1
|
McNeil NM, Jordan NC, Viegut AA, Ansari D. What the Science of Learning Teaches Us About Arithmetic Fluency. Psychol Sci Public Interest 2025; 26:10-57. [PMID: 40297988 DOI: 10.1177/15291006241287726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
High-quality mathematics education not only improves life outcomes for individuals but also drives innovation and progress across society. But what exactly constitutes high-quality mathematics education? In this article, we contribute to this discussion by focusing on arithmetic fluency. The debate over how best to teach arithmetic has been long and fierce. Should we emphasize memorization techniques such as flashcards and timed drills or promote "thinking strategies" via play and authentic problem solving? Too often, recommendations for a "balanced" approach lack the depth and specificity needed to effectively guide educators or inform public understanding. Here, we draw on developmental cognitive science, particularly Sfard's process-object duality and Karmiloff-Smith's implicit-explicit knowledge continuum, to present memorization and thinking strategies not as opposing methods but as complementary forces. This framework enables us to offer specific recommendations for fostering arithmetic fluency based on the science of learning. We define arithmetic fluency, provide evidence on its importance, describe the cognitive structures and processes supporting it, and share evidence-based guidance for promoting it. Our recommendations include progress monitoring for early numeracy, providing explicit instruction to teach important strategies and concepts, implementing well-structured retrieval practice, introducing time-limited practice only after students demonstrate accuracy, and allocating sufficient time for discussion and cognitive reflection. By blending theory, evidence, and practical advice, we equip educators and policymakers with the knowledge needed to ensure all children have access to the opportunities needed to achieve arithmetic fluency.
Collapse
Affiliation(s)
- Nicole M McNeil
- Department of Psychology and Institute for Educational Initiatives, University of Notre Dame
| | | | | | - Daniel Ansari
- Department of Psychology and Faculty of Education, Western University
| |
Collapse
|
2
|
Visibelli E, Vigna G, Nascimben C, Benavides-Varela S. Neurobiology of numerical learning. Neurosci Biobehav Rev 2024; 158:105545. [PMID: 38220032 DOI: 10.1016/j.neubiorev.2024.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Numerical abilities are complex cognitive skills essential for dealing with requirements of the modern world. Although the brain structures and functions underlying numerical cognition in different species have long been appreciated, genetic and molecular techniques have more recently expanded the knowledge about the mechanisms underlying numerical learning. In this review, we discuss the status of the research related to the neurobiological bases of numerical abilities. We consider how genetic factors have been associated with mathematical capacities and how these link to the current knowledge of brain regions underlying these capacities in human and non-human animals. We further discuss the extent to which significant variations in the levels of specific neurotransmitters may be used as potential markers of individual performance and learning difficulties and take into consideration the therapeutic potential of brain stimulation methods to modulate learning and improve interventional outcomes. The implications of this research for formulating a more comprehensive view of the neural basis of mathematical learning are discussed.
Collapse
Affiliation(s)
- Emma Visibelli
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giulia Vigna
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Chiara Nascimben
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
3
|
Crespi BJ. The Roots of Science, Technology, Engineering, and Mathematics: What Are the Evolutionary and Neural Bases of Human Mathematics and Technology? BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:1-12. [PMID: 38368855 DOI: 10.1159/000537908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Neural exaptations represent descent via transitions to novel neural functions. A primary transition in human cognitive and neural evolution was from a predominantly socially oriented primate brain to a brain that also instantiates and subserves science, technology, and engineering, all of which depend on mathematics. Upon what neural substrates and upon what evolved cognitive mechanisms did human capacities for science, technology, engineering, and mathematics (STEM), and especially its mathematical underpinnings, emerge? Previous theory focuses on roles for tools, language, and arithmetic in the cognitive origins of STEM, but none of these factors appears sufficient to support the transition. METHODS In this article, I describe and evaluate a novel hypothesis for the neural origins and substrates of STEM-based cognition: that they are based in human kinship systems and human maximizing of inclusive fitness. RESULTS The main evidence for this hypothesis is threefold. First, as demonstrated by anthropologists, human kinship systems exhibit complex mathematical and geometrical structures that function under sets of explicit rules, and such systems and rules pervade and organize all human cultures. Second, human kinship underlies the core algebraic mechanism of evolution, maximization of inclusive fitness, quantified as personal reproduction plus the sum of all effects on reproduction of others, each multiplied by their coefficient of relatedness to self. This is the only "natural" equation expected to be represented in the human brain. Third, functional imaging studies show that kinship-related cognition activates frontal-parietal regions that are also activated in STEM-related tasks. In turn, the decision-making that integrates kinship levels with costs and benefits from alternative behaviors has recently been shown to recruit the lateral septum, a hub region that combines internal (from the prefrontal cortex, amygdala, and other regions) and external information relevant to social behavior, using a dedicated subsystem of neurons specific to kinship. CONCLUSIONS Taken together, these lines of evidence suggest that kinship systems and kin-associated behaviors may represent exaptations for the origin of human STEM.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
4
|
Piantadosi ST. The algorithmic origins of counting. Child Dev 2023; 94:1472-1490. [PMID: 37984061 DOI: 10.1111/cdev.14031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 11/22/2023]
Abstract
The study of how children learn numbers has yielded one of the most productive research programs in cognitive development, spanning empirical and computational methods, as well as nativist and empiricist philosophies. This paper provides a tutorial on how to think computationally about learning models in a domain like number, where learners take finite data and go far beyond what they directly observe or perceive. To illustrate, this paper then outlines a model which acquires a counting procedure using observations of sets and words, extending the proposal of Piantadosi et al. (2012). This new version of the model responds to several critiques of the original work and outlines an approach which is likely appropriate for acquiring further aspects of mathematics.
Collapse
|
5
|
O’Shaughnessy DM, Cruz Cordero T, Mollica F, Boni I, Jara-Ettinger J, Gibson E, Piantadosi ST. Diverse mathematical knowledge among indigenous Amazonians. Proc Natl Acad Sci U S A 2023; 120:e2215999120. [PMID: 37603761 PMCID: PMC10469040 DOI: 10.1073/pnas.2215999120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/12/2023] [Indexed: 08/23/2023] Open
Abstract
We investigate number and arithmetic learning among a Bolivian indigenous people, the Tsimane', for whom formal schooling is comparatively recent in history and variable in both extent and consistency. We first present a large-scale meta-analysis on child number development involving over 800 Tsimane' children. The results emphasize the impact of formal schooling: Children are only found to be full counters when they have attended school, suggesting the importance of cultural support for early mathematics. We then test especially remote Tsimane' communities and document the development of specialized arithmetical knowledge in the absence of direct formal education. Specifically, we describe individuals who succeed on arithmetic problems involving the number five-which has a distinct role in the local economy-even though they do not succeed on some lower numbers. Some of these participants can perform multiplication with fives at greater accuracy than addition by one. These results highlight the importance of cultural factors in early mathematics and suggest that psychological theories of number where quantities are derived from lower numbers via repeated addition (e.g., a successor function) are unlikely to explain the diversity of human mathematical ability.
Collapse
Affiliation(s)
| | | | - Francis Mollica
- School of Informatics, University of Edinburgh, EdinburghEH8 9AB, United Kingdom
| | - Isabelle Boni
- Department of Psychology, University of California, Berkeley, CA94720-1650
| | | | - Edward Gibson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139-4307
| | | |
Collapse
|
6
|
Czarnecka M, Rączy K, Szewczyk J, Paplińska M, Jednoróg K, Marchewka A, Hesselmann G, Knops A, Szwed M. Overlapping but separate number representations in the intraparietal sulcus-Probing format- and modality-independence in sighted Braille readers. Cortex 2023; 162:65-80. [PMID: 37003099 DOI: 10.1016/j.cortex.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/20/2022] [Accepted: 01/22/2023] [Indexed: 03/06/2023]
Abstract
The Triple-Code Model stipulates that numerical information from different formats and modalities converges on a common magnitude representation in the Intraparietal Sulcus (IPS). To what extent the representations of all numerosity forms overlap remains unsolved. It has been postulated that the representation of symbolic numerosities (for example, Arabic digits) is sparser and grounded in an existing representation that codes for non-symbolic numerosity information (i.e., sets of objects). Other theories argue that numerical symbols represent a separate number category that emerges only during education. Here, we tested a unique group of sighted tactile Braille readers with numerosities 2, 4, 6 and 8 in three number notations: Arabic digits, sets of dots, tactile Braille numbers. Using univariate methods, we showed a consistent overlap in activations evoked by these three number notations. This result shows that all three used notations are represented in the IPS, which may suggest at least a partial overlap between the representations of the three notations used in this experiment. Using MVPA, we found that only non-automatized number information (Braille and sets of dots) allowed successful number classification. However, the numerosity of one notation could not be predicted above chance from the brain activation patterns evoked by another notation (no cross-classification). These results show that the IPS may host independent number codes in overlapping cortical circuits. In addition, they suggest that the level of training in encoding a given type of number information is an important factor that determines the amount of exploitable information and needs to be controlled for in order to identify the neural code underlying numerical information per se.
