene targeting of a single-copy AGXT therapeutic minigene into the safe harbour AAVS1 locus in PH1-induced pluripotent stem cells (PH1-iPSCs) without off-target inserts. We obtained a robust expression of a codon-optimized AGT in HLCs derived from AAVS1 locus-edited PH1-iPSCs. Our study provides the proof of concept that CRISPR/Cas9-mediated integration of an AGXT minigene into the AAVS1 safe harbour locus in patient-specific iPSCs is an efficient strategy to generate functionally corrected hepatocytes, which in the future may serve as a source for an autologous cell-based gene therapy for the treatment of PH1.
Collapse
Affiliation(s)
- Julie Estève
- Univ. Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076, Bordeaux, France
| | - Jean-Marc Blouin
- Univ. Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076, Bordeaux, France
| | - Magalie Lalanne
- Univ. Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076, Bordeaux, France
| | - Lamia Azzi-Martin
- Univ. Bordeaux, INSERM, Bordeaux Research in Translational Oncology, U1053, CHU Bordeaux, 33076, Bordeaux, France
| | - Pierre Dubus
- Univ. Bordeaux, INSERM, Bordeaux Research in Translational Oncology, U1053, CHU Bordeaux, 33076, Bordeaux, France
| | - Audrey Bidet
- Laboratoire d'Hématologie, CHU de Bordeaux, Bordeaux, France
| | - Jérôme Harambat
- Service de Néphrologie Pédiatrique, Centre de Référence Maladies Rénales Rares du Sud-Ouest, CHU Bordeaux, 33000, Bordeaux, France
| | - Brigitte Llanas
- Service de Néphrologie Pédiatrique, Centre de Référence Maladies Rénales Rares du Sud-Ouest, CHU Bordeaux, 33000, Bordeaux, France
| | | | - Aurélie Bedel
- Univ. Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076, Bordeaux, France
| | | | - Emmanuel Richard
- Univ. Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076, Bordeaux, France.
| |
Collapse
|
21
|
Guillen-Guio B, Lorenzo-Salazar JM, González-Montelongo R, Díaz-de Usera A, Marcelino-Rodríguez I, Corrales A, Cabrera de León A, Alonso S, Flores C. Genomic Analyses of Human European Diversity at the Southwestern Edge: Isolation, African Influence and Disease Associations in the Canary Islands. Mol Biol Evol 2019; 35:3010-3026. [PMID: 30289472 PMCID: PMC6278859 DOI: 10.1093/molbev/msy190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite the genetic resemblance of Canary Islanders to other southern European populations, their geographical isolation and the historical admixture of aborigines (from North Africa) with sub-Saharan Africans and Europeans have shaped a distinctive genetic makeup that likely affects disease susceptibility and health disparities. Based on single nucleotide polymorphism array data and whole genome sequencing (30×), we inferred that the last African admixture took place ∼14 generations ago and estimated that up to 34% of the Canary Islander genome is of recent African descent. The length of regions in homozygosis and the ancestry-related mosaic organization of the Canary Islander genome support the view that isolation has been strongest on the two smallest islands. Furthermore, several genomic regions showed significant and large deviations in African or European ancestry and were significantly enriched in genes involved in prevalent diseases in this community, such as diabetes, asthma, and allergy. The most prominent of these regions were located near LCT and the HLA, two well-known targets of selection, at which 40‒50% of the Canarian genome is of recent African descent according to our estimates. Putative selective signals were also identified in these regions near the SLC6A11-SLC6A1, KCNMB2, and PCDH20-PCDH9 genes. Taken together, our findings provide solid evidence of a significant recent African admixture, population isolation, and adaptation in this part of Europe, with the favoring of African alleles in some chromosome regions. These findings may have medical implications for populations of recent African ancestry.
Collapse
Affiliation(s)
- Beatriz Guillen-Guio
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Almudena Corrales
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Cabrera de León
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
22
|
Estève J, Blouin JM, Lalanne M, Azzi-Martin L, Dubus P, Bidet A, Harambat J, Llanas B, Moranvillier I, Bedel A, Moreau-Gaudry F, Richard E. Generation of induced pluripotent stem cells-derived hepatocyte-like cells for ex vivo gene therapy of primary hyperoxaluria type 1. Stem Cell Res 2019; 38:101467. [PMID: 31151050 DOI: 10.1016/j.scr.2019.101467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/30/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder of the liver metabolism due to functional deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). AGT deficiency results in overproduction of oxalate which complexes with calcium to form insoluble calcium-oxalate salts in urinary tracts, ultimately leading to end-stage renal disease. Currently, the only curative treatment for PH1 is combined liver-kidney transplantation, which is limited by donor organ shortage and lifelong requirement for immunosuppression. Transplantation of genetically modified autologous hepatocytes is an attractive therapeutic option for PH1. However, the use of fresh primary hepatocytes suffers from limitations such as organ availability, insufficient cell proliferation, loss of function, and the risk of immune rejection. We developed patient-specific induced pluripotent stem cells (PH1-iPSCs) free of reprogramming factors as a source of renewable and genetically defined autologous PH1-hepatocytes. We then investigated additive gene therapy using a lentiviral vector encoding wild-type AGT under the control of the liver-specific transthyretin promoter. Genetically modified PH1-iPSCs successfully provided hepatocyte-like cells (HLCs) that exhibited significant AGT expression at both RNA and protein levels after liver-specific differentiation process. These results pave the way for cell-based therapy of PH1 by transplantation of genetically modified autologous HLCs derived from patient-specific iPSCs.
