1
|
Maximov K, Kanold PO. Aging reduces excitatory bandwidth, alters spectral tuning curve diversity, and reduces sideband inhibition in L2/3 of primary auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646797. [PMID: 40236140 PMCID: PMC11996523 DOI: 10.1101/2025.04.02.646797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Presbycusis, or age-related hearing loss, is caused by changes in both the peripheral and the central auditory system. Many of the peripheral structures that degrade with age have been identified and characterized, but there is still a dearth of information pertaining to what changes occur in the aging central auditory pathway that are independent of peripheral degradation. The primary auditory cortex (A1) of aging mice shows reduced suppressive responses and reduced diversity of temporal responses suggesting alteration of inhibitory processing. To gain a better understanding of how tuning features of the auditory cortex change with age, we performed in vivo 2-photon Ca 2+ imaging on L2/3 of the auditory cortex of both adult (n=14, 11-24 weeks old) and aging (n=12, 12-17 months old) mice that retain peripheral hearing in old age. To reveal inhibitory inputs to L2/3 neurons we characterized spectral receptive fields with pure tones and two tone complexes. We find that in contrast to adult mice, L2/3 excitatory neurons from aging mice showed fewer distinct categories of spectral receptive fields, though in a subset of FRA types, we found increased diversity. We also noted a decrease in excitatory bandwidth with age among broadly tuned neurons, but that sideband inhibition became weaker across all FRA types due to a reduced amplitude in inhibitory responses. These results suggest that aging causes changes in circuit organization leading to more homogenous spectrotemporal receptive fields and that the lack of response diversity contributes to a decreased encoding capacity observed in aging A1.
Collapse
|
2
|
John YJ, Wang J, Bullock D, Barbas H. Amygdalar Excitation of Hippocampal Interneurons Can Lead to Emotion-driven Overgeneralization of Context. J Cogn Neurosci 2024; 36:2667-2686. [PMID: 38261402 DOI: 10.1162/jocn_a_02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Context is central to cognition: Detailed contextual representations enable flexible adjustment of behavior via comparison of the current situation with prior experience. Emotional experiences can greatly enhance contextual memory. However, sufficiently intense emotional signals can have the opposite effect, leading to weaker or less specific memories. How can emotional signals have such intensity-dependent effects? A plausible mechanistic account has emerged from recent anatomical data on the impact of the amygdala on the hippocampus in primates. In hippocampal CA3, the amygdala formed potent synapses on pyramidal neurons, calretinin (CR) interneurons, as well as parvalbumin (PV) interneurons. CR interneurons are known to disinhibit pyramidal neuron dendrites, whereas PV neurons provide strong perisomatic inhibition. This potentially counterintuitive connectivity, enabling amygdala to both enhance and inhibit CA3 activity, may provide a mechanism that can boost or suppress memory in an intensity-dependent way. To investigate this possibility, we simulated this connectivity pattern in a spiking network model. Our simulations revealed that moderate amygdala input can enrich CA3 representations of context through disinhibition via CR interneurons, but strong amygdalar input can impoverish CA3 activity through simultaneous excitation and feedforward inhibition via PV interneurons. Our model revealed an elegant circuit mechanism that mediates an affective "inverted U" phenomenon: There is an optimal level of amygdalar input that enriches hippocampal context representations, but on either side of this zone, representations are impoverished. This circuit mechanism helps explain why excessive emotional arousal can disrupt contextual memory and lead to overgeneralization, as seen in severe anxiety and posttraumatic stress disorder.
Collapse
|
3
|
Rubenstein JL, Nord AS, Ekker M. DLX genes and proteins in mammalian forebrain development. Development 2024; 151:dev202684. [PMID: 38819455 PMCID: PMC11190439 DOI: 10.1242/dev.202684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The vertebrate Dlx gene family encode homeobox transcription factors that are related to the Drosophila Distal-less (Dll) gene and are crucial for development. Over the last ∼35 years detailed information has accrued about the redundant and unique expression and function of the six mammalian Dlx family genes. DLX proteins interact with general transcriptional regulators, and co-bind with other transcription factors to enhancer elements with highly specific activity in the developing forebrain. Integration of the genetic and biochemical data has yielded a foundation for a gene regulatory network governing the differentiation of forebrain GABAergic neurons. In this Primer, we describe the discovery of vertebrate Dlx genes and their crucial roles in embryonic development. We largely focus on the role of Dlx family genes in mammalian forebrain development revealed through studies in mice. Finally, we highlight questions that remain unanswered regarding vertebrate Dlx genes despite over 30 years of research.
