1
|
Nisar A, Khan S, Pan Y, Hu L, Yang P, Gold NM, Zhou Z, Yuan S, Zi M, Mehmood SA, He Y. The Role of Hypoxia in Longevity. Aging Dis 2025:AD.2024.1630. [PMID: 39965249 DOI: 10.14336/ad.2024.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/15/2025] [Indexed: 02/20/2025] Open
Abstract
Aging is marked by a progressive decrease in physiological function and reserve capacity, which results in increased susceptibility to diseases. Understanding the mechanisms of driving aging is crucial for extending health span and promoting human longevity. Hypoxia, marked by reduced oxygen availability, has emerged as a promising area of study within aging research. This review explores recent findings on the potential of oxygen restriction to promote healthy aging and extend lifespan. While the role of hypoxia-inducible factor 1 (HIF-1) in cellular responses to hypoxia is well-established, its impact on lifespan remains complex and context-dependent. Investigations in invertebrate models suggest a role for HIF-1 in longevity, while evidence in mammalian models is limited. Hypoxia extends the lifespan independent of dietary restriction (DR), a known intervention underlying longevity. However, both hypoxia and DR converge on common downstream effectors, such as forkhead box O (FOXO) and flavin-containing monooxygenase (FMOs) to modulate the lifespan. Further work is required to elucidate the molecular mechanisms underlying hypoxia-induced longevity and optimize clinical applications. Understanding the crosstalk between HIF-1 and other longevity-associated pathways is crucial for developing interventions to enhance lifespan and healthspan. Future studies may uncover novel therapeutic strategies to promote healthy aging and longevity in human populations.
Collapse
Affiliation(s)
- Ayesha Nisar
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410083, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Yongzhang Pan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li Hu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Pengyun Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Naheemat Modupeola Gold
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhen Zhou
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shengjie Yuan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Meiting Zi
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | - Yonghan He
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
2
|
Huang T, Tsang C, Huang J. Can hypoxic exercise retard cellular senescence? A narrative review. Eur Rev Aging Phys Act 2024; 21:31. [PMID: 39533169 PMCID: PMC11559150 DOI: 10.1186/s11556-024-00352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 06/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Senescent cells are defined as normal cells that have undergone irreversible division arrest due to various factors. These cells have been found to play a pivotal role in aging and the development of chronic diseases. Numerous studies demonstrated that physical exercise is effective in anti-aging and anti-chronic diseases. Furthermore, the combination of exercise and hypoxia has been shown to optimize the stimulus of oxygen deprivation and extend cellular lifespan. OBJECTIVE This narrative review offers an exhaustive analysis of existing literature studying the effect of hypoxic exercise on cellular senescence under various conditions. METHODS Four electronic databases underwent title and abstract screening to summarize the effect of hypoxic exercise on cellular senescence under various conditions. Papers were deemed eligible if they examined the effect of hypoxic exercise on cellular senescence in full-text, peer-reviewed journals and published in English. The final search was carried out on May 4, 2024. Studied were excluded if they: (a) did not involve the utilization of hypoxic exercise as a sole intervention or a contributing factor; (b) did not investigate cellular senescence; (c) lacked sufficient information regarding the study design and findings. A total of 2033 articles were obtained from four databases. However, only 11 articles were deemed to meet eligibility criteria after thoroughly examining titles, abstracts, and full-text content. Authorship, publication year, details of the experimental subject, types of exercise, training protocols, organ, tissue or cell, markers of senescent cells examined, and their responses elicited by exercise were diligently recorded. RESULTS This review identified 11 articles for data extraction. The sample sizes varied across a spectrum of complexity, ranging from 4 to 60 (Median=20). The studied population encompassed different healthy cohorts, which comprised sedentary males (n=6), trained males (n=2), mountain climbers (n=1), and older adults (n=2). Included studies preferred using bicycle ergometers (72.7%, n=8) as the exercise modality and 10 studies (90.9%) utilized hypoxia chambers to mimic a normobaric hypoxia environment. Four studies (36.4%) opted to utilize hypoxia chambers to mimic an altitude of 2733 and 4460 m. Additionally, 54.5% of studies (n=6) specifically investigated the effect of hypoxic exercise on lymphocytes, commonly utilizing CD28 (n=3) and CD57 (n=3) as markers of cellular senescence. Four studies (33.3%) examined the impact of hypoxic exercise on erythrocytes using CD47 as the marker for detecting senescent cells. CONCLUSION These data support the notion that hypoxic exercise can retard cellular senescence of specific cells. In the future, standardization on the type of hypoxic exercise and markers of cellular senescence will be essential. Additionally, greater attention should be given to female populations and patients with different disease states. Lastly, further studies of the optimal form and dosage of exercise and the underlying cellular mechanisms are warranted. TRIAL REGISTRATION PROSPERO, identifier CRD42023431601.
Collapse
Affiliation(s)
- Tinghuai Huang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Charlotte Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Jianwei Huang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| |
Collapse
|
3
|
Chettouh-Hammas N, Grillon C. Physiological skin oxygen levels: An important criterion for skin cell functionality and therapeutic approaches. Free Radic Biol Med 2024; 222:259-274. [PMID: 38908804 DOI: 10.1016/j.freeradbiomed.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The skin is made up of different layers with various gradients, which maintain a complex microenvironment, particularly in terms of oxygen levels. However, all types of skin cells are cultured in conventional incubators that do not reproduce physiological oxygen levels. Instead, they are cultured at atmospheric oxygen levels, a condition that is far removed from physiology and may lead to the generation of free radicals known to induce skin ageing. This review aims to summarize the current literature on the effect of physiological oxygen levels on skin cells, highlight the shortcomings of current in vitro models, and demonstrate the importance of respecting skin oxygen levels. We begin by clarifying the terminology used about oxygen levels and describe the specific distribution of oxygen in the skin. We review and discuss how skin cells adapt their oxygen consumption and metabolism to oxygen levels environment, as well as the changes that are induced, particularly, their redox state, life cycle and functions. We examine the effects of oxygen on both simple culture models and more complex reconstructed skin models. Finally, we present the implications of oxygen modulation for a more therapeutic approach.
Collapse
Affiliation(s)
- Nadira Chettouh-Hammas
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071, Orléans, Cedex 2, France.
| | - Catherine Grillon
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071, Orléans, Cedex 2, France.
| |
Collapse
|
4
|
Liu X, Guo B, Li Q, Nie J. mTOR in metabolic homeostasis and disease. Exp Cell Res 2024; 441:114173. [PMID: 39047807 DOI: 10.1016/j.yexcr.2024.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The ability to maintain cellular metabolic homeostasis is critical to life, in which mTOR plays an important role. This kinase integrates upstream nutrient signals and performs essential functions in physiology and metabolism by increasing metabolism and suppressing autophagy. Thus, dysregulation of mTOR activity leads to diseases, especially metabolic diseases such as cancer, type 2 diabetes and neurological disorders. Therefore, inhibition of overactivated mTOR becomes a rational approach to treat a variety of metabolic diseases. In this review, we discuss how mTOR responds to upstream signals and how mTOR regulates metabolic processes, including protein, nucleic acid, and lipid metabolism. Furthermore, we discuss the possible causes and consequences of dysregulated mTOR signaling activity, and summarize relevant applications, such as inhibition of mTOR activity to treat these diseases. This review will advance our comprehensive knowledge of the association between mTOR and metabolic homeostasis, which has significant ramifications for human health.
Collapse
Affiliation(s)
- Xuejia Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Bin Guo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qiye Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
5
|
Dai W, Guo R, Na X, Jiang S, Liang J, Guo C, Fang Y, Na Z, Li D. Hypoxia and the endometrium: An indispensable role for HIF-1α as therapeutic strategies. Redox Biol 2024; 73:103205. [PMID: 38815332 PMCID: PMC11167393 DOI: 10.1016/j.redox.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1α) is a major molecular mediator of the hypoxic response. In the endometrium, local hypoxic conditions induced by hormonal fluctuations and endometrial vascular remodeling contribute to the production of HIF-1α, which plays an indispensable role in a series of physiological activities, such as menstruation and metamorphosis. The sensitive regulation of HIF-1α maintains the cellular viability and regenerative capacity of the endometrium against cellular stresses induced by hypoxia and excess reactive oxygen species. In contrast, abnormal HIF-1α levels exacerbate the development of various endometrial pathologies. This knowledge opens important possibilities for the development of promising HIF-1α-centered strategies to ameliorate endometrial disease. Nonetheless, additional efforts are required to elucidate the regulatory network of endometrial HIF-1α and promote the applications of HIF-1α-centered strategies in the human endometrium. Here, we summarize the role of the HIF-1α-mediated pathway in endometrial physiology and pathology, highlight the latest HIF-1α-centered strategies for treating endometrial diseases, and improve endometrial receptivity.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinni Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyi Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuishan Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China; Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
6
|
Chu LX, Wang WJ, Gu XP, Wu P, Gao C, Zhang Q, Wu J, Jiang DW, Huang JQ, Ying XW, Shen JM, Jiang Y, Luo LH, Xu JP, Ying YB, Chen HM, Fang A, Feng ZY, An SH, Li XK, Wang ZG. Spatiotemporal multi-omics: exploring molecular landscapes in aging and regenerative medicine. Mil Med Res 2024; 11:31. [PMID: 38797843 PMCID: PMC11129507 DOI: 10.1186/s40779-024-00537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Aging and regeneration represent complex biological phenomena that have long captivated the scientific community. To fully comprehend these processes, it is essential to investigate molecular dynamics through a lens that encompasses both spatial and temporal dimensions. Conventional omics methodologies, such as genomics and transcriptomics, have been instrumental in identifying critical molecular facets of aging and regeneration. However, these methods are somewhat limited, constrained by their spatial resolution and their lack of capacity to dynamically represent tissue alterations. The advent of emerging spatiotemporal multi-omics approaches, encompassing transcriptomics, proteomics, metabolomics, and epigenomics, furnishes comprehensive insights into these intricate molecular dynamics. These sophisticated techniques facilitate accurate delineation of molecular patterns across an array of cells, tissues, and organs, thereby offering an in-depth understanding of the fundamental mechanisms at play. This review meticulously examines the significance of spatiotemporal multi-omics in the realms of aging and regeneration research. It underscores how these methodologies augment our comprehension of molecular dynamics, cellular interactions, and signaling pathways. Initially, the review delineates the foundational principles underpinning these methods, followed by an evaluation of their recent applications within the field. The review ultimately concludes by addressing the prevailing challenges and projecting future advancements in the field. Indubitably, spatiotemporal multi-omics are instrumental in deciphering the complexities inherent in aging and regeneration, thus charting a course toward potential therapeutic innovations.