Collapse
Affiliation(s)
- Julie Estève
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France
| | - Jean-Marc Blouin
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France
| | - Magalie Lalanne
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France
| | | | - Pierre Dubus
- Univ.Bordeaux, INSERM, BARITON, U1053, CHU Bordeaux, 33076, France
| | - Audrey Bidet
- Laboratoire d'hématologie, CHU Bordeaux, Bordeaux, France
| | - Jérôme Harambat
- Service de Néphrologie pédiatrique, Centre de Référence Maladies Rénales Rares du Sud-Ouest, CHU Bordeaux, 33000 Bordeaux, France
| | - Brigitte Llanas
- Service de Néphrologie pédiatrique, Centre de Référence Maladies Rénales Rares du Sud-Ouest, CHU Bordeaux, 33000 Bordeaux, France
| | | | - Aurélie Bedel
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France
| | | | - Emmanuel Richard
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France.
| |
Collapse
|
23
|
Human MiR-4660 regulates the expression of alanine-glyoxylate aminotransferase and may be a biomarker for idiopathic oxalosis. Clin Exp Nephrol 2019; 23:890-897. [PMID: 30852714 DOI: 10.1007/s10157-019-01723-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dysfunction of oxalate synthesis can cause calcium oxalate stone disease and inherited primary hyperoxaluria (PH) disorders. PH type I (PH1) is one of the most severe hyperoxaluria disorders, which results in urolithiasis, nephrocalcinosis, and end-stage renal disease. Here, we sought to determine the role of microRNAs in regulating AGXT to contribute to the pathogenesis of mutation-negative idiopathic oxalosis. METHODS We conducted bioinformatics to search for microRNAs binding to AGXT, and examined the expression of the highest hit (miR-4660) in serum samples of patients with oxalosis, liver tissue samples, and determined the correlation and regulation between the microRNA and AGXT in vitro. RESULTS MiR-4660 expression was downregulated in patients with oxalosis compared with healthy controls (84.03 copies/µL vs 33.02 copies/µL, P < 0.0001). Moreover, miR-4660 epigenetically decreased the expression of AGT in human liver tissues (Rho = - 0543, P = 0.037). Overexpression of miR-4660 in HepG2 and L02 cell lines led to dysregulation of AGXT at both the mRNA (by 71% and 81%, respectively; P < 0.001) and protein (by 49% and 42%, respectively; P < 0.0001) levels. We confirmed the direct target site of miR-4660 binding to the 3'UTR of AGXT by a luciferase assay. CONCLUSION MiR-4660 is probably a new biomarker for mutation-negative idiopathic oxalosis by regulating the post-transcription of AGXT, providing a potential treatment target of mutation-negative idiopathic oxalosis.
Collapse
|
24
|
Fernández-Higuero JÁ, Betancor-Fernández I, Mesa-Torres N, Muga A, Salido E, Pey AL. Structural and functional insights on the roles of molecular chaperones in the mistargeting and aggregation phenotypes associated with primary hyperoxaluria type I. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:119-152. [PMID: 30635080 DOI: 10.1016/bs.apcsb.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To carry out their biological function in cells, proteins must be folded and targeted to the appropriate subcellular location. These processes are controlled by a vast collection of interacting proteins collectively known as the protein homeostasis network, in which molecular chaperones play a prominent role. Protein homeostasis can be impaired by inherited mutations leading to genetic diseases. In this chapter, we focus on a particular disease, primary hyperoxaluria type 1 (PH1), in which disease-associated mutations exacerbate protein aggregation in the cell and mistarget the peroxisomal alanine:glyoxylate aminotransferase (AGT) protein to mitochondria, in part due to native state destabilization and enhanced interaction with Hsp60, 70 and 90 chaperone systems. After a general introduction of molecular chaperones and PH1, we review our current knowledge on the structural and energetic features of PH1-causing mutants that lead to these particular pathogenic mechanisms. From this perspective, and in the context of the key role of molecular chaperones in PH1 pathogenesis, we present and discuss current and future perspectives for pharmacological treatments for this disease.
Collapse
Affiliation(s)
- José Ángel Fernández-Higuero
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Isabel Betancor-Fernández
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, ITB, University of La Laguna, Tenerife, Spain
| | - Noel Mesa-Torres
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Arturo Muga
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, ITB, University of La Laguna, Tenerife, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain.
| |
Collapse
|
25
|
Medina-Carmona E, Betancor-Fernández I, Santos J, Mesa-Torres N, Grottelli S, Batlle C, Naganathan AN, Oppici E, Cellini B, Ventura S, Salido E, Pey AL. Insight into the specificity and severity of pathogenic mechanisms associated with missense mutations through experimental and structural perturbation analyses. Hum Mol Genet 2018; 28:1-15. [DOI: 10.1093/hmg/ddy323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/09/2018] [Indexed: 12/21/2022] Open
Abstract
Abstract
Most pathogenic missense mutations cause specific molecular phenotypes through protein destabilization. However, how protein destabilization is manifested as a given molecular phenotype is not well understood. We develop here a structural and energetic approach to describe mutational effects on specific traits such as function, regulation, stability, subcellular targeting or aggregation propensity. This approach is tested using large-scale experimental and structural perturbation analyses in over thirty mutations in three different proteins (cancer-associated NQO1, transthyretin related with amyloidosis and AGT linked to primary hyperoxaluria type I) and comprising five very common pathogenic mechanisms (loss-of-function and gain-of-toxic function aggregation, enzyme inactivation, protein mistargeting and accelerated degradation). Our results revealed that the magnitude of destabilizing effects and, particularly, their propagation through the structure to promote disease-associated conformational states largely determine the severity and molecular mechanisms of disease-associated missense mutations. Modulation of the structural perturbation at a mutated site is also shown to cause switches between different molecular phenotypes. When very common disease-associated missense mutations were investigated, we also found that they were not among the most deleterious possible missense mutations at those sites, and required additional contributions from codon bias and effects of CpG sites to explain their high frequency in patients. Our work sheds light on the molecular basis of pathogenic mechanisms and genotype–phenotype relationships, with implications for discriminating between pathogenic and neutral changes within human genome variability from whole genome sequencing studies.