Collapse
Affiliation(s)
- John L. Rubenstein
- UCSF Department of Psychiatry and Behavioral Sciences, Department of UCSF Weill Institute for Neurosciences, Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alex S. Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and 20 Behavioral Sciences, Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Marc Ekker
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Almeida VN. Somatostatin and the pathophysiology of Alzheimer's disease. Ageing Res Rev 2024; 96:102270. [PMID: 38484981 DOI: 10.1016/j.arr.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Among the central features of Alzheimer's disease (AD) progression are altered levels of the neuropeptide somatostatin (SST), and the colocalisation of SST-positive interneurons (SST-INs) with amyloid-β plaques, leading to cell death. In this theoretical review, I propose a molecular model for the pathogenesis of AD based on SST-IN hypofunction and hyperactivity. Namely, hypofunctional and hyperactive SST-INs struggle to control hyperactivity in medial regions in early stages, leading to axonal Aβ production through excessive presynaptic GABAB inhibition, GABAB1a/APP complex downregulation and internalisation. Concomitantly, excessive SST-14 release accumulates near SST-INs in the form of amyloids, which bind to Aβ to form toxic mixed oligomers. This leads to differential SST-IN death through excitotoxicity, further disinhibition, SST deficits, and increased Aβ release, fibrillation and plaque formation. Aβ plaques, hyperactive networks and SST-IN distributions thereby tightly overlap in the brain. Conversely, chronic stimulation of postsynaptic SST2/4 on gulutamatergic neurons by hyperactive SST-INs promotes intense Mitogen-Activated Protein Kinase (MAPK) p38 activity, leading to somatodendritic p-tau staining and apoptosis/neurodegeneration - in agreement with a near complete overlap between p38 and neurofibrillary tangles. This model is suitable to explain some of the principal risk factors and markers of AD progression, including mitochondrial dysfunction, APOE4 genotype, sex-dependent vulnerability, overactive glial cells, dystrophic neurites, synaptic/spine losses, inter alia. Finally, the model can also shed light on qualitative aspects of AD neuropsychology, especially within the domains of spatial and declarative (episodic, semantic) memory, under an overlying pattern of contextual indiscrimination, ensemble instability, interference and generalisation.
Collapse
Affiliation(s)
- Victor N Almeida
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo (USP), Brazil; Faculty of Languages, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
5
|
Harris KC, Dias JW, McClaskey CM, Rumschlag J, Prisciandaro J, Dubno JR. Afferent Loss, GABA, and Central Gain in Older Adults: Associations with Speech Recognition in Noise. J Neurosci 2022; 42:7201-7212. [PMID: 35995564 PMCID: PMC9512571 DOI: 10.1523/jneurosci.0242-22.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/20/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
Deficits in auditory nerve (AN) function for older adults reduce afferent input to the cortex. The extent to which the cortex in older adults adapts to this loss of afferent input and the mechanisms underlying this adaptation are not well understood. We took a neural systems approach measuring AN and cortical evoked responses within 50 older and 27 younger human adults (59 female) to estimate central gain or increased cortical activity despite reduced AN activity. Relative to younger adults, older adults' AN response amplitudes were smaller, but cortical responses were not. We used the relationship between AN and cortical response amplitudes in younger adults to predict cortical response amplitudes for older adults from their AN responses. Central gain in older adults was thus defined as the difference between their observed cortical responses and those predicted from the parameter estimates of younger adults. In older adults, decreased afferent input contributed to lower cortical GABA levels, greater central gain, and poorer speech recognition in noise (SIN). These effects on SIN occur in addition to, and independent from, effects attributed to elevated hearing thresholds. Our results are consistent with animal models of central gain and suggest that reduced AN afferent input in some older adults may result in changes in cortical encoding and inhibitory neurotransmission, which contribute to reduced SIN. An advancement in our understanding of the changes that occur throughout the auditory system in response to the gradual loss of input with increasing age may provide potential therapeutic targets for intervention.SIGNIFICANCE STATEMENT Age-related hearing loss is one of the most common chronic conditions of aging, yet little is known about how the cortex adapts to this loss of sensory input. We measured AN and cortical responses to the same stimulus in younger and older adults. In older adults we found hyperexcitability in cortical activity relative to concomitant declines in afferent input that are consistent with central gain. Lower levels of cortical GABA, an inhibitory neurotransmitter, were associated with greater central gain, which predicted poorer SIN. The results suggest that the cortex in older adults may adapt to attenuated sensory input by reducing inhibition to amplify the cortical response, but this amplification may lead to poorer SIN.
Collapse
Affiliation(s)
| | - James W Dias
- Department of Otolaryngology-Head and Neck Surgery
| | | | | | - James Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina 29425-5500
| | - Judy R Dubno
- Department of Otolaryngology-Head and Neck Surgery
| |
Collapse
|
6
|
Prefrontal cortical circuits in anxiety and fear: an overview. Front Med 2022; 16:518-539. [PMID: 35943704 DOI: 10.1007/s11684-022-0941-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/06/2022] [Indexed: 11/04/2022]
Abstract
Pathological anxiety is among the most difficult neuropsychiatric diseases to treat pharmacologically, and it represents a major societal problem. Studies have implicated structural changes within the prefrontal cortex (PFC) and functional changes in the communication of the PFC with distal brain structures in anxiety disorders. Treatments that affect the activity of the PFC, including cognitive therapies and transcranial magnetic stimulation, reverse anxiety- and fear-associated circuit abnormalities through mechanisms that remain largely unclear. While the subjective experience of a rodent cannot be precisely determined, rodent models hold great promise in dissecting well-conserved circuits. Newly developed genetic and viral tools and optogenetic and chemogenetic techniques have revealed the intricacies of neural circuits underlying anxiety and fear by allowing direct examination of hypotheses drawn from existing psychological concepts. This review focuses on studies that have used these circuit-based approaches to gain a more detailed, more comprehensive, and more integrated view on how the PFC governs anxiety and fear and orchestrates adaptive defensive behaviors to hopefully provide a roadmap for the future development of therapies for pathological anxiety.