Collapse
Affiliation(s)
- Maria Czarnecka
- Institute of Psychology, Jagiellonian University, Krakow, Poland.
| | - Katarzyna Rączy
- Institute of Psychology, Jagiellonian University, Krakow, Poland; Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Jakub Szewczyk
- Institute of Psychology, Jagiellonian University, Krakow, Poland; Department of Psychology, University of Illinois, Urbana Champaign
| | | | - Katarzyna Jednoróg
- Laboratory of Language Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Guido Hesselmann
- Department of General and Biological Psychology, Psychologische Hochschule Berlin, Berlin, Germany
| | - André Knops
- UMR CNRS 8240, Laboratory for the Psychology of Child Development and Education, University of Paris, Paris, France
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
7
|
Reznikova Z. Information Theory Opens New Dimensions in Experimental Studies of Animal Behaviour and Communication. Animals (Basel) 2023; 13:ani13071174. [PMID: 37048430 PMCID: PMC10093743 DOI: 10.3390/ani13071174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Over the last 40–50 years, ethology has become increasingly quantitative and computational. However, when analysing animal behavioural sequences, researchers often need help finding an adequate model to assess certain characteristics of these sequences while using a relatively small number of parameters. In this review, I demonstrate that the information theory approaches based on Shannon entropy and Kolmogorov complexity can furnish effective tools to analyse and compare animal natural behaviours. In addition to a comparative analysis of stereotypic behavioural sequences, information theory can provide ideas for particular experiments on sophisticated animal communications. In particular, it has made it possible to discover the existence of a developed symbolic “language” in leader-scouting ant species based on the ability of these ants to transfer abstract information about remote events.
Collapse
|
8
|
Lucon-Xiccato T, Gatto E, Fontana CM, Bisazza A. Quantity discrimination in newly hatched zebrafish suggests hardwired numerical abilities. Commun Biol 2023; 6:247. [PMID: 36959336 PMCID: PMC10036331 DOI: 10.1038/s42003-023-04595-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023] Open
Abstract
An intriguing hypothesis to explain the ubiquity of numerical abilities is that all vertebrates are born with hardwired neuronal networks for processing numbers. To date, only studies on human foetuses have clearly supported this hypothesis. Zebrafish hatch 48-72 h after fertilisation with an embryonic nervous system, providing a unique opportunity for investigating this hypothesis. Here, we demonstrated that zebrafish larvae exposed to vertical bars at birth acquired an attraction for bar stimuli and we developed a numerical discrimination task based on this preference. When tested with a series of discriminations of increasing difficulty (1vs.4, 1vs.3, 1vs.2, and 2vs.4 bars), zebrafish larvae reliably selected the greater numerosity. The preference was significant when stimuli were matched for surface area, luminance, density, and convex hull, thereby suggesting a true capacity to process numerical information. Converging results from two phylogenetically distant species suggests that numerical abilities might be a hallmark feature of vertebrates' brains.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Elia Gatto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Kuzmina Y, Malykh S. The effect of visual parameters on nonsymbolic numerosity estimation varies depending on the format of stimulus presentation. J Exp Child Psychol 2022; 224:105514. [DOI: 10.1016/j.jecp.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
|
10
|
Bosshard TC, Salazar LTH, Laska M. Numerical cognition in black-handed spider monkeys (Ateles geoffroyi). Behav Processes 2022; 201:104734. [PMID: 35970272 DOI: 10.1016/j.beproc.2022.104734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
We assessed two aspects of numerical cognition in a group of nine captive spider monkeys (Ateles geoffroyi). Petri dishes with varying amounts of food were used to assess relative quantity discrimination, and boxes fitted with dotted cards were used to assess discrete number discrimination with equally-sized dots and various-sized dots, respectively. We found that all animals succeeded in all three tasks and, as a group, reached the learning criterion of 70% correct responses within 110 trials in the quantity discrimination task, 160 trials in the numerosity task with equally-sized dots, and 30 trials in the numerosity task with various-sized dots. In all three tasks, the animals displayed a significant correlation between performance in terms of success rate and task difficulty in terms of numerical similarity of the stimuli and thus a ratio effect. The spider monkeys performed clearly better compared to strepsirrhine, catarrhine, and other platyrrhine primates tested previously on both types of numerical cognition tasks and at the same level as chimpanzees, bonobos, and orangutans. Our results support the notion that ecological traits such as a high degree of frugivory and/or social traits such as a high degree of fission-fusion dynamics may underlie between-species differences in cognitive abilities.
Collapse
Affiliation(s)
- Tiffany Claire Bosshard
- IFM Biology, Linköping University, SE-581 83 Linköping, Sweden; Cognitive Ethology Laboratory, German Primate Center, D-37077 Göttingen, Germany
| | | | - Matthias Laska
- IFM Biology, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
11
|
Number symbols are processed more automatically than nonsymbolic numerical magnitudes: Findings from a Symbolic-Nonsymbolic Stroop task. Acta Psychol (Amst) 2022; 228:103644. [PMID: 35749820 DOI: 10.1016/j.actpsy.2022.103644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Are number symbols (e.g., 3) and numerically equivalent quantities (e.g., •••) processed similarly or distinctly? If symbols and quantities are processed similarly then processing one format should activate the processing of the other. To experimentally probe this prediction, we assessed the processing of symbols and quantities using a Stroop-like paradigm. Participants (NStudy1 = 80, NStudy2 = 63) compared adjacent arrays of symbols (e.g., 4444 vs 333) and were instructed to indicate the side containing either the greater quantity of symbols (nonsymbolic task) or the numerically larger symbol (symbolic task). The tasks included congruent trials, where the greater symbol and quantity appeared on the same side (e.g. 333 vs. 4444), incongruent trials, where the greater symbol and quantity appeared on opposite sides (e.g. 3333 vs. 444), and neutral trials, where the irrelevant dimension was the same across both sides (e.g. 3333 vs. 333 for nonsymbolic; 333 vs. 444 for symbolic). The numerical distance between stimuli was systematically varied, and quantities in the subitizing and counting range were analyzed together and independently. Participants were more efficient comparing symbols and ignoring quantities, than comparing quantities and ignoring symbols. Similarly, while both symbols and quantities influenced each other as the irrelevant dimension, symbols influenced the processing of quantities more than quantities influenced the processing of symbols, especially for quantities in the counting rage. Additionally, symbols were less influenced by numerical distance than quantities, when acting as the relevant and irrelevant dimension. These findings suggest that symbols are processed differently and more automatically than quantities.
Collapse
|
12
|
Basgol H, Ayhan I, Ugur E. Time Perception: A Review on Psychological, Computational, and Robotic Models. IEEE Trans Cogn Dev Syst 2022. [DOI: 10.1109/tcds.2021.3059045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hamit Basgol
- Department of Cognitive Science, Bogazici University, Istanbul, Turkey
| | - Inci Ayhan
- Department of Psychology, Bogazici University, Istanbul, Turkey
| | - Emre Ugur
- Department of Computer Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
13
|
An undeniable interplay: Both numerosity and visual features affect estimation of non-symbolic stimuli. Cognition 2022; 222:104944. [DOI: 10.1016/j.cognition.2021.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/02/2021] [Accepted: 10/19/2021] [Indexed: 01/29/2023]
|
14
|
Abstract
Animals show vast numerical competence in tasks that require both ordinal and cardinal numerical representations, but few studies have addressed whether animals can identify the numerical middle in a sequence. Two rhesus monkeys (Macaca mulatta) learned to select the middle dot in a horizontal sequence of three dots on a touchscreen. When subsequently presented with longer sequences composed of 5, 7 or 9 items, monkeys transferred the middle rule. Accuracy decreased as the length of the sequence increased. In a second test, we presented monkeys with asymmetrical sequences composed of nine items, where the numerical and spatial middle were distinct and both monkeys selected the numerical middle over the spatial middle. Our results demonstrate that rhesus macaques can extract an abstract numerical rule to bisect a discrete set of items.
