1
|
Takaichi S. Distribution, Biosynthesis, and Function of Carotenoids in Oxygenic Phototrophic Algae. Mar Drugs 2025; 23:62. [PMID: 39997186 PMCID: PMC11857680 DOI: 10.3390/md23020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
For photosynthesis, oxygenic phototrophic organisms necessarily contain not only chlorophylls but also carotenoids. Various carotenoids have been identified in algae and taxonomic studies of algae have been conducted. In this review, the relationship between the distribution of chlorophylls and carotenoids and the phylogeny of sea and freshwater oxygenic phototrophs, including cyanobacteria, red algae, brown algae, and green algae, is summarized. These phototrophs contain division- or class-specific chlorophylls and carotenoids, such as fucoxanthin, peridinin, diadinoxanthin, and siphonaxanthin. The distribution of β-carotene and its derivatives, including β-carotene, zeaxanthin, violaxanthin, neoxanthin, diadinoxanthin, fucoxanthin, and peridinin (β-branch carotenoids), are limited to divisions of a part of Rhodophyta, Cryptophyta, Heterokontophyta, Haptophyta, and Dinophyta. Meanwhile, the distribution of α-carotene and its derivatives, such as lutein, loroxanthin, and siphonaxanthin (α-branch carotenoids), are limited to divisions of a part of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta, and Chlorophyta. In addition, carotenogenesis pathways are also discussed based on the chemical structures of carotenoids and the known characteristics of carotenogenesis enzymes in other organisms. The specific genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction centers and light-harvesting complexes. Some carotenoids function in photosynthesis and are briefly summarized. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) have also been characterized. This review is a summary and update from the previous review on the distribution of major carotenoids, primary carotenogenesis pathways, and the characteristics of carotenogenesis enzymes and genes.
Collapse
Affiliation(s)
- Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
2
|
Thiruvengadam R, Venkidasamy B, Easwaran M, Chi HY, Thiruvengadam M, Kim SH. Dynamic interplay of reactive oxygen and nitrogen species (ROS and RNS) in plant resilience: unveiling the signaling pathways and metabolic responses to biotic and abiotic stresses. PLANT CELL REPORTS 2024; 43:198. [PMID: 39023775 DOI: 10.1007/s00299-024-03281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
KEY MESSAGE Plants respond to environmental challenges by producing reactive species such as ROS and RNS, which play critical roles in signaling pathways that lead to adaptation and survival strategies. Understanding these pathways, as well as their detection methods and effects on plant development and metabolism, provides insight into increasing crop tolerance to combined stresses. Plants encounter various environmental stresses (abiotic and biotic) that affect plant growth and development. Plants sense biotic and abiotic stresses by producing different molecules, including reactive species, that act as signaling molecules and stimulate secondary messengers and subsequent gene transcription. Reactive oxygen and nitrogen species (ROS and RNS) are produced in both physiological and pathological conditions in the plasma membranes, chloroplasts, mitochondria, and endoplasmic reticulum. Various techniques, including spectroscopy, chromatography, and fluorescence methods, are used to detect highly reactive, short-half-life ROS and RNS either directly or indirectly. In this review, we highlight the roles of ROS and RNS in seed germination, root development, senescence, mineral nutrition, and post-harvest control. In addition, we provide information on the specialized metabolism involved in plant growth and development. Secondary metabolites, including alkaloids, flavonoids, and terpenoids, are produced in low concentrations in plants for signaling and metabolism. Strategies for improving crop performance under combined drought and pathogen stress conditions are discussed in this review.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, Chennai, 600077, India
| | - Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, Chennai, 600077, India
| | - Hee Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea.
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Chen HH, Pang XH, Dai JL, Jiang JG. Functional Characterization of a CruP-Like Isomerase in Dunaliella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10005-10013. [PMID: 38626461 DOI: 10.1021/acs.jafc.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Dunaliella bardawil is a marine unicellular green algal that produces large amounts of β-carotene and is a model organism for studying the carotenoid synthesis pathway. However, there are still many mysteries about the enzymes of the D. bardawil lycopene synthesis pathway that have not been revealed. Here, we have identified a CruP-like lycopene isomerase, named DbLyISO, and successfully cloned its gene from D. bardawil. DbLyISO showed a high homology with CruPs. We constructed a 3D model of DbLyISO and performed molecular docking with lycopene, as well as molecular dynamics testing, to identify the functional characteristics of DbLyISO. Functional activity of DbLyISO was also performed by overexpressing gene in both E. coli and D. bardawil. Results revealed that DbLyISO acted at the C-5 and C-13 positions of lycopene, catalyzing its cis-trans isomerization to produce a more stable trans structure. These results provide new ideas for the development of a carotenoid series from engineered bacteria, algae, and plants.