Collapse
Affiliation(s)
- Liu-Xi Chu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wen-Jia Wang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xin-Pei Gu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Ping Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Chen Gao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Quan Zhang
- Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitative Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Jia Wu
- Key Laboratory for Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Da-Wei Jiang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jun-Qing Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China
| | - Xin-Wang Ying
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jia-Men Shen
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi Jiang
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Li-Hua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 324025, Zhejiang, China
| | - Jun-Peng Xu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi-Bo Ying
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hao-Man Chen
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ao Fang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zun-Yong Feng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore.
| | - Shu-Hong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Xiao-Kun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Zhou-Guang Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
7
|
Gao H, Nepovimova E, Heger Z, Valko M, Wu Q, Kuca K, Adam V. Role of hypoxia in cellular senescence. Pharmacol Res 2023; 194:106841. [PMID: 37385572 DOI: 10.1016/j.phrs.2023.106841] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Senescent cells persist and continuously secrete proinflammatory and tissue-remodeling molecules that poison surrounding cells, leading to various age-related diseases, including diabetes, atherosclerosis, and Alzheimer's disease. The underlying mechanism of cellular senescence has not yet been fully explored. Emerging evidence indicates that hypoxia is involved in the regulation of cellular senescence. Hypoxia-inducible factor (HIF)- 1α accumulates under hypoxic conditions and regulates cellular senescence by modulating the levels of the senescence markers p16, p53, lamin B1, and cyclin D1. Hypoxia is a critical condition for maintaining tumor immune evasion, which is promoted by driving the expression of genetic factors (such as p53 and CD47) while triggering immunosenescence. Under hypoxic conditions, autophagy is activated by targeting BCL-2/adenovirus E1B 19-kDa interacting protein 3, which subsequently induces p21WAF1/CIP1 as well as p16Ink4a and increases β-galactosidase (β-gal) activity, thereby inducing cellular senescence. Deletion of the p21 gene increases the activity of the hypoxia response regulator poly (ADP-ribose) polymerase-1 (PARP-1) and the level of nonhomologous end joining (NHEJ) proteins, repairs DNA double-strand breaks, and alleviates cellular senescence. Moreover, cellular senescence is associated with intestinal dysbiosis and an accumulation of D-galactose derived from the gut microbiota. Chronic hypoxia leads to a striking reduction in the amount of Lactobacillus and D-galactose-degrading enzymes in the gut, producing excess reactive oxygen species (ROS) and inducing senescence in bone marrow mesenchymal stem cells. Exosomal microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play important roles in cellular senescence. miR-424-5p levels are decreased under hypoxia, whereas lncRNA-MALAT1 levels are increased, both of which induce cellular senescence. The present review focuses on recent advances in understanding the role of hypoxia in cellular senescence. The effects of HIFs, immune evasion, PARP-1, gut microbiota, and exosomal mRNA in hypoxia-mediated cell senescence are specifically discussed. This review increases our understanding of the mechanism of hypoxia-mediated cellular senescence and provides new clues for anti-aging processes and the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 500 05, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic.
| |
Collapse
|
8
|
Georgieva I, Tchekalarova J, Iliev D, Tzoneva R. Endothelial Senescence and Its Impact on Angiogenesis in Alzheimer's Disease. Int J Mol Sci 2023; 24:11344. [PMID: 37511104 PMCID: PMC10379128 DOI: 10.3390/ijms241411344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Endothelial cells are constantly exposed to environmental stress factors that, above a certain threshold, trigger cellular senescence and apoptosis. The altered vascular function affects new vessel formation and endothelial fitness, contributing to the progression of age-related diseases. This narrative review highlights the complex interplay between senescence, oxidative stress, extracellular vesicles, and the extracellular matrix and emphasizes the crucial role of angiogenesis in aging and Alzheimer's disease. The interaction between the vascular and nervous systems is essential for the development of a healthy brain, especially since neurons are exceptionally dependent on nutrients carried by the blood. Therefore, anomalies in the delicate balance between pro- and antiangiogenic factors and the consequences of disrupted angiogenesis, such as misalignment, vascular leakage and disturbed blood flow, are responsible for neurodegeneration. The implications of altered non-productive angiogenesis in Alzheimer's disease due to dysregulated Delta-Notch and VEGF signaling are further explored. Additionally, potential therapeutic strategies such as exercise and caloric restriction to modulate angiogenesis and vascular aging and to mitigate the associated debilitating symptoms are discussed. Moreover, both the roles of extracellular vesicles in stress-induced senescence and as an early detection marker for Alzheimer's disease are considered. The intricate relationship between endothelial senescence and angiogenesis provides valuable insights into the mechanisms underlying angiogenesis-related disorders and opens avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Irina Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 23, 1113 Sofia, Bulgaria
| | - Dimitar Iliev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. George Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
9
|
Rogers RS, Wang H, Durham TJ, Stefely JA, Owiti NA, Markhard AL, Sandler L, To TL, Mootha VK. Hypoxia extends lifespan and neurological function in a mouse model of aging. PLoS Biol 2023; 21:e3002117. [PMID: 37220109 PMCID: PMC10204955 DOI: 10.1371/journal.pbio.3002117] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/07/2023] [Indexed: 05/25/2023] Open
Abstract
There is widespread interest in identifying interventions that extend healthy lifespan. Chronic continuous hypoxia delays the onset of replicative senescence in cultured cells and extends lifespan in yeast, nematodes, and fruit flies. Here, we asked whether chronic continuous hypoxia is beneficial in mammalian aging. We utilized the Ercc1 Δ/- mouse model of accelerated aging given that these mice are born developmentally normal but exhibit anatomic, physiological, and biochemical features of aging across multiple organs. Importantly, they exhibit a shortened lifespan that is extended by dietary restriction, the most potent aging intervention across many organisms. We report that chronic continuous 11% oxygen commenced at 4 weeks of age extends lifespan by 50% and delays the onset of neurological debility in Ercc1 Δ/- mice. Chronic continuous hypoxia did not impact food intake and did not significantly affect markers of DNA damage or senescence, suggesting that hypoxia did not simply alleviate the proximal effects of the Ercc1 mutation, but rather acted downstream via unknown mechanisms. To the best of our knowledge, this is the first study to demonstrate that "oxygen restriction" can extend lifespan in a mammalian model of aging.
Collapse
Affiliation(s)
- Robert S Rogers
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hong Wang
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Timothy J Durham
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan A Stefely
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norah A Owiti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Andrew L Markhard
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lev Sandler
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tsz-Leung To
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Blagosklonny MV. Cellular senescence: when growth stimulation meets cell cycle arrest. Aging (Albany NY) 2023; 15:905-913. [PMID: 36805938 PMCID: PMC10008486 DOI: 10.18632/aging.204543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
At the very moment of cell-cycle arrest, the cell is not senescent yet. For several days in cell culture, the arrested cell is acquiring a senescent phenotype. What is happening during this geroconversion? Cellular enlargement (hypertrophy) and hyperfunctions (lysosomal and hyper-secretory) are hallmarks of geroconversion.
Collapse
|
11
|
You L, Nepovimova E, Valko M, Wu Q, Kuca K. Mycotoxins and cellular senescence: the impact of oxidative stress, hypoxia, and immunosuppression. Arch Toxicol 2023; 97:393-404. [PMID: 36434400 DOI: 10.1007/s00204-022-03423-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Mycotoxins induce oxidative stress, hypoxia, and cause immunosuppressive effects. Moreover, emerging evidence show that mycotoxins have a potential of inducing cellular senescence, which are involved in their immunomodulatory effects. Mycotoxins upregulate the expression of senescence markers γ-H2AX, senescence-associated β-galactosidase, p53, p16, and senescence-associated secretory phenotype (SASP) inflammatory factors. Moreover, mycotoxins cause senescence-associated cell cycle arrest by diminishing cyclin D1 and Cdk4 pathways, as well as increasing the expression of p53, p21, and CDK6. Mycotoxins may induce cellular senescence by activating reactive oxygen species (ROS)-induced oxidative stress. In addition, hypoxia acts as a double-edged sword on cell senescence; it could both act as the stress-induced senescence and also hinder the onset of cellular senescence. The SASP inflammatory factors have the ability to induce an immunosuppressive environment, while mycotoxins directly cause immunosuppression. Therefore, there is a potential relationship between mycotoxins and cellular senescence that synergistically cause immunosuppression. However, most of the current studies have involved the effect of mycotoxins on cell cycle arrest, but only limited in-depth research has been carried out to link the occurrence of this condition (cell cycle arrest) with cellular senescence.