Collapse
Affiliation(s)
- Rosa Rugani
- Department of General Psychology, University of Padua, Padua, Italy.,Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Marketing Department, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhaoying Chen
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth M Brannon
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Sokolowski HM, Merkley R, Kingissepp SSB, Vaikuntharajan P, Ansari D. Children's attention to numerical quantities relates to verbal number knowledge: An introduction to the Build-A-Train task. Dev Sci 2021; 25:e13211. [PMID: 34889002 DOI: 10.1111/desc.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/24/2021] [Accepted: 12/02/2021] [Indexed: 01/29/2023]
Abstract
Which dimension of a set of objects is more salient to young children: number or size? The 'Build-A-Train' task was developed and used to examine whether children spontaneously use a number or physical size approach on an un-cued matching task. In the Build-A-Train task, an experimenter assembles a train using one to five blocks of a particular length and asks the child to build the same train. The child's blocks differ in length from the experimenter's blocks, causing the child to build a train that matches based on either the number of blocks or length of the train, as it is not possible to match on both. One hundred and nineteen children between 2 years 2 months and 6 years 0 months of age (M = 4.05, SD = 0.84) completed the Build-A-Train task, and the Give-a-Number task, a classic task used to assess children's conceptual knowledge of verbal number words. Across train lengths and verbal number knowledge levels, children used a number approach more than a size approach on the Build-A-Train task. However, children were especially likely to use a number approach over a size approach when they knew the verbal number word that corresponded to the quantity of blocks in the train, particularly for quantities smaller than four. Therefore, children's attention to number relates to their knowledge of verbal number words. The Build-A-Train task and findings from the current study set a foundation for future longitudinal research to investigate the causal relationship between children's acquisition of symbolic mathematical concepts and attention to number.
Collapse
Affiliation(s)
- H Moriah Sokolowski
- Rotman Research Institute, Baycrest Hospital, Toronto, Ontario, Canada.,Department of Psychology, Faculty of Education, Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Rebecca Merkley
- Department of Cognitive Science, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Samantha Bray Kingissepp
- Department of Psychology, Faculty of Education, Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Praja Vaikuntharajan
- Department of Psychology, Faculty of Education, Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Daniel Ansari
- Department of Psychology, Faculty of Education, Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
16
|
Daucourt MC, Napoli AR, Quinn JM, Wood SG, Hart SA. The home math environment and math achievement: A meta-analysis. Psychol Bull 2021; 147:565-596. [PMID: 34843299 DOI: 10.1037/bul0000330] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mathematical thinking is in high demand in the global market, but approximately 6 percent of school-age children across the globe experience math difficulties (Shalev et al., 2000). The home math environment (HME), which includes all math-related activities, attitudes, beliefs, expectations, and utterances in the home, may be associated with children's math development. To examine the relation between the HME and children's math abilities, a preregistered meta-analysis was conducted to estimate the average weighted correlation coefficient (r) between the HME and children's math achievement and how potential moderators (i.e., assessment, study, and sample features) might contribute to study heterogeneity. A multilevel correlated effects model using 631 effect sizes from 64 quantitative studies comprising 68 independent samples found a positive, statistically significant average weighted correlation of r = .13 (SE = .02, p < .001). Our combined sensitivity analyses showed that the present findings were robust and that the sample of studies has evidential value. A number of assessment, study, and sample characteristics contributed to study heterogeneity, showing that no single feature of HME research was driving the large between-study differences found for the association between the HME and children's math achievement. These findings indicate that children's environments and interactions related to their learning are supported in the specific context of math learning. Our results also show that the HME represents a setting in which children learn about math through social interactions with their caregivers (Vygotsky, 1978) and what they learn depends on the influence of many levels of environmental input (Bronfenbrenner, 1979) and the specificity of input children receive (Bornstein, 2002). (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
17
|
Schwartz F, Zhang Y, Chang H, Karraker S, Kang JB, Menon V. Neural representational similarity between symbolic and non-symbolic quantities predicts arithmetic skills in childhood but not adolescence. Dev Sci 2021; 24:e13123. [PMID: 34060183 PMCID: PMC9112867 DOI: 10.1111/desc.13123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/01/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Mathematical knowledge is constructed hierarchically from basic understanding of quantities and the symbols that denote them. Discrimination of numerical quantity in both symbolic and non-symbolic formats has been linked to mathematical problem-solving abilities. However, little is known of the extent to which overlap in quantity representations between symbolic and non-symbolic formats is related to individual differences in numerical problem solving and whether this relation changes with different stages of development and skill acquisition. Here we investigate the association between neural representational similarity (NRS) across symbolic and non-symbolic quantity discrimination and arithmetic problem-solving skills in early and late developmental stages: elementary school children (ages 7-10 years) and adolescents and young adults (AYA, ages 14-21 years). In children, cross-format NRS in distributed brain regions, including parietal and frontal cortices and the hippocampus, was positively correlated with arithmetic skills. In contrast, no brain region showed a significant association between cross-format NRS and arithmetic skills in the AYA group. Our findings suggest that the relationship between symbolic-non-symbolic NRS and arithmetic skills depends on developmental stage. Taken together, our study provides evidence for both mapping and estrangement hypotheses in the context of numerical problem solving, albeit over different cognitive developmental stages.
Collapse
Affiliation(s)
- Flora Schwartz
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Hyesang Chang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Shelby Karraker
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Julia Boram Kang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Stanford Neuroscience InstituteStanford University School of Medicine, Stanford, California, USA
- Symbolic Systems Program, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
18
|
Rugani R, Regolin L. Approach direction and accuracy, but not response times, show spatial-numerical association in chicks. PLoS One 2021; 16:e0257764. [PMID: 34591878 PMCID: PMC8483340 DOI: 10.1371/journal.pone.0257764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
Abstract
Chicks trained to identify a target item in a sagittally-oriented series of identical items show a higher accuracy for the target on the left, rather than that on the right, at test when the series was rotated by 90°. Such bias seems to be due to a right hemispheric dominance in visuospatial tasks. Up to now, the bias was highlighted by looking at accuracy, the measure mostly used in non-human studies to detect spatial numerical association, SNA. In the present study, processing by each hemisphere was assessed by scoring three variables: accuracy, response times and direction of approach. Domestic chicks were tested under monocular vision conditions, as in the avian brain input to each eye is mostly processed by the contralateral hemisphere. Four-day-old chicks learnt to peck at the 4th element in a sagittal series of 10 identical elements. At test, when facing a series oriented fronto-parallel, birds confined their responses to the visible hemifield, with high accuracy for the 4th element. The first element in the series was also highly selected, suggesting an anchoring strategy to start the proto-counting at one end of the series. In the left monocular condition, chicks approached the series starting from the left, and in the right monocular condition, they started from the right. Both hemispheres appear to exploit the same strategy, scanning the series from the most lateral element in the clear hemifield. Remarkably, there was no effect in the response times: equal latency was scored for correct or incorrect and for left vs. right responses. Overall, these data indicate that the measures implying a direction of choice, accuracy and direction of approach, and not velocity, i.e., response times, can highlight SNA in this paradigm. We discuss the relevance of the selected measures to unveil SNA.
Collapse
Affiliation(s)
- Rosa Rugani
- Department of General Psychology, University of Padova, Padova, Italy
- * E-mail:
| | - Lucia Regolin
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Sokolowski HM, Hawes Z, Peters L, Ansari D. Symbols Are Special: An fMRI Adaptation Study of Symbolic, Nonsymbolic, and Non-Numerical Magnitude Processing in the Human Brain. Cereb Cortex Commun 2021; 2:tgab048. [PMID: 34447935 PMCID: PMC8382912 DOI: 10.1093/texcom/tgab048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/03/2022] Open
Abstract
How are different formats of magnitudes represented in the human brain? We used functional magnetic resonance imaging adaptation to isolate representations of symbols, quantities, and physical size in 45 adults. Results indicate that the neural correlates supporting the passive processing of number symbols are largely dissociable from those supporting quantities and physical size, anatomically and representationally. Anatomically, passive processing of quantities and size correlate with activation in the right intraparietal sulcus, whereas symbolic number processing, compared with quantity processing, correlates with activation in the left inferior parietal lobule. Representationally, neural patterns of activation supporting symbols are dissimilar from neural activation patterns supporting quantity and size in the bilateral parietal lobes. These findings challenge the longstanding notion that the culturally acquired ability to conceptualize symbolic numbers is represented using entirely the same brain systems that support the evolutionarily ancient system used to process quantities. Moreover, these data reveal that regions that support numerical magnitude processing are also important for the processing of non-numerical magnitudes. This discovery compels future investigations of the neural consequences of acquiring knowledge of symbolic numbers.