Collapse
Affiliation(s)
- Encarnación Medina-Carmona
- Department of Physical Chemistry, University of Granada, Granada, Spain
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, Perugia
| | - Isabel Betancor-Fernández
- Centre for Biomedical Research on Rare Diseases, Hospital Universitario de Canarias, Tenerife, Spain
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Noel Mesa-Torres
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Silvia Grottelli
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, Perugia
| | - Cristina Batlle
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai, India
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, Verona, Italy
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, Perugia
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases, Hospital Universitario de Canarias, Tenerife, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain
| |
Collapse
|
26
|
Mesa-Torres N, Betancor-Fernández I, Oppici E, Cellini B, Salido E, Pey AL. Evolutionary Divergent Suppressor Mutations in Conformational Diseases. Genes (Basel) 2018; 9:E352. [PMID: 30011855 PMCID: PMC6071075 DOI: 10.3390/genes9070352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
Neutral and adaptive mutations are key players in the evolutionary dynamics of proteins at molecular, cellular and organismal levels. Conversely, largely destabilizing mutations are rarely tolerated by evolution, although their occurrence in diverse human populations has important roles in the pathogenesis of conformational diseases. We have recently proposed that divergence at certain sites from the consensus (amino acid) state during mammalian evolution may have rendered some human proteins more vulnerable towards disease-associated mutations, primarily by decreasing their conformational stability. We herein extend and refine this hypothesis discussing results from phylogenetic and structural analyses, structure-based energy calculations and structure-function studies at molecular and cellular levels. As proof-of-principle, we focus on different mammalian orthologues of the NQO1 (NAD(P)H:quinone oxidoreductase 1) and AGT (alanine:glyoxylate aminotransferase) proteins. We discuss the different loss-of-function pathogenic mechanisms associated with diseases involving the two enzymes, including enzyme inactivation, accelerated degradation, intracellular mistargeting, and aggregation. Last, we take into account the potentially higher robustness of mammalian orthologues containing certain consensus amino acids as suppressors of human disease, and their relation with different intracellular post-translational modifications and protein quality control capacities, to be discussed as sources of phenotypic variability between human and mammalian models of disease and as tools for improving current therapeutic approaches.
Collapse
Affiliation(s)
- Noel Mesa-Torres
- Department of Physical Chemistry, University of Granada, 18010 Granada, Spain.
| | - Isabel Betancor-Fernández
- Hospital Universitario de Canarias, Center for Rare Diseases (CIBERER), University of La Laguna, 38320 Tenerife, Spain.
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134 Verona, Italy.
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | - Eduardo Salido
- Hospital Universitario de Canarias, Center for Rare Diseases (CIBERER), University of La Laguna, 38320 Tenerife, Spain.
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, 18010 Granada, Spain.
| |
Collapse
|
27
|
Oppici E, Dindo M, Conter C, Borri Voltattorni C, Cellini B. Folding Defects Leading to Primary Hyperoxaluria. Handb Exp Pharmacol 2018; 245:313-343. [PMID: 29071511 DOI: 10.1007/164_2017_59] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein misfolding is becoming one of the main mechanisms underlying inherited enzymatic deficits. This review is focused on primary hyperoxalurias, a group of disorders of glyoxylate detoxification associated with massive calcium oxalate deposition mainly in the kidneys. The most common and severe form, primary hyperoxaluria Type I, is due to the deficit of liver peroxisomal alanine/glyoxylate aminotransferase (AGT). Various studies performed in the last decade clearly evidence that many pathogenic missense mutations prevent the AGT correct folding, leading to various downstream effects including aggregation, increased degradation or mistargeting to mitochondria. Primary hyperoxaluria Type II and primary hyperoxaluria Type III are due to the deficit of glyoxylate reductase/hydroxypyruvate reductase (GRHPR) and 4-hydroxy-2-oxoglutarate aldolase (HOGA1), respectively. Although the molecular features of pathogenic variants of GRHPR and HOGA1 have not been investigated in detail, the data available suggest that some of them display folding defects. Thus, primary hyperoxalurias can be ranked among protein misfolding disorders, because in most cases the enzymatic deficit is due to the inability of each enzyme to reach its native and functional conformation. It follows that molecules able to improve the folding yield of the enzymes involved in each disease form could represent new therapeutic strategies.
Collapse
Affiliation(s)
- Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Mirco Dindo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Carolina Conter
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Carla Borri Voltattorni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Barbara Cellini
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli 1, 06132, Perugia, Italy.
| |
Collapse
|
28
|
Banning A, Schiff M, Tikkanen R. Amlexanox provides a potential therapy for nonsense mutations in the lysosomal storage disorder Aspartylglucosaminuria. Biochim Biophys Acta Mol Basis Dis 2017; 1864:668-675. [PMID: 29247835 DOI: 10.1016/j.bbadis.2017.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/17/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
Aspartylglucosaminuria (AGU) is a lysosomal storage disorder caused by mutations in the gene for aspartylglucosaminidase (AGA). This enzyme participates in glycoprotein degradation in lysosomes. AGU results in progressive mental retardation, and no curative therapy is currently available. We have here characterized the consequences of AGA gene mutations in a compound heterozygous patient who exhibits a missense mutation producing a Ser72Pro substitution in one allele, and a nonsense mutation Trp168X in the other. Ser72 is not a catalytic residue, but is required for the stabilization of the active site conformation. Thus, Ser72Pro exchange impairs the autocatalytic activation of the AGA precursor, and results in a considerable reduction of the enzyme activity and in altered AGA precursor processing. Betaine, which can partially rescue the AGA activity in AGU patients carrying certain missense mutations, turned out to be ineffective in the case of Ser72Pro substitution. The Trp168X nonsense allele results in complete lack of AGA polypeptide due to nonsense-mediated decay (NMD) of the mRNA. Amlexanox, which inhibits NMD and causes a translational read-through, facilitated the synthesis of a full-length, functional AGA protein from the nonsense allele. This could be demonstrated as presence of the AGA polypeptide and increased enzyme activity upon Amlexanox treatment. Furthermore, in the Ser72Pro/Trp168X expressing cells, Amlexanox induced a synergistic increase in AGA activity and polypeptide processing due to enhanced processing of the Ser72Pro polypeptide. Our data show for the first time that Amlexanox might provide a valid therapy for AGU.