Collapse
|
7
|
Gothner T, Gonçalves PJ, Sahani M, Linden JF, Hildebrandt KJ. Sustained Activation of PV+ Interneurons in Core Auditory Cortex Enables Robust Divisive Gain Control for Complex and Naturalistic Stimuli. Cereb Cortex 2021; 31:2364-2381. [PMID: 33300581 DOI: 10.1093/cercor/bhaa347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/01/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023] Open
Abstract
Sensory cortices must flexibly adapt their operations to internal states and external requirements. Sustained modulation of activity levels in different inhibitory interneuron populations may provide network-level mechanisms for adjustment of sensory cortical processing on behaviorally relevant timescales. However, understanding of the computational roles of inhibitory interneuron modulation has mostly been restricted to effects at short timescales, through the use of phasic optogenetic activation and transient stimuli. Here, we investigated how modulation of inhibitory interneurons affects cortical computation on longer timescales, by using sustained, network-wide optogenetic activation of parvalbumin-positive interneurons (the largest class of cortical inhibitory interneurons) to study modulation of auditory cortical responses to prolonged and naturalistic as well as transient stimuli. We found highly conserved spectral and temporal tuning in auditory cortical neurons, despite a profound reduction in overall network activity. This reduction was predominantly divisive, and consistent across simple, complex, and naturalistic stimuli. A recurrent network model with power-law input-output functions replicated our results. We conclude that modulation of parvalbumin-positive interneurons on timescales typical of sustained neuromodulation may provide a means for robust divisive gain control conserving stimulus representations.
Collapse
Affiliation(s)
- Tina Gothner
- Department of Neuroscience, University of Oldenburg, 26126 Oldenburg, Germany
| | - Pedro J Gonçalves
- Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (CAESAR), 53175 Bonn, Germany.,Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, UK
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, UK
| | - Jennifer F Linden
- Ear Institute, University College London, London, WC1X 8EE, UK.,Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - K Jannis Hildebrandt
- Department of Neuroscience, University of Oldenburg, 26126 Oldenburg, Germany.,Cluster of Excellence Hearing4all, University of Oldenburg, 26126 Oldenburg, Germany
| |
Collapse
|
8
|
Fee C, Prevot TD, Misquitta K, Knutson DE, Li G, Mondal P, Cook JM, Banasr M, Sibille E. Behavioral Deficits Induced by Somatostatin-Positive GABA Neuron Silencing Are Rescued by Alpha 5 GABA-A Receptor Potentiation. Int J Neuropsychopharmacol 2021; 24:505-518. [PMID: 33438026 PMCID: PMC8278801 DOI: 10.1093/ijnp/pyab002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Deficits in somatostatin-positive gamma-aminobutyric acid interneurons (SST+ GABA cells) are commonly reported in human studies of mood and anxiety disorder patients. A causal link between SST+ cell dysfunction and symptom-related behaviors has been proposed based on rodent studies showing that chronic stress, a major risk factor for mood and anxiety disorders, induces a low SST+ GABA cellular phenotype across corticolimbic brain regions; that lowering Sst, SST+ cell, or GABA functions induces depressive-/anxiety-like behaviors (a rodent behavioral construct collectively defined as "behavioral emotionality"); and that disinhibiting SST+ cells has antidepressant-like effects. Recent studies found that compounds preferentially potentiating receptors mediating SST+ cell functions, α5-GABAA receptor positive allosteric modulators (α5-PAMs), achieved antidepressant-like effects. Together, the evidence suggests that SST+ cells regulate mood and cognitive functions that are disrupted in mood disorders and that rescuing SST+ cell function via α5-PAM may represent a targeted therapeutic strategy. METHODS We developed a mouse model allowing chemogenetic manipulation of brain-wide SST+ cells and employed behavioral characterization 30 minutes after repeated acute silencing to identify contributions to symptom-related behaviors. We then assessed whether an α5-PAM, GL-II-73, could rescue behavioral deficits. RESULTS Brain-wide SST+ cell silencing induced features of stress-related illnesses, including elevated neuronal activity and plasma corticosterone levels, increased anxiety- and anhedonia-like behaviors, and impaired short-term memory. GL-II-73 led to antidepressant- and anxiolytic-like improvements among behavioral deficits induced by brain-wide SST+ cell silencing. CONCLUSION Our data validate SST+ cells as regulators of mood and cognitive functions and demonstrate that bypassing low SST+ cell function via α5-PAM represents a targeted therapeutic strategy.