Collapse
Affiliation(s)
- Hao-Hong Chen
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Hui Pang
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Ju-Liang Dai
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Biswal S, Gupta PSS, Panda SK, Bhat HR, Rana MK. Insights into the binding mechanism of ascorbic acid and violaxanthin with violaxanthin de-epoxidase (VDE) and chlorophycean violaxanthin de-epoxidase (CVDE) enzymes. PHOTOSYNTHESIS RESEARCH 2023; 156:337-354. [PMID: 36847893 DOI: 10.1007/s11120-023-01006-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/11/2023] [Indexed: 05/23/2023]
Abstract
Photosynthetic organisms have evolved to work under low and high lights in photoprotection, acting as a scavenger of reactive oxygen species. The light-dependent xanthophyll cycle involved in this process is performed by a key enzyme (present in the thylakoid lumen), Violaxanthin De-Epoxidase (VDE), in the presence of violaxanthin (Vio) and ascorbic acid substrates. Phylogenetically, VDE is found to be connected with an ancestral enzyme Chlorophycean Violaxanthin De-Epoxidase (CVDE), present in the green algae on the stromal side of the thylakoid membrane. However, the structure and functions of CVDE were not known. In search of functional similarities involving this cycle, the structure, binding conformation, stability, and interaction mechanism of CVDE are explored with the two substrates compared to VDE. The structure of CVDE was determined by homology modeling and validated. In silico docking (of first-principles optimized substrates) revealed it has a larger catalytic domain than VDE. A thorough analysis of the binding affinity and stability of four enzyme-substrate complexes is performed by computing free energies and their decomposition, the root-mean-square deviation (RMSD) and fluctuation (RMSF), the radius of gyration, salt bridge, and hydrogen bonding interactions in molecular dynamics. Based on these, violaxanthin interacts with CVDE to a similar extent as that of VDE. Hence, its role is expected to be the same for both enzymes. On the contrary, ascorbic acid has a weaker interaction with CVDE than VDE. Given these interactions drive epoxidation or de-epoxidation in the xanthophyll cycle, it immediately discerns that either ascorbic acid does not participate in de-epoxidation or a different cofactor is necessary as CVDE has a weaker interaction with ascorbic acid than VDE.
Collapse
Affiliation(s)
- Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, 760010, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, Pune, Maharashtra-411044, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, 760010, India
| | - Haamid Rasool Bhat
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, 760010, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, 760010, India.
| |
Collapse
|
5
|
Sefrji FO, Marasco R, Michoud G, Seferji KA, Merlino G, Daffonchio D. Insights Into the Cultivable Bacterial Fraction of Sediments From the Red Sea Mangroves and Physiological, Chemotaxonomic, and Genomic Characterization of Mangrovibacillus cuniculi gen. nov., sp. nov., a Novel Member of the Bacillaceae Family. Front Microbiol 2022; 13:777986. [PMID: 35250919 PMCID: PMC8894767 DOI: 10.3389/fmicb.2022.777986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022] Open
Abstract
Mangrove forests are dynamic and productive ecosystems rich in microbial diversity; it has been estimated that microbial cells in the mangrove sediments constitute up to 91% of the total living biomass of these ecosystems. Despite in this ecosystem many of the ecological functions and services are supported and/or carried out by microorganisms (e.g., nutrient cycling and eukaryotic-host adaptation), their diversity and function are overlooked and poorly explored, especially for the oligotrophic mangrove of the Red Sea coast. Here, we investigated the cultivable fraction of bacteria associated with the sediments of Saudi Arabian Red Sea mangrove forest by applying the diffusion-chamber-based approach in combination with oligotrophic medium and long incubation time to allow the growth of bacteria in their natural environment. Cultivation resulted in the isolation of numerous representatives of Isoptericola (n = 51) and Marinobacter (n = 38), along with several less abundant and poorly study taxa (n = 25) distributed across ten genera. Within the latest group, we isolated R1DC41T, a novel member of the Bacillaceae family in the Firmicutes phylum. It showed 16S rRNA gene similarity of 94.59–97.36% with closest relatives of Rossellomorea (which was formerly in the Bacillus genus), Domibacillus, Bacillus, and Jeotgalibacillus genera. Based on the multilocus sequence analysis (MLSA), R1DC41T strain formed a separated branch from the listed genera, representing a novel species of a new genus for which the name Mangrovibacillus cuniculi gen. nov., sp. nov. is proposed. Genomic, morphological, and physiological characterizations revealed that R1DC41T is an aerobic, Gram-stain-variable, rod-shaped, non-motile, endospore-forming bacterium. A reduced genome and the presence of numerous transporters used to import the components necessary for its growth and resistance to the stresses imposed by the oligotrophic and salty mangrove sediments make R1DC41T extremely adapted to its environment of origin and to the competitive conditions present within.