Collapse
Affiliation(s)
- Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Manuel Schiff
- AP-HP, Robert Debré Hospital, Reference Center for Inherited Metabolic Diseases, University Paris Diderot-Sorbonne Paris Cité, PROTECT, INSERM U1141, Paris, France
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| |
Collapse
|
29
|
Kanoun H, Jarraya F, Maalej B, Lahiani A, Mahfoudh H, Makni F, Hachicha J, Fakhfakh F. Identification of compound heterozygous patients with primary hyperoxaluria type 1: clinical evaluations and in silico investigations. BMC Nephrol 2017; 18:303. [PMID: 28969594 PMCID: PMC5625645 DOI: 10.1186/s12882-017-0719-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/20/2017] [Indexed: 01/04/2023] Open
Abstract
Background Primary hyperoxaluria type 1 (PH1) is an autosomal recessive inherited disorder of glyoxylate metabolism in which excessive oxalates are formed by the liver and excreted by the kidneys. Calcium oxalate crystallizes in the urine, leading to urolithiasis, nephrocalcinosis, and consequent renal failure if treatment is not initiated promptly. Mutations in the AGXT gene which encodes the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase are responsible of PH1. In the present work, we aimed to analyze AGXT gene and in silico investigations performed in four patients with PH1 among two non consanguineous families. Methods Exhaustive gene sequencing was performed after PCR amplification of coding exons and introns boundaries. Bioinformatic tools were used to predict the impact of AGXT variants on gene expression as well as on the protein structure and function. Results Direct sequencing of all exons of AGXT gene revealed the emergence of multiple mutations in compound heterozygous state in the two studied families. Two patients were compound heterozygous for the c.731 T > C, c.32C > T, c.1020A > G and c.33_34insC and presented clinically with recurrent urinary tract infection, multiple urolithiasis and nephrocalcinosis under the age of 1 year and a persistent hyperoxaluria at the age of diagnosis. The two other patients presenting a less severe phenotypes were heterozygous for c.731 T > C and homozygous for the c.32C > T and c.1020A > G or compound heterozygous for c.26C > A and c.65A > G variants. Conclusion In Summary, we provided relevance regarding the compound heterozygous mutations in non consanguineous PH1 families with variable severity.
Collapse
Affiliation(s)
- Houda Kanoun
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax, Sfax, Tunisie. .,Unité de Recherche Pathologie rénale UR12ES14 et Service de Néphrologie, Hôpital Hédi Chaker Sfax, Sfax, Tunisia.
| | - Faiçal Jarraya
- Unité de Recherche Pathologie rénale UR12ES14 et Service de Néphrologie, Hôpital Hédi Chaker Sfax, Sfax, Tunisia
| | - Bayen Maalej
- Unité de Recherche Pathologie rénale UR12ES14 et Service de Néphrologie, Hôpital Hédi Chaker Sfax, Sfax, Tunisia.,Service de Pédiatrie, Hôpital Hédi Chaker Sfax, Sfax, Tunisia
| | - Amina Lahiani
- Laboratoire de Biochimie, Hôpital Habib Bourguiba Sfax, Sfax, Tunisia
| | - Hichem Mahfoudh
- Unité de Recherche Pathologie rénale UR12ES14 et Service de Néphrologie, Hôpital Hédi Chaker Sfax, Sfax, Tunisia
| | - Fatma Makni
- Laboratoire de Biochimie, Hôpital Habib Bourguiba Sfax, Sfax, Tunisia
| | - Jamil Hachicha
- Unité de Recherche Pathologie rénale UR12ES14 et Service de Néphrologie, Hôpital Hédi Chaker Sfax, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax, Sfax, Tunisie. .,Département des Sciences de la vie, Faculté des Sciences de Sfax, Université des Sfax, Sfax, Tunisia.
| |
Collapse
|
30
|
Affiliation(s)
- Barbara Cellini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona (VR), Italy
| |
Collapse
|
31
|
M'dimegh S, Omezzine A, M'barek I, Moussa A, Mabrouk S, Kaarout H, Souche G, Chemli J, Aloui S, Aquaviva-Bourdain C, Achour A, Abroug S, Bouslama A. Mutational Analysis of Agxt in Tunisian Population with Primary Hyperoxaluria Type 1. Ann Hum Genet 2016; 81:1-10. [PMID: 27935012 DOI: 10.1111/ahg.12178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/10/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Primary hyperoxaluria type 1 (PH1) is an autosomal recessive metabolic disorder caused by inherited mutations in the AGXT gene encoding liver peroxisomal alanine:glyoxylate aminotransferase (AGT). PH1 is a clinically and genetically heterogeneous disorder. The aim of our study was to analyze and characterize the mutational spectrum of PH1 in Tunisian patients. MATERIALS AND METHODS Molecular studies of 146 Tunisian patients suspected with PH were performed by PCR/Restriction fragment length polymorphism (RFLP) to detect seven mutations described as the most common. Direct sequencing for the 11 exons was performed in patients in whom any mutation was not identified. RESULTS The genetic diagnosis of PH1 was confirmed in 62.3% of patients. The first molecular approach based on PCR/restriction enzyme test was positive in 37.6% of patients, whereas the second molecular approach based on whole gene sequencing was successful in 24% of cases. Twelve pathogenic mutations were detected in our cohort. Two mutations were novel, and five were detected for the first time in Tunisians. The three most frequent mutations were p.Ile244Thr, p.Gly190Arg, and c.33dupC, with a frequency of 43.4%, 21.4%, and 13.1%, respectively. CONCLUSION The two novel mutations detected in our study extend the spectrum of known AGXT gene mutations. The screen for the mutations identified in this study can provide a useful, cost-effective, and first-line investigation in Tunisian PH1 patients.