Collapse
Affiliation(s)
- Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, 401520, China
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03, Hradec Králové, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
12
|
Mammalian eIF4E2-GSK3β maintains basal phosphorylation of p53 to resist senescence under hypoxia. Cell Death Dis 2022; 13:459. [PMID: 35568694 PMCID: PMC9107480 DOI: 10.1038/s41419-022-04897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Hypoxia modulates senescence, but their physiological link remains unclear. Here, we found that eIF4E2, a hypoxia-activated translation initiation factor, interacted with GSK3β to maintain phosphorylation of p53, thus resisting senescence under hypoxia. RNA-binding protein RBM38 interacted with eIF4E to inhibit the translation of p53, but GSK3β-mediated Ser195 phosphorylation disrupted the RBM38-eIF4E interaction. Through investigation of RBM38 phosphorylation, we found that the eIF4E2-GSK3β pathway specifically regulated proline-directed serine/threonine phosphorylation (S/T-P). Importantly, peptides e2-I or G3-I that blocking eIF4E2-GSK3β interaction can inhibit the basal S/T-P phosphorylation of p53 at multiple sites, therby inducing senescence through transcriptional inhibition. Additionally, a nanobody was screened via the domain where eIF4E2 bound to GSK3β, and this nanobody inhibited S/T-P phosphorylation to promote senescence. Furthermore, hypoxia inhibited eIF4E2-GSK3β pathway by mediating S-Nitrosylation of GSK3β. Blocking eIF4E2-GSK3β interaction promoted liver senescence under hypoxia, thus leading to liver fibrosis, eventually accelerating N, N-diethylnitrosamine (DEN)-induced tumorigenesis. Interestingly, eIF4E2 isoforms with GSK3β-binding motif exclusively exist in mammals, which protect zebrafish heart against hypoxia. Together, this study reveals a mammalian eIF4E2-GSK3β pathway that prevents senescence by maintaining basal S/T-P phosphorylation of p53, which underlies hypoxia adaptation of tissues.
Collapse
|
13
|
Osorio C, Sfera A, Anton JJ, Thomas KG, Andronescu CV, Li E, Yahia RW, Avalos AG, Kozlakidis Z. Virus-Induced Membrane Fusion in Neurodegenerative Disorders. Front Cell Infect Microbiol 2022; 12:845580. [PMID: 35531328 PMCID: PMC9070112 DOI: 10.3389/fcimb.2022.845580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
A growing body of epidemiological and research data has associated neurotropic viruses with accelerated brain aging and increased risk of neurodegenerative disorders. Many viruses replicate optimally in senescent cells, as they offer a hospitable microenvironment with persistently elevated cytosolic calcium, abundant intracellular iron, and low interferon type I. As cell-cell fusion is a major driver of cellular senescence, many viruses have developed the ability to promote this phenotype by forming syncytia. Cell-cell fusion is associated with immunosuppression mediated by phosphatidylserine externalization that enable viruses to evade host defenses. In hosts, virus-induced immune dysfunction and premature cellular senescence may predispose to neurodegenerative disorders. This concept is supported by novel studies that found postinfectious cognitive dysfunction in several viral illnesses, including human immunodeficiency virus-1, herpes simplex virus-1, and SARS-CoV-2. Virus-induced pathological syncytia may provide a unified framework for conceptualizing neuronal cell cycle reentry, aneuploidy, somatic mosaicism, viral spreading of pathological Tau and elimination of viable synapses and neurons by neurotoxic astrocytes and microglia. In this narrative review, we take a closer look at cell-cell fusion and vesicular merger in the pathogenesis of neurodegenerative disorders. We present a "decentralized" information processing model that conceptualizes neurodegeneration as a systemic illness, triggered by cytoskeletal pathology. We also discuss strategies for reversing cell-cell fusion, including, TMEM16F inhibitors, calcium channel blockers, senolytics, and tubulin stabilizing agents. Finally, going beyond neurodegeneration, we examine the potential benefit of harnessing fusion as a therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Jonathan J. Anton
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Karina G. Thomas
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Christina V. Andronescu
- Medical Anthropology – Department of Anthropology, Stanford University, Stanford, CA, United States
| | - Erica Li
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Rayan W. Yahia
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Andrea García Avalos
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina Campus, Ciudad de Mexico, Mexico
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
14
|
Qi J, Ouyang Z. Targeting CDK4/6 for Anticancer Therapy. Biomedicines 2022; 10:685. [PMID: 35327487 PMCID: PMC8945444 DOI: 10.3390/biomedicines10030685] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/26/2022] Open
Abstract
Cyclin-dependent kinase 4/6 (CDK4/6) are key regulators of the cell cycle and are deemed as critical therapeutic targets of multiple cancers. Various approaches have been applied to silence CDK4/6 at different levels, i.e., CRISPR to knock out at the DNA level, siRNA to inhibit translation, and drugs that target the protein of interest. Here we summarize the current status in this field, highlighting the mechanisms of small molecular inhibitors treatment and drug resistance. We describe approaches to combat drug resistance, including combination therapy and PROTACs drugs that degrade the kinases. Finally, critical issues and perspectives in the field are outlined.
Collapse
Affiliation(s)
- Jiating Qi
- The Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Zhuqing Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
15
|
Gems D. The hyperfunction theory: An emerging paradigm for the biology of aging. Ageing Res Rev 2022; 74:101557. [PMID: 34990845 PMCID: PMC7612201 DOI: 10.1016/j.arr.2021.101557] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
The process of senescence (aging) is predominantly determined by the action of wild-type genes. For most organisms, this does not reflect any adaptive function that senescence serves, but rather evolutionary effects of declining selection against genes with deleterious effects later in life. To understand aging requires an account of how evolutionary mechanisms give rise to pathogenic gene action and late-life disease, that integrates evolutionary (ultimate) and mechanistic (proximate) causes into a single explanation. A well-supported evolutionary explanation by G.C. Williams argues that senescence can evolve due to pleiotropic effects of alleles with antagonistic effects on fitness and late-life health (antagonistic pleiotropy, AP). What has remained unclear is how gene action gives rise to late-life disease pathophysiology. One ultimate-proximate account is T.B.L. Kirkwood's disposable soma theory. Based on the hypothesis that stochastic molecular damage causes senescence, this reasons that aging is coupled to reproductive fitness due to preferential investment of resources into reproduction, rather than somatic maintenance. An alternative and more recent ultimate-proximate theory argues that aging is largely caused by programmatic, developmental-type mechanisms. Here ideas about AP and programmatic aging are reviewed, particularly those of M.V. Blagosklonny (the hyperfunction theory) and J.P. de Magalhães (the developmental theory), and their capacity to make sense of diverse experimental findings is assessed.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
16
|
Niklander SE, Lambert DW, Hunter KD. Senescent Cells in Cancer: Wanted or Unwanted Citizens. Cells 2021; 10:cells10123315. [PMID: 34943822 PMCID: PMC8699088 DOI: 10.3390/cells10123315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023] Open
Abstract
Over recent decades, the field of cellular senescence has attracted considerable attention due to its association with aging, the development of age-related diseases and cancer. Senescent cells are unable to proliferate, as the pathways responsible for initiating the cell cycle are irreversibly inhibited. Nevertheless, senescent cells accumulate in tissues and develop a pro-inflammatory secretome, known as the senescence-associated secretory phenotype (SASP), which can have serious deleterious effects if not properly regulated. There is increasing evidence suggesting senescent cells contribute to different stages of carcinogenesis in different anatomical sites, mainly due to the paracrine effects of the SASP. Thus, a new therapeutic field, known as senotherapeutics, has developed. In this review, we aim to discuss the molecular mechanisms underlying the senescence response and its relationship with cancer development, focusing on the link between senescence-related inflammation and cancer. We will also discuss different approaches to target senescent cells that might be of use for cancer treatment.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patologia y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar 2520000, Chile
- Correspondence: ; Tel.: +56-(32)2845108
| | - Daniel W. Lambert
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Oral Biology and Pathology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
17
|
Wiley CD, Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab 2021; 3:1290-1301. [PMID: 34663974 PMCID: PMC8889622 DOI: 10.1038/s42255-021-00483-8] [Citation(s) in RCA: 340] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Cellular senescence entails a permanent proliferative arrest, coupled to multiple phenotypic changes. Among these changes is the release of numerous biologically active molecules collectively known as the senescence-associated secretory phenotype, or SASP. A growing body of literature indicates that both senescence and the SASP are sensitive to cellular and organismal metabolic states, which in turn can drive phenotypes associated with metabolic dysfunction. Here, we review the current literature linking senescence and metabolism, with an eye toward findings at the cellular level, including both metabolic inducers of senescence and alterations in cellular metabolism associated with senescence. Additionally, we consider how interventions that target either metabolism or senescent cells might influence each other and mitigate some of the pro-aging effects of cellular senescence. We conclude that the most effective interventions will likely break a degenerative feedback cycle by which cellular senescence promotes metabolic diseases, which in turn promote senescence.
Collapse
Affiliation(s)
- Christopher D Wiley
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, CA, USA.
- Buck Institute for Research on Aging, Novato, CA, USA.
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
18
|
Anti-aging: senolytics or gerostatics (unconventional view). Oncotarget 2021; 12:1821-1835. [PMID: 34504654 PMCID: PMC8416555 DOI: 10.18632/oncotarget.28049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Senolytics are basically anti-cancer drugs, repurposed to kill senescent cells selectively. It is even more difficult to selectively kill senescent cells than to kill cancer cells. Based on lessons of cancer therapy, here I suggest how to exploit oncogene-addiction and to combine drugs to achieve selectivity. However, even if selective senolytic combinations will be developed, there is little evidence that a few senescent cells are responsible for organismal aging. I also discuss gerostatics, such as rapamycin and other rapalogs, pan-mTOR inhibitors, dual PI3K/mTOR inhibitors, which inhibit growth- and aging-promoting pathways. Unlike senolytics, gerostatics do not kill cells but slow down cellular geroconversion to senescence. Numerous studies demonstrated that inhibition of the mTOR pathways by any means (genetic, pharmacological and dietary) extends lifespan. Currently, only two studies demonstrated that senolytics (fisetin and a combination Dasatinib plus Quercetin) extend lifespan in mice. These senolytics slightly inhibit the mTOR pathway. Thus, life extension by these senolytics can be explained by their slight rapamycin-like (gerostatic) effects.