Collapse
|
6
|
Lehmann M, Vamvaka E, Torrado A, Jahns P, Dann M, Rosenhammer L, Aziba A, Leister D, Rühle T. Introduction of the Carotenoid Biosynthesis α-Branch Into Synechocystis sp. PCC 6803 for Lutein Production. FRONTIERS IN PLANT SCIENCE 2021; 12:699424. [PMID: 34295345 PMCID: PMC8291087 DOI: 10.3389/fpls.2021.699424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Lutein, made by the α-branch of the methyl-erythritol phosphate (MEP) pathway, is one of the most abundant xanthophylls in plants. It is involved in the structural stabilization of light-harvesting complexes, transfer of excitation energy to chlorophylls and photoprotection. In contrast, lutein and the α-branch of the MEP pathway are not present in cyanobacteria. In this study, we genetically engineered the cyanobacterium Synechocystis for the missing MEP α-branch resulting in lutein accumulation. A cassette comprising four Arabidopsis thaliana genes coding for two lycopene cyclases (AtLCYe and AtLCYb) and two hydroxylases (AtCYP97A and AtCYP97C) was introduced into a Synechocystis strain that lacks the endogenous, cyanobacterial lycopene cyclase cruA. The resulting synlut strain showed wild-type growth and only moderate changes in total pigment composition under mixotrophic conditions, indicating that the cruA deficiency can be complemented by Arabidopsis lycopene cyclases leaving the endogenous β-branch intact. A combination of liquid chromatography, UV-Vis detection and mass spectrometry confirmed a low but distinct synthesis of lutein at rates of 4.8 ± 1.5 nmol per liter culture at OD730 (1.03 ± 0.47 mmol mol-1 chlorophyll). In conclusion, synlut provides a suitable platform to study the α-branch of the plastidic MEP pathway and other functions related to lutein in a cyanobacterial host system.
Collapse
Affiliation(s)
- Martin Lehmann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Evgenia Vamvaka
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alejandro Torrado
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marcel Dann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lea Rosenhammer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Amel Aziba
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thilo Rühle
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
7
|
Zhao Z, Liu Z, Mao X. Biotechnological Advances in Lycopene β-Cyclases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11895-11907. [PMID: 33073992 DOI: 10.1021/acs.jafc.0c04814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lycopene β-cyclase is one of the key enzymes in the biosynthesis of carotenoids, which catalyzes the β-cyclization of both ends of lycopene to produce β-carotene. Lycopene β-cyclases are found in a wide range of sources, mainly plants and microorganisms. Lycopene β-cyclases have been extensively studied for their important catalytic activity, including for use in genetic engineering to modify plants and microorganisms, as a blocking target for lycopene industrial production strains, and for their genetic and physiological effects related to microorganic and plant biological traits. This review of lycopene β-cyclases summarizes the major studies on their basic classification, functional activity, metabolic engineering, and plant science.
Collapse
Affiliation(s)
- Zilong Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
8
|
Sugiyama K, Takaichi S. Carotenogenesis in cyanobacteria: CruA/CruP-type and CrtL-type lycopene cyclases. J GEN APPL MICROBIOL 2020; 66:53-58. [PMID: 32224594 DOI: 10.2323/jgam.2020.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cyanobacteria are oxygenic photoautotrophic prokaryotes containing chlorophylls and carotenoids, and the latter play important roles in light-harvesting, protection of excess light, assembly of pigment-protein complexes, and stabilization of lipid membranes. Cyanobacteria produce many kinds of carotenoids, such as β-carotene, zeaxanthin, echinenone, and myxol glycosides, which have a cyclic structure at one or both end(s). Cyclization of lycopene is a branch point in carotenoid biosynthesis to β-carotene and γ-carotene. Two types of lycopene cyclases, CruA/CruP-type and CrtL-type, are functionally confirmed in only five species, while homologous genes are found in the genomes of most cyanobacteria. This review summarizes the carotenogenesis pathways and the functional enzymes along with genes, focusing particularly on the cyclization of lycopene by distinct types of lycopene cyclases in cyanobacteria.