Collapse
Affiliation(s)
- Corey Fee
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Thomas D Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Keith Misquitta
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Daniel E Knutson
- Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| | - Guanguan Li
- Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA,Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China
| | - Prithu Mondal
- Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Correspondence: Etienne Sibille, PhD, CAMH, 250 College Street, Room 134, Toronto, ON M5T 1R8, Canada ()
| |
Collapse
|
9
|
Nawreen N, Cotella EM, Morano R, Mahbod P, Dalal KS, Fitzgerald M, Martelle S, Packard BA, Franco-Villanueva A, Moloney RD, Herman JP. Chemogenetic Inhibition of Infralimbic Prefrontal Cortex GABAergic Parvalbumin Interneurons Attenuates the Impact of Chronic Stress in Male Mice. eNeuro 2020; 7:ENEURO.0423-19.2020. [PMID: 33055196 PMCID: PMC7598911 DOI: 10.1523/eneuro.0423-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 08/24/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Hypofunction of the prefrontal cortex (PFC) contributes to stress-related neuropsychiatric illnesses. Mechanisms leading to prefrontal hypoactivity remain to be determined. Prior evidence suggests that chronic stress leads to an increase in activity of parvalbumin (PV) expressing GABAergic interneurons (INs) in the PFC. The purpose of the study was to determine whether reducing PV IN activity in the Infralimbic (IL) PFC would prevent stress-related phenotypes. We used a chemogenetic approach to inhibit IL PFC PV INs during stress. Mice were first tested in the tail suspension test (TST) to determine the impact of PV IN inhibition on behavioral responses to acute stress. The long-term impact of PV IN inhibition during a modified chronic variable stress (CVS) was tested in the forced swim test (FST). Acute PV IN inhibition reduced active (struggling) and increased passive coping behaviors (immobility) in the TST. In contrast, inhibition of PV INs during CVS increased active and reduced passive coping behaviors in the FST. Moreover, chronic inhibition of PV INs attenuated CVS-induced changes in Fos expression in the prelimbic cortex (PrL), basolateral amygdala (BLA), and ventrolateral periaqueductal gray (vlPAG) and also attenuated adrenal hypertrophy and body weight loss associated with chronic stress. Our results suggest differential roles of PV INs in acute versus chronic stress, indicative of distinct biological mechanisms underlying acute versus chronic stress responses. Our results also indicate a role for PV INs in driving chronic stress adaptation and support literature evidence suggesting cortical GABAergic INs as a therapeutic target in stress-related illnesses.
Collapse
Affiliation(s)
- Nawshaba Nawreen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45237-0506
- Veterans Affairs Medical Center, Cincinnati, OH 45221-0506
| | - Evelin M Cotella
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
- Veterans Affairs Medical Center, Cincinnati, OH 45221-0506
| | - Rachel Morano
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
| | - Parinaz Mahbod
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
| | - Khushali S Dalal
- College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45237-0506
| | - Maureen Fitzgerald
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
| | - Susan Martelle
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
| | - Benjamin A Packard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
- Veterans Affairs Medical Center, Cincinnati, OH 45221-0506
| | - Ana Franco-Villanueva
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
| | - Rachel D Moloney
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
- Veterans Affairs Medical Center, Cincinnati, OH 45221-0506
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45237-0506
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45237-0506
- Veterans Affairs Medical Center, Cincinnati, OH 45221-0506
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45237-0506
| |
Collapse
|
10
|
Wu C, Shore SE. Inhibitory interneurons in a brainstem circuit adjust their inhibitory motifs to process multimodal input. J Physiol 2020; 599:631-645. [PMID: 33103245 DOI: 10.1113/jp280741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/22/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Inhibitory-interneuron networks, consisting of multiple forms of circuit motifs including reciprocal (inhibitory interneurons inhibiting other interneurons) and feedforward (inhibitory interneurons inhibiting principal neurons) connections, are crucial in processing sensory information. The present study applies a statistical method to in vivo multichannel spike trains of dorsal cochlear nucleus neurons to disentangle reciprocal and feedforward-inhibitory motifs. After inducing input-specific plasticity, reciprocal and feedforward inhibition are found to be differentially regulated, and the combined effect synergistically modulates circuit output. The findings highlight the interplay among different circuit motifs as a key element in neural computation. ABSTRACT Inhibitory interneurons play an essential role in neural computations by utilizing a combination of reciprocal (interneurons inhibiting each other) and feedforward (interneuron inhibiting the principal neuron) inhibition to process information. To disentangle the interplay between the two inhibitory-circuit motifs and understand their effects on the circuit output, in vivo recordings were made from the guinea pig dorsal cochlear nucleus, a cerebellar-like brainstem circuit. Spikes from inhibitory interneurons (cartwheel cell) and principal output neurons (fusiform cell) were compared before and after manipulating their common multimodal input. Using a statistical model based on the Cox method of modulated renewal process of spike train influence, reciprocal- and feedforward-inhibition motifs were quantified. In response to altered multimodal input, reciprocal inhibition was strengthened while feedforward inhibition was weakened, and the two motifs combined to modulate fusiform cell output and acoustic-driven responses. These findings reveal the cartwheel cell's role in auditory and multimodal processing, as well as illustrated the balance between different inhibitory-circuit motifs as a key element in neural computation.
Collapse
Affiliation(s)
- Calvin Wu
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, USA
| | - Susan E Shore
- Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, USA.,Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Tinnitus Correlates with Downregulation of Cortical Glutamate Decarboxylase 65 Expression But Not Auditory Cortical Map Reorganization. J Neurosci 2019; 39:9989-10001. [PMID: 31704784 DOI: 10.1523/jneurosci.1117-19.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/23/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is the biggest risk factor for tinnitus, and hearing-loss-related pathological changes in the auditory pathway have been hypothesized as the mechanism underlying tinnitus. However, due to the comorbidity of tinnitus and hearing loss, it has been difficult to differentiate between neural correlates of tinnitus and consequences of hearing loss. In this study, we dissociated tinnitus and hearing loss in FVB mice, which exhibit robust resistance to tinnitus following monaural noise-induced hearing loss. Furthermore, knock-down of glutamate decarboxylase 65 (GAD65) expression in auditory cortex (AI) by RNA interference gave rise to tinnitus in normal-hearing FVB mice. We found that tinnitus was significantly correlated with downregulation of GAD65 in the AI. By contrast, cortical map distortions, which have been hypothesized as a mechanism underlying tinnitus, were correlated with hearing loss but not tinnitus. Our findings suggest new strategies for the rehabilitation of tinnitus and other phantom sensation, such as phantom pain.SIGNIFICANCE STATEMENT Hearing loss is the biggest risk factor for tinnitus in humans. Most animal models of tinnitus also exhibit comorbid hearing loss, making it difficult to dissociate the mechanisms underlying tinnitus from mere consequences of hearing loss. Here we show that, although both C57BL/6 and FVB mice exhibited similar noise-induced hearing threshold increase, only C57BL/6, but not FVB, mice developed tinnitus following noise exposure. Although both strains showed frequency map reorganization following noise-induced hearing loss, only C57BL/6 mice had reduced glutamate decarboxylase 65 (GAD65) expression in the auditory cortex (AI). Knocking down GAD65 expression in the AI resulted in tinnitus in normal-hearing FVB mice. Our results suggest that reduced inhibitory neuronal function, but not sensory map reorganization, underlies noise-induced tinnitus.
