1
|
Cai Z, Yuan X, Zhong G, Zhang T, He J, Dang Y, Wu Z, Zeng X, Pan D, Liu Q. Structural and Functional Characterization of Conserved Key Amino Acids in Lipoteichoic Acid Synthase LtaS of Lactiplantibacillus plantarum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2623-2633. [PMID: 39834201 DOI: 10.1021/acs.jafc.4c08913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Lipoteichoic acid synthase (LtaS) is crucial for the biosynthesis of lipoteichoic acid (LTA) in lactic acid bacteria (LAB), where LTA plays a key role in bacterial adhesion, immune modulation, and maintaining cell integrity. This study explores the regulation of LtaS activity in Lactiplantibacillus plantarum, examining the effects of factors such as temperature, pH, and metal ions on enzyme activity. Molecular docking was used to identify critical amino acids at the enzyme's active site, and site-directed mutagenesis confirmed the role of five key residues (Glu-259, Thr-303, Asn-353, Arg-360, and His-420) in LtaS activity. Among them, Thr-303 plays a pivotal role, followed by Glu-259 and His-420. Conservation analysis revealed that these active-site residues are highly conserved across LAB species. These findings provide valuable insights into the functional properties of LtaS, offering potential for enhancing the efficacy of LAB-based probiotics and improving their therapeutic benefits in health applications.
Collapse
Affiliation(s)
- Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Xinyi Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Guowei Zhong
- Department of Pathogen Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Food Microbiology and Nutrition of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315211, China
| | - Qianqian Liu
- Key Lab of Clean Energy and Green Circulation, College of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
2
|
Sharma D, Engen PA, Osman A, Adnan D, Shaikh M, Abdel-Reheem MK, Naqib A, Green SJ, Hamaker B, Forsyth CB, Cheng L, Keshavarzian A, Khazaie K, Bishehsari F. Light-dark shift promotes colon carcinogenesis through accelerated colon aging. iScience 2025; 28:111560. [PMID: 39811661 PMCID: PMC11731866 DOI: 10.1016/j.isci.2024.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/30/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, with rising prevalence among younger adults. Several lifestyle factors, particularly disruptions in circadian rhythms by light-dark (LD) shifts, are known to increase CRC risk. Epidemiological studies previously showed LD-shifts are associated with increased risk of CRC. To explore the mechanisms and interactions between LD-shift and intestinal aging, we investigated how the combination of LD-shifts and aging impacts colon carcinogenesis development. Our data showed that LD-shifts and aging increased colon tumorigenesis. Notably, LD-shift accelerated intestinal aging by altering aging-related pathways, such as intestinal barrier damage, accompanied by dysbiotic changes in the intestinal microbiota that negatively impacts barrier stability. The increased carcinogenesis and intestinal aging were preceded by enrichment in host-microbiome features that are strongly regulated by the circadian clock. Overall, our results suggest that LD-shifts, increasingly prevalent among young adults, contribute to both intestinal aging and the development of colon carcinogenesis.
Collapse
Affiliation(s)
- Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
| | - Abu Osman
- Departments of Immunology and Cancer Biology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
| | - Mostafa K. Abdel-Reheem
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
| | - Ankur Naqib
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL 60612, USA
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bruce Hamaker
- Department of Food Science, Purdue University, West Lafayette, IN 60612, USA
| | - Christopher B. Forsyth
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lin Cheng
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Khashayarsha Khazaie
- Departments of Immunology and Cancer Biology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center Chicago, IL 60612, USA
- Gastroenterology Research Center, Division of Gastroenterology, Hepatology & Nutrition, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center-UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
3
|
Kim MJ, Song MH, Ji YS, Park JW, Shin YK, Kim SC, Kim G, Cho B, Park H, Ku JL, Jeong SY. Cell free supernatants of Bifidobacterium adolescentis and Bifidobacterium longum suppress the tumor growth in colorectal cancer organoid model. Sci Rep 2025; 15:935. [PMID: 39762302 PMCID: PMC11704243 DOI: 10.1038/s41598-024-83048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The probiotic gut microbiome and its metabolites are pivotal in regulating host metabolism, inflammation, and immunity. Host genetics, colonization at birth, the host lifestyle, and exposure to diseases and drugs determine microbial composition. Dysbiosis and disruption of homeostasis in the beneficial microbiome have been reported to be involved in the tumorigenesis and progression of colorectal cancer (CRC). However, the influence of bacteria-secreted metabolites on CRC growth is yet to be fully elucidated. In this study, we compared the microbial composition of CRC patients to healthy controls to identify distinct patterns of microbiota-derived metabolites in CRC patients. Metagenomic analysis demonstrated that beneficial bacteria strains; Blautia producta, Bifidobacterium adolescentis, and Bifidobacterium longum decreased, while Parabacteroides distasonis and Bacteroides ovatus were more prevalent in the CRC patient group. Treatment of cancer organoid lines with microbial culture supernatants from Blautia producta, Bifidobacterium adolescentis, and Bifidobacterium longum showed remarkable inhibition of cancer growth. This study demonstrates that the bacterial metabolites depleted in CRC patients may inhibit cancer growth and highlights the effects of microbiome-derived metabolites on CRC growth.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Myoung-Hyun Song
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yo-Sep Ji
- Holzapfel Effective Microbes (HEM) Pharma, Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Ji Won Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Young-Kyoung Shin
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Soon-Chan Kim
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Beomki Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Ja-Lok Ku
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
4
|
Pan M, O'Flaherty S, Hibberd A, Gerdes S, Morovic W, Barrangou R. The curated Lactobacillus acidophilus NCFM genome provides insights into strain specificity and microevolution. BMC Genomics 2025; 26:1. [PMID: 39754036 PMCID: PMC11697832 DOI: 10.1186/s12864-024-11177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The advent of next generation sequencing technologies has enabled a surge in the number of whole genome sequences in public databases, and our understanding of the composition and evolution of bacterial genomes. Besides model organisms and pathogens, some attention has been dedicated to industrial bacteria, notably members of the Lactobacillaceae family that are commonly studied and formulated as probiotic bacteria. Of particular interest is Lactobacillus acidophilus NCFM, an extensively studied strain that has been widely commercialized for decades and is being used for the delivery of vaccines and therapeutics. RESULTS Here, we revisit the L. acidophilus genome, which was sequenced twenty years ago, and determined the core and pan genomes of 114 publicly available L. acidophilus strains, spanning commercial isolates, academic strains and clones from the scientific literature. Results indicate a predictable high level of homogeneity within the species, but also reveal surprising mis-assemblies. Furthermore, by investigating twenty one available L. acidophilus NCFM-derived variants, we document overall genomic stability, with no observed genomic re-arrangement or inversions. CONCLUSION This study provides a comparative analysis of the currently available genomes for L. acidophilus and examines microevolution patterns for several strains derived from L. acidophilus NCFM, which revealed no to very few SNPs with strains sequenced at different points in time using different sequencing technologies and platforms. This re-affirms its suitability for industrial deployment as a probiotic and its use as an engineering chassis and delivery modality for novel biotherapeutics.