Collapse
Affiliation(s)
- Kenjiro Sugiyama
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture
| |
Collapse
|
9
|
Vidal-Meireles A, Tóth D, Kovács L, Neupert J, Tóth SZ. Ascorbate Deficiency Does Not Limit Nonphotochemical Quenching in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2020; 182:597-611. [PMID: 31662419 PMCID: PMC6945847 DOI: 10.1104/pp.19.00916] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/21/2019] [Indexed: 05/06/2023]
Abstract
Ascorbate (Asc; vitamin C) plays essential roles in development, signaling, hormone biosynthesis, regulation of gene expression, stress resistance, and photoprotection. In vascular plants, violaxanthin de-epoxidase requires Asc as a reductant; thereby, Asc is required for the energy-dependent component of nonphotochemical quenching (NPQ). To assess the role of Asc in NPQ in green algae, which are known to contain low amounts of Asc, we searched for an insertional Chlamydomonas reinhardtii mutant affected in theVTC2 gene encoding GDP-l-Gal phosphorylase, which catalyzes the first committed step in the biosynthesis of Asc. The Crvtc2-1 knockout mutant was viable and, depending on the growth conditions, contained 10% to 20% Asc relative to its wild type. When C. reinhardtii was grown photomixotrophically at moderate light, the zeaxanthin-dependent component of NPQ emerged upon strong red illumination both in the Crvtc2-1 mutant and in its wild type. Deepoxidation was unaffected by Asc deficiency, demonstrating that the Chlorophycean violaxanthin de-epoxidase found in C. reinhardtii does not require Asc as a reductant. The rapidly induced, energy-dependent NPQ component characteristic of photoautotrophic C. reinhardtii cultures grown at high light was not limited by Asc deficiency either. On the other hand, a reactive oxygen species-induced photoinhibitory NPQ component was greatly enhanced upon Asc deficiency, both under photomixotrophic and photoautotrophic conditions. These results demonstrate that Asc has distinct roles in NPQ formation in C. reinhardtii as compared to vascular plants.
Collapse
Affiliation(s)
| | - Dávid Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Juliane Neupert
- Max-Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
10
|
Liang MH, Liang ZC, Chen HH, Jiang JG. The bifunctional identification of both lycopene β- and ε-cyclases from the lutein-rich Dunaliella bardawil. Enzyme Microb Technol 2019; 131:109426. [DOI: 10.1016/j.enzmictec.2019.109426] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/17/2019] [Accepted: 09/08/2019] [Indexed: 12/01/2022]
|
11
|
Wurtzel ET. Changing Form and Function through Carotenoids and Synthetic Biology. PLANT PHYSIOLOGY 2019; 179:830-843. [PMID: 30361256 PMCID: PMC6393808 DOI: 10.1104/pp.18.01122] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/06/2018] [Indexed: 05/06/2023]
Abstract
The diverse structures and multifaceted roles of carotenoids make these colorful pigments attractive targets for synthetic biology.
Collapse
Affiliation(s)
- Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York 10468
- The Graduate School and University Center-CUNY, New York, New York 10016-4309
| |
Collapse
|
12
|
Hong L, Liu JL, Midoun SZ, Miller PC. Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina. J Zhejiang Univ Sci B 2018; 18:833-844. [PMID: 28990374 DOI: 10.1631/jzus.b1700088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The unicellular green alga Dunaliella salina is well adapted to salt stress and contains compounds (including β-carotene and vitamins) with potential commercial value. A large transcriptome database of D. salina during the adjustment, exponential and stationary growth phases was generated using a high throughput sequencing platform. We characterized the metabolic processes in D. salina with a focus on valuable metabolites, with the aim of manipulating D. salina to achieve greater economic value in large-scale production through a bioengineering strategy. Gene expression profiles under salt stress verified using quantitative polymerase chain reaction (qPCR) implied that salt can regulate the expression of key genes. This study generated a substantial fraction of D. salina transcriptional sequences for the entire growth cycle, providing a basis for the discovery of novel genes. This first full-scale transcriptome study of D. salina establishes a foundation for further comparative genomic studies.