Collapse
Affiliation(s)
- Saoussen M'dimegh
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Asma Omezzine
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Ibtihel M'barek
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Amira Moussa
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Sameh Mabrouk
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Hayet Kaarout
- Internal Medicine A Department, Charles Nicolle University Hospital, Tunis, Tunisia
| | - Geneviéve Souche
- Laboratory of Inborn Metabolic Diseases, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Jalel Chemli
- Pediatric Department, Sahloul University Hospital, Sousse, Tunisia
| | - Sabra Aloui
- Nephrology Department, Fatouma Bourguiba University Hospital, Monastir, Tunisia
| | - Cécile Aquaviva-Bourdain
- Laboratory of Inborn Metabolic Diseases, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | | | - Saoussen Abroug
- Pediatric Department, Sahloul University Hospital, Sousse, Tunisia
| | - Ali Bouslama
- Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| |
Collapse
|
32
|
Identification of Small Molecule Compounds for Pharmacological Chaperone Therapy of Aspartylglucosaminuria. Sci Rep 2016; 6:37583. [PMID: 27876883 PMCID: PMC5120323 DOI: 10.1038/srep37583] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022] Open
Abstract
Aspartylglucosaminuria (AGU) is a lysosomal storage disorder that is caused by genetic deficiency of the enzyme aspartylglucosaminidase (AGA) which is involved in glycoprotein degradation. AGU is a progressive disorder that results in severe mental retardation in early adulthood. No curative therapy is currently available for AGU. We have here characterized the consequences of a novel AGU mutation that results in Thr122Lys exchange in AGA, and compared this mutant form to one carrying the worldwide most common AGU mutation, AGU-Fin. We show that T122K mutated AGA is expressed in normal amounts and localized in lysosomes, but exhibits low AGA activity due to impaired processing of the precursor molecule into subunits. Coexpression of T122K with wildtype AGA results in processing of the precursor into subunits, implicating that the mutation causes a local misfolding that prevents the precursor from becoming processed. Similar data were obtained for the AGU-Fin mutant polypeptide. We have here also identified small chemical compounds that function as chemical or pharmacological chaperones for the mutant AGA. Treatment of patient fibroblasts with these compounds results in increased AGA activity and processing, implicating that these substances may be suitable for chaperone mediated therapy for AGU.
Collapse
|
33
|
High throughput cell-based assay for identification of glycolate oxidase inhibitors as a potential treatment for Primary Hyperoxaluria Type 1. Sci Rep 2016; 6:34060. [PMID: 27670739 PMCID: PMC5037430 DOI: 10.1038/srep34060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Glycolate oxidase (GO) and alanine:glyoxylate aminotransferase (AGT) are both involved in the peroxisomal glyoxylate pathway. Deficiency in AGT function causes the accumulation of intracellular oxalate and the primary hyperoxaluria type 1 (PH1). AGT enhancers or GO inhibitors may restore the abnormal peroxisomal glyoxylate pathway in PH1 patients. With stably transformed cells which mimic the glyoxylate metabolic pathway, we developed an indirect glycolate cytotoxicity assay in a 1,536-well plate format for high throughput screening. This assay can be used to identify compounds that reduce indirect glycolate-induced cytotoxicity by either enhancing AGT activity or inhibiting GO. A pilot screen of 4,096 known compounds identified two membrane permeable GO inhibitors: dichromate salt and colistimethate. We also developed a GO enzyme assay using the hydrogen peroxide-Amplex red reporter system. The IC50 values of potassium dichromate, sodium dichromate, and colistimethate sodium were 0.096, 0.108, and 2.3 μM in the GO enzyme assay, respectively. Further enzyme kinetic study revealed that both types of compounds inhibit GO activity by the mixed linear inhibition. Our results demonstrate that the cell-based assay and GO enzyme assay developed in this study are useful for further screening of large compound libraries for drug development to treat PH1.
Collapse
|
34
|
Caenorhabditis elegans AGXT-1 is a mitochondrial and temperature-adapted ortholog of peroxisomal human AGT1: New insights into between-species divergence in glyoxylate metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1195-1205. [PMID: 27179589 DOI: 10.1016/j.bbapap.2016.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/27/2016] [Accepted: 05/10/2016] [Indexed: 11/23/2022]
|
35
|
A novel mutation in the AGXT gene causing primary hyperoxaluria type I: genotype–phenotype correlation. J Genet 2016; 95:659-66. [DOI: 10.1007/s12041-016-0676-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1055-62. [PMID: 26854734 DOI: 10.1016/j.bbadis.2016.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
The hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) is caused by a functional deficiency of the liver-specific, peroxisomal, pyridoxal-phosphate-dependent enzyme, alanine:glyoxylate aminotransferase (AGT). One third of PH1 patients, particularly those expressing the p.[(Pro11Leu; Gly170Arg; Ile340Met)] mutant allele, respond clinically to pharmacological doses of pyridoxine. To gain further insight into the metabolic effects of AGT dysfunction in PH1 and the effect of pyridoxine, we established an "indirect" glycolate cytotoxicity assay using CHO cells expressing glycolate oxidase (GO) and various normal and mutant forms of AGT. In cells expressing GO the great majority of glycolate was converted to oxalate and glyoxylate, with the latter causing the greater decrease in cell survival. Co-expression of normal AGTs and some, but not all, mutant AGT variants partially counteracted this cytotoxicity and led to decreased synthesis of oxalate and glyoxylate. Increasing the extracellular pyridoxine up to 0.3μM led to an increased metabolic effectiveness of normal AGTs and the AGT-Gly170Arg variant. The increased survival seen with AGT-Gly170Arg was paralleled by a 40% decrease in oxalate and glyoxylate levels. These data support the suggestion that the effectiveness of pharmacological doses of pyridoxine results from an improved metabolic effectiveness of AGT; that is the increased rate of transamination of glyoxylate to glycine. The indirect glycolate toxicity assay used in the present study has potential to be used in cell-based drug screening protocols to identify chemotherapeutics that might enhance or decrease the activity and metabolic effectiveness of AGT and GO, respectively, and be useful in the treatment of PH1.