Collapse
Affiliation(s)
- Meichen Pan
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Rodolphe Barrangou
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
5
|
Semertzidou A, Whelan E, Smith A, Ng S, Roberts L, Brosens JJ, Marchesi JR, Bennett PR, MacIntyre DA, Kyrgiou M. Microbial signatures and continuum in endometrial cancer and benign patients. MICROBIOME 2024; 12:118. [PMID: 38951935 PMCID: PMC11218081 DOI: 10.1186/s40168-024-01821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/22/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Endometrial cancer is a multifactorial disease with inflammatory, metabolic and potentially microbial cues involved in disease pathogenesis. The endometrial cancer microbiome has been poorly characterised so far and studies have often overestimated bacterial biomass due to lack of integration of appropriate contamination controls. There is also a scarcity of evidence on the functionality of microbial microenvironments in endometrial cancer. This work addresses that knowledge gap by interrogating the genuine, contamination-free microbial signatures in the female genital tract and rectum of women with endometrial cancer and the mechanistic role of microbiome on carcinogenic processes. RESULTS Here we sampled different regions of the reproductive tract (vagina, cervix, endometrium, fallopian tubes and ovaries) and rectum of 61 patients (37 endometrial cancer; 24 benign controls). We performed 16S rRNA gene sequencing of the V1-V2 hypervariable regions and qPCR of the 16S rRNA gene to qualitatively and quantitatively assess microbial communities and used 3D benign and endometrial cancer organoids to evaluate the effect of microbial products of L. crispatus, which was found depleted in endometrial cancer patients following primary analysis, on endometrial cell proliferation and inflammation. We found that the upper genital tract of a subset of women with and without endometrial cancer harbour microbiota quantitatively and compositionally distinguishable from background contaminants. Endometrial cancer was associated with reduced cervicovaginal and rectal bacterial load together with depletion of Lactobacillus species relative abundance, including L. crispatus, increased bacterial diversity and enrichment of Porphyromonas, Prevotella, Peptoniphilus and Anaerococcus in the lower genital tract and endometrium. Treatment of benign and malignant endometrial organoids with L. crispatus conditioned media exerted an anti-proliferative effect at high concentrations but had minimal impact on cytokine and chemokine profiles. CONCLUSIONS Our findings provide evidence that the upper female reproductive tract of some women contains detectable levels of bacteria, the composition of which is associated with endometrial cancer. Whether this is a cause or consequence of cancer pathophysiology and what is the functional significance of this finding remain to be elucidated to guide future screening tools and microbiome-based therapeutics. Video Abstract.
Collapse
Affiliation(s)
- Anita Semertzidou
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK
- Department of Obstetrics & Gynaecology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Eilbhe Whelan
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK
- Department of Obstetrics & Gynaecology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Ann Smith
- Faculty of Health and Applied Sciences, University West of England, Glenside Campus, Bristol, BS16 1DD, UK
| | - Sherrianne Ng
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK
| | - Lauren Roberts
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK
| | - Jan J Brosens
- Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry, CV2 2DX, UK
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Digestion, Metabolism and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Phillip R Bennett
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK
- Department of Obstetrics & Gynaecology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK
| | - Maria Kyrgiou
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK.
- Department of Obstetrics & Gynaecology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK.
| |
Collapse
|
6
|
Reuter S, Raspe J, Taube C. Microbes little helpers and suppliers for therapeutic asthma approaches. Respir Res 2024; 25:29. [PMID: 38218816 PMCID: PMC10787474 DOI: 10.1186/s12931-023-02660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
Bronchial asthma is a prevalent and increasingly chronic inflammatory lung disease affecting over 300 million people globally. Initially considered an allergic disorder driven by mast cells and eosinophils, asthma is now recognized as a complex syndrome with various clinical phenotypes and immunological endotypes. These encompass type 2 inflammatory endotypes characterized by interleukin (IL)-4, IL-5, and IL-13 dominance, alongside others featuring mixed or non-eosinophilic inflammation. Therapeutic success varies significantly based on asthma phenotypes, with inhaled corticosteroids and beta-2 agonists effective for milder forms, but limited in severe cases. Novel antibody-based therapies have shown promise, primarily for severe allergic and type 2-high asthma. To address this gap, novel treatment strategies are essential for better control of asthma pathology, prevention, and exacerbation reduction. One promising approach involves stimulating endogenous anti-inflammatory responses through regulatory T cells (Tregs). Tregs play a vital role in maintaining immune homeostasis, preventing autoimmunity, and mitigating excessive inflammation after pathogenic encounters. Tregs have demonstrated their ability to control both type 2-high and type 2-low inflammation in murine models and dampen human cell-dependent allergic airway inflammation. Furthermore, microbes, typically associated with disease development, have shown immune-dampening properties that could be harnessed for therapeutic benefits. Both commensal microbiota and pathogenic microbes have demonstrated potential in bacterial-host interactions for therapeutic purposes. This review explores microbe-associated approaches as potential treatments for inflammatory diseases, shedding light on current and future therapeutics.