Collapse
Affiliation(s)
- Ling Hong
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun-Li Liu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Samira Z Midoun
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Philip C Miller
- Systems Biology Research Group, Bioengineering Department, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Schaub P, Rodriguez-Franco M, Cazzonelli CI, Álvarez D, Wüst F, Welsch R. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids. PLoS One 2018; 13:e0192158. [PMID: 29394270 PMCID: PMC5796706 DOI: 10.1371/journal.pone.0192158] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
The net amounts of carotenoids accumulating in plant tissues are determined by the rates of biosynthesis and degradation. While biosynthesis is rate-limited by the activity of PHYTOENE SYNTHASE (PSY), carotenoid losses are caused by catabolic enzymatic and non-enzymatic degradation. We established a system based on non-green Arabidopsis callus which allowed investigating major determinants for high steady-state levels of β-carotene. Wild-type callus development was characterized by strong carotenoid degradation which was only marginally caused by the activity of carotenoid cleavage oxygenases. In contrast, carotenoid degradation occurred mostly non-enzymatically and selectively affected carotenoids in a molecule-dependent manner. Using carotenogenic pathway mutants, we found that linear carotenes such as phytoene, phytofluene and pro-lycopene resisted degradation and accumulated while β-carotene was highly susceptible towards degradation. Moderately increased pathway activity through PSY overexpression was compensated by degradation revealing no net increase in β-carotene. However, higher pathway activities outcompeted carotenoid degradation and efficiently increased steady-state β-carotene amounts to up to 500 μg g-1 dry mass. Furthermore, we identified oxidative β-carotene degradation products which correlated with pathway activities, yielding β-apocarotenals of different chain length and various apocarotene-dialdehydes. The latter included methylglyoxal and glyoxal as putative oxidative end products suggesting a potential recovery of carotenoid-derived carbon for primary metabolic pathways. Moreover, we investigated the site of β-carotene sequestration by co-localization experiments which revealed that β-carotene accumulated as intra-plastid crystals which was confirmed by electron microscopy with carotenoid-accumulating roots. The results are discussed in the context of using the non-green calli carotenoid assay system for approaches targeting high steady-state β-carotene levels prior to their application in crops.
Collapse
Affiliation(s)
- Patrick Schaub
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | | | - Christopher Ian Cazzonelli
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Richmond, NSW Australia
| | - Daniel Álvarez
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | - Florian Wüst
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| | - Ralf Welsch
- University of Freiburg, Faculty of Biology, Institute for Biology II, Freiburg, Germany
| |
Collapse
|
14
|
Liang MH, Zhu J, Jiang JG. Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Crit Rev Food Sci Nutr 2017; 58:2314-2333. [PMID: 28609133 DOI: 10.1080/10408398.2017.1322552] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Carotenoids are essential for photosynthesis and photoprotection in photosynthetic organisms and beneficial for human health. Apocarotenoids derived from carotenoid degradation can serve critical functions including hormones, volatiles, and signals. They have been used commercially as food colorants, animal feed supplements, and nutraceuticals for cosmetic and pharmaceutical purposes. This review focuses on the molecular evolution of carotenogenic enzymes and carotenoid cleavage oxygenases (CCOs) from bacteria, fungi, cyanobacteria, algae, and plants. The diversity of carotenoids and apocarotenoids as well as their complicated biosynthetic pathway in different species can shed light on the history of early molecular evolution. Some carotenogenic genes (such as phytoene synthases) have high protein sequence similarity from bacteria to land plants, but some (such as phytoene desaturases, lycopene cyclases, carotenoid hydroxylases, and CCOs) have low similarity. The broad diversity of apocarotenoid volatile compounds can be attributed to large numbers of carotenoid precursors and the various cleavage sites catalyzed by CCOs enzymes. A variety of carotenogenic enzymes and CCOs indicate the functional diversification of carotenoids and apocrotenoids in different species. New carotenoids, new apocarotenoids, new carotenogenic enzymes, new CCOs, and new pathways still need to be explored.