Collapse
|
37
|
Zapata-Linares N, Rodriguez S, Salido E, Abizanda G, Iglesias E, Prosper F, Gonzalez-Aseguinolaza G, Rodriguez-Madoz JR. Generation and characterization of human iPSC lines derived from a Primary Hyperoxaluria Type I patient with p.I244T mutation. Stem Cell Res 2016; 16:116-9. [DOI: 10.1016/j.scr.2015.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 01/08/2023] Open
|
38
|
Oppici E, Montioli R, Dindo M, Maccari L, Porcari V, Lorenzetto A, Chellini S, Voltattorni CB, Cellini B. The Chaperoning Activity of Amino-oxyacetic Acid on Folding-Defective Variants of Human Alanine:Glyoxylate Aminotransferase Causing Primary Hyperoxaluria Type I. ACS Chem Biol 2015; 10:2227-36. [PMID: 26161999 DOI: 10.1021/acschembio.5b00480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The rare disease Primary Hyperoxaluria Type I (PH1) results from the deficit of liver peroxisomal alanine:glyoxylate aminotransferase (AGT), as a consequence of inherited mutations on the AGXT gene frequently leading to protein misfolding. Pharmacological chaperone (PC) therapy is a newly developed approach for misfolding diseases based on the use of small molecule ligands able to promote the correct folding of a mutant enzyme. In this report, we describe the interaction of amino-oxyacetic acid (AOA) with the recombinant purified form of two polymorphic species of AGT, AGT-Ma and AGT-Mi, and with three pathogenic variants bearing previously identified folding defects: G41R-Ma, G170R-Mi, and I244T-Mi. We found that for all these enzyme AOA (i) forms an oxime at the active site, (ii) behaves as a slow, tight-binding inhibitor with KI values in the nanomolar range, and (iii) increases the thermal stability. Furthermore, experiments performed in mammalian cells revealed that AOA acts as a PC by partly preventing the intracellular aggregation of G41R-Ma and by promoting the correct peroxisomal import of G170R-Mi and I244T-Mi. Based on these data, we carried out a small-scale screening campaign. We identified four AOA analogues acting as AGT inhibitors, even if only one was found to act as a PC. The possible relationship between the structure and the PC activity of these compounds is discussed. Altogether, these results provide the proof-of-principle for the feasibility of a therapy with PCs for PH1-causing variants bearing folding defects and provide the scaffold for the identification of more specific ligands.
Collapse
Affiliation(s)
- Elisa Oppici
- Department
of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| | - Riccardo Montioli
- Department
of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| | - Mirco Dindo
- Department
of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| | - Laura Maccari
- Siena Biotech S.p.A., Strada
del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Valentina Porcari
- Siena Biotech S.p.A., Strada
del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Antonio Lorenzetto
- Department
of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| | - Sara Chellini
- Siena Biotech S.p.A., Strada
del Petriccio e Belriguardo, 35 53100 Siena, Italy
| | - Carla Borri Voltattorni
- Department
of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| | - Barbara Cellini
- Department
of Life Sciences and Reproduction, Section of Biological Chemistry, University of Verona, Strada Le Grazie 8 37134 Verona, Italy
| |
Collapse
|
39
|
Ben-Shalom E, Frishberg Y. Primary hyperoxalurias: diagnosis and treatment. Pediatr Nephrol 2015; 30:1781-91. [PMID: 25519509 DOI: 10.1007/s00467-014-3030-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 01/22/2023]
Abstract
Primary hyperoxalurias (PH) comprise a group of three distinct metabolic diseases caused by derangement of glyoxylate metabolism in the liver. Recent years have seen advances in several aspects of PH research. This paper reviews current knowledge of the genetic and biochemical basis of PH, the specific epidemiology and clinical presentation of each type, and therapeutic approaches in different disease stages. Potential future specific therapies are discussed.
Collapse
Affiliation(s)
- Efrat Ben-Shalom
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, P.O.Box 3235, Jerusalem, Israel
| | | |
Collapse
|
40
|
Montioli R, Oppici E, Dindo M, Roncador A, Gotte G, Cellini B, Borri Voltattorni C. Misfolding caused by the pathogenic mutation G47R on the minor allele of alanine:glyoxylate aminotransferase and chaperoning activity of pyridoxine. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1280-9. [DOI: 10.1016/j.bbapap.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
|
41
|
Boualla L, Tajir M, Oulahiane N, Lyahyai J, Laarabi FZ, Chafai Elalaoui S, Soulami K, Ait Ouamar H, Sefiani A. AGXT Gene Mutations and Prevalence of Primary Hyperoxaluria Type 1 in Moroccan Population. Genet Test Mol Biomarkers 2015; 19:623-8. [PMID: 26383609 DOI: 10.1089/gtmb.2015.0136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder caused by deficiency of alanine glyoxylate aminotransferase, due to a defect in the AGXT gene. Several mutations in this gene have been reported and some of them have been observed in multiple populations. The aim of our study was to analyze the mutations causing PH1 in the Moroccan population and to estimate its prevalence in Morocco. METHODS Molecular studies of 29 unrelated Moroccan patients with PH were performed by direct sequencing of all exons of the AGXT gene. In addition, to estimate the prevalence of PH1, we screened for the recurrent p.Ile244Thr mutation in 250 unrelated Moroccan newborns using real-time polymerase chain reaction. RESULTS Four pathogenic mutations were detected in 25 unrelated patients. The c.731T>C (p.Ile244Thr) was the most frequent mutation with a frequency of 84%. The other three mutations were c.33delC, c.976delG, and c.331C>T. The prevalence of the PH1 mutation among Moroccans was then estimated to range from 1/7267 to 1/6264. CONCLUSION PH1 is one of the most prevalent genetic diseases in the Moroccan population and is probably underdiagnosed. Front line genetic testing for PH1 in Morocco should be initiated using an assay for the recurrent p.Ile244Thr mutation. This strategy would provide a useful tool for precocious diagnosis of presymptomatic individuals and to prevent their rapid progression to renal failure.