Collapse
|
19
|
Otero-Albiol D, Carnero A. Cellular senescence or stemness: hypoxia flips the coin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:243. [PMID: 34325734 PMCID: PMC8323321 DOI: 10.1186/s13046-021-02035-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a complex physiological state whose main feature is proliferative arrest. Cellular senescence can be considered the reverse of cell immortalization and continuous tumor growth. However, cellular senescence has many physiological functions beyond being a putative tumor suppressive trait. It remains unknown whether low levels of oxygen or hypoxia, which is a feature of every tissue in the organism, modulate cellular senescence, altering its capacity to suppress the limitation of proliferation. It has been observed that the lifespan of mammalian primary cells is increased under low oxygen conditions. Additionally, hypoxia promotes self-renewal and pluripotency maintenance in adult and embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and cancer stem cells (CSCs). In this study, we discuss the role of hypoxia facilitating senescence bypass during malignant transformation and acquisition of stemness properties, which all contribute to tumor development and cancer disease aggressiveness.
Collapse
Affiliation(s)
- Daniel Otero-Albiol
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain.,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013, Seville, Spain. .,CIBER de CANCER, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
20
|
Shatrova AN, Burova EB, Kharchenko MV, Smirnova IS, Lyublinskaya OG, Nikolsky NN, Borodkina AV. Outcomes of Deferoxamine Action on H 2O 2-Induced Growth Inhibition and Senescence Progression of Human Endometrial Stem Cells. Int J Mol Sci 2021; 22:6035. [PMID: 34204881 PMCID: PMC8199751 DOI: 10.3390/ijms22116035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are broadly applied in regenerative therapy to replace cells that are lost or impaired during disease. The low survival rate of MSCs after transplantation is one of the major limitations heavily influencing the success of the therapy. Unfavorable microenvironments with inflammation and oxidative stress in the damaged regions contribute to MSCs loss. Most of the strategies developed to overcome this obstacle are aimed to prevent stress-induced apoptosis, with little attention paid to senescence-another common stress reaction of MSCs. Here, we proposed the strategy to prevent oxidative stress-induced senescence of human endometrial stem cells (hMESCs) based on deferoxamine (DFO) application. DFO prevented DNA damage and stress-induced senescence of hMESCs, as evidenced by reduced levels of reactive oxygen species, lipofuscin, cyclin D1, decreased SA-β-Gal activity, and improved mitochondrial function. Additionally, DFO caused accumulation of HIF-1α, which may contribute to the survival of H2O2-treated cells. Importantly, cells that escaped senescence due to DFO preconditioning preserved all the properties of the initial hMESCs. Therefore, once protecting cells from oxidative damage, DFO did not alter further hMESCs functioning. The data obtained may become the important prerequisite for development of a new strategy in regenerative therapy based on MSCs preconditioning using DFO.
Collapse
Affiliation(s)
- Alla N. Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (E.B.B.); (M.V.K.); (I.S.S.); (O.G.L.); (N.N.N.); (A.V.B.)
| | | | | | | | | | | | | |
Collapse
|
21
|
Cui X, Pan G, Chen Y, Guo X, Liu T, Zhang J, Yang X, Cheng M, Gao H, Jiang F. The p53 pathway in vasculature revisited: A therapeutic target for pathological vascular remodeling? Pharmacol Res 2021; 169:105683. [PMID: 34019981 DOI: 10.1016/j.phrs.2021.105683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Pathological vascular remodeling contributes to the development of restenosis following intraluminal interventions, transplant vasculopathy, and pulmonary arterial hypertension. Activation of the tumor suppressor p53 may counteract vascular remodeling by inhibiting aberrant proliferation of vascular smooth muscle cells and repressing vascular inflammation. In particular, the development of different lines of small-molecule p53 activators ignites the hope of treating remodeling-associated vascular diseases by targeting p53 pharmacologically. In this review, we discuss the relationships between p53 and pathological vascular remodeling, and summarize current experimental data suggesting that drugging the p53 pathway may represent a novel strategy to prevent the development of vascular remodeling.
Collapse
Affiliation(s)
- Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Guopin Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ye Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tengfei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
22
|
van Vliet T, Varela-Eirin M, Wang B, Borghesan M, Brandenburg SM, Franzin R, Evangelou K, Seelen M, Gorgoulis V, Demaria M. Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression. Mol Cell 2021; 81:2041-2052.e6. [PMID: 33823141 DOI: 10.1016/j.molcel.2021.03.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/21/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of stable proliferative arrest triggered by damaging signals. Senescent cells persist during aging and promote age-related pathologies via the pro-inflammatory senescence-associated secretory phenotype (SASP), whose regulation depends on environmental factors. In vivo, a major environmental variable is oxygenation, which varies among and within tissues. Here, we demonstrate that senescent cells express lower levels of detrimental pro-inflammatory SASP factors in physiologically hypoxic environments, as measured in culture and in tissues. Mechanistically, exposure of senescent cells to low-oxygen conditions leads to AMPK activation and AMPK-mediated suppression of the mTOR-NF-κB signaling loop. Finally, we demonstrate that treatment with hypoxia-mimetic compounds reduces SASP in cells and tissues and improves strength in chemotherapy-treated and aged mice. Our findings highlight the importance of oxygen as a determinant for pro-inflammatory SASP expression and offer a potential new strategy to reduce detrimental paracrine effects of senescent cells.
Collapse
Affiliation(s)
- Thijmen van Vliet
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Marta Varela-Eirin
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Michela Borghesan
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Simone M Brandenburg
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands
| | - Rossana Franzin
- Experimental Nephrology Department, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, the Netherlands
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Marc Seelen
- Experimental Nephrology Department, University Medical Center Groningen, University of Groningen, Groningen, 9713 GZ, the Netherlands
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9NQ, UK; Biomedical Research Foundation, Academy of Athens, Athens 115 27, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, 9713 AV, the Netherlands.
| |
Collapse
|
23
|
van Vliet T, Casciaro F, Demaria M. To breathe or not to breathe: Understanding how oxygen sensing contributes to age-related phenotypes. Ageing Res Rev 2021; 67:101267. [PMID: 33556549 DOI: 10.1016/j.arr.2021.101267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Aging is characterized by a progressive loss of tissue integrity and functionality due to disrupted homeostasis. Molecular oxygen is pivotal to maintain tissue functions, and aerobic species have evolved a sophisticated sensing system to ensure proper oxygen supply and demand. It is not surprising that aberrations in oxygen and oxygen-associated pathways subvert health and promote different aspects of aging. In this review, we discuss emerging findings on how oxygen-sensing mechanisms regulate different cellular and molecular processes during normal physiology, and how dysregulation of oxygen availability lead to disease and aging. We describe various clinical manifestations associated with deregulation of oxygen balance, and how oxygen-modulating therapies and natural oxygen oscillations influence longevity. We conclude by discussing how a better understanding of oxygen-related mechanisms that orchestrate aging processes may lead to the development of new therapeutic strategies to extend healthy aging.
Collapse
|
24
|
Blagosklonny MV. The goal of geroscience is life extension. Oncotarget 2021; 12:131-144. [PMID: 33613842 PMCID: PMC7869575 DOI: 10.18632/oncotarget.27882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Although numerous drugs seemingly extend healthspan in mice, only a few extend lifespan in mice and only one does it consistently. Some of them, alone or in combination, can be used in humans, without further clinical trials.
Collapse
|
25
|
Hendrychová D, Jorda R, Kryštof V. How selective are clinical CDK4/6 inhibitors? Med Res Rev 2020; 41:1578-1598. [PMID: 33300617 DOI: 10.1002/med.21769] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 11/29/2020] [Indexed: 12/29/2022]
Abstract
Pharmacological inhibition of cyclin-dependent kinase 4/6 (CDK4/6) has emerged as an efficient approach for treating breast cancer, and its clinical potential is expanding to other cancers. CDK4/6 inhibitors were originally believed to act by arresting proliferation in the G1 phase, but it is gradually becoming clear that the cellular response to these compounds is far more complex than this. Multiple context-dependent mechanisms of action are emerging, involving modulation of quiescence, senescence, autophagy, cellular metabolism, and enhanced tumor cell immunogenicity. These mechanisms may be driven by interactions with unexpected targets. We review cellular responses to the Food and Drug Administration-approved CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib, and summarize available knowledge of other drugs undergoing clinical trials, including data on their off-target landscapes. We emphasize the importance of comprehensively characterizing drugs' selectivity profiles to maximize their clinical efficacy and safety and to facilitate their repurposing to treat additional diseases based on their target spectrum.
Collapse
Affiliation(s)
- Denisa Hendrychová
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
26
|
Resnik SR, Egger A, Abdo Abujamra B, Jozic I. Clinical Implications of Cellular Senescence on Wound Healing. CURRENT DERMATOLOGY REPORTS 2020. [DOI: 10.1007/s13671-020-00320-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Manipulation of immune‒vascular crosstalk: new strategies towards cancer treatment. Acta Pharm Sin B 2020; 10:2018-2036. [PMID: 33304777 PMCID: PMC7714955 DOI: 10.1016/j.apsb.2020.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor vasculature is characterized by aberrant structure and function, resulting in immune suppressive profiles of tumor microenvironment through limiting immune cell infiltration into tumors, endogenous immune surveillance and immune cell function. Vascular normalization as a novel therapeutic strategy tends to prune some of the immature blood vessels and fortify the structure and function of the remaining vessels, thus improving immune stimulation and the efficacy of immunotherapy. Interestingly, the presence of "immune‒vascular crosstalk" enables the formation of a positive feedback loop between vascular normalization and immune reprogramming, providing the possibility to develop new cancer therapeutic strategies. The applications of nanomedicine in vascular-targeting therapy in cancer have gained increasing attention due to its specific physical and chemical properties. Here, we reviewed the recent advances of effective routes, especially nanomedicine, for normalizing tumor vasculature. We also summarized the development of enhancing nanoparticle-based anticancer drug delivery via the employment of transcytosis and mimicking immune cell extravasation. This review explores the potential to optimize nanomedicine-based therapeutic strategies as an alternative option for cancer treatment.