Collapse
Affiliation(s)
- Ming-Hua Liang
- a College of Food Science and Engineering, South China University of Technology , Guangzhou , China.,b Department of Plant Science and Landscape Architecture , University of Maryland , College Park , Maryland , USA
| | - Jianhua Zhu
- b Department of Plant Science and Landscape Architecture , University of Maryland , College Park , Maryland , USA.,c College of Bioscience and Biotechnology, Hunan Agricultural University , Changsha , China.,d School of Biotechnology, Jiangsu University of Science and Technology , Zhenjiang , China
| | - Jian-Guo Jiang
- a College of Food Science and Engineering, South China University of Technology , Guangzhou , China
| |
Collapse
|
15
|
Xiong W, Shen G, Bryant DA. Synechocystis sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophyll a for activity. PHOTOSYNTHESIS RESEARCH 2017; 131:267-280. [PMID: 27743323 DOI: 10.1007/s11120-016-0316-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/06/2016] [Indexed: 05/15/2023]
Abstract
The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
16
|
Li Z, Peers G, Dent RM, Bai Y, Yang SY, Apel W, Leonelli L, Niyogi KK. Evolution of an atypical de-epoxidase for photoprotection in the green lineage. NATURE PLANTS 2016; 2:16140. [PMID: 27618685 PMCID: PMC5021192 DOI: 10.1038/nplants.2016.140] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/10/2016] [Indexed: 05/19/2023]
Abstract
Plants, algae and cyanobacteria need to regulate photosynthetic light harvesting in response to the constantly changing light environment. Rapid adjustments are required to maintain fitness because of a trade-off between efficient solar energy conversion and photoprotection. The xanthophyll cycle, in which the carotenoid pigment violaxanthin is reversibly converted into zeaxanthin, is ubiquitous among green algae and plants and is necessary for the regulation of light harvesting, protection from oxidative stress and adaptation to different light conditions(1,2). Violaxanthin de-epoxidase (VDE) is the key enzyme responsible for zeaxanthin synthesis from violaxanthin under excess light. Here we show that the Chlorophycean VDE (CVDE) gene from the model green alga Chlamydomonas reinhardtii encodes an atypical VDE. This protein is not homologous to the VDE found in plants and is instead related to a lycopene cyclase from photosynthetic bacteria(3). Unlike the plant-type VDE that is located in the thylakoid lumen, the Chlamydomonas CVDE protein is located on the stromal side of the thylakoid membrane. Phylogenetic analysis suggests that CVDE evolved from an ancient de-epoxidase that was present in the common ancestor of green algae and plants, providing evidence of unexpected diversity in photoprotection in the green lineage.
Collapse
Affiliation(s)
- Zhirong Li
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3102, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1878, USA
| | - Rachel M Dent
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3102, USA
| | - Yong Bai
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3102, USA
| | - Scarlett Y Yang
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3102, USA
| | - Wiebke Apel
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3102, USA
| | - Lauriebeth Leonelli
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3102, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, California 94720-3102, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
17
|
Gonzalez-Jorge S, Mehrshahi P, Magallanes-Lundback M, Lipka AE, Angelovici R, Gore MA, DellaPenna D. ZEAXANTHIN EPOXIDASE Activity Potentiates Carotenoid Degradation in Maturing Seed. PLANT PHYSIOLOGY 2016; 171:1837-51. [PMID: 27208224 PMCID: PMC4936585 DOI: 10.1104/pp.16.00604] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/03/2016] [Indexed: 05/19/2023]
Abstract
Elucidation of the carotenoid biosynthetic pathway has enabled altering the composition and content of carotenoids in various plants, but to achieve desired nutritional impacts, the genetic components regulating carotenoid homeostasis in seed, the plant organ consumed in greatest abundance, must be elucidated. We used a combination of linkage mapping, genome-wide association studies (GWAS), and pathway-level analysis to identify nine loci that impact the natural variation of seed carotenoids in Arabidopsis (Arabidopsis thaliana). ZEAXANTHIN EPOXIDASE (ZEP) was the major contributor to carotenoid composition, with mutants lacking ZEP activity showing a remarkable 6-fold increase in total seed carotenoids relative to the wild type. Natural variation in ZEP gene expression during seed development was identified as the underlying mechanism for fine-tuning carotenoid composition, stability, and ultimately content in Arabidopsis seed. We previously showed that two CAROTENOID CLEAVAGE DIOXYGENASE enzymes, CCD1 and CCD4, are the primary mediators of seed carotenoid degradation, and here we demonstrate that ZEP acts as an upstream control point of carotenoid homeostasis, with ZEP-mediated epoxidation targeting carotenoids for degradation by CCD enzymes. Finally, four of the nine loci/enzymatic activities identified as underlying natural variation in Arabidopsis seed carotenoids also were identified in a recent GWAS of maize (Zea mays) kernel carotenoid variation. This first comparison of the natural variation in seed carotenoids in monocots and dicots suggests a surprising overlap in the genetic architecture of these traits between the two lineages and provides a list of likely candidates to target for selecting seed carotenoid variation in other species.