Collapse
Affiliation(s)
- H Moriah Sokolowski
- Rotman Research Institute, Baycrest Hospital, North York, ON M6A 2E1, Canada
| | - Zachary Hawes
- Ontario Institute for Studies in Education, University of Toronto, Toronto, ON M5S1V6, Canada
| | - Lien Peters
- Numerical Cognition Laboratory, Department of Psychology & Brain and Mind Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Daniel Ansari
- Numerical Cognition Laboratory, Department of Psychology & Brain and Mind Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
20
|
Vogel SE, De Smedt B. Developmental brain dynamics of numerical and arithmetic abilities. NPJ SCIENCE OF LEARNING 2021; 6:22. [PMID: 34301948 PMCID: PMC8302738 DOI: 10.1038/s41539-021-00099-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/24/2021] [Indexed: 05/07/2023]
Abstract
The development of numerical and arithmetic abilities constitutes a crucial cornerstone in our modern and educated societies. Difficulties to acquire these central skills can lead to severe consequences for an individual's well-being and nation's economy. In the present review, we describe our current broad understanding of the functional and structural brain organization that supports the development of numbers and arithmetic. The existing evidence points towards a complex interaction among multiple domain-specific (e.g., representation of quantities and number symbols) and domain-general (e.g., working memory, visual-spatial abilities) cognitive processes, as well as a dynamic integration of several brain regions into functional networks that support these processes. These networks are mainly, but not exclusively, located in regions of the frontal and parietal cortex, and the functional and structural dynamics of these networks differ as a function of age and performance level. Distinctive brain activation patterns have also been shown for children with dyscalculia, a specific learning disability in the domain of mathematics. Although our knowledge about the developmental brain dynamics of number and arithmetic has greatly improved over the past years, many questions about the interaction and the causal involvement of the abovementioned functional brain networks remain. This review provides a broad and critical overview of the known developmental processes and what is yet to be discovered.
Collapse
Affiliation(s)
- Stephan E Vogel
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria.
| | - Bert De Smedt
- Faculty of Psychology and Educational Sciences, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Caicoya AL, Colell M, Holland R, Ensenyat C, Amici F. Giraffes go for more: a quantity discrimination study in giraffes (Giraffa camelopardalis). Anim Cogn 2020; 24:483-495. [PMID: 33128196 DOI: 10.1007/s10071-020-01442-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Many species, including humans, rely on an ability to differentiate between quantities to make decisions about social relationships, territories, and food. This study is the first to investigate whether giraffes (Giraffa camelopardalis) are able to select the larger of two sets of quantities in different conditions, and how size and density affect these decisions. In Task 1, we presented five captive giraffes with two sets containing a different quantity of identical foods items. In Tasks 2 and 3, we also modified the size and density of the food reward distribution. The results showed that giraffes (i) can successfully make quantity judgments following Weber's law, (ii) can reliably rely on size to maximize their food income, and (iii) are more successful when comparing sparser than denser distributions. More studies on different taxa are needed to understand whether specific selective pressures have favored the evolution of these skills in certain taxa.
Collapse
Affiliation(s)
- Alvaro L Caicoya
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
| | - Montserrat Colell
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | | | | | - Federica Amici
- Behavioral Ecology Research Group, Institute of Biology, University of Leipzig, Leipzig, Germany.,Research Group "Primate Behavioural Ecology", Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
22
|
Cheyette SJ, Piantadosi ST. A unified account of numerosity perception. Nat Hum Behav 2020; 4:1265-1272. [PMID: 32929205 DOI: 10.1038/s41562-020-00946-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 08/07/2020] [Indexed: 01/29/2023]
Abstract
People can identify the number of objects in sets of four or fewer items with near-perfect accuracy but exhibit linearly increasing error for larger sets. Some researchers have taken this discontinuity as evidence of two distinct representational systems. Here, we present a mathematical derivation showing that this behaviour is an optimal representation of cardinalities under a limited informational capacity, indicating that this behaviour can emerge from a single system. Our derivation predicts how the amount of information accessible to viewers should influence the perception of quantity for both large and small sets. In a series of four preregistered experiments (N = 100 each), we varied the amount of information accessible to participants in number estimation. We find tight alignment between the model and human performance for both small and large quantities, implicating efficient representation as the common origin behind key phenomena of human and animal numerical cognition.
Collapse
|
23
|
Ash M, Welshon R. Dynamicism, radical enactivism, and representational cognitive processes: The case of subitization. PHILOSOPHICAL PSYCHOLOGY 2020. [DOI: 10.1080/09515089.2020.1775798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Misha Ash
- University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
24
|
Munoz F, Jensen G, Kennedy BC, Alkan Y, Terrace HS, Ferrera VP. Learned Representation of Implied Serial Order in Posterior Parietal Cortex. Sci Rep 2020; 10:9386. [PMID: 32523062 PMCID: PMC7287075 DOI: 10.1038/s41598-020-65838-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/08/2020] [Indexed: 11/20/2022] Open
Abstract
Monkeys can learn the implied ranking of pairs of images drawn from an ordered set, despite never seeing all of the images simultaneously and without explicit spatial or temporal cues. We recorded the activity of posterior parietal cortex (including lateral intraparietal area LIP) neurons while monkeys learned 7-item transitive inference (TI) lists with 2 items presented on each trial. Behavior and neuronal activity were significantly influenced by the ordinal relationship of the stimulus pairs, specifically symbolic distance (the difference in rank) and joint rank (the sum of the ranks). Symbolic distance strongly predicted decision accuracy and learning rate. An effect of joint rank on performance was found nested within the symbolic distance effect. Across the population of neurons, there was significant modulation of firing correlated with the relative ranks of the two stimuli presented on each trial. Neurons exhibited selectivity for stimulus rank during learning, but not before or after. The observed behavior is poorly explained by associative or reward mechanisms, and appears more consistent with a mental workspace model in which implied serial order is mapped within a spatial framework. The neural data suggest that posterior parietal cortex supports serial learning by representing information about the ordinal relationship of the stimuli presented during a given trial.
Collapse
Affiliation(s)
- Fabian Munoz
- Department of Neuroscience, Columbia University Medical Center, New York, NY, 10032, USA.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Greg Jensen
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA.,Department of Psychology, Columbia University, New York, NY, 10027, USA
| | - Benjamin C Kennedy
- Department of Neurosurgery, Columbia University Medical Center, New York, NY, 10032, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yelda Alkan
- Department of Neuroscience, Columbia University Medical Center, New York, NY, 10032, USA.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Herbert S Terrace
- Department of Psychology, Columbia University, New York, NY, 10027, USA.,Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA
| | - Vincent P Ferrera
- Department of Neuroscience, Columbia University Medical Center, New York, NY, 10032, USA. .,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA. .,Department of Psychiatry, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
25
|
Chang H, Rosenberg-Lee M, Qin S, Menon V. Faster learners transfer their knowledge better: Behavioral, mnemonic, and neural mechanisms of individual differences in children's learning. Dev Cogn Neurosci 2019; 40:100719. [PMID: 31710975 PMCID: PMC6974913 DOI: 10.1016/j.dcn.2019.100719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/03/2019] [Accepted: 10/12/2019] [Indexed: 01/23/2023] Open
Abstract
Why some children learn, and transfer their knowledge to novel problems, better than others remains an important unresolved question in the science of learning. Here we developed an innovative tutoring program and data analysis approach to investigate individual differences in neurocognitive mechanisms that support math learning and "near" transfer to novel, but structurally related, problems in elementary school children. Following just five days of training, children performed recently trained math problems more efficiently, with greater use of memory-retrieval-based strategies. Crucially, children who learned faster during training performed better not only on trained problems but also on novel problems, and better discriminated trained and novel problems in a subsequent recognition memory task. Faster learners exhibited increased similarity of neural representations between trained and novel problems, and greater differentiation of functional brain circuits engaged by trained and novel problems. These results suggest that learning and near transfer are characterized by parallel learning-rate dependent local integration and large-scale segregation of functional brain circuits. Our findings demonstrate that speed of learning and near transfer are interrelated and identify the neural mechanisms by which faster learners transfer their knowledge better. Our study provides new insights into the behavioral, mnemonic, and neural mechanisms underlying children's learning.