Collapse
|
12
|
Sohal VS, Rubenstein JLR. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Mol Psychiatry 2019; 24:1248-1257. [PMID: 31089192 PMCID: PMC6742424 DOI: 10.1038/s41380-019-0426-0] [Citation(s) in RCA: 558] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022]
Abstract
In 2003 Rubenstein and Merzenich hypothesized that some forms of Autism (ASD) might be caused by a reduction in signal-to-noise in key neural circuits, which could be the result of changes in excitatory-inhibitory (E-I) balance. Here, we have clarified the concept of E-I balance, and updated the original hypothesis in light of the field's increasingly sophisticated understanding of neuronal circuits. We discuss how specific developmental mechanisms, which reduce inhibition, affect cortical and hippocampal functions. After describing how mutations of some ASD genes disrupt inhibition in mice, we close by suggesting that E-I balance represents an organizing framework for understanding findings related to pathophysiology and for identifying appropriate treatments.
Collapse
Affiliation(s)
- Vikaas S. Sohal
- Department of Psychiatry, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| | - John L. R. Rubenstein
- Department of Psychiatry, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
13
|
Lee DW, Kim MS, Lim YH, Lee N, Hong YC. Prenatal and postnatal exposure to di-(2-ethylhexyl) phthalate and neurodevelopmental outcomes: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2018; 167:558-566. [PMID: 30145432 DOI: 10.1016/j.envres.2018.08.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/09/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Di-(2-ethylhexyl) phthalate (DEHP), the most widely used phthalate, has recently been associated with neurodevelopmental disturbances in children. However, the risk is yet to be quantified. Therefore, a systematic review and meta-analysis focusing on the association between exposure to DEHP and neurodevelopmental outcomes is necessary, with particular attention to study design (longitudinal vs. cross-sectional). METHODS We performed a comprehensive literature search for associations between exposure to DEHP and neurodevelopmental outcomes. Among 106 published studies found in public databases, eight longitudinal studies and two cross-sectional studies were included in the meta-analysis. RESULTS We observed a statistically significant association between the concentrations of DEHP metabolites and the neurodevelopment outcomes of children among cross-sectional results, and found significant association between DEHP exposure measured in prenatal period and the psychomotor development outcomes measured later in childhood. CONCLUSIONS To our knowledge, this is the first meta-analysis of studies investigating the association between DEHP exposure and neurodevelopment in children. A need exists for more researches and a precautionary policy for potential health hazard of DEHP, the most commonly used phthalate, to promote healthier neurodevelopment in children.
Collapse
Affiliation(s)
- Dong-Wook Lee
- Department of Preventive Medicine, College of Medicine, Seoul National University, 103 Daehangno, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Min-Seok Kim
- Department of Preventive Medicine, College of Medicine, Seoul National University, 103 Daehangno, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Youn-Hee Lim
- Environmental Health Centre, College of Medicine, Seoul National University, Seoul, Republic of Korea; Institute of Environmental Medicine, Medical Research Centre, Seoul National University, Seoul, Republic of Korea
| | - Nami Lee
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, College of Medicine, Seoul National University, 103 Daehangno, Jongno-gu, Seoul 110-799, Republic of Korea; Environmental Health Centre, College of Medicine, Seoul National University, Seoul, Republic of Korea; Institute of Environmental Medicine, Medical Research Centre, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Pla R, Stanco A, Howard MA, Rubin AN, Vogt D, Mortimer N, Cobos I, Potter GB, Lindtner S, Price JD, Nord AS, Visel A, Schreiner CE, Baraban SC, Rowitch DH, Rubenstein JLR. Dlx1 and Dlx2 Promote Interneuron GABA Synthesis, Synaptogenesis, and Dendritogenesis. Cereb Cortex 2018; 28:3797-3815. [PMID: 29028947 PMCID: PMC6188538 DOI: 10.1093/cercor/bhx241] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/14/2022] Open
Abstract
The postnatal functions of the Dlx1&2 transcription factors in cortical interneurons (CINs) are unknown. Here, using conditional Dlx1, Dlx2, and Dlx1&2 knockouts (CKOs), we defined their roles in specific CINs. The CKOs had dendritic, synaptic, and survival defects, affecting even PV+ CINs. We provide evidence that DLX2 directly drives Gad1, Gad2, and Vgat expression, and show that mutants had reduced mIPSC amplitude. In addition, the mutants formed fewer GABAergic synapses on excitatory neurons and had reduced mIPSC frequency. Furthermore, Dlx1/2 CKO had hypoplastic dendrites, fewer excitatory synapses, and reduced excitatory input. We provide evidence that some of these phenotypes were due to reduced expression of GRIN2B (a subunit of the NMDA receptor), a high confidence Autism gene. Thus, Dlx1&2 coordinate key components of CIN postnatal development by promoting their excitability, inhibitory output, and survival.