Collapse
Affiliation(s)
- Sabrina Gonzalez-Jorge
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| | - Payam Mehrshahi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| | - Alexander E Lipka
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| | - Ruthie Angelovici
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| | - Michael A Gore
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (S.G.-J., P.M., M.M.-L., R.A., D.D.P.);Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA United Kingdom (S.G.-J., P.M.);Department of Crop Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana-Champaign, Illinois 61801 (A.E.L.);Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201 (R.A.); andPlant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (M.A.G.)
| |
Collapse
|
18
|
Gan Y, Li H, Xie Y, Wu W, Li M, Wang X, Huang J. THF1 mutations lead to increased basal and wound-induced levels of oxylipins that stimulate anthocyanin biosynthesis via COI1 signaling in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:916-27. [PMID: 24467527 DOI: 10.1111/jipb.12177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/21/2014] [Indexed: 05/21/2023]
Abstract
Mutants defective in chloroplast development or photosynthesis are liable to accumulate higher levels of anthocyanin in photo-oxidative stress. However, regulatory mechanisms of anthocyanin biosynthesis in the mutants remain unclear. Here, we investigated the mechanism by which the deletion of thylakoid formation1 (THF1) leads to an increased level of anthocyanin in Arabidopsis thaliana L. Physiological and genetic evidence showed that the increased level of anthocyanin in thf1 is dependent on coronatine-insensitive1 (COI1) signaling. Our data showed that thf1 had higher levels of basal α-linolenic acid (α-LeA), and methyl jasmonate (JA)-induced α-LeA and 12-oxophytodienoic acid (OPDA) than the wild type (WT). Consistently, expression levels of phospholipase genes including pPLAIIα and PLA-Iγ1 were elevated in thf1. Furthermore, inhibition of lipase activity by bromoenol lactone, a specific inhibitor of plant pPLA, led to producing identical levels of anthocyanins in WT and thf1 plants. Interestingly, OPDA biosynthesis was triggered by light illumination in isolated chloroplasts, indicating that new protein import into chloroplasts is not required for OPDA biosynthesis. Thus, we conclude that the elevated anthocyanin accumulation in thf1 is attributed to an increase in JA levels. This JA-mediated signaling to coordinate plant metabolism and growth in stress may be conserved in other photosensitive mutants.
Collapse
Affiliation(s)
- Yi Gan
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China; School of Agricultural and Food Science, Zhejiang A&F University, Lin'an, 311300, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Functional analysis by protein biochemistry. Methods Mol Biol 2014; 1099:147-58. [PMID: 24243202 DOI: 10.1007/978-1-62703-715-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
To date a number of cereal genomes are fully sequenced and more are near completion. The information within these genomes will be of most use to scientists when every gene has been functionally characterized leading to the complete annotation of these genomes. This chapter describes how functional characterization of plant proteins can be achieved via in vitro or in vivo methods. The first section of this chapter describes the use of Escherichia coli as a host for expression of plant genes, followed by purification and in vitro characterization of the resultant enzyme. The second section of this chapter details the methods involved in transient gene expression in Zea mays leaf protoplasts for in vivo functional characterization of protein localization.