Collapse
Affiliation(s)
- Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford, CA 94305, United States.
| | - Miriam Rosenberg-Lee
- Department of Psychiatry & Behavioral Sciences, Stanford, CA 94305, United States; Department of Psychology, Rutgers University, Newark, NJ 07102, United States
| | - Shaozheng Qin
- Department of Psychiatry & Behavioral Sciences, Stanford, CA 94305, United States; State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, China
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford, CA 94305, United States; Department of Neurology & Neurological Sciences, Stanford, CA 94305, United States; Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
26
|
Everett C. Is native quantitative thought concretized in linguistically privileged ways? A look at the global picture. Cogn Neuropsychol 2019; 37:340-354. [PMID: 31539296 DOI: 10.1080/02643294.2019.1668368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This work investigates whether reference in speech to certain quantities, namely 1, 2, and 3, is privileged linguistically due to our brain's native quantitative capacities. It is suggested that these small quantities are not privileged in specific ways suggested in the literature. The case that morphology privileges these quantities, apart from 1, is difficult to maintain in light of the cross-linguistic data surveyed. The grammatical expression of 2 is explained without appealing to innate quantitative reasoning and the grammatical expression of 3 is not truly characteristic of speech once language relatedness is considered. The case that 1, 2, and 3 are each privileged lexically is also difficult to maintain in the face of the global linguistic data. While native neurobiological architecture biases humans towards recognizing small quantities in precise ways, these biases do not yield clear patterns in numerical language worldwide.
Collapse
Affiliation(s)
- Caleb Everett
- Department of Anthropology, University of Miami, Coral Gables, FL, USA.,Department of Psychology, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
27
|
Cheyette SJ, Piantadosi ST. A primarily serial, foveal accumulator underlies approximate numerical estimation. Proc Natl Acad Sci U S A 2019; 116:17729-17734. [PMID: 31427541 PMCID: PMC6731650 DOI: 10.1073/pnas.1819956116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The approximate number system (ANS) has attracted broad interest due to its potential importance in early mathematical development and the fact that it is conserved across species. Models of the ANS and behavioral measures of ANS acuity both assume that quantity estimation is computed rapidly and in parallel across an entire view of the visual scene. We present evidence instead that ANS estimates are largely the product of a serial accumulation mechanism operating across visual fixations. We used an eye-tracker to collect data on participants' visual fixations while they performed quantity-estimation and -discrimination tasks. We were able to predict participants' numerical estimates using their visual fixation data: As the number of dots fixated increased, mean estimates also increased, and estimation error decreased. A detailed model-based analysis shows that fixated dots contribute twice as much as peripheral dots to estimated quantities; people do not "double count" multiply fixated dots; and they do not adjust for the proportion of area in the scene that they have fixated. The accumulation mechanism we propose explains reported effects of display time on estimation and earlier findings of a bias to underestimate quantities.
Collapse
Affiliation(s)
- Samuel J Cheyette
- Department of Psychology, University of California, Berkeley, CA 94720
| | | |
Collapse
|
28
|
Smyth RE, Ansari D. Do infants have a sense of numerosity? A p-curve analysis of infant numerosity discrimination studies. Dev Sci 2019; 23:e12897. [PMID: 31448505 DOI: 10.1111/desc.12897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 11/30/2022]
Abstract
Research demonstrating that infants discriminate between small (e.g., 1 vs. 3 dots) and large numerosities (e.g., 8 vs. 16 dots) is central to theories concerning the origins of human numerical abilities. To date, there has been no quantitative meta-analysis of the infant numerical competency data. Here, we quantitatively synthesize the evidential value of the available literature on infant numerosity discrimination using a meta-analytic tool called p-curve. In p-curve the distribution of available p-values is analyzed to determine whether the published literature examining particular hypotheses contains evidential value. p-curves demonstrated evidential value for the hypotheses that infants can discriminate between both small and large unimodal and cross-modal numerosities. However, the analyses also revealed that the published data on infants' ability to discriminate between large numerosities is less robust and statistically powered than the data on their ability to discriminate small numerosities. We argue there is a need for adequately powered replication studies to enable stronger inferences in order to use infant data to ground theories concerning the ontogenesis of numerical cognition.
Collapse
Affiliation(s)
- Rachael E Smyth
- Health and Rehabilitation Sciences, Western University, London, ON, Canada
| | - Daniel Ansari
- Department of Psychology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| |
Collapse
|
29
|
Castaldi E, Piazza M, Dehaene S, Vignaud A, Eger E. Attentional amplification of neural codes for number independent of other quantities along the dorsal visual stream. eLife 2019; 8:45160. [PMID: 31339490 PMCID: PMC6693892 DOI: 10.7554/elife.45160] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/18/2019] [Indexed: 01/29/2023] Open
Abstract
Humans and other animals base important decisions on estimates of number, and intraparietal cortex is thought to provide a crucial substrate of this ability. However, it remains debated whether an independent neuronal processing mechanism underlies this ‘number sense’, or whether number is instead judged indirectly on the basis of other quantitative features. We performed high-resolution 7 Tesla fMRI while adult human volunteers attended either to the numerosity or an orthogonal dimension (average item size) of visual dot arrays. Along the dorsal visual stream, numerosity explained a significant amount of variance in activation patterns, above and beyond non-numerical dimensions. Its representation was selectively amplified and progressively enhanced across the hierarchy when task relevant. Our results reveal a sensory extraction mechanism yielding information on numerosity separable from other dimensions already at early visual stages and suggest that later regions along the dorsal stream are most important for explicit manipulation of numerical quantity. Numbers and the ability to count and calculate are an essential part of human culture. They are part of everyday life, featuring in calendars, computers or the weekly shop, but also in some of humanity’s biggest achievements: without them the pyramids or space travel would not exist. A precursor of sophisticated mathematical skill could reside in a simpler mental ability: the capacity to assess numerical quantities at a glance. This ‘number sense’ appears in humans in early childhood and it is also present in other animals, but it is still poorly understood. Brain imaging techniques have identified the parts of the brain that are active when perceiving numbers or making calculations. As techniques have advanced, it has become possible to resolve fine differences in brain activity that occur when people switch their attention between different visual tasks. But how exactly does the human brain process visual information to make sense of numbers? One theory suggests that humans use visual cues, such as the size of a group of objects or how densely packed objects are, to estimate numbers. On the other hand, it is also possible that humans can sense number directly, without reference to other properties of the group being observed. Castaldi et al. presented twenty adult volunteers with groups of dots and asked them to focus either on the number of dots or on the size of the dots during a brain scan. This approach allowed the separation of brain signals specific to number from signals corresponding to other visual cues, such as size or density of the group. The experiment revealed that brain activity changed depending on the number of dots displayed. The signal related to number became stronger when people focused on the number of dots, while signals related to other properties of the group remained unchanged. Moreover, brain signals for number were observed at the very early stages of visual processing, in the parts of the brain that receive input from the eyes first. These results suggest that the human visual system perceives number directly, and not by processing information about the size or density of a group of objects. This finding provides insights into how human brains encode numbers, which could be important to understand disorders where number sense can be impaired leading to difficulties learning math and operating with numbers.
Collapse
Affiliation(s)
- Elisa Castaldi
- Cognitive Neuroimaging Unit, CEA DRF/JOLIOT, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Manuela Piazza
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DRF/JOLIOT, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Alexandre Vignaud
- UNIRS, CEA DRF/JOLIOT, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Evelyn Eger
- Cognitive Neuroimaging Unit, CEA DRF/JOLIOT, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| |
Collapse
|
30
|
Hutchison JE, Ansari D, Zheng S, De Jesus S, Lyons IM. The relation between subitizable symbolic and non-symbolic number processing over the kindergarten school year. Dev Sci 2019; 23:e12884. [PMID: 31271687 DOI: 10.1111/desc.12884] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 01/29/2023]
Abstract
A long-standing debate in the field of numerical cognition concerns the degree to which symbolic and non-symbolic processing are related over the course of development. Of particular interest is the possibility that this link depends on the range of quantities in question. Behavioral and neuroimaging research with adults suggests that symbolic and non-symbolic quantities may be processed more similarly within, relative to outside of, the subitizing range. However, it remains unclear whether this unique link exists in young children at the outset of formal education. Further, no study has yet taken numerical size into account when investigating the longitudinal influence of these skills. To address these questions, we investigated the relation between symbolic and non-symbolic processing inside versus outside the subitizing range, both cross-sectionally and longitudinally, in 540 kindergarteners. Cross-sectionally, we found a consistently stronger relation between symbolic and non-symbolic number processing within versus outside the subitizing range at both the beginning and end of kindergarten. We also show evidence for a bidirectional relation over the course of kindergarten between formats within the subitizing range, and a unidirectional relation (symbolic → non-symbolic) for quantities outside of the subitizing range. These findings extend current theories on symbolic and non-symbolic magnitude development by suggesting that non-symbolic processing may in fact play a role in the development of symbolic number abilities, but that this influence may be limited to quantities within the subitizing range.