Collapse
Affiliation(s)
- Ramon Pla
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Amelia Stanco
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - MacKenzie A Howard
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Anna N Rubin
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Vogt
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Niall Mortimer
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Inma Cobos
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Gregory Brian Potter
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Susan Lindtner
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - James D Price
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| | - Alex S Nord
- Departments of Neurobiology, Physiology, and Behavior and Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA, USA
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Christoph E Schreiner
- Department of Otolaryngology and Center for Integrative Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Scott C Baraban
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - David H Rowitch
- Departments of Pediatrics and Neurological Surgery, Eli and Edyth Broad Institute for Stem Cell Research and Regenerative Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Fröhlich F, Basta D, Strübing I, Ernst A, Gröschel M. Time course of cell death due to acoustic overstimulation in the mouse medial geniculate body and primary auditory cortex. Noise Health 2017; 19:133-139. [PMID: 28615543 PMCID: PMC5501023 DOI: 10.4103/nah.nah_10_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has previously been shown that acoustic overstimulation induces cell death and extensive cell loss in key structures of the central auditory pathway. A correlation between noise-induced apoptosis and cell loss was hypothesized for the cochlear nucleus and colliculus inferior. To determine the role of cell death in noise-induced cell loss in thalamic and cortical structures, the present mouse study (NMRI strain) describes the time course following noise exposure of cell death mechanisms for the ventral medial geniculate body (vMGB), medial MGB (mMGB), and dorsal MGB (dMGB) and the six histological layers of the primary auditory cortex (AI 1-6). Therefore, a terminal deoxynucleotidyl transferase dioxyuridine triphosphate nick-end labeling assay (TUNEL) was performed in these structures 24 h, 7 days, and 14 days after noise exposure (3 h, 115 dB sound pressure level, 5-20 kHz), as well as in unexposed controls. In the dMGB, TUNEL was statistically significant elevated 24 h postexposure. AI-1 showed a decrease in TUNEL after 14 days. There was no statistically significant difference between groups for the other brain areas investigated. dMGB's widespread connection within the central auditory pathway and its nontonotopical organization might explain its prominent increase in TUNEL compared to the other MGB subdivisions and the AI. It is assumed that the onset and peak of noise-induced cell death is delayed in higher areas of the central auditory pathway and takes place between 24 h and 7 days postexposure in thalamic and cortical structures.
Collapse
Affiliation(s)
- Felix Fröhlich
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Dietmar Basta
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Ira Strübing
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Arne Ernst
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| | - Moritz Gröschel
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Warener Straße 7, Berlin, Germany
| |
Collapse
|
16
|
Ghosal S, Hare B, Duman RS. Prefrontal Cortex GABAergic Deficits and Circuit Dysfunction in the Pathophysiology and Treatment of Chronic Stress and Depression. Curr Opin Behav Sci 2017; 14:1-8. [PMID: 27812532 DOI: 10.1016/j.cobeha.2016.09.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Psychiatric diseases, notably major depression, are associated with imbalance of excitatory and inhibitory neurotransmission within the prefrontal cortex (PFC) and related limbic brain circuitry. In many cases these illnesses are precipitated or exacerbated by chronic stress, which also alters excitatory and inhibitory neurotransmitter systems. Notably, exposure to repeated uncontrollable stress causes persistent changes in the synaptic integrity and function of the principal glutamatergic excitatory neurons in the PFC, characterized by neuronal atrophy and loss of synaptic connections. This can lead to dysfunction of the PFC circuitry that is necessary for execution of adaptive behavioral responses. In addition, an emerging literature shows that chronic stress also causes extensive alteration of GABAergic inhibitory circuits in the PFC, leading to the hypothesis that inhibitory neurotransmitter deficits contribute to changes in PFC neuronal excitability and cognitive impairments. Here we review evidence in rodents and human, which point to the mechanisms underlying stress-induced alterations of GABA transmission in the PFC, and its relevance to circuit dysfunction in mood and stress related disorders. These findings suggest that alterations of GABA interneurons and inhibitory neurotransmission play a causal role in the development of stress-related neurobiological illness, and could identify a new line of GABA related therapeutic targets.
Collapse
Affiliation(s)
- Sriparna Ghosal
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520
| | - Brendan Hare
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520
| | - Ronald S Duman
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, 34 Park Street, New Haven, CT 06520
| |
Collapse
|
17
|
Abstract
Resilience and adaptation in the face of early genetic or environmental risk has become a major interest in child psychiatry over recent years. However, we still remain far from an understanding of how developing human brains as a whole adapt to the diffuse and widespread atypical synaptic function that may be characteristic of some common developmental disorders. The first part of this paper discusses four types of whole-brain adaptation in the face of early risk: redundancy, reorganization, niche construction, and adjustment of developmental rate. The second part of the paper applies these adaptation processes specifically to autism. We speculate that key features of autism may be the end result of processes of early brain adaptation, rather than the direct consequences of ongoing neural pathology.