Collapse
|
20
|
Affiliation(s)
| | - Salim Al-Babili
- BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Eleanore T. Wurtzel
- The Graduate School and University Center, The City University of New York, New York, New York, USA
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York, USA
| |
Collapse
|
21
|
Huili W, Xiaokai Z, Meili L, Dahlgren RA, Wei C, Jaiopeng Z, Chengyang X, Chunlei J, Yi X, Xuedong W, Li D, Qiyu B. Proteomic analysis and qRT-PCR verification of temperature response to Arthrospira (Spirulina) platensis. PLoS One 2013; 8:e83485. [PMID: 24349519 PMCID: PMC3861494 DOI: 10.1371/journal.pone.0083485] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 11/12/2013] [Indexed: 12/26/2022] Open
Abstract
Arthrospira (Spirulina) platensis (ASP) is a representative filamentous, non-N2-fixing cyanobacterium that has great potential to enhance the food supply and possesses several valuable physiological features. ASP tolerates high and low temperatures along with highly alkaline and salty environments, and can strongly resist oxidation and irradiation. Based on genomic sequencing of ASP, we compared the protein expression profiles of this organism under different temperature conditions (15°C, 35°Cand 45°C) using 2-DE and peptide mass fingerprinting techniques. A total of 122 proteins having a significant differential expression response to temperature were retrieved. Of the positively expressed proteins, the homologies of 116 ASP proteins were found in Arthrospira (81 proteins in Arthrospira platensis str. Paraca and 35 in Arthrospira maxima CS-328). The other 6 proteins have high homology with other microorganisms. We classified the 122 differentially expressed positive proteins into 14 functions using the COG database, and characterized their respective KEGG metabolism pathways. The results demonstrated that these differentially expressed proteins are mainly involved in post-translational modification (protein turnover, chaperones), energy metabolism (photosynthesis, respiratory electron transport), translation (ribosomal structure and biogenesis) and carbohydrate transport and metabolism. Others proteins were related to amino acid transport and metabolism, cell envelope biogenesis, coenzyme metabolism and signal transduction mechanisms. Results implied that these proteins can perform predictable roles in rendering ASP resistance against low and high temperatures. Subsequently, we determined the transcription level of 38 genes in vivo in response to temperature and identified them by qRT-PCR. We found that the 26 differentially expressed proteins, representing 68.4% of the total target genes, maintained consistency between transcription and translation levels. The remaining 12 genes showed inconsistent protein expression with transcription level and accounted for 31.6% of the total target genes.
Collapse
Affiliation(s)
- Wang Huili
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhao Xiaokai
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lin Meili
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Randy A. Dahlgren
- Department of Land, Air and Water Resources, University of California Davis, Davis, California, United States of America
| | - Chen Wei
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhou Jaiopeng
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xu Chengyang
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jin Chunlei
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xu Yi
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wang Xuedong
- School of Environmental Sciences and Public Health, Wenzhou Medical University, Wenzhou, China
- * E-mail: (BQ); (WX)
| | - Ding Li
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bao Qiyu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical University, Wenzhou, China
- * E-mail: (BQ); (WX)
| |
Collapse
|
22
|
Tzfadia O, Amar D, Bradbury LM, Wurtzel ET, Shamir R. The MORPH algorithm: ranking candidate genes for membership in Arabidopsis and tomato pathways. THE PLANT CELL 2012; 24:4389-406. [PMID: 23204403 PMCID: PMC3531841 DOI: 10.1105/tpc.112.104513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 05/08/2023]
Abstract
Closing gaps in our current knowledge about biological pathways is a fundamental challenge. The development of novel computational methods along with high-throughput experimental data carries the promise to help in the challenge. We present an algorithm called MORPH (for module-guided ranking of candidate pathway genes) for revealing unknown genes in biological pathways. The method receives as input a set of known genes from the target pathway, a collection of expression profiles, and interaction and metabolic networks. Using machine learning techniques, MORPH selects the best combination of data and analysis method and outputs a ranking of candidate genes predicted to belong to the target pathway. We tested MORPH on 230 known pathways in Arabidopsis thaliana and 93 known pathways in tomato (Solanum lycopersicum) and obtained high-quality cross-validation results. In the photosynthesis light reactions, homogalacturonan biosynthesis, and chlorophyll biosynthetic pathways of Arabidopsis, genes ranked highly by MORPH were recently verified to be associated with these pathways. MORPH candidates ranked for the carotenoid pathway from Arabidopsis and tomato are derived from pathways that compete for common precursors or from pathways that are coregulated with or regulate the carotenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Oren Tzfadia
- The Graduate School and University Center, The City University of New York, New York, New York 10016-4309
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York 10468
| | - David Amar
- Blavatnik School of Computer Science, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Louis M.T. Bradbury
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York 10468
| | - Eleanore T. Wurtzel
- The Graduate School and University Center, The City University of New York, New York, New York 10016-4309
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York 10468
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|