Collapse
Affiliation(s)
- Lamiae Boualla
- 1 Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V , Rabat, Maroc.,2 Département de Génétique Médicale, Institut National d'Hygiène , Rabat, Maroc
| | - Mariam Tajir
- 2 Département de Génétique Médicale, Institut National d'Hygiène , Rabat, Maroc.,3 Service de Génétique, CHU Mohammed VI , Marrakech, Maroc
| | - Najat Oulahiane
- 4 Service Pédiatrie IV, Hôpital d'Enfant , CHU Ibn Sina, Rabat, Maroc
| | - Jaber Lyahyai
- 1 Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V , Rabat, Maroc.,2 Département de Génétique Médicale, Institut National d'Hygiène , Rabat, Maroc
| | | | - Siham Chafai Elalaoui
- 1 Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V , Rabat, Maroc.,2 Département de Génétique Médicale, Institut National d'Hygiène , Rabat, Maroc
| | - Kenza Soulami
- 5 Cabinet of pediatric Nephrology , Casablanca, Maroc
| | - Hassan Ait Ouamar
- 4 Service Pédiatrie IV, Hôpital d'Enfant , CHU Ibn Sina, Rabat, Maroc
| | - Abdelaziz Sefiani
- 1 Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V , Rabat, Maroc.,2 Département de Génétique Médicale, Institut National d'Hygiène , Rabat, Maroc
| |
Collapse
|
42
|
Oppici E, Fargue S, Reid ES, Mills PB, Clayton PT, Danpure CJ, Cellini B. Pyridoxamine and pyridoxal are more effective than pyridoxine in rescuing folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I. Hum Mol Genet 2015. [DOI: 10.1093/hmg/ddv276] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
|
44
|
SNP Variants in RET and PAX2 and Their Possible Contribution to the Primary Hyperoxaluria Type 1 Phenotype. Biochem Genet 2015; 53:23-8. [PMID: 25854853 DOI: 10.1007/s10528-015-9667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare genetic kidney disease caused by a deficiency of alanine:glyoxylate aminotransferase (AGT). Genetic heterogeneity of the AGT gene cannot fully account for heterogeneity in the clinical phenotype. This study investigates a possible contribution to the clinical phenotype from SNPs in RET or PAX2 genes associated with reduced nephron number. The frequencies of these SNPs were compared in PH1-affected DNA samples and normal controls, and relative to age of onset in PH1-affected individuals. The frequencies of the risk alleles were higher with early age of onset, although not significantly so. However, homozygosity for the risk alleles of RET and PAX2 was not seen in the late onset group. The overall frequencies of risk alleles and the numbers of homozygotes were significantly higher for PAX2 in PH1 samples versus controls, suggestive of a bias towards more severe clinical phenotypes in the PH1 samples submitted for analysis.
Collapse
|
45
|
Mesa-Torres N, Tomic N, Albert A, Salido E, Pey AL. Molecular recognition of PTS-1 cargo proteins by Pex5p: implications for protein mistargeting in primary hyperoxaluria. Biomolecules 2015; 5:121-41. [PMID: 25689234 PMCID: PMC4384115 DOI: 10.3390/biom5010121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/05/2015] [Indexed: 01/29/2023] Open
Abstract
Peroxisomal biogenesis and function critically depends on the import of cytosolic proteins carrying a PTS1 sequence into this organelle upon interaction with the peroxin Pex5p. Recent structural studies have provided important insights into the molecular recognition of cargo proteins by Pex5p. Peroxisomal import is a key feature in the pathogenesis of primary hyperoxaluria type 1 (PH1), where alanine:glyoxylate aminotransferase (AGT) undergoes mitochondrial mistargeting in about a third of patients. Here, we study the molecular recognition of PTS1 cargo proteins by Pex5p using oligopeptides and AGT variants bearing different natural PTS1 sequences, and employing an array of biophysical, computational and cell biology techniques. Changes in affinity for Pex5p (spanning over 3–4 orders of magnitude) reflect different thermodynamic signatures, but overall bury similar amounts of molecular surface. Structure/energetic analyses provide information on the contribution of ancillary regions and the conformational changes induced in Pex5p and the PTS1 cargo upon complex formation. Pex5p stability in vitro is enhanced upon cargo binding according to their binding affinities. Moreover, we provide evidence that the rational modulation of the AGT: Pex5p binding affinity might be useful tools to investigate mistargeting and misfolding in PH1 by pulling the folding equilibria towards the native and peroxisomal import competent state.
Collapse
Affiliation(s)
- Noel Mesa-Torres
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain.
| | - Nenad Tomic
- Center for Biomedical Research on Rare Diseases (CIBERER), University Hospital of the Canary Islands and CIBICAN, University of La Laguna, 38320 Tenerife, Spain.
| | - Armando Albert
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, C/Serrano 119, 28006 Madrid, Spain.
| | - Eduardo Salido
- Center for Biomedical Research on Rare Diseases (CIBERER), University Hospital of the Canary Islands and CIBICAN, University of La Laguna, 38320 Tenerife, Spain.
| | - Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
46
|
Hopp K, Cogal AG, Bergstralh EJ, Seide BM, Olson JB, Meek AM, Lieske JC, Milliner DS, Harris PC. Phenotype-Genotype Correlations and Estimated Carrier Frequencies of Primary Hyperoxaluria. J Am Soc Nephrol 2015; 26:2559-70. [PMID: 25644115 DOI: 10.1681/asn.2014070698] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/13/2014] [Indexed: 12/11/2022] Open
Abstract
Primary hyperoxaluria (PH) is a rare autosomal recessive disease characterized by oxalate accumulation in the kidneys and other organs. Three loci have been identified: AGXT (PH1), GRHPR (PH2), and HOGA1 (PH3). Here, we compared genotype to phenotype in 355 patients in the Rare Kidney Stone Consortium PH registry and calculated prevalence using publicly available whole-exome data. PH1 (68.4% of families) was the most severe PH type, whereas PH3 (11.0% of families) showed the slowest decline in renal function but the earliest symptoms. A group of patients with disease progression similar to that of PH3, but for whom no mutation was detected (11.3% of families), suggested further genetic heterogeneity. We confirmed that the AGXT p.G170R mistargeting allele resulted in a milder PH1 phenotype; however, other potential AGXT mistargeting alleles caused more severe (fully penetrant) disease. We identified the first PH3 patient with ESRD; a homozygote for two linked, novel missense mutations. Population analysis suggested that PH is an order of magnitude more common than determined from clinical cohorts (prevalence, approximately 1:58,000; carrier frequency, approximately 1:70). We estimated PH to be approximately three times less prevalent among African Americans than among European Americans because of a limited number of common European origin alleles. PH3 was predicted to be as prevalent as PH1 and twice as common as PH2, indicating that PH3 (and PH2) cases are underdiagnosed and/or incompletely penetrant. These results highlight a role for molecular analyses in PH diagnostics and prognostics and suggest that wider analysis of the idiopathic stone-forming population may be beneficial.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dawn S Milliner