Collapse
Affiliation(s)
- Jane E Hutchison
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - Daniel Ansari
- Department of Psychology and Brain & Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Samuel Zheng
- Research and Development, Toronto District School Board, North York, Ontario, Canada
| | - Stefanie De Jesus
- Research and Development, Toronto District School Board, North York, Ontario, Canada
| | - Ian M Lyons
- Department of Psychology, Georgetown University, Washington, DC, USA
| |
Collapse
|
31
|
Seydell-Greenwald A, Pu SF, Ferrara K, Chambers CE, Newport EL, Landau B. Revisiting the Landmark Task as a tool for studying hemispheric specialization: What's really right? Neuropsychologia 2019; 127:57-65. [PMID: 30802463 PMCID: PMC6440843 DOI: 10.1016/j.neuropsychologia.2019.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 01/29/2023]
Abstract
The "Landmark Task" (LT) is a line bisection judgment task that predominantly activates right parietal cortex. The typical version requires observers to judge bisections for horizontal lines that cross their egocentric midline and therefore may depend on spatial attention as well as spatial representation of the line segments. To ask whether the LT is indeed right-lateralized regardless of spatial attention (for which the right hemisphere is known to be important), we examined LT activation in 26 neurologically healthy young adults using vertical (instead of horizontal) stimuli, as compared with a luminance control task that made similar demands on spatial attention. We also varied task difficulty, which is known to affect lateralization in both spatial and language tasks. Despite these changes to the task, we observed right-lateralized parietal activations similar to those reported in other LT studies, both at group level and in individual lateralization indices. We conclude that LT activation is robustly right-lateralized, perhaps uniquely so among commonly-studied spatial tasks. We speculate that the unique properties of the LT reside in its requirement to judge relative magnitudes of the two line segments, rather than in the more general aspects of spatial attention or visual-spatial representation.
Collapse
Affiliation(s)
- Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, D.C. 20057, USA.
| | - Serena F Pu
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, D.C. 20057, USA
| | - Katrina Ferrara
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, D.C. 20057, USA; Intellectual and Developmental Disabilities Research Center, Children's National Health System, 111 Michigan Avenue NW, Washington, D.C. 20010, USA
| | - Catherine E Chambers
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, D.C. 20057, USA
| | - Elissa L Newport
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, D.C. 20057, USA
| | - Barbara Landau
- Center for Brain Plasticity and Recovery, Georgetown University, Building D, Suite 145, 4000 Reservoir Road NW, Washington, D.C. 20057, USA; Department of Cognitive Science, Johns Hopkins University, Krieger Hall, 2400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
32
|
Impact of stimulus format and reward value on quantity discrimination in capuchin and squirrel monkeys. Learn Behav 2019; 46:89-100. [PMID: 28840526 DOI: 10.3758/s13420-017-0295-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quantity discrimination abilities are seen in a diverse range of species with similarities in performance patterns, suggesting common underlying cognitive mechanisms. However, methodological factors that impact performance make it difficult to draw broad phylogenetic comparisons of numerical cognition across studies. For example, some Old World monkeys selected a higher quantity stimulus more frequently when choosing between inedible (pebbles) than edible (food) stimuli. In Experiment 1 we presented brown capuchin (Cebus [Sapajus] paella) and squirrel monkeys (Saimiri sciureus) with the same two-choice quantity discrimination task in three different stimulus conditions: edible, inedible, and edible replaced (in which choice stimuli were food items that stood in for the same quantity of food items that were given as a reward). Unlike Old World monkeys, capuchins selected the higher quantity stimulus more in the edible condition and squirrel monkeys showed generally poor performance across all stimulus types. Performance patterns suggested that differences in subjective reward value might motivate differences in choice behavior between and within species. In Experiment 2 we manipulated the subjective reinforcement value of the reward by varying reward type and delay to reinforcement and found that delay to reinforcement had no impact on choice behavior, while increasing the value of the reward significantly improved performance by both species. The results of this study indicate that species presented with identical tasks may respond differently to methodological factors such as stimulus and reward types, resulting in significant differences in choice behavior that may lead to spurious suggestions of species differences in cognitive abilities.
Collapse
|
33
|
Lourenco SF, Aulet LS. Cross-magnitude interactions across development: Longitudinal evidence for a general magnitude system. Dev Sci 2019; 22:e12707. [PMID: 30088329 PMCID: PMC6848978 DOI: 10.1111/desc.12707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 06/11/2018] [Indexed: 11/29/2022]
Abstract
There is general agreement that humans represent numerical, spatial, and temporal magnitudes from early in development. However, there is disagreement about whether different magnitudes converge within a general magnitude system and whether this system supports behavioral demonstrations of cross-magnitude interactions at different developmental time points. Using a longitudinal design, we found a relation between children's cross-magnitude interactions assessed at two developmental time points with different behavioral measures. More specifically, stronger cross-magnitude interactions in infancy (M = 9.3 months) predicted a stronger cross-magnitude congruity effect at preschool age (M = 44.2 months), even when controlling for performance on measures of inhibitory control, analogical reasoning, and verbal competence at preschool age. The results suggest a common mechanism for cross-magnitude interactions at different points in development as well as stability of the underlying individual differences. We argue that this mechanism reflects a nonverbal general magnitude system that is operational early in life and that displays continuity from infancy to preschool age.
Collapse
Affiliation(s)
| | - Lauren S Aulet
- Department of Psychology, Emory University, Atlanta, Georgia
| |
Collapse
|
34
|
Abstract
We describe the performance of an aphasic individual, K.A., who showed a selective impairment affecting his ability to perceive spoken language, while largely sparing his ability to perceive written language and to produce spoken language. His spoken perception impairment left him unable to distinguish words or nonwords that differed on a single phoneme and he was no better than chance at auditory lexical decision or single spoken word and single picture matching with phonological foils. Strikingly, despite this profound impairment, K.A. showed a selective sparing in his ability to perceive number words, which he was able to repeat and comprehend largely without error. This case adds to a growing literature demonstrating modality-specific dissociations between number word and non-number word processing. Because of the locus of K.A.'s speech perception deficit for non-number words, we argue that this distinction between number word and non-number word processing arises at a sublexical level of representations in speech perception, in a parallel fashion to what has previously been argued for in the organization of the sublexical level of representation for speech production.
Collapse
Affiliation(s)
| | - Rachel Mis
- b Department of Psychology , Temple University , Philadelphia , PA , USA
| | - Heather Dial
- c Department of Communication Sciences and Disorders , University of Texas-Austin , Austin , TX , USA
| |
Collapse
|
35
|
Fischer MH, Shaki S. Number concepts: abstract and embodied. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170125. [PMID: 29914993 PMCID: PMC6015824 DOI: 10.1098/rstb.2017.0125] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 01/29/2023] Open
Abstract
Numerical knowledge, including number concepts and arithmetic procedures, seems to be a clear-cut case for abstract symbol manipulation. Yet, evidence from perceptual and motor behaviour reveals that natural number knowledge and simple arithmetic also remain closely associated with modal experiences. Following a review of behavioural, animal and neuroscience studies of number processing, we propose a revised understanding of psychological number concepts as grounded in physical constraints, embodied in experience and situated through task-specific intentions. The idea that number concepts occupy a range of positions on the continuum between abstract and modal conceptual knowledge also accounts for systematic heuristics and biases in mental arithmetic, thus inviting psycho-logical approaches to the study of the mathematical mind.This article is part of the theme issue 'Varieties of abstract concepts: development, use and representation in the brain'.