Collapse
|
18
|
Central Gain Restores Auditory Processing following Near-Complete Cochlear Denervation. Neuron 2016; 89:867-79. [PMID: 26833137 DOI: 10.1016/j.neuron.2015.12.041] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/05/2015] [Accepted: 12/16/2015] [Indexed: 11/23/2022]
Abstract
Sensory organ damage induces a host of cellular and physiological changes in the periphery and the brain. Here, we show that some aspects of auditory processing recover after profound cochlear denervation due to a progressive, compensatory plasticity at higher stages of the central auditory pathway. Lesioning >95% of cochlear nerve afferent synapses, while sparing hair cells, in adult mice virtually eliminated the auditory brainstem response and acoustic startle reflex, yet tone detection behavior was nearly normal. As sound-evoked responses from the auditory nerve grew progressively weaker following denervation, sound-evoked activity in the cortex-and, to a lesser extent, the midbrain-rebounded or surpassed control levels. Increased central gain supported the recovery of rudimentary sound features encoded by firing rate, but not features encoded by precise spike timing such as modulated noise or speech. These findings underscore the importance of central plasticity in the perceptual sequelae of cochlear hearing impairment.
Collapse
|
19
|
Nord AS, Pattabiraman K, Visel A, Rubenstein JLR. Genomic perspectives of transcriptional regulation in forebrain development. Neuron 2015; 85:27-47. [PMID: 25569346 PMCID: PMC4438709 DOI: 10.1016/j.neuron.2014.11.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The forebrain is the seat of higher-order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. Recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Herein, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution of the human brain.
Collapse
Affiliation(s)
- Alex S Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA.
| | - Kartik Pattabiraman
- Department of Psychiatry, Rock Hall, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| | - Axel Visel
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - John L R Rubenstein
- Department of Psychiatry, Rock Hall, University of California, San Francisco, San Francisco, CA 94158-2324, USA
| |
Collapse
|
20
|
Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings. Mol Psychiatry 2014; 19:966-977. [PMID: 25048001 PMCID: PMC4169738 DOI: 10.1038/mp.2014.68] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/16/2014] [Accepted: 05/19/2014] [Indexed: 12/15/2022]
Abstract
Major depression is a complex and severe psychiatric disorder whose symptomatology encompasses a critical shift in awareness, especially in the balance from external to internal mental focus. This is reflected by unspecific somatic symptoms and the predominance of the own cognitions manifested in increased self-focus and rumination. We posit here that sufficient empirical data has accumulated to build a coherent biologic model that links these psychologic concepts and symptom dimensions to observed biochemical, cellular, regional and neural network deficits. Specifically, deficits in inhibitory γ-aminobutyric acid regulating excitatory cell input/output and local cell circuit processing of information in key brain regions may underlie the shift that is observed in depressed subjects in resting-state activities between the perigenual anterior cingulate cortex and the dorsolateral prefrontal cortex. This regional dysbalance translates at the network level in a dysbalance between default-mode and executive networks, which psychopathologically surfaces as a shift in focus from external to internal mental content and associated symptoms. We focus here on primary evidence at each of those levels and on putative mechanistic links between those levels. Apart from its implications for neuropsychiatric disorders, our model provides for the first time a set of hypotheses for cross-level mechanisms of how internal and external mental contents may be constituted and balanced in healthy subjects, and thus also contributes to the neuroscientific debate on the neural correlates of consciousness.
Collapse
|
21
|
Soumier A, Sibille E. Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice. Neuropsychopharmacology 2014; 39:2252-62. [PMID: 24690741 PMCID: PMC4104344 DOI: 10.1038/npp.2014.76] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 12/13/2022]
Abstract
Reduced expression of somatostatin (SST) is reported across chronic brain conditions including major depression and normal aging. SST is a signaling neuropeptide and marker of gamma-amino butyric acid (GABA) neurons, which specifically inhibit pyramidal neuron dendrites. Studies in auditory cortex suggest that chronic reduction in dendritic inhibition induces compensatory homeostatic adaptations that oppose the effects of acute inhibition. Whether such mechanisms occur in frontal cortex (FC) and affect behavioral outcome is not known. Here, we used two complementary viral vector strategies to examine the effects of acute vs chronic inhibition of SST-positive neurons on behavioral emotionality in adult mice. SST-IRES-Cre mice were injected in FC (prelimbic/precingulate) with CRE-dependent adeno-associated viral (AAV) vector encoding the engineered Gi/o-coupled human muscarinic M4 designer receptor exclusively activated by a designer drug (DREADD-hM4Di) or a control reporter (AAV-DIO-mCherry) for acute or chronic cellular inhibition. A separate cohort was injected with CRE-dependent AAV vectors expressing diphtheria toxin (DTA) to selectively ablate FC SST neurons. Mice were assessed for anxiety- and depressive-like behaviors (defined as emotionality). Results indicate that acute inhibition of FC SST neurons increased behavioral emotionality, whereas chronic inhibition decreased behavioral emotionality. Furthermore, ablation of FC SST neurons also decreased behavioral emotionality under baseline condition and after chronic stress. Together, our results reveal opposite effects of acute and chronic inhibition of FC SST neurons on behavioral emotionality and suggest the recruitment of homeostatic plasticity mechanisms that have implications for understanding the neurobiology of chronic brain conditions affecting dendritic-targeting inhibitory neurons.