Collapse
|
28
|
Bjedov I, Rallis C. The Target of Rapamycin Signalling Pathway in Ageing and Lifespan Regulation. Genes (Basel) 2020; 11:E1043. [PMID: 32899412 PMCID: PMC7565554 DOI: 10.3390/genes11091043] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
Ageing is a complex trait controlled by genes and the environment. The highly conserved mechanistic target of rapamycin signalling pathway (mTOR) is a major regulator of lifespan in all eukaryotes and is thought to be mediating some of the effects of dietary restriction. mTOR is a rheostat of energy sensing diverse inputs such as amino acids, oxygen, hormones, and stress and regulates lifespan by tuning cellular functions such as gene expression, ribosome biogenesis, proteostasis, and mitochondrial metabolism. Deregulation of the mTOR signalling pathway is implicated in multiple age-related diseases such as cancer, neurodegeneration, and auto-immunity. In this review, we briefly summarise some of the workings of mTOR in lifespan and ageing through the processes of transcription, translation, autophagy, and metabolism. A good understanding of the pathway's outputs and connectivity is paramount towards our ability for genetic and pharmacological interventions for healthy ageing and amelioration of age-related disease.
Collapse
Affiliation(s)
- Ivana Bjedov
- UCL Cancer Institute, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
29
|
Remifentanil preconditioning protects against hypoxia-induced senescence and necroptosis in human cardiac myocytes in vitro. Aging (Albany NY) 2020; 12:13924-13938. [PMID: 32584786 PMCID: PMC7425462 DOI: 10.18632/aging.103604] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/09/2020] [Indexed: 01/10/2023]
Abstract
Remifentanil and other opioids are suggested to be protective against ischemia-reperfusion injury in animal models and coronary artery bypass surgery patients, however the molecular basis of such protection is far from being understood. In the present study, we have used a model of human cardiomyocytes treated with the hypoxia-mimetic agent cobalt chloride to investigate remifentanil preconditioning-based adaptive responses and underlying mechanisms. Hypoxic conditions promoted oxidative and nitrosative stress, p21-mediated cellular senescence and the activation of necroptotic pathway that was accompanied by a 2.2-, 9.6- and 8.2-fold increase in phosphorylation status of mixed lineage kinase domain-like pseudokinase (MLKL) and release of pro-inflammatory cytokine IL-8 and cardiac troponin I, a marker of myocardial damage, respectively. Remifentanil preconditioning was able to lower hypoxia-mediated protein carbonylation and limit MLKL-based signaling and pro-inflammatory response to almost normoxic control levels, and decrease hypoxia-induced pro-senescent activity of about 21% compared to control hypoxic conditions. In summary, we have shown for the first time that remifentanil can protect human cardiomyocytes against hypoxia-induced cellular senescence and necroptosis that may have importance with respect to the use of remifentanil to diminish myocardial ischemia and reperfusion injury in patients undergoing cardiac surgery.
Collapse
|
30
|
Blagosklonny MV. From causes of aging to death from COVID-19. Aging (Albany NY) 2020; 12:10004-10021. [PMID: 32534452 PMCID: PMC7346074 DOI: 10.18632/aging.103493] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
COVID-19 is not deadly early in life, but mortality increases exponentially with age, which is the strongest predictor of mortality. Mortality is higher in men than in women, because men age faster, and it is especially high in patients with age-related diseases, such as diabetes and hypertension, because these diseases are manifestations of aging and a measure of biological age. At its deepest level, aging (a program-like continuation of developmental growth) is driven by inappropriately high cellular functioning. The hyperfunction theory of quasi-programmed aging explains why COVID-19 vulnerability (lethality) is an age-dependent syndrome, linking it to other age-related diseases. It also explains inflammaging and immunosenescence, hyperinflammation, hyperthrombosis, and cytokine storms, all of which are associated with COVID-19 vulnerability. Anti-aging interventions, such as rapamycin, may slow aging and age-related diseases, potentially decreasing COVID-19 vulnerability.
Collapse
|
31
|
Sarkar A, Acharya S, Khushvant K, Purkait K, Mukherjee A. Cytotoxic Ru II-p-cymene complexes of an anthraimidazoledione: halide dependent solution stability, reactivity and resistance to hypoxia deactivation. Dalton Trans 2019; 48:7187-7197. [PMID: 30601545 DOI: 10.1039/c8dt04687e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RuII-(η6-p-cymene) complexes of anthraimidazoldione (PAIDH) based ligand bearing the formula [RuII(η6-p-cymene)(PAIDH)(X)]+ (where, X = Cl, Br and I) showed excellent in vitro antiproliferative activity (IC50 range 1-2 μM) against hepatocellular carcinoma (HepG2), human pancreatic carcinoma (MIA PaCa-2) and triple negative human metastatic breast adenocarcinoma (MDA-MB-231). The ESI-MS and 1H NMR data show that the complexes are stable in aqueous solution at pH 7.4 (4 mM NaCl) with less than 10% hydrolysis in 24 h. However, when the coordinated halide is bromo (2) or iodo (3), the complex exchanges the halide with chloride in solution. The exchange is dependent on chloride concentration. Fastest chloride exchange was observed for the bromo complex 2 and slowest for the iodo complex 3 showing the higher kinetic inertness of the latter. Complex 3 exhibits the weakest interaction with glutathione (GSH) and 9-ethylguanine (9-EtG) in the series. ESI-MS studies of a 20% methanolic solution of 3 in 4 mM aqueous NaCl showed 80% intact complex even after 24 h of incubation with 9-EtG or GSH. 1-3 show similar in vitro cytotoxicity profile, but based on combined results from solution stability and cytotoxicity, the iodo complex 3 seems to be the best one in the series. There is no deterioration of toxicity under hypoxia or by induction of GSH in HepG2 cells. The low cytotoxicity of the complexes against difficult to treat triple negative breast carcinoma viz. MDA-MB-231 in vitro (IC50 = 1.5 ± 0.1 μM) is very encouraging, compared with cytotoxicity of clinical drug cisplatin (IC50 = 37.2 ± 2.5 μM). The complexes can alter mitochondrial membrane potential, arrest the cell cycle in G0/G1 phase and kill cells via apoptosis. They inhibit migration of the metastatic MDA-MB-231 cells at IC20 dose.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus-741246, India.
| | | | | | | | | |
Collapse
|
32
|
García-Venzor A, Mandujano-Tinoco EA, Lizarraga F, Zampedri C, Krötzsch E, Salgado RM, Dávila-Borja VM, Encarnación-Guevara S, Melendez-Zajgla J, Maldonado V. Microenvironment-regulated lncRNA-HAL is able to promote stemness in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118523. [PMID: 31401107 DOI: 10.1016/j.bbamcr.2019.118523] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/12/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
Abstract
Multicellular Tumor Spheroids culture (MCTS) is an in vitro model mimicking the characteristics of the tumor microenvironment, such as hypoxia and acidosis, resulting in the presence of both proliferating and quiescent cell populations. lncRNA's is a novel group of regulatory molecules that participates in the acquisition of tumorigenic phenotypes. In the present work we evaluated the oncogenic association of an uncharacterized lncRNA (lncRNA-HAL) in the tumorigenic phenotype induced by the MCTS microenvironment. We measured lncRNA-HAL expression level in MCF-7-MCTS populations and under different hypoxic conditions by RT-qPCR. Afterwards, we silenced lncRNA-HAL expression by shRNAs and evaluated its effect in MCF-7 transcriptome (by RNAseq) and validated the modified cellular processes by proliferation, migration, and stem cells assays. Finally, we analyzed which proteins interacts with lncRNA-HAL by ChIRP assay, to propose a possible molecular mechanism for this lncRNA. We found that lncRNA-HAL is overexpressed in the internal quiescent populations (p27 positive populations) of MCF-7-MCTS, mainly in the quiescent stem cell population, being hypoxia one of the microenvironmental cues responsible of its overexpression. Transcriptome analysis of lncRNA-HAL knockdown MCF7 cells revealed that lncRNA-HAL effect is associated with proliferation, migration and cell survival mechanisms; moreover, lncRNA-HAL silencing increased cell proliferation and impaired cancer stem cell proportion and function, resulting in decreased tumor grafting in vivo. In addition, we found that this lncRNA was overexpressed in triple-negative breast cancer patients. Analysis by ChIRP assay showed that this nuclear lncRNA binds to histones and hnRNPs suggesting a participation at the chromatin level and transcriptional regulation. The results obtained in the present work suggest that the function of lncRNA-HAL is associated with quiescent stem cell populations, which in turn is relevant due to its implications in cancer cell survival and resistance against treatment in vivo. Altogether, our data highlights a new lncRNA whose expression is regulated by the tumor microenvironment and associated to stemness in breast cancer.