Collapse
Affiliation(s)
- Martin H Fischer
- Division of Cognitive Sciences, Department of Psychology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, House 14, 14476 Potsdam OT Golm, Germany
- Department of Behavioral Sciences, Ariel University, Ariel 40700, Israel
| | - Samuel Shaki
- Department of Behavioral Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
36
|
d'Errico F, Doyon L, Colagé I, Queffelec A, Le Vraux E, Giacobini G, Vandermeersch B, Maureille B. From number sense to number symbols. An archaeological perspective. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0518. [PMID: 29292345 DOI: 10.1098/rstb.2016.0518] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 11/12/2022] Open
Abstract
How and when did hominins move from the numerical cognition that we share with the rest of the animal world to number symbols? Objects with sequential markings have been used to store and retrieve numerical information since the beginning of the European Upper Palaeolithic (42 ka). An increase in the number of markings and complexity of coding is observed towards the end of this period. The application of new analytical techniques to a 44-42 ka old notched baboon fibula from Border Cave, South Africa, shows that notches were added to this bone at different times, suggesting that devices to store numerical information were in use before the Upper Palaeolithic. Analysis of a set of incisions on a 72-60 ka old hyena femur from the Les Pradelles Mousterian site, France, indicates, by comparison with markings produced by modern subjects under similar constraints, that the incisions on the Les Pradelles bone may have been produced to record, in a single session, homologous units of numerical information. This finding supports the view that numerical notations were in use among archaic hominins. Based on these findings, a testable five-stage scenario is proposed to establish how prehistoric cultures have moved from number sense to the use of number symbols.This article is part of a discussion meeting issue 'The origins of numerical abilities'.
Collapse
Affiliation(s)
- Francesco d'Errico
- Centre National de la Recherche Scientifique, UMR 5199 - PACEA, Université de Bordeaux, Pessac, France .,SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Øysteinsgate 3, Postboks 7805, 5020, Bergen, Norway
| | - Luc Doyon
- Centre National de la Recherche Scientifique, UMR 5199 - PACEA, Université de Bordeaux, Pessac, France.,Department of Anthropology, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Ivan Colagé
- Faculty of Philosophy, Pontifical Antonianum University, Via Merulana 124, 00185 Rome, Italy
| | - Alain Queffelec
- Centre National de la Recherche Scientifique, UMR 5199 - PACEA, Université de Bordeaux, Pessac, France
| | - Emma Le Vraux
- Centre National de la Recherche Scientifique, UMR 5199 - PACEA, Université de Bordeaux, Pessac, France
| | - Giacomo Giacobini
- Department of Neurosciences, University of Turin, 52 corso Massimo d'Azeglio, 10126 Turin, Italy
| | - Bernard Vandermeersch
- Centre National de la Recherche Scientifique, UMR 5199 - PACEA, Université de Bordeaux, Pessac, France
| | - Bruno Maureille
- Centre National de la Recherche Scientifique, UMR 5199 - PACEA, Université de Bordeaux, Pessac, France
| |
Collapse
|
37
|
The neural bases of price estimation: Effects of size and precision of the estimate. Brain Cogn 2018; 125:157-164. [PMID: 30007170 DOI: 10.1016/j.bandc.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 11/23/2022]
Abstract
People are often confronted with the need of estimating the market price of goods. An important question is how people estimate prices, given the variability of products and prices available. Using event-related fMRI, we investigated how numerical processing modulates the neural bases of retail price estimation by focusing on two numerical dimensions: the size and precision of the estimates. Participants were presented with several product labels and made market price estimates for those products. Measures of product buying frequency and market price variability were also collected. The estimation of higher prices required longer response times, was associated with greater variation in responses across participants, and correlated with increasing medial and lateral prefrontal cortex (PFC) activity. Moreover, price estimates followed Weber's law, a hallmark feature of numerical processing. Increasing accuracy in price estimation, indexed by decreasing Weber fraction, engaged the intraparietal sulcus (IPS), a critical region in numerical processing. Our findings provide evidence for distinguishable neural mechanisms associated with the size and the precision of price estimates.
Collapse
|
38
|
Xenidou-Dervou I, Van Luit JEH, Kroesbergen EH, Friso-van den Bos I, Jonkman LM, van der Schoot M, van Lieshout ECDM. Cognitive predictors of children's development in mathematics achievement: A latent growth modeling approach. Dev Sci 2018; 21:e12671. [PMID: 29691952 DOI: 10.1111/desc.12671] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 03/06/2018] [Indexed: 11/27/2022]
Abstract
Research has identified various domain-general and domain-specific cognitive abilities as predictors of children's individual differences in mathematics achievement. However, research into the predictors of children's individual growth rates, namely between-person differences in within-person change in mathematics achievement is scarce. We assessed 334 children's domain-general and mathematics-specific early cognitive abilities and their general mathematics achievement longitudinally across four time-points within the first and second grades of primary school. As expected, a constellation of multiple cognitive abilities contributed to the children's starting level of mathematical success. Specifically, latent growth modeling revealed that WM abilities, IQ, counting skills, nonsymbolic and symbolic approximate arithmetic and comparison skills explained individual differences in the children's initial status on a curriculum-based general mathematics achievement test. Surprisingly, however, only one out of all the assessed cognitive abilities was a unique predictor of the children's individual growth rates in mathematics achievement: their performance in the symbolic approximate addition task. In this task, children were asked to estimate the sum of two large numbers and decide if this estimated sum was smaller or larger compared to a third number. Our findings demonstrate the importance of multiple domain-general and mathematics-specific cognitive skills for identifying children at risk of struggling with mathematics and highlight the significance of early approximate arithmetic skills for the development of one's mathematical success. We argue the need for more research focus on explaining children's individual growth rates in mathematics achievement.
Collapse
Affiliation(s)
- Iro Xenidou-Dervou
- Mathematics Education Centre, Loughborough University, Loughborough, Leicestershire, UK.,Section of Educational Neuroscience, and LEARN! Research Institute, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johannes E H Van Luit
- Department of Educational and Learning Sciences, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands
| | - Evelyn H Kroesbergen
- Department of Educational and Learning Sciences, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands.,Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Ilona Friso-van den Bos
- Department of Educational and Learning Sciences, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lisa M Jonkman
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Menno van der Schoot
- Section of Educational Neuroscience, and LEARN! Research Institute, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ernest C D M van Lieshout
- Section of Educational Neuroscience, and LEARN! Research Institute, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Abstract
A dominant mechanism in the Judgment and Decision Making literature states that information is accumulated about each choice option until a decision threshold is met. Only after that threshold does a subject start to execute a motor response to indicate their choice. However, recent research has revealed spatial gradients in motor responses as a function of comparison difficulty as well as changes-of-mind in the middle of an action, both suggesting continued accumulation and processing of decision-related signals after the decision boundary. Here we present a formal model and supporting data from a number comparison task that a continuous motor planner, combined with a simple statistical inference scheme, can model detailed behavioral effects without assuming a threshold. This threshold-free model reproduces subjects’ sensitivity to numerical distance in reaching, accuracy, reaction time, and changes of mind. We argue that the motor system positions the effectors using an optimal biomechanical feedback controller, and continuous statistical inference on outputs from cognitive processes.
Collapse
|
40
|
Abstract
In this article, I argue that a growing body of evidence shows that concepts are amodal and I provide a novel interpretation of the body of evidence that was taken to support neo-empiricist theories of concepts: the offloading hypothesis in the 1990s and 2000s.
Collapse
|
41
|
Monfardini E, Reynaud AJ, Prado J, Meunier M. Social modulation of cognition: Lessons from rhesus macaques relevant to education. Neurosci Biobehav Rev 2017; 82:45-57. [DOI: 10.1016/j.neubiorev.2016.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 11/26/2022]
|
42
|
Rugani R, Vallortigara G, Priftis K, Regolin L. Experimental Evidence From Newborn Chicks Enriches Our Knowledge on Human Spatial-Numerical Associations. Cogn Sci 2017; 41:2275-2279. [PMID: 29023943 DOI: 10.1111/cogs.12523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 10/18/2022]
Abstract
Núñez and Fias raised concerns on whether our results demonstrate a linear number-space mapping. Patro and Nuerk urge caution on the use of animal models to understand the origin (cultural vs. biological) of the orientation of spatial-numerical association. Here, we discuss why both objections are unfounded.