- Division of Nephrology and Hypertension, Division of Pediatric Nephrology, Mayo Clinic, Rochester, Minnesota
| | - Peter C Harris
- Division of Nephrology and Hypertension, Department of Biochemistry and Molecular Biology, and
| | | |
Collapse
|
47
|
Liver peroxisomal alanine:glyoxylate aminotransferase and the effects of mutations associated with Primary Hyperoxaluria Type I: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1212-9. [PMID: 25620715 DOI: 10.1016/j.bbapap.2014.12.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/19/2014] [Accepted: 12/20/2014] [Indexed: 11/21/2022]
Abstract
Liver peroxisomal alanine:glyoxylate aminotransferase (AGT) (EC 2.6.1.44) catalyses the conversion of l-alanine and glyoxylate to pyruvate and glycine, a reaction that allows glyoxylate detoxification. Inherited mutations on the AGXT gene encoding AGT lead to Primary Hyperoxaluria Type I (PH1), a rare disorder characterized by the deposition of calcium oxalate crystals primarily in the urinary tract. Here we describe the results obtained on the biochemical features of AGT as well as on the molecular and cellular effects of polymorphic and pathogenic mutations. A complex scenario on the molecular pathogenesis of PH1 emerges in which the co-inheritance of polymorphic changes and the condition of homozygosis or compound heterozygosis are two important factors that determine the enzymatic phenotype of PH1 patients. All the reported data represent relevant steps toward the understanding of genotype/phenotype correlations, the prediction of the response of the patients to the available therapies, and the development of new therapeutic approaches. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
|
48
|
Mesa-Torres N, Salido E, Pey AL. The lower limits for protein stability and foldability in primary hyperoxaluria type I. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2355-65. [PMID: 25461797 DOI: 10.1016/j.bbapap.2014.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/29/2014] [Accepted: 10/10/2014] [Indexed: 01/12/2023]
Abstract
Mutational effects on protein stability and foldability are important to understand conformational diseases and protein evolution. In this work, we perform a comprehensive investigation on the energetic basis underlying mutational effects on the stability of human alanine:glyoxylate aminotransferase (AGT). We study twenty two variants whose kinetic stabilities span over eleven orders of magnitude and are classified into two groups: i) ten naturally-occurring variants, including the most common mutations causing primary hyperoxaluria type I (PH1); and ii) twelve consensus variants obtained by sequence-alignment statistics. We show that AGT dimer stability determines denaturation rates, and mutations modulate stability by changes in the effective thermodynamic stability, the aggregation propensity of partially/globally unfolded states and subtle energetic changes in the rate-limiting denaturation step. In combination with our previous expression analyses in eukaryotic cells, we propose the existence of two lower limits for AGT stability, one linked to optimal folding efficiency (close to the major allele stability) and the other setting a minimal efficiency compatible with glyoxylate detoxification in vivo (close to the minor allele stability). These lower limits could explain the high prevalence of misfolding as a disease mechanism in PH1 and support the use of pharmacological ligands aimed to increase AGT stability as therapies for this disease.
Collapse
Affiliation(s)
- Noel Mesa-Torres
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Eduardo Salido
- Hospital Universitario de Canarias, Universidad La Laguna, Centre for Biomedical Research on Rare Diseases (CIBERER), Tenerife E-38320, Spain
| | - Angel L Pey
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| |
Collapse
|
49
|
Rodionov RN, Jarzebska N, Weiss N, Lentz SR. AGXT2: a promiscuous aminotransferase. Trends Pharmacol Sci 2014; 35:575-82. [PMID: 25294000 DOI: 10.1016/j.tips.2014.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/11/2022]
Abstract
Alanine-glyoxylate aminotransferase 2 (AGXT2) is a multifunctional mitochondrial aminotransferase that was first identified in 1978. The physiological importance of AGXT2 was largely overlooked for three decades because AGXT2 is less active in glyoxylate metabolism than AGXT1, the enzyme that is deficient in primary hyperoxaluria type I. Recently, several novel functions of AGXT2 have been 'rediscovered' in the setting of modern genomic and metabolomic studies. It is now apparent that AGXT2 has multiple substrates and products and that altered AGXT2 activity may contribute to the pathogenesis of cardiovascular, renal, neurological, and hematological diseases. This article reviews the biochemical properties and physiological functions of AGXT2, its unique role at the intersection of key mitochondrial pathways, and its potential as a drug target.
Collapse
Affiliation(s)
- Roman N Rodionov
- University Center for Vascular Medicine and Department of Internal Medicine, Division of Angiology, University Hospital 'Carl Gustav Carus', Technische Universität Dresden, Fetscherstrasse 42, 01307 Dresden, Germany
| | - Natalia Jarzebska
- University Hospital 'Carl Gustav Carus', Technische Universität Dresden, Fetscherstrasse 42, 01307 Dresden, Germany
| | - Norbert Weiss
- University Center for Vascular Medicine and Department of Internal Medicine, Division of Angiology, University Hospital 'Carl Gustav Carus', Technische Universität Dresden, Fetscherstrasse 42, 01307 Dresden, Germany
| | - Steven R Lentz
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|
50
|
Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type. Kidney Int 2014; 86:1197-204. [PMID: 24988064 DOI: 10.1038/ki.2014.222] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 11/09/2022]
Abstract
Primary hyperoxaluria type 1 displays a heterogeneous phenotype, likely to be affected by genetic and non-genetic factors, including timeliness of diagnosis and quality of care. As previous genotype-phenotype studies were hampered by limited patient numbers the European OxalEurope Consortium was constituted. This preliminary retrospective report is based on 526 patients of which 410 have the AGXT genotype defined. We grouped mutations by the predicted effect as null, missense leading to mistargeting (G170R), and other missense, and analyzed their phenotypic correlations. Median age of end-stage renal disease increased from 9.9 for 88 homozygous null patients, 11.5 for 42 heterozygous null/missense, 16.9 for 116 homozygous missense patients, 25.1 for 61 G170R/null patients, 31.2 for 32 G170R/missense patients, and 33.9 years for 71 homozygous G170R patients. The outcome of some recurrent missense mutations (p.I244T, p.F152I, p.M195R, p.D201E, p.S81L, p.R36C) and an unprecedented number of G170R homozygotes is described in detail. Diagnosis is still delayed and actions aimed at increasing awareness of primary hyperoxaluria type 1 are recommended. Thus, in addition to G170R, other causative mutations are associated with later onset of end-stage renal disease. The OxalEurope registry will provide necessary tools for characterizing those genetic and non-genetic factors through a combination of genetic, functional, and biostatistical approaches.
Collapse
|