Collapse
Affiliation(s)
- Alfredo García-Venzor
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Edna Ayerim Mandujano-Tinoco
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico; Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Mexico City, Mexico
| | - Floria Lizarraga
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Cecilia Zampedri
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Edgar Krötzsch
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Mexico City, Mexico
| | - Rosa María Salgado
- Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra", Mexico City, Mexico
| | | | - Sergio Encarnación-Guevara
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, Mexico
| | - Jorge Melendez-Zajgla
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico
| | - Vilma Maldonado
- Epigenetics, Instituto Nacional de Medicina Genomica, Periferico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico.
| |
Collapse
|
33
|
PI3K/AKT/mTOR Signaling Regulates the Virus/Host Cell Crosstalk in HPV-Positive Cervical Cancer Cells. Int J Mol Sci 2019; 20:ijms20092188. [PMID: 31058807 PMCID: PMC6539191 DOI: 10.3390/ijms20092188] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Human papillomavirus (HPV)-induced cancers will remain a significant clinical challenge for decades. Thus, the development of novel treatment strategies is urgently required, which should benefit from improving our understanding of the mechanisms of HPV-induced cell transformation. This should also include analyses of hypoxic tumor cells, which represent a major problem for cancer therapy. Recent evidence indicates that the PI3K/AKT/mTOR network plays a key role for the virus/host cell crosstalk in both normoxic and hypoxic HPV-positive cancer cells. In normoxic cells, the efficacy of the senescence induction upon experimental E6/E7 repression depends on active mTORC1 signaling. Under hypoxia, however, HPV-positive cancer cells can evade senescence due to hypoxic impairment of mTORC1 signaling, albeit the cells strongly downregulate E6/E7. Hypoxic repression of E6/E7 is mediated by the AKT kinase, which is activated under hypoxia by its canonical upstream regulators mTORC2 and PI3K. This review highlights our current knowledge about the oxygen-dependent crosstalk of the PI3K/AKT/mTOR signaling circuit with the HPV oncogenes and the phenotypic state of the host cell. Moreover, since the PI3K/AKT/mTOR pathway is considered to be a promising target for anticancer therapy, we discuss clinical implications for the treatment of HPV-positive cervical and head and neck squamous cell carcinomas.
Collapse
|
34
|
Korski KI, Kubli DA, Wang BJ, Khalafalla FG, Monsanto MM, Firouzi F, Echeagaray OH, Kim T, Adamson RM, Dembitsky WP, Gustafsson ÅB, Sussman MA. Hypoxia Prevents Mitochondrial Dysfunction and Senescence in Human c-Kit + Cardiac Progenitor Cells. Stem Cells 2019; 37:555-567. [PMID: 30629785 DOI: 10.1002/stem.2970] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
Senescence-associated dysfunction deleteriously affects biological activities of human c-Kit+ cardiac progenitor cells (hCPCs), particularly under conditions of in vitro culture. In comparison, preservation of self-renewal and decreases in mitochondrial reactive oxygen species (ROS) are characteristics of murine CPCs in vivo that reside within hypoxic niches. Recapitulating hypoxic niche oxygen tension conditions of ∼1% O2 in vitro for expansion of hCPCs rather than typical normoxic cell culture conditions (21% O2 ) could provide significant improvement of functional and biological activities of hCPCs. hCPCs were isolated and expanded under permanent hypoxic (hCPC-1%) or normoxic (hCPC-21%) conditions from left ventricular tissue explants collected during left ventricular assist device implantation. hCPC-1% exhibit increased self-renewal and suppression of senescence characteristics relative to hCPC-21%. Oxidative stress contributed to higher susceptibility to apoptosis, as well as decreased mitochondrial function in hCPC-21%. Hypoxia prevented accumulation of dysfunctional mitochondria, supporting higher oxygen consumption rates and mitochondrial membrane potential. Mitochondrial ROS was an upstream mediator of senescence since treatment of hCPC-1% with mitochondrial inhibitor antimycin A recapitulated mitochondrial dysfunction and senescence observed in hCPC-21%. NAD+ /NADH ratio and autophagic flux, which are key factors for mitochondrial function, were higher in hCPC-1%, but hCPC-21% were highly dependent on BNIP3/NIX-mediated mitophagy to maintain mitochondrial function. Overall, results demonstrate that supraphysiological oxygen tension during in vitro expansion initiates a downward spiral of oxidative stress, mitochondrial dysfunction, and cellular energy imbalance culminating in early proliferation arrest of hCPCs. Senescence is inhibited by preventing ROS through hypoxic culture of hCPCs. Stem Cells 2019;37:555-567.
Collapse
Affiliation(s)
- Kelli I Korski
- Department of Biology and Integrated Regenerative Research Institute, San Diego State University, San Diego, California, USA
| | - Dieter A Kubli
- Department of Biology and Integrated Regenerative Research Institute, San Diego State University, San Diego, California, USA
| | - Bingyan J Wang
- Department of Biology and Integrated Regenerative Research Institute, San Diego State University, San Diego, California, USA
| | - Farid G Khalafalla
- Department of Biology and Integrated Regenerative Research Institute, San Diego State University, San Diego, California, USA
| | - Megan M Monsanto
- Department of Biology and Integrated Regenerative Research Institute, San Diego State University, San Diego, California, USA
| | - Fareheh Firouzi
- Department of Biology and Integrated Regenerative Research Institute, San Diego State University, San Diego, California, USA
| | - Oscar H Echeagaray
- Department of Biology and Integrated Regenerative Research Institute, San Diego State University, San Diego, California, USA
| | - Taeyong Kim
- Department of Biology and Integrated Regenerative Research Institute, San Diego State University, San Diego, California, USA
| | - Robert M Adamson
- Division of Cardiology, Sharp Hospital, San Diego, California, USA
| | | | - Åsa B Gustafsson
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, University of California San Diego, La Jolla, California, USA
| | - Mark A Sussman
- Department of Biology and Integrated Regenerative Research Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
35
|
Abstract
Purpose of Review The concept of cellular senescence has been evolving. Although originally proposed based on studies of serum-driven replication of cell lines in vitro, it is now clear that cellular senescence occurs in vivo. It has also become clear that cellular senescence can be triggered by a number of stimuli such as radiation, chemotherapy, activation of oncogenes, metabolic derangements, and chronic inflammation. Recent Findings As we learn more about the mechanisms of cellular aging, it has become important to ask whether accelerated cellular senescence occurs in lupus and other systemic rheumatologic diseases. Summary Accelerated cellular aging may be one explanation for some of the excess morbidity and mortality seen in lupus patients. If so, drugs targeting cellular senescence may provide new options for preventing long-term complications such as organ failure in systemic lupus erythematosus patients.
Collapse
Affiliation(s)
- Lin Gao
- Allergy Immunology Rheumatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Maria Slack
- Allergy Immunology Rheumatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jennifer Anolik
- Allergy Immunology Rheumatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R John Looney
- Allergy Immunology Rheumatology Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
36
|
Abstract
Rapamycin inhibits cell proliferation, yet preserves (re)-proliferative potential (RPP). RPP is a potential of quiescent cells that is lost in senescent cells. mTOR drives conversion from quiescence to senescence (geroconversion). By suppressing geroconversion, rapamycin preserves RPP. Geroconversion is characterized by proliferation-like levels of phospho-S6K/S6/4E-BP1 in nonproliferating cells arrested by p16 and/or p21. mTOR-driven geroconversion is associated with cellular hyperfunction, which in turn leads to organismal aging manifested by age-related diseases.
Collapse
|
37
|
Abstract
We have shown that cytoplasmic actin isoforms play different roles in neoplastic cell transformation. β-Cytoplasmic actin acts as a tumor suppressor, affecting epithelial differentiation, cell growth, cell invasion and tumor growth of colon and lung carcinoma cells. In contrast, γ-cytoplasmic actin enhances malignant features of tumor cells whose actin network regulation is carried out via the γ-actin isoform. The goal of this study was to describe the role of cytoplasmic actins in cell cycle regulation of breast cancer cell lines MCF-7 and MDA-MB-231. The distinct roles of each cytoplasmic actin in the cell cycle driving were observed. β-Actin as well as γ-actin down-regulation inhibited proliferation of breast cancer cells, but only down-regulation of β-actin induced a significant decrease in diploid cell population and accumulation of tetraploid cells. Down-regulation of β-actin stimulated cyclin A2, B1 and D3 expression, whereas down-regulation of γ-actin reduced expression of these cyclins in both cell lines. Moreover, cyclin B1 and γ-actin were co-localized in mitotic control and β-actin-deficient cells. In mitotic MCF-7 cells down-regulation of β-actin caused an enrichment of prophase/metaphase population compared with control. γ-Actin down-regulation induced telophase enrichment. ERK1/2 and γ-actin co-localization and possible selective binding were revealed in MCF7 cells. β-Actin down-regulation induced ERK1/2 activation, while γ-actin down-regulation led to reduction of p-ERK1/2. A direct interaction of ERK1/2 with γ-actin and cyclin A2 in the same protein complex was also discovered. We suggest that γ-actin down-regulation leads to decrease of cyclin A2 level, inhibits ERK1/2 signaling and deceleration of breast cancer cells proliferation.
Collapse
Affiliation(s)
- Vera Dugina
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Galina Shagieva
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | | | - Pavel Kopnin
- b Blokhin Russian Cancer Research Center , Moscow , Russia
| |
Collapse
|
38
|
Zhang K, Zhang L, Liu W, Ma X, Cen J, Sun Z, Wang C, Feng S, Zhang Z, Yue L, Sun L, Zhu Z, Chen X, Feng A, Wu J, Jiang Z, Li P, Cheng X, Gao D, Peng L, Hui L. In Vitro Expansion of Primary Human Hepatocytes with Efficient Liver Repopulation Capacity. Cell Stem Cell 2018; 23:806-819.e4. [PMID: 30416071 DOI: 10.1016/j.stem.2018.10.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022]
Abstract
Transplantation of human hepatocytes (HHs) holds significant potential for treating liver diseases. However, the supply of transplantable HHs is severely constrained by limited donor availability and compromised capacity for in vitro expansion. In response to chronic injury, some HHs are reprogrammed into proliferative cells that express both hepatocyte and progenitor markers, suggesting exploitable strategies for expanding HHs in vitro. Here, we report defined medium conditions that allow 10,000-fold expansion of HHs. These proliferating HHs are bi-phenotypic, partially retaining hepatic features while gaining expression of progenitor-associated genes. Importantly, these cells engraft into injured mouse liver at a level comparable to primary HHs, and they undergo maturation following transplantation in vivo or differentiation in vitro. Thus, this study provides a protocol that enables large-scale expansion of transplantable HHs, which could be further developed for modeling and treating human liver disease.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Wenming Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Sisi Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhengtao Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Liyun Yue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lulu Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenfeng Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaotao Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Anqi Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiaying Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiwu Jiang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xin Cheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China; Stem Cell and Regenerative Medicine Innovation Academy, Beijing 100101, China.
| |
Collapse
|
39
|
Fontana L, Nehme J, Demaria M. Caloric restriction and cellular senescence. Mech Ageing Dev 2018; 176:19-23. [PMID: 30395873 DOI: 10.1016/j.mad.2018.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a state of irreversible growth arrest characterized by hypertrophy and secretion of various bioactive molecules, a phenomenon defined the Senescence-Associated Secretory Phenotype (SASP). Senescent cells are implicated in a number of biological functions, from embryogenesis to aging. Significantly, excessive accumulation of senescent cells is associated to a decline of regenerative capacity and chronic inflammation. In accordance, the removal of senescent cells is sufficient to delay several pathologies and promote healthspan. Calorie restriction (CR) without malnutrition is currently the most effective non-genetic intervention to delay aging phenotypes. Recently, we have shown that CR can prevent accumulation of senescent cells in both mice and humans. Here, we summarize the current knowledge on the molecular and cellular events associated with CR, and define how these events can interfere with the induction of cellular senescence. We discuss the potential side effects of preventing senescence, and the possible alternative dietary interventions with potential senolytic properties.