Collapse
Affiliation(s)
- Rosa Rugani
- Department of General Psychology, University of Padova.,Center for Mind/Brain Sciences, University of Trento
| | | | | | - Lucia Regolin
- Department of General Psychology, University of Padova
| |
Collapse
|
43
|
Sokolowski HM, Fias W, Bosah Ononye C, Ansari D. Are numbers grounded in a general magnitude processing system? A functional neuroimaging meta-analysis. Neuropsychologia 2017; 105:50-69. [DOI: 10.1016/j.neuropsychologia.2017.01.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/24/2022]
|
44
|
Neural Tuning to Numerosity Relates to Perceptual Tuning in 3-6-Year-Old Children. J Neurosci 2017; 37:512-522. [PMID: 28100735 DOI: 10.1523/jneurosci.0065-16.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 10/26/2016] [Accepted: 11/17/2016] [Indexed: 01/29/2023] Open
Abstract
Neural representations of approximate numerical value, or numerosity, have been observed in the intraparietal sulcus (IPS) in monkeys and humans, including children. Using functional magnetic resonance imaging, we show that children as young as 3-4 years old exhibit neural tuning to cardinal numerosities in the IPS and that their neural responses are accounted for by a model of numerosity coding that has been used to explain neural responses in the adult IPS. We also found that the sensitivity of children's neural tuning to number in the right IPS was comparable to their numerical discrimination sensitivity observed behaviorally, outside of the scanner. Children's neural tuning curves in the right IPS were significantly sharper than in the left IPS, indicating that numerical representations are more precise and mature more rapidly in the right hemisphere than in the left. Further, we show that children's perceptual sensitivity to numerosity can be predicted by the development of their neural sensitivity to numerosity. This research provides novel evidence of developmental continuity in the neural code underlying numerical representation and demonstrates that children's neural sensitivity to numerosity is related to their cognitive development. SIGNIFICANCE STATEMENT Here we test for the existence of neural tuning to numerosity in the developing brain in the youngest sample of children tested with fMRI to date. Although previous research shows evidence of numerical distance effects in the intraparietal sulcus of the developing brain, those effects could be explained by patterns of neural activity that do not represent neural tuning to numerosity. These data provide the first robust evidence that from as early as 3-4 years of age there is developmental continuity in how the intraparietal sulcus represents the values of numerosities. Moreover, the study goes beyond previous research by examining the relation between neural tuning and perceptual tuning in children.
Collapse
|
45
|
van der Ven F, Segers E, Takashima A, Verhoeven L. Effects of a tablet game intervention on simple addition and subtraction fluency in first graders. COMPUTERS IN HUMAN BEHAVIOR 2017. [DOI: 10.1016/j.chb.2017.02.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Seguin D, Gerlai R. Zebrafish prefer larger to smaller shoals: analysis of quantity estimation in a genetically tractable model organism. Anim Cogn 2017; 20:813-821. [PMID: 28616841 DOI: 10.1007/s10071-017-1102-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 01/24/2023]
Abstract
Numerical abilities have been demonstrated in a variety of non-human vertebrates. However, underlying biological mechanisms have been difficult to study due to a paucity of experimental tools. Powerful genetic and neurobiological tools already exist for the zebrafish, but numerical abilities remain scarcely explored with this species. Here, we investigate the choice made by single experimental zebrafish between numerically different shoals of conspecifics presented concurrently on opposite sides of the experimental tank. We examined this choice using the AB strain and pet store zebrafish. We found zebrafish of both populations to generally prefer the numerically larger shoal to the smaller one. This preference was significant for contrasted ratios above or equalling 2:1 (i.e. 4 vs. 0, 4 vs. 1, 8 vs. 2, 6 vs. 2 and 6 vs. 3). Interestingly, zebrafish showed no significant preference when each of the two contrasted shoals had at least 4 members, e.g. in a contrast 8 versus 4. These results confirm that zebrafish possess the ability to distinguish larger numbers of items from smaller number of items, in a shoaling context, with a potential limit above 4. Our findings confirm the utility of the zebrafish for the exploration of both the behavioural and the biological mechanisms underlying numerical abilities in vertebrates.
Collapse
Affiliation(s)
- Diane Seguin
- Department of Psychology, University of Toronto Mississauga, 3559 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, 3559 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
47
|
Electrophysiological dynamic brain connectivity during symbolic magnitude comparison in children with different mathematics achievement levels. Neuroreport 2017; 28:174-178. [PMID: 27984540 DOI: 10.1097/wnr.0000000000000722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Children with mathematical difficulties usually have an impaired ability to process symbolic representations. Functional MRI methods have suggested that early frontoparietal connectivity can predict mathematic achievements; however, the study of brain connectivity during numerical processing remains unexplored. With the aim of evaluating this in children with different math proficiencies, we selected a sample of 40 children divided into two groups [high achievement (HA) and low achievement (LA)] according to their arithmetic scores in the Wide Range Achievement Test, 4th ed.. Participants performed a symbolic magnitude comparison task (i.e. determining which of two numbers is numerically larger), with simultaneous electrophysiological recording. Partial directed coherence and graph theory methods were used to estimate and depict frontoparietal connectivity in both groups. The behavioral measures showed that children with LA performed significantly slower and less accurately than their peers in the HA group. Significantly higher frontocentral connectivity was found in LA compared with HA; however, when the connectivity analysis was restricted to parietal locations, no relevant group differences were observed. These findings seem to support the notion that LA children require greater memory and attentional efforts to meet task demands, probably affecting early stages of symbolic comparison.
Collapse
|
48
|
Kersey AJ, Cantlon JF. Primitive Concepts of Number and the Developing Human Brain. LANGUAGE LEARNING AND DEVELOPMENT : THE OFFICIAL JOURNAL OF THE SOCIETY FOR LANGUAGE DEVELOPMENT 2017; 13:191-214. [PMID: 30899202 PMCID: PMC6424528 DOI: 10.1080/15475441.2016.1264878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Counting is an evolutionarily recent cultural invention of the human species. In order for humans to have conceived of counting in the first place, certain representational and logical abilities must have already been in place. The focus of this review is the origins and nature of those fundamental mechanisms that promoted the emergence of the human number concept. Five claims are presented that support an evolutionary view of numerical development: 1) number is an abstract concept with an innate basis in humans, 2) maturational processes constrain the development of humans' numerical representations between infancy and adulthood, 3) there is evolutionary continuity in the neural processes of numerical cognition in primates, 4) primitive logical abilities support verbal counting development in humans, and 5) primitive neural processes provide the foundation for symbolic numerical development in the human brain. We support these claims by examining current evidence from animal cognition, child development, and human brain function. The data show that at the basis of human numerical concepts are primitive perceptual and logical mechanisms that have evolutionary homologs in other primates and form the basis of numerical development in the human brain. In the final section of the review, we discuss some hypotheses for what makes human numerical reasoning unique by drawing on evidence from human and non-human primate neuroimaging research.
Collapse
|
49
|
Abstract
For both humans and other animals, the ability to combine information obtained through different senses is fundamental to the perception of the environment. It is well established that humans form systematic cross-modal correspondences between stimulus features that can facilitate the accurate combination of sensory percepts. However, the evolutionary origins of the perceptual and cognitive mechanisms involved in these cross-modal associations remain surprisingly underexplored. In this review we outline recent comparative studies investigating how non-human mammals naturally combine information encoded in different sensory modalities during communication. The results of these behavioural studies demonstrate that various mammalian species are able to combine signals from different sensory channels when they are perceived to share the same basic features, either because they can be redundantly sensed and/or because they are processed in the same way. Moreover, evidence that a wide range of mammals form complex cognitive representations about signallers, both within and across species, suggests that animals also learn to associate different sensory features which regularly co-occur. Further research is now necessary to determine how multisensory representations are formed in individual animals, including the relative importance of low level feature-related correspondences. Such investigations will generate important insights into how animals perceive and categorise their environment, as well as provide an essential basis for understanding the evolution of multisensory perception in humans.
Collapse
|
50
|
Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychol (Amst) 2016; 171:17-35. [PMID: 27640140 DOI: 10.1016/j.actpsy.2016.09.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/09/2016] [Indexed: 01/29/2023] Open
Abstract
It is widely accepted that human and nonhuman species possess a specialized system to process large approximate numerosities. The theory of an evolutionarily ancient approximate number system (ANS) has received converging support from developmental studies, comparative experiments, neuroimaging, and computational modelling, and it is one of the most dominant and influential theories in numerical cognition. The existence of an ANS system is significant, as it is believed to be the building block of numerical development in general. The acuity of the ANS is related to future arithmetic achievements, and intervention strategies therefore aim to improve the ANS. Here we critically review current evidence supporting the existence of an ANS. We show that important shortcomings and confounds exist in the empirical studies on human and non-human animals as well as the logic used to build computational models that support the ANS theory. We conclude that rather than taking the ANS theory for granted, a more comprehensive explanation might be provided by a sensory-integration system that compares or estimates large approximate numerosities by integrating the different sensory cues comprising number stimuli.
Collapse
|