Collapse
Affiliation(s)
- Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany.
| | - Jonas Raspe
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany
| |
Collapse
|
7
|
Mignini I, Piccirilli G, Galasso L, Termite F, Esposto G, Ainora ME, Gasbarrini A, Zocco MA. From the Colon to the Liver: How Gut Microbiota May Influence Colorectal Cancer Metastatic Potential. J Clin Med 2024; 13:420. [PMID: 38256554 PMCID: PMC10815973 DOI: 10.3390/jcm13020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The gut microbiota's influence on human tumorigenesis is a burning topic in medical research. With the new ontological perspective, which considers the human body and its pathophysiological processes as the result of the interaction between its own eukaryotic cells and prokaryotic microorganisms living in different body niches, great interest has arisen in the role of the gut microbiota on carcinogenesis. Indeed, dysbiosis is currently recognized as a cancer-promoting condition, and multiple molecular mechanisms have been described by which the gut microbiota may drive tumor development, especially colorectal cancer (CRC). Metastatic power is undoubtedly one of the most fearsome features of neoplastic tissues. Therefore, understanding the underlying mechanisms is of utmost importance to improve patients' prognosis. The liver is the most frequent target of CRC metastasis, and new evidence reveals that the gut microbiota may yield an effect on CRC diffusion to the liver, thus defining an intriguing new facet of the so-called "gut-liver axis". In this review, we aim to summarize the most recent data about the microbiota's role in promoting or preventing hepatic metastasis from CRC, highlighting some potential future therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (G.P.); (L.G.); (F.T.); (G.E.); (M.E.A.); (A.G.)
| |
Collapse
|
8
|
Fiecke C, Simsek S, Sharma AK, Gallaher DD. Effect of red wheat, aleurone, and testa layers on colon cancer biomarkers, nitrosative stress, and gut microbiome composition in rats. Food Funct 2023; 14:9617-9634. [PMID: 37814914 DOI: 10.1039/d3fo03438k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
We previously found greater reduction of colon cancer (CC) biomarkers for red wheat compared to white wheat regardless of refinement state. In the present study we examined whether the phenolic-rich aleurone and testa layers are drivers of chemoprevention by red wheat and their influence on gut microbiota composition using a 1,2-dimethylhydrazine-induced CC rat model. Rats were fed a low-fat diet (16% of energy as fat), high-fat diet (50% of energy as fat), or high-fat diet containing whole red wheat, refined red wheat, refined white wheat, or aleurone- or testa-enriched fractions for 12 weeks. Morphological markers (aberrant crypt foci, ACF) were assessed after methylene blue staining and biochemical markers (3-nitrotyrosine [3-NT], Dclk1) by immunohistochemical determination of staining positivity within aberrant crypts. Gut microbiota composition was evaluated from 16S rRNA gene sequencing of DNA extracted from cecal contents. Relative to the high-fat diet, the whole and refined red wheat, refined white wheat, and testa-enriched fraction decreased ACF, while only the refined red wheat and aleurone-enriched fraction decreased 3-NT. No significant differences were observed for Dclk1. An increase in microbial diversity was observed for the aleurone-enriched fraction (ACE index) and whole red wheat (Inverse Simpson Index). The diet groups significantly modified overall microbiome composition, including altered abundances of Lactobacillus, Mucispirillum, Phascolarctobacterium, and Blautia coccoides. These results suggest that red wheat may reduce CC risk through modifications to the gut microbiota and nitrosative stress, which may be due, in part, to the influence of dietary fiber and the phenolic-rich aleurone layer.
Collapse
Affiliation(s)
- Chelsey Fiecke
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Senay Simsek
- North Dakota State University, Department of Plant Sciences, Cereal Science Graduate Program, Fargo, ND, 58105, USA
| | - Ashok Kumar Sharma
- Department of Animal Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Daniel D Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
9
|
Chen S, He X, Qin Z, Li G, Wang W, Nai Z, Tian Y, Liu D, Jiang X. Loss in the Antibacterial Ability of a PyrR Gene Regulating Pyrimidine Biosynthesis after Using CRISPR/Cas9-Mediated Knockout for Metabolic Engineering in Lactobacillus casei. Microorganisms 2023; 11:2371. [PMID: 37894029 PMCID: PMC10609543 DOI: 10.3390/microorganisms11102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Lactobacillus casei (L. casei) has four possible mechanisms: antimicrobial antagonism, competitional adhesion, immunoregulation, and the inhibition of bacterial toxins. To delineate the metabolic reactions of nucleotides from L. casei that are associated with mechanisms of inhibiting pathogens and immunoregulation, we report that a PyrR-deficient L. casei strain was constructed using the CRISPR-Cas9D10A tool. Furthermore, there were some changes in its basic biological characterization, such as its growth curve, auxotroph, and morphological damage. The metabolic profiles of the supernatant between the PyrR-deficient and wild strains revealed the regulation of the synthesis of genetic material and of certain targeting pathways and metabolites. In addition, the characteristics of the PyrR-deficient strain were significantly altered as it lost the ability to inhibit the growth of pathogens. Moreover, we identified PyrR-regulating pyrimidine biosynthesis, which further improved its internalization and colocalization with macrophages. Evidence shows that the PyrR gene is a key active component in L. casei supernatants for the regulation of pyrimidine biosynthesis against a wide range of pathogens.
Collapse
Affiliation(s)
- Shaojun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xinmiao He
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Ziliang Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Gang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wentao Wang
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Zida Nai
- College of Agriculture, Yanbian University, Yanji 133002, China
| | - Yaguang Tian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Di Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Xinpeng Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Tosti E, Srivastava N, Edelmann W. Vaccination and Microbiota Manipulation Approaches for Colon Cancer Prevention in Rodent Models. Cancer Prev Res (Phila) 2023; 16:429-438. [PMID: 37012205 PMCID: PMC11834863 DOI: 10.1158/1940-6207.capr-23-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Colorectal cancer represents the third most common cancer type worldwide and is a leading cause of cancer-related mortality in the United States and Western countries. Rodent models have been invaluable to study the etiology of colorectal cancer and to test novel chemoprevention avenues. In the past, the laboratory mouse has become one of the best preclinical models for these studies due to the availability of genetic information for commonly used mouse strains with well-established and precise gene targeting and transgenic techniques. Well-established chemical mutagenesis technologies are also being used to develop mouse and rat models of colorectal cancer for prevention and treatment studies. In addition, xenotransplantation of cancer cell lines and patient-derived xenografts has been useful for preclinical prevention studies and drug development. This review focuses on the recent use of rodent models to evaluate the utility of novel strategies in the prevention of colon cancers including immune prevention approaches and the manipulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Roe JM, Seely K, Bussard CJ, Eischen Martin E, Mouw EG, Bayles KW, Hollingsworth MA, Brooks AE, Dailey KM. Hacking the Immune Response to Solid Tumors: Harnessing the Anti-Cancer Capacities of Oncolytic Bacteria. Pharmaceutics 2023; 15:2004. [PMID: 37514190 PMCID: PMC10384176 DOI: 10.3390/pharmaceutics15072004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley's Toxin), Proteus, Salmonella, and Clostridium. Advancements in techniques and methodology, including genetic engineering, create opportunities to "hijack" typical host-pathogen interactions and subsequently harness oncolytic capacities. Engineering, sometimes termed "domestication", of oncolytic bacterial species is especially beneficial when solid tumors are inaccessible or metastasize early in development. This review examines reported oncolytic bacteria-host immune interactions and details the known mechanisms of these interactions to the protein level. A synopsis of the presented membrane surface molecules that elicit particularly promising oncolytic capacities is paired with the stimulated localized and systemic immunogenic effects. In addition, oncolytic bacterial progression toward clinical translation through engineering efforts are discussed, with thorough attention given to strains that have accomplished Phase III clinical trial initiation. In addition to therapeutic mitigation after the tumor has formed, some bacterial species, referred to as "prophylactic", may even be able to prevent or "derail" tumor formation through anti-inflammatory capabilities. These promising species and their particularly favorable characteristics are summarized as well. A complete understanding of the bacteria-host interaction will likely be necessary to assess anti-cancer capacities and unlock the full cancer therapeutic potential of oncolytic bacteria.
Collapse
Affiliation(s)
- Jason M Roe
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kevin Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Caleb J Bussard
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
| | | | - Elizabeth G Mouw
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda E Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
- Office of Research & Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| | - Kaitlin M Dailey
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
12
|
Grenier SF, Khan MW, Reil KA, Sawaged S, Tsuji S, Giacalone MJ, Tian M, McGuire KL. VAX014, an Oncolytic Therapy, Reduces Adenomas and Modifies Colon Microenvironment in Mouse Model of CRC. Int J Mol Sci 2023; 24:9993. [PMID: 37373142 DOI: 10.3390/ijms24129993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) remains the third most common form of cancer and, despite its reduced mortality, results in over 50,000 deaths annually, highlighting the need for novel therapeutic approaches. VAX014 is a novel clinical-stage, oncolytic bacterial minicell-based therapy shown to elicit protective antitumor immune responses in cancer, but it has not been fully evaluated in CRC. Here, VAX014 was demonstrated to induce oncolysis in CRC cell lines in vitro and was evaluated in vivo, both as a prophylactic (before spontaneous development of adenomatous polyps) and as a neoadjuvant treatment using the Fabp-CreXApcfl468 preclinical animal model of colon cancer. As a prophylactic, VAX014 significantly reduced the size and number of adenomas without inducing long term changes in the gene expression of inflammatory, T helper 1 antitumor, and immunosuppression markers. In the presence of adenomas, a neoadjuvant VAX014 treatment reduced the number of tumors, induced the gene expression of antitumor TH1 immune markers in adenomas, and promoted the expansion of the probiotic bacterium Akkermansia muciniphila. The neoadjuvant VAX014 treatment was associated with decreased Ki67 proliferation in vivo, suggesting that VAX014 inhibits adenoma development through both oncolytic and immunotherapeutic effects. Combined, these data support the potential of VAX014 treatment in CRC and "at risk" polyp-bearing or early adenocarcinoma populations.
Collapse
Affiliation(s)
- Shea F Grenier
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | - Mohammad W Khan
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | | | - Savannah Sawaged
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | | | | | - Mengxi Tian
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | - Kathleen L McGuire
- Department of Biology, Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
13
|
Wiley MB, Bauer J, Mehrotra K, Zessner-Spitzenberg J, Kolics Z, Cheng W, Castellanos K, Nash MG, Gui X, Kone L, Maker AV, Qiao G, Reddi D, Church DN, Kerr RS, Kerr DJ, Grippo PJ, Jung B. Non-Canonical Activin A Signaling Stimulates Context-Dependent and Cellular-Specific Outcomes in CRC to Promote Tumor Cell Migration and Immune Tolerance. Cancers (Basel) 2023; 15:3003. [PMID: 37296966 PMCID: PMC10252122 DOI: 10.3390/cancers15113003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
We have shown that activin A (activin), a TGF-β superfamily member, has pro-metastatic effects in colorectal cancer (CRC). In lung cancer, activin activates pro-metastatic pathways to enhance tumor cell survival and migration while augmenting CD4+ to CD8+ communications to promote cytotoxicity. Here, we hypothesized that activin exerts cell-specific effects in the tumor microenvironment (TME) of CRC to promote anti-tumoral activity of immune cells and the pro-metastatic behavior of tumor cells in a cell-specific and context-dependent manner. We generated an Smad4 epithelial cell specific knockout (Smad4-/-) which was crossed with TS4-Cre mice to identify SMAD-specific changes in CRC. We also performed IHC and digital spatial profiling (DSP) of tissue microarrays (TMAs) obtained from 1055 stage II and III CRC patients in the QUASAR 2 clinical trial. We transfected the CRC cells to reduce their activin production and injected them into mice with intermittent tumor measurements to determine how cancer-derived activin alters tumor growth in vivo. In vivo, Smad4-/- mice displayed elevated colonic activin and pAKT expression and increased mortality. IHC analysis of the TMA samples revealed increased activin was required for TGF-β-associated improved outcomes in CRC. DSP analysis identified that activin co-localization in the stroma was coupled with increases in T-cell exhaustion markers, activation markers of antigen presenting cells (APCs), and effectors of the PI3K/AKT pathway. Activin-stimulated PI3K-dependent CRC transwell migration, and the in vivo loss of activin lead to smaller CRC tumors. Taken together, activin is a targetable, highly context-dependent molecule with effects on CRC growth, migration, and TME immune plasticity.
Collapse
Affiliation(s)
- Mark B. Wiley
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Jessica Bauer
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Kunaal Mehrotra
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Jasmin Zessner-Spitzenberg
- Clinical Department for Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Zoe Kolics
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Wenxuan Cheng
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| | - Karla Castellanos
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Michael G. Nash
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Xianyong Gui
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lyonell Kone
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ajay V. Maker
- Department of Surgery, University of California-San Francisco, San Francisco, CA 94115, USA
| | - Guilin Qiao
- Department of Surgery, University of California-San Francisco, San Francisco, CA 94115, USA
| | - Deepti Reddi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - David N. Church
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 4BH, UK
- NIHR Oxford Comprehensive Biomedical Research Center, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford OX1 4BH, UK
| | - Rachel S. Kerr
- Department of Oncology, University of Oxford, Oxford OX1 4BH, UK
| | - David J. Kerr
- Radcliffe Department of Medicine, University of Oxford, Oxford OX1 4BH, UK
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Barbara Jung
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; (M.B.W.); (K.M.)
| |
Collapse
|
14
|
Wong CC, Yu J. Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00766-x. [PMID: 37169888 DOI: 10.1038/s41571-023-00766-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Colorectal cancer (CRC) is one of the commonest cancers globally. A unique aspect of CRC is its intimate association with the gut microbiota, which forms an essential part of the tumour microenvironment. Research over the past decade has established that dysbiosis of gut bacteria, fungi, viruses and Archaea accompanies colorectal tumorigenesis, and these changes might be causative. Data from mechanistic studies demonstrate the ability of the gut microbiota to interact with the colonic epithelia and immune cells of the host via the release of a diverse range of metabolites, proteins and macromolecules that regulate CRC development. Preclinical and some clinical evidence also underscores the role of the gut microbiota in modifying the therapeutic responses of patients with CRC to chemotherapy and immunotherapy. Herein, we summarize our current understanding of the role of gut microbiota in CRC and outline the potential translational and clinical implications for CRC diagnosis, prevention and treatment. Emphasis is placed on how the gut microbiota could now be better harnessed by developing targeted microbial therapeutics as chemopreventive agents against colorectal tumorigenesis, as adjuvants for chemotherapy and immunotherapy to boost drug efficacy and safety, and as non-invasive biomarkers for CRC screening and patient stratification. Finally, we highlight the hurdles and potential solutions to translating our knowledge of the gut microbiota into clinical practice.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
15
|
Ko FC, Jochum SB, Wilson BM, Adra A, Patel N, Lee H, Wilber S, Shaikh M, Forsyth C, Keshavarzian A, Swanson GR, Sumner DR. Colon epithelial cell-specific Bmal1 deletion impairs bone formation in mice. Bone 2023; 168:116650. [PMID: 36584784 PMCID: PMC9911378 DOI: 10.1016/j.bone.2022.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
The circadian clock system regulates multiple metabolic processes, including bone metabolism. Previous studies have demonstrated that both central and peripheral circadian signaling regulate skeletal growth and homeostasis in mice. Disruption in central circadian rhythms has been associated with a decline in bone mineral density in humans and the global and osteoblast-specific disruption of clock genes in bone tissue leads to lower bone mass in mice. Gut physiology is highly sensitive to circadian disruption. Since the gut is also known to affect bone remodeling, we sought to test the hypothesis that circadian signaling disruption in colon epithelial cells affects bone. We therefore assessed structural, functional, and cellular properties of bone in 8 week old Ts4-Cre and Ts4-Cre;Bmal1fl/fl (cBmalKO) mice, where the clock gene Bmal1 is deleted in colon epithelial cells. Axial and appendicular trabecular bone volume was significantly lower in cBmalKO compared to Ts4-Cre 8-week old mice in a sex-dependent fashion, with male but not female mice showing the phenotype. Similarly, the whole bone mechanical properties were deteriorated in cBmalKO male mice. The tissue level mechanisms involved suppressed bone formation with normal resorption, as evidenced by serum markers and dynamic histomorphometry. Our studies demonstrate that colon epithelial cell-specific deletion of Bmal1 leads to failure to acquire trabecular and cortical bone in male mice.
Collapse
Affiliation(s)
- Frank C Ko
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America.
| | - Sarah B Jochum
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Brittany M Wilson
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Amal Adra
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Nikhil Patel
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Hoomin Lee
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Sherry Wilber
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Christopher Forsyth
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Ali Keshavarzian
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Garth R Swanson
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - D Rick Sumner
- Department of Anatomy& Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States of America; Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, United States of America; Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, United States of America
| |
Collapse
|
16
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
17
|
Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28:619. [PMID: 36677677 PMCID: PMC9862683 DOI: 10.3390/molecules28020619] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.
Collapse
Affiliation(s)
- Ricardo Santos Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences and the Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 27599, USA
| | - Kayanush J. Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| |
Collapse
|
18
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
19
|
Li J, Zhu Y, Yang L, Wang Z. Effect of gut microbiota in the colorectal cancer and potential target therapy. Discov Oncol 2022; 13:51. [PMID: 35749000 PMCID: PMC9232688 DOI: 10.1007/s12672-022-00517-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
The symbiotic interaction between gut microbiota and the digestive tract is an important factor in maintaining the intestinal environment balance. Colorectal cancer (CRC) is a complex disease involving the interaction between tumour cells and a large number of microorganisms. The microbiota is involved in the occurrence, development and prognosis of colorectal cancer. Several microbiota species have been studied, such as Fusobacterium nucleatum (F. nucleatum), Enterotoxigenic Bacteroides fragilis (ETBF), Streptococcus bovis (S. bovis), Lactobacillus, and Bifidobacterium. Studies about the interaction between microbiota and CRC were retrieved from Embase, PubMed, Ovid and Web of Science up to 21 Oct 2021. This review expounded on the effect of microbiota on CRC, especially the dysregulation of bacteria and carcinogenicity. The methods of gut microbiota modifications representing novel prognostic markers and innovative therapeutic strategies were also described.
Collapse
Affiliation(s)
- Junchuan Li
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yuzhou Zhu
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Lie Yang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ziqiang Wang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
20
|
Davoodvandi A, Fallahi F, Tamtaji OR, Tajiknia V, Banikazemi Z, Fathizadeh H, Abbasi-Kolli M, Aschner M, Ghandali M, Sahebkar A, Taghizadeh M, Mirzaei H. An Update on the Effects of Probiotics on Gastrointestinal Cancers. Front Pharmacol 2021; 12:680400. [PMID: 34992527 PMCID: PMC8724544 DOI: 10.3389/fphar.2021.680400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022] Open
Abstract
Because of their increasing prevalence, gastrointestinal (GI) cancers are regarded as an important global health challenge. Microorganisms residing in the human GI tract, termed gut microbiota, encompass a large number of living organisms. The role of the gut in the regulation of the gut-mediated immune responses, metabolism, absorption of micro- and macro-nutrients and essential vitamins, and short-chain fatty acid production, and resistance to pathogens has been extensively investigated. In the past few decades, it has been shown that microbiota imbalance is associated with the susceptibility to various chronic disorders, such as obesity, irritable bowel syndrome, inflammatory bowel disease, asthma, rheumatoid arthritis, psychiatric disorders, and various types of cancer. Emerging evidence has shown that oral administration of various strains of probiotics can protect against cancer development. Furthermore, clinical investigations suggest that probiotic administration in cancer patients decreases the incidence of postoperative inflammation. The present review addresses the efficacy and underlying mechanisms of action of probiotics against GI cancers. The safety of the most commercial probiotic strains has been confirmed, and therefore these strains can be used as adjuvant or neo-adjuvant treatments for cancer prevention and improving the efficacy of therapeutic strategies. Nevertheless, well-designed clinical studies are still needed for a better understanding of the properties and mechanisms of action of probiotic strains in mitigating GI cancer development.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Fallahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Reza Tamtaji
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadis Fathizadeh
- Department of Laboratory Sciences, Sirjan Faculty of Medicine Sciences, Sirjan, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Kaźmierczak-Siedlecka K, Roviello G, Catalano M, Polom K. Gut Microbiota Modulation in the Context of Immune-Related Aspects of Lactobacillus spp. and Bifidobacterium spp. in Gastrointestinal Cancers. Nutrients 2021; 13:2674. [PMID: 34444834 PMCID: PMC8401094 DOI: 10.3390/nu13082674] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has revealed the critical roles of commensal microbes in cancer progression and recently several investigators have evaluated the therapeutic effectiveness of targeting the microbiota. This gut microbiota-related approach is especially attractive in the treatment of gastrointestinal cancers. Probiotics supplementation is a microbiota-targeted strategy that appears to improve treatment efficacy; Lactobacillus spp. and Bifidobacterium spp. are among the most commonly used probiotic agents. These bacteria seem to exert immunomodulatory effects, impacting on the immune system both locally and systemically. The gut microbiota are able to affect the efficiency of immunotherapy, mainly acting as inhibitors at immune checkpoints. The effects of immunotherapy may be modulated using traditional probiotic strains and/or next generation probiotics, such as Akkermansia municiphila. It is possible that probiotics might enhance the efficiency of immunotherapy based on PD-1/PD-L1 and CTLA-4 but more data are needed to confirm this speculation. Indeed, although there is experimental evidence for the efficacy of several strains, the health-promoting effects of numerous probiotics have not been demonstrated in human patients and furthermore the potential risks of these products, particularly in oncologic patients, are rarely mentioned.
Collapse
Affiliation(s)
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy; (G.R.); (M.C.)
| | - Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy; (G.R.); (M.C.)
| | - Karol Polom
- Department of Surgical Oncology, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| |
Collapse
|
22
|
Wang T, Zhang L, Wang P, Liu Y, Wang G, Shan Y, Yi Y, Zhou Y, Liu B, Wang X, Lü X. Lactobacillus coryniformis MXJ32 administration ameliorates azoxymethane/dextran sulfate sodium-induced colitis-associated colorectal cancer via reshaping intestinal microenvironment and alleviating inflammatory response. Eur J Nutr 2021; 61:85-99. [PMID: 34185157 DOI: 10.1007/s00394-021-02627-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Gut microbiota has been reported to contribute to either prevent or promote colorectal cancer (CRC), and treatment with probiotics might be a promising intervention method. The present study aimed to evaluate the potential anti-CRC effects of Lactobacillus coryniformis MXJ32 on a colitis-associated (CA)-CRC mouse model. METHODS The CA-CRC mouse model was induced by a single intraperitoneal injection of 10 mg/kg azoxymethane and followed by three 7-day cycles of 2% dextran sulfate sodium in drinking water with a 14-day recovery period. Mice were supplemented with L. coryniformis MXJ32 by oral gavage (1 × 109 CFU/day/mouse). The CA-CRC attenuating effects of this probiotic were assessed via intestinal barrier integrity, inflammation, and gut microenvironment. RESULTS Treatment with L. coryniformis MXJ32 could significantly inhibit the total number of tumors and the average tumor diameter. This probiotic administration prevented the damage of intestinal barrier function by enhancing the expression of tight junction proteins (Occludin, Claudin-1, and ZO-1) and recovering the loss of goblet cells. Moreover, L. coryniformis MXJ32 alleviated intestinal inflammation via down-regulating the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-γ, and IL-17a) and chemokines (Cxcl1, Cxcl2, Cxcl3, Cxcl5, and Ccl7). In addition, L. coryniformis MXJ32 supplementation increased the abundance of some beneficial bacteria (such as SCFAs-producing bacteria, Lactobacillus, Bifidobacterium, Akkermansia, and Faecalibaculum) and decreased the abundance of some harmful bacteria (such as pro-inflammatory bacteria, Desulfovibrio and Helicobacter), which in turn attenuated the overexpression of inflammation. CONCLUSION Lactobacillus coryniformis MXJ32 could effectively ameliorate CA-CRC via regulating intestinal microenvironment, alleviating inflammation, and intestinal barrier damage, which further suggested that L. coryniformis MXJ32 could be considered as a functional food ingredient for the alleviation of CA-CRC.
Collapse
Affiliation(s)
- Tao Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Leshan Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Panpan Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yilin Liu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Gangtu Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, No. 22 Xinong Road, Yangling District, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
23
|
Mayorgas A, Dotti I, Salas A. Microbial Metabolites, Postbiotics, and Intestinal Epithelial Function. Mol Nutr Food Res 2020; 65:e2000188. [DOI: 10.1002/mnfr.202000188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Aida Mayorgas
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| | - Isabella Dotti
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| | - Azucena Salas
- Department of Gastroenterology, Hospital Clínic ‐ IDIBAPS C/Rosselló, 149‐153, 3rd Floor Barcelona 08036 Spain
| |
Collapse
|
24
|
Abstract
Ketogenic diets (KDs) are popularly used to aid a myriad of conditions. KDs induce metabolic changes, but how microbiome alterations contribute to these changes remains unexplored. In a recent Cell paper, Ang et al. identify KD-specific changes to the gut microbiota linked to a reduction in pro-inflammatory Th17 cells.
Collapse
Affiliation(s)
- Henry H Le
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Elizabeth L Johnson
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
25
|
Yan F, Polk DB. Probiotics and Probiotic-Derived Functional Factors-Mechanistic Insights Into Applications for Intestinal Homeostasis. Front Immunol 2020; 11:1428. [PMID: 32719681 PMCID: PMC7348054 DOI: 10.3389/fimmu.2020.01428] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Advances in our understanding of the contribution of the gut microbiota to human health and the correlation of dysbiosis with diseases, including chronic intestinal conditions such as inflammatory bowel disease (IBD), have driven mechanistic investigations of probiotics in intestinal homeostasis and potential clinical applications. Probiotics have been shown to promote intestinal health by maintaining and restoring epithelial function, ensuring mucosal immune homeostasis, and inhibiting pathogenic bacteria. Recent findings reveal an approach for defining previously unrecognized probiotic-derived soluble factors as potential mechanisms of probiotic action. This review focuses on the impact of probiotics and probiotic-derived functional factors, including probiotic products and metabolites by probiotics, on the cellular responses and signaling pathways involved in maintaining intestinal homeostasis. Although there is limited information regarding the translation of probiotic treatment outcomes from in vitro and animal studies to clinical applications, potential approaches for increasing the clinical efficacy of probiotics for IBD, such as those based on probiotic-derived factors, are highlighted in this review. In this era of precision medicine and targeted therapies, more basic, preclinical, and clinical evidence is needed to clarify the efficacy of probiotics in maintaining intestinal health and preventing and treating disease.
Collapse
Affiliation(s)
- Fang Yan
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - D Brent Polk
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Division of Gastroenterology, Hepatology & Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
26
|
Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene 2020; 39:4925-4943. [PMID: 32514151 PMCID: PMC7314664 DOI: 10.1038/s41388-020-1341-1] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
Research about the role of gut microbiome in colorectal cancer (CRC) is a newly emerging field of study. Gut microbiota modulation, with the aim to reverse established microbial dysbiosis, is a novel strategy for prevention and treatment of CRC. Different strategies including probiotics, prebiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT) have been employed. Although these strategies show promising results, mechanistically by correcting microbiota composition, modulating innate immune system, enhancing gut barrier function, preventing pathogen colonization and exerting selective cytotoxicity against tumor cells, it should be noted that they are accompanied by risks and controversies that can potentially introduce clinical complications. During bench-to-bedside translation, evaluation of risk-and-benefit ratio, as well as patient selection, should be carefully performed. In view of the individualized host response to gut microbiome intervention, developing personalized microbiome therapy may be the key to successful clinical treatment.
Collapse
|
27
|
Shao DY, Bai X, Tong MW, Zhang YY, Liu XL, Zhou YH, Li C, Cai W, Gao X, Liu M, Yang Y. Changes to the gut microbiota in mice induced by infection with Toxoplasma gondii. Acta Trop 2020; 203:105301. [PMID: 31843385 DOI: 10.1016/j.actatropica.2019.105301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Toxoplasma gondii (T. gondii) is a common parasite worldwide, which can cause encephalitis, enteritis and miscarriage in abortion women. This study examined the cecal microbiome of mice infected with T. gondii through analysis of 16S rRNA genes determined by Illumina sequencing. BALB/c mice were orally infected with sporulated T. gondii oocysts. Mice were killed after 13-days- and 21-days- post infection, respectively, then their cecal contents were extracted and examined to determine the composition of gut microflora by illumina sequencing of the V3 +V4 region of the 16S rRNA genes. Our results showed the alterations in the gut microbes of BALB/c mice infected with T. gondii infection, where we observed a significant shift in the relative abundance of cecal bacteria. In mice at 13 days post-infection, the relative abundance of Proteobacteria increased, along with that of harmful bacteria, such as Bilopha and Desulfovibrio. However, the abundance of Lactobacillus decreased. At 21 days post-infection, the abundance of Lactobacillus was more than that observed for the uninfected control, with harmful bacteria, such as Bilopha and Desulfovibrio being reduced. The mice at 21-days post-infection had more beneficial intestinal bacteria than the control group. Our results suggested that the gut microbiota play an important role in disease progression from acute infection to chronic infection.
Collapse
Affiliation(s)
- Dong Yan Shao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ming Wei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yuan Yuan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiao Lei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong Hua Zhou
- Jiang Su Institute of Parasitic Disease, Wuxi, China
| | - Chengyao Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Cai
- Affiliated Hospital of Jiangnan University, The Forth People's Hospital of Wuxi City, Wuxi, China
| | - Xin Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China; Wu Xi Medical School, Jiangnan University, Wuxi, China.
| |
Collapse
|
28
|
Settanni CR, Quaranta G, Bibbò S, Gasbarrini A, Cammarota G, Ianiro G. Oral supplementation with lactobacilli to prevent colorectal cancer in preclinical models. MINERVA GASTROENTERO 2019; 66:48-69. [PMID: 31760735 DOI: 10.23736/s1121-421x.19.02631-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is still a major threat for public health, as it is the third most common cancer in men and the second in women and it ranks second among tumors in terms of mortality. Evidence from the last decades emphasizes the complex role of gut microbial composition in CRC development. Historically, it is believed that dairy products, a source of lactobacilli and other lactic acid bacteria, are beneficial for human health and help in preventing CRC. We searched online literature for trials evaluating the preventive role of lactobacilli in CRC animal models. Most of selected studied assessed a relevant role of lactobacilli in preventing CRC and precursor lesions. Mechanisms through which this effect was achieved are supposed to regard immunomodulation, regulation of apoptosis, gut microbial modulation, genes expression, reduction of oxidative stress and others. Lactobacilli oral supplementation is reported to be effective in preventing CRC in animal models, even if the underlying mechanisms of action are still not fully understood.
Collapse
Affiliation(s)
- Carlo R Settanni
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Gianluca Quaranta
- Institute of Microbiology, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Stefano Bibbò
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Agostino Gemelli University Polyclinic, IRCCS and Foundation, Sacred Heart Catholic University, Rome, Italy -
| |
Collapse
|
29
|
Bishehsari F, Engen PA, Voigt RM, Swanson G, Shaikh M, Wilber S, Naqib A, Green SJ, Shetuni B, Forsyth CB, Saadalla A, Osman A, Hamaker BR, Keshavarzian A, Khazaie K. Abnormal Eating Patterns Cause Circadian Disruption and Promote Alcohol-Associated Colon Carcinogenesis. Cell Mol Gastroenterol Hepatol 2019; 9:219-237. [PMID: 31689559 PMCID: PMC6957855 DOI: 10.1016/j.jcmgh.2019.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Alcohol intake with circadian rhythm disruption (CRD) increases colon cancer risk. We hypothesized that eating during or around physiologic rest time, a common habit in modern society, causes CRD and investigated the mechanisms by which it promotes alcohol-associated colon carcinogenesis. METHODS The effect of feeding time on CRD was assessed using B6 mice expressing a fusion protein of PERIOD2 and LUCIFERASE (PER2::LUC) were used to model colon polyposis and to assess the effects of feeding schedules, alcohol consumption, and prebiotic treatment on microbiota composition, short-chain fatty acid levels, colon inflammation, and cancer risk. The relationship between butyrate signaling and a proinflammatory profile was assessed by inactivating the butyrate receptor GPR109A. RESULTS Eating at rest (wrong-time eating [WTE]) shifted the phase of the colon rhythm in PER2::LUC mice. In TS4Cre × APClox468 mice, a combination of WTE and alcohol exposure (WTE + alcohol) decreased the levels of short-chain fatty acid-producing bacteria and of butyrate, reduced colonic densities of regulatory T cells, induced a proinflammatory profile characterized by hyperpermeability and an increased mucosal T-helper cell 17/regulatory T cell ratio, and promoted colorectal cancer. Prebiotic treatment improved the mucosal inflammatory profile and attenuated inflammation and cancer. WTE + alcohol-induced polyposis was associated with increased signal transducer and activator of transcription 3 expression. Decreased butyrate signaling activated the epithelial signal transducer and activator of transcription 3 in vitro. The relationship between butyrate signaling and a proinflammatory profile was confirmed in human colorectal cancers using The Cancer Genome Atlas. CONCLUSIONS Abnormal timing of food intake caused CRD and interacts with alcohol consumption to promote colon carcinogenesis by inducing a protumorigenic inflammatory profile driven by changes in the colon microbiota and butyrate signaling. Accession number of repository for microbiota sequence data: raw FASTQ data were deposited in the NCBI Sequence Read Archive under project PRJNA523141.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois.
| | - Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Garth Swanson
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Sherry Wilber
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Ankur Naqib
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois; Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois
| | - Stefan J Green
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois; Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Brandon Shetuni
- Northwestern Medicine, Central DuPage Hospital, Winfield, Illinois
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | | | - Abu Osman
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois; Department of Physiology, Rush University Medical Center, Chicago, Illinois; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
30
|
Picardo SL, Coburn B, Hansen AR. The microbiome and cancer for clinicians. Crit Rev Oncol Hematol 2019; 141:1-12. [PMID: 31202124 DOI: 10.1016/j.critrevonc.2019.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
The human microbiome is an emerging target in cancer development and therapeutics. It may be directly oncogenic, through promotion of mucosal inflammation or systemic dysregulation, or may alter anti-cancer immunity/therapy. Microorganisms within, adjacent to and distant from tumors may affect cancer progression, and interactions and differences between these populations can influence the course of disease. Here we review the microbiome as it pertains to cancer for clinicians. The microbiota of cancers including colorectal, pancreas, breast and prostate are discussed. We examine "omics" technologies, microbiota associated with tumor tissue and tumor-site fluids such as feces and urine, as well as indirect effects of the gut microbiome. We describe roles of the microbiome in immunotherapy, and how it can be modulated to improve cancer therapeutics. While research is still at an early stage, there is potential to exploit the microbiome, as modulation may increase efficacy of treatments, reduce toxicities and prevent carcinogenesis.
Collapse
Affiliation(s)
- Sarah L Picardo
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, 700 University Avenue, Toronto, Ontario, M5G 0A1, Canada.
| | - Bryan Coburn
- Division of Infectious Diseases, University Health Network, Toronto, Canada.
| | - Aaron R Hansen
- Division of Medical Oncology and Haematology, Princess Margaret Cancer Centre, 700 University Avenue, Toronto, Ontario, M5G 0A1, Canada.
| |
Collapse
|
31
|
Gournaris E, Park W, Cho S, Bentrem DJ, Larson AC, Kim DH. Near-Infrared Fluorescent Endoscopic Image-Guided Photothermal Ablation Therapy of Colorectal Cancer Using Dual-Modal Gold Nanorods Targeting Tumor-Infiltrating Innate Immune Cells in a Transgenic TS4 CRE/APC loxΔ468 Mouse Model. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21353-21359. [PMID: 31117445 PMCID: PMC7233689 DOI: 10.1021/acsami.9b04186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Colorectal cancer (CRC) is diagnosed with colonoscopy and treated with focal therapies. CRC is a good candidate for nanoparticle-mediated photothermal ablation (PTA) therapy. Herein, we developed a near-infrared fluorescent (NIRF) endoscopic image-guided PTA approach using a nanoparticle capable of simultaneously diagnosing and treating CRC. Dual-modal NIR heating and fluorescent gold nanorods (dual-modal GNRs) were synthesized by conjugation of GNRs to an NIRF probe. To validate the translational potential of our approach, a well-characterized transgenic TS4 CRE/APC loxΔ468 colon cancer mouse model was used to carry out NIRF image-guided PTA using our dual-modal GNRs under clinically relevant conditions. Intravenously infused dual-modal GNRs were effectively targeted at colon polyps by immunogenic capturing of the GNRs within tumor-infiltrating innate immune cells. NIRF endoscopic image-guided PTA using the GNRs permitted successful detection and ablation of inflammatory colon polyps. NIRF endoscopy image-guided PTA using dual-modal GNRs can be utilized for diagnosis and treatment of CRC and various inflammatory diseases.
Collapse
Affiliation(s)
- Elias Gournaris
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| | - Wooram Park
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Soojeong Cho
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - David J. Bentrem
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| | - Andrew C. Larson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, United States
- Corresponding Author:
| |
Collapse
|
32
|
Role of Microbiome in Modulating Immune Responses in Cancer. Mediators Inflamm 2019; 2019:4107917. [PMID: 31308831 PMCID: PMC6594313 DOI: 10.1155/2019/4107917] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022] Open
Abstract
The complex interactions between genes and the environment play important roles in disease susceptibility and progression. One of the chronic diseases that is affected by this gene-environment interplay is cancer. However, our knowledge about these environmental factors remains limited. The microorganisms that inhabit our bodies have recently been acknowledged to play a crucial role as an environmental factor, to which we are constantly exposed. Studies have revealed significant differences in the relative abundance of certain microbes in cancer cases compared with controls. It has been reported that changes in the composition of normal gut microbiota can increase/decrease cancer susceptibility and progression by diverse mechanisms including, but not limited to, inflammation—a well-known hallmark of carcinogenesis. The microbiota can also affect the response to various treatments including immunotherapy. The microbiome-immune-cancer axis will continue to provide insight into the basic mechanisms of carcinogenesis. In this review, we provide a brief understanding of the mechanisms by which microbiota affects cancer development, progression, and treatment.
Collapse
|
33
|
Wu C, Ouyang M, Guo Q, Jia J, Liu R, Jiang Y, Wu M, Shen S. Changes in the intestinal microecology induced by bacillus subtilis inhibit the occurrence of ulcerative colitis and associated