Collapse
Affiliation(s)
- Luigi Fontana
- Charles Perkins Centre and Central Clinical School, The University of Sydney, Australia; Department of Medicine, Washington University School of Medicine, St. Louis, USA; Department of Clinical and Experimental Sciences, Brescia University, Brescia, Italy.
| | - Jamil Nehme
- University of Groningen, European Research Institute for the Biology of Aging, University Medical Center Groningen, Groningen, Netherlands; Lebanese University, Doctoral School of Science and Technology, Hadath, Beirut, Lebanon
| | - Marco Demaria
- University of Groningen, European Research Institute for the Biology of Aging, University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
40
|
Araos J, Sleeman JP, Garvalov BK. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 2018; 35:563-599. [DOI: 10.1007/s10585-018-9930-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
|
41
|
Klein ME, Kovatcheva M, Davis LE, Tap WD, Koff A. CDK4/6 Inhibitors: The Mechanism of Action May Not Be as Simple as Once Thought. Cancer Cell 2018; 34:9-20. [PMID: 29731395 PMCID: PMC6039233 DOI: 10.1016/j.ccell.2018.03.023] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/05/2018] [Accepted: 03/19/2018] [Indexed: 01/07/2023]
Abstract
CDK4/6 inhibitors are among a new generation of therapeutics. Building upon the striking success of the combination of CDK4/6 inhibitors and the hormone receptor antagonist letrozole in breast cancer, many other combinations have recently entered clinical trials in multiple diseases. To achieve maximal benefit with CDK4/6 inhibitors it will be critical to understand the cellular mechanisms by which they act. Here we highlight the mechanisms by which CDK4/6 inhibitors can exert their anti-tumor activities beyond simply enforcing cytostatic growth arrest, and discuss how this knowledge may inform new combinations, improve outcomes, and modify dosing schedules in the future.
Collapse
Affiliation(s)
- Mary E Klein
- The Louis V. Gerstner Graduate School of Biomedical Sciences and the Sloan Kettering Institute Program in Molecular Biology, Memorial Sloan Kettering Cancer Center, RRL917C, Box 207, 1275 York Avenue, New York, NY 10065, USA
| | - Marta Kovatcheva
- The Louis V. Gerstner Graduate School of Biomedical Sciences and the Sloan Kettering Institute Program in Molecular Biology, Memorial Sloan Kettering Cancer Center, RRL917C, Box 207, 1275 York Avenue, New York, NY 10065, USA
| | - Lara E Davis
- Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - William D Tap
- Departments of Medicine at Memorial Sloan Kettering Cancer Center and the Weill Cornell College of Medicine, 1275 York Avenue, New York, NY 10065, USA
| | - Andrew Koff
- The Louis V. Gerstner Graduate School of Biomedical Sciences and the Sloan Kettering Institute Program in Molecular Biology, Memorial Sloan Kettering Cancer Center, RRL917C, Box 207, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
42
|
Bae WJ, Park JS, Kang SK, Kwon IK, Kim EC. Effects of Melatonin and Its Underlying Mechanism on Ethanol-Stimulated Senescence and Osteoclastic Differentiation in Human Periodontal Ligament Cells and Cementoblasts. Int J Mol Sci 2018; 19:ijms19061742. [PMID: 29895782 PMCID: PMC6032161 DOI: 10.3390/ijms19061742] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
The present study evaluated the protective effects of melatonin in ethanol (EtOH)-induced senescence and osteoclastic differentiation in human periodontal ligament cells (HPDLCs) and cementoblasts and the underlying mechanism. EtOH increased senescence activity, levels of reactive oxygen species (ROS) and the expression of cell cycle regulators (p53, p21 and p16) and senescence-associated secretory phenotype (SASP) genes (interleukin [IL]-1β, IL-6, IL-8 and tumor necrosis factor-α) in HPDLCs and cementoblasts. Melatonin inhibited EtOH-induced senescence and the production of ROS as well as the increased expression of cell cycle regulators and SASP genes. However, it recovered EtOH-suppressed osteoblastic/cementoblastic differentiation, as evidenced by alkaline phosphatase activity, alizarin staining and mRNA expression levels of Runt-related transcription factor 2 (Runx2) and osteoblastic and cementoblastic markers (glucose transporter 1 and cementum-derived protein-32) in HPDLCs and cementoblasts. Moreover, it inhibited EtOH-induced osteoclastic differentiation in mouse bone marrow⁻derived macrophages (BMMs). Inhibition of protein never in mitosis gene A interacting-1 (PIN1) by juglone or small interfering RNA reversed the effects of melatonin on EtOH-mediated senescence as well as osteoblastic and osteoclastic differentiation. Melatonin blocked EtOH-induced activation of mammalian target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and Nuclear factor of activated T-cells (NFAT) c-1 pathways, which was reversed by inhibition of PIN1. This is the first study to show the protective effects of melatonin on senescence-like phenotypes and osteoclastic differentiation induced by oxidative stress in HPDLCs and cementoblasts through the PIN1 pathway.
Collapse
Affiliation(s)
- Won-Jung Bae
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea.
| | - Jae Suh Park
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Soo-Kyung Kang
- Department of Oral Medicine, School of Dentistry, Kyung Hee University, Seoul 02447, Korea.
| | - Il-Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Korea.
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
43
|
Abstract
Inhibitors of mTOR, including clinically available rapalogs such as rapamycin (Sirolimus) and Everolimus, are gerosuppressants, which suppress cellular senescence. Rapamycin slows aging and extends life span in a variety of species from worm to mammals. Rapalogs can prevent age-related diseases, including cancer, atherosclerosis, obesity, neurodegeneration and retinopathy and potentially rejuvenate stem cells, immunity and metabolism. Here, I further suggest how rapamycin can be combined with metformin, inhibitors of angiotensin II signaling (Losartan, Lisinopril), statins (simvastatin, atorvastatin), propranolol, aspirin and a PDE5 inhibitor. Rational combinations of these drugs with physical exercise and an anti-aging diet (Koschei formula) can maximize their anti-aging effects and decrease side effects.
Collapse
|
44
|
Sengiku A, Ueda M, Kono J, Sano T, Nishikawa N, Kunisue S, Tsujihana K, Liou LS, Kanematsu A, Shimba S, Doi M, Okamura H, Ogawa O, Negoro H. Circadian coordination of ATP release in the urothelium via connexin43 hemichannels. Sci Rep 2018; 8:1996. [PMID: 29386573 PMCID: PMC5792455 DOI: 10.1038/s41598-018-20379-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/17/2018] [Indexed: 11/17/2022] Open
Abstract
Day-night changes in the storage capacity of the urinary bladder are indispensable for sound sleep. Connexin 43 (Cx43), a major gap junction protein, forms hemichannels as a pathway of ATP in other cell types, and the urinary bladder utilizes ATP as a mechanotransduction signals to modulate its capacity. Here, we demonstrate that the circadian clock of the urothelium regulates diurnal ATP release through Cx43 hemichannels. Cx43 was expressed in human and mouse urothelium, and clock genes oscillated in the mouse urothelium accompanied by daily cycles in the expression of Cx43 and extracellular ATP release into the bladder lumen. Equivalent chronological changes in Cx43 and ATP were observed in immortalized human urothelial cells, but these diurnal changes were lost in both arrhythmic Bmal1-knockout mice and in BMAL1-knockdown urothelial cells. ATP release was increased by Cx43 overexpression and was decreased in Cx43 knockdown or in the presence of a selective Cx43 hemichannel blocker, which indicated that Cx43 hemichannels are considered part of the components regulating ATP release in the urothelium. Thus, a functional circadian rhythm exists in the urothelium, and coordinates Cx43 expression and function as hemichannels that provide a direct pathway of ATP release for mechanotransduction and signalling in the urothelium.
Collapse
Affiliation(s)
- Atsushi Sengiku
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masakatsu Ueda
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Jin Kono
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Takeshi Sano
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Nobuyuki Nishikawa
- Department of Urology, Japanese Red Cross Otsu Hospital, Shiga, 520-8511, Japan
| | - Sumihiro Kunisue
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Kojiro Tsujihana
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Louis S Liou
- Department of Urology, Cambridge Health Alliance, Cambridge, MA, 02139, USA
| | - Akihiro Kanematsu
- Department of Urology, Hyogo College of Medicine, Hyogo, 663-8501, Japan
| | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, Chiba, 245-8555, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiromitsu Negoro
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
45
|
Role of multifaceted regulators in cancer glucose metabolism and their clinical significance. Oncotarget 2017; 7:31572-85. [PMID: 26934324 PMCID: PMC5058779 DOI: 10.18632/oncotarget.7765] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/16/2016] [Indexed: 12/17/2022] Open
Abstract
Aberrant glucose metabolism, "aerobic glycolysis" or "Warburg effect", is a hallmark of human cancers. There is a cluster of "multifaceted regulators", which plays a pivotal role in the regulation of glucose metabolism. They can not only modulate the activities of specific enzymes, but also act as transcriptional activators to regulate the expression of metabolism related genes. Additionally, they can crosstalk with other key factors involved in glucose metabolism and work together to initiate multiple oncogenic processes. These "multifaceted regulators", especially p53, HIF-1, TIGAR and microRNA, will be focused in this review. And we will comprehensively illustrate their regulatory effects on cancer glucose metabolism, and further elaborate on their clinical significance. In-depth elucidation the role of "multifaceted regulators" in cancer glucose metabolism will provide us novel insights in cancer research field and offer promising therapeutic targets for anti-cancer therapies.
Collapse
|
46
|
Li S, Zhao H, Li J, Zhang A, Wang H. Downregulation of long non-coding RNA LET predicts poor prognosis and increases Notch signaling in non-small cell lung cancer. Oncotarget 2017; 9:1156-1168. [PMID: 29416684 PMCID: PMC5787427 DOI: 10.18632/oncotarget.23452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/09/2017] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to be dysregulated in a variety of tumors. The lncRNA-Low Expression in Tumor (LET) is a recently identified lncRNA, but its expression pattern and biological significance in human non-small cell lung cancer (NSCLC) are still largely unknown. In this study, we found that lncRNA-LET was significantly downregulated in human NSCLC lung tissues and cell lines. Decreased lncRNA-LET expression was strongly associated with advanced tumor stages and poorer overall survival of NSCLC patients. Functionally, overexpression of lncRNA-LET in NSCLC H292 cells significantly suppressed cell proliferation, migration and invasion, and promoted cell cycle arrest and apoptosis, while knockdown of lncRNA-LET in NSCLC H1975 cells showed an opposite effect, pointing to a tumor-suppressive role for lncRNA-LET in NSCLC. Mechanistically, we demonstrated that lncRNA-LET overexpression significantly reduced the expression of Notch1 intracellular Domain (NICD1) in H292 cells while knockdown of lncRNA-LET increased NICD1 expression in H1975 cells. Similarly, NSCLC lung tissues with high levels of lncRNA-LET had lower NICD1 expression. Thus, our results provide a strong rationale for lncRNA-LET to be used as a prognostic indicator and a potent therapeutic target for NSCLC patients, and highlight a novel lncRNA-LET/Notch axis in regulating NSCLC cell fate and tumor progression.
Collapse
Affiliation(s)
- Shengwen Li
- Shanxi Medical University, Taiyuan, Shanxi 030001, China.,Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.,Department of Respiratory and Critical Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Hui Zhao
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jianqiang Li
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Aizheng Zhang
- Department of Respiratory and Critical Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Haibin Wang
- Department of Respiratory and Critical Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030012, China.,Division of Allergy and Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
47
|
Elevated expression of HIF-lα in actively growing prostate tissues is associated with clinical features of benign prostatic hyperplasia. Oncotarget 2017; 7:12053-62. [PMID: 26919249 PMCID: PMC4914268 DOI: 10.18632/oncotarget.7641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/31/2016] [Indexed: 12/17/2022] Open
Abstract
Background Benign prostatic hyperplasia (BPH) is one of the most common diseases in middle-age or older men. Increasing evidence has shown that BPH is associated with hypoxia microenvironment. Methods We retrospectively collected patient data and tissue samples from fetal prostates(FP), normal prostates(NP), intra-acinar of BPH, peri-acinar of BPH, prostate cancers and sarcomas of prostate. The expression of HIF-1α, as well as VEGF was visualized by immunohistochemistry and statistically analyzed with clinical parameters. Results Expression of HIF-lα was observed in intra-acinar of BPH (69.5%), prostate cancer (85.7%) and all FPs, while NP and peri-acinar of BPH tissues were all stained negative. HIF-lα levels in FPs and the malignant tumors were higher than BPH tissues(p < 0.05), and the expression of HIF-lα in intra-acinar of BPH was higher than NP and peri-acinar of BPH (p < 0.05). The expression of HIF-lα was correlated with the weight of intra-acinar of prostate (p < 0.05). And patients with prostate weight larger that 72.45g were prone to have HIF-lα moderate-positive expression, according to the ROC curve (AUC = 0.734, 95%CI = 0.630-0.838). Moreover, the risk of acute urine retention (AUR) for HIF-lα moderate-positive patients increased significantly (OR=5.517, 95%CI = 2.434-12.504). Conclusions HIF-lα expression is increased in highly proliferative prostate tissues and correlated with the weight of intra-acinar prostate. Moreover, HIF-lα is also an independent risk factor for AUR occurrence in BPH patients.
Collapse
|
48
|
Chen G, Xu JY, Chen J, Zhang JX, Zhou J, Liang Y, Ding XF. Loss of PIG3 increases HIF-1α level by promoting protein synthesis via mTOR pathway in renal cell carcinoma cells. Oncotarget 2017; 7:27176-84. [PMID: 27029070 PMCID: PMC5053640 DOI: 10.18632/oncotarget.8401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/16/2016] [Indexed: 12/27/2022] Open
Abstract
PIG3 is a target of the tumor suppressor p53 and is thought to be involved in p53-mediated cell apoptosis. Although PIG3 is similar to oxidoreductases involved in generating ROS, whether PIG3 would regulate HIF-1α was never characterized directly. Here we demonstrated that knockdown of PIG3 by transfecting with specific siRNA could increase the expression of HIF-1α in several human cancer cell lines, including CAKI, FTC-133 and A549. It indicates that PIG3 may be involved in the regulation of HIF-1α. Furthermore, we revealed that PIG3-siliencing increased HIF-1α protein level through promoting its protein biosynthesis via mTOR pathway. In addition, the effect of PIG3 on the production of HIF-1α was further related to VEGF secretion and cell migration. PIG3-downregulation increased the secretion of VEGF and promoted the migration of renal cancer cells obviously. Taken together, these data suggest that PIG3 was involved in HIF-1α regulation, and reveal a novel signaling pathway of PIG3/HIF-1α in the regulation of cell migration in renal cell carcinoma.
Collapse
Affiliation(s)
- Guang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang, China.,Institute of Tumor, Taizhou University, Taizhou, Zhejiang, China
| | - Jin-Ye Xu
- Laboratory of Cancer Biology, Provincial Key Lab of Biotherapy in Zhejiang, Sir Runrun Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.,Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Jie Chen
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Jian-Xin Zhang
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Jun Zhou
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Yong Liang
- Taizhou Municipal Hospital, Taizhou, Zhejiang, China.,School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Xiao-Fei Ding
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
49
|
Drug-resistance in doxorubicin-resistant FL5.12 hematopoietic cells: elevated MDR1, drug efflux and side-population positive and decreased BCL2-family member expression. Oncotarget 2017; 8:113013-113033. [PMID: 29348885 PMCID: PMC5762570 DOI: 10.18632/oncotarget.22956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Chemotherapeutic drug treatment can result in the emergence of drug-resistant cells. By culturing an interleukin-3 (IL-3)-dependent cell line, FL5.12 cells in the presence of the chemotherapeutic drug doxorubicin, we isolated FL/Doxo cells which are multi-drug resistant. Increased levels of drug efflux were detected in FL/Doxo cells which could be inhibited by the MDR1 inhibitor verapamil but not by the MRP1 inhibitor MK571. The effects of TP53 and MEK1 were examined by infection of FL/Doxo cells with retroviruses encoding either a dominant negative TP-53 gene (FL/Doxo+ TP53 (DN) or a constitutively-activated MEK-1 gene (FL/Doxo + MEK1 (CA). Elevated MDR1 but not MRP1 mRNA transcripts were detected by quantitative RT-PCR in the drug-resistant cells while transcripts encoding anti-apoptotic genes such as: BCL2, BCLXL and MCL1 were observed at higher levels in the drug-sensitive FL5.12 cells. The percentage of cells that were side-population positive was increased in the drug-resistant cells compared to the parental line. Drug-resistance and side-positive population cells have been associated with cancer stem cells (CSC). Our studies suggest mechanisms which could allow the targeting of these molecules to prevent drug-resistance.
Collapse
|
50
|
Abstract
Rapamycin slows organismal aging and delays age-related diseases, extending lifespan in numerous species. In cells, rapamycin and other rapalogs such as everolimus suppress geroconversion from quiescence to senescence. Rapamycin inhibits some, but not all, activities of mTOR. Recently we and others demonstrated that pan-mTOR inhibitors, known also as dual mTORC1/C2 inhibitors, suppress senescent phenotype. As a continuation of these studies, here we investigated in detail a panel of pan-mTOR inhibitors, to determine their optimal gerosuppressive concentrations. During geroconversion, cells become hypertrophic and flat, accumulate lysosomes (SA-beta-Gal staining) and lipids (Oil Red staining) and lose their re-proliferative potential (RPP). We determined optimal gerosuppressive concentrations: Torin1 (30 nM), Torin 2 (30 nM), AZD8055 (100 nM), PP242 (300 nM), both KU-006379 and GSK1059615 (1000 nM). These agents decreased senescence-associated hypertrophy with IC50s: 20, 18, 15, 200 and 400 nM, respectively. Preservation of RPP by pan-mTOR inhibitors was associated with inhibition of the pS6K/pS6 axis. Inhibition of rapamycin-insensitive functions of mTOR further contributed to anti-hypertrophic and cytostatic effects. Torin 1 and PP242 were more "rapamycin-like" than Torin 2 and AZD8055. Pan-mTOR inhibitors were superior to rapamycin in suppressing hypertrophy, senescent morphology, Oil Red O staining and in increasing so-called "chronological life span (CLS)". We suggest that, at doses lower than anti-cancer concentrations, pan-mTOR inhibitors can be developed as anti-aging drugs.
Collapse
|