Collapse
Affiliation(s)
- Amelie Soumier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Etienne Sibille
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Psychiatry/Center for Neuroscience, University of Pittsburgh, Bridgeside Point II, suite 231, 450 Technology Drive, Pittsburgh, PA 15219, USA, E-mail:
| |
Collapse
|
22
|
Glycine receptors control the generation of projection neurons in the developing cerebral cortex. Cell Death Differ 2014; 21:1696-708. [PMID: 24926615 DOI: 10.1038/cdd.2014.75] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/10/2014] [Accepted: 04/29/2014] [Indexed: 01/13/2023] Open
Abstract
The development of the cerebral cortex requires coordinated regulation of proliferation, specification, migration and differentiation of cortical progenitors into functionally integrated neurons. The completion of the neurogenic program requires a dynamic interplay between cell intrinsic regulators and extrinsic cues, such as growth factor and neurotransmitters. We previously demonstrated a role for extrasynaptic glycine receptors (GlyRs) containing the α2 subunit in cerebral cortical neurogenesis, revealing that endogenous GlyR activation promotes interneuron migration in the developing cortical wall. The proliferative compartment of the cortex comprises apical progenitors that give birth to neurons directly or indirectly through the generation of basal progenitors, which serve as amplification step to generate the bulk of cortical neurons. The present work shows that genetic inactivation of Glra2, the gene coding the α2 subunit of GlyRs, disrupts dorsal cortical progenitor homeostasis with an impaired capability of apical progenitors to generate basal progenitors. This defect results in an overall reduction of projection neurons that settle in upper or deep layers of the cerebral cortex. Overall, the depletion of cortical neurons observed in Glra2-knockout embryos leads to moderate microcephaly in newborn Glra2-knockout mice. Taken together, our findings support a contribution of GlyR α2 to early processes in cerebral cortical neurogenesis that are required later for the proper development of cortical circuits.
Collapse
|
23
|
Bidirectional homeostatic plasticity induced by interneuron cell death and transplantation in vivo. Proc Natl Acad Sci U S A 2013; 111:492-7. [PMID: 24344303 DOI: 10.1073/pnas.1307784111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic changes in excitability and activity can induce homeostatic plasticity. These perturbations may be associated with neurological disorders, particularly those involving loss or dysfunction of GABA interneurons. In distal-less homeobox 1 (Dlx1(-/-)) mice with late-onset interneuron loss and reduced inhibition, we observed both excitatory synaptic silencing and decreased intrinsic neuronal excitability. These homeostatic changes do not fully restore normal circuit function, because synaptic silencing results in enhanced potential for long-term potentiation and abnormal gamma oscillations. Transplanting medial ganglionic eminence interneuron progenitors to introduce new GABAergic interneurons, we demonstrate restoration of hippocampal function. Specifically, miniature excitatory postsynaptic currents, input resistance, hippocampal long-term potentiation, and gamma oscillations are all normalized. Thus, in vivo homeostatic plasticity is a highly dynamic and bidirectional process that responds to changes in inhibition.
Collapse
|
24
|
Schreiner CE, Polley DB. Auditory map plasticity: diversity in causes and consequences. Curr Opin Neurobiol 2013; 24:143-56. [PMID: 24492090 DOI: 10.1016/j.conb.2013.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 01/11/2023]
Abstract
Auditory cortical maps have been a long-standing focus of studies that assess the expression, mechanisms, and consequences of sensory plasticity. Here we discuss recent progress in understanding how auditory experience transforms spatially organized sound representations at higher levels of the central auditory pathways. New insights into the mechanisms underlying map changes have been achieved and more refined interpretations of various map plasticity effects and their consequences in terms of behavioral corollaries and learning as well as other cognitive aspects have been offered. The systematic organizational principles of cortical sound processing remain a key aspect in studying and interpreting the role of plasticity in hearing.
Collapse
Affiliation(s)
- Christoph E Schreiner
- Coleman Memorial Laboratory, UCSF Center for Integrative Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA.
| | - Daniel B Polley
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
25
|
Avila A, Nguyen L, Rigo JM. Glycine receptors and brain development. Front Cell Neurosci 2013; 7:184. [PMID: 24155690 PMCID: PMC3800850 DOI: 10.3389/fncel.2013.00184] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022] Open
Abstract
Glycine receptors (GlyRs) are ligand-gated chloride ion channels that mediate fast inhibitory neurotransmission in the spinal cord and the brainstem. There, they are mainly involved in motor control and pain perception in the adult. However, these receptors are also expressed in upper regions of the central nervous system, where they participate in different processes including synaptic neurotransmission. Moreover, GlyRs are present since early stages of brain development and might influence this process. Here, we discuss the current state of the art regarding GlyRs during embryonic and postnatal brain development in light of recent findings about the cellular and molecular mechanisms that control brain development.
Collapse
Affiliation(s)
- Ariel Avila
- Cell Physiology, BIOMED Research Institute, Hasselt University Diepenbeek, Belgium ; Groupe Interdisciplinaire Génoprotéomique Appliquée-Neurosciences, Centre Hospitalier Universitaire Sart Tilman, University of Liége Liège, Belgium ; Groupe Interdisciplinaire Génoprotéomique Appliquée-Research, Centre Hospitalier Universitaire Sart Tilman, University of Liège Liège, Belgium
| | | | | |
Collapse
|
26
|
Glycine receptor α2 subunit activation promotes cortical interneuron migration. Cell Rep 2013; 4:738-50. [PMID: 23954789 PMCID: PMC3763372 DOI: 10.1016/j.celrep.2013.07.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 06/17/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
Abstract
Glycine receptors (GlyRs) are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.
Collapse
|
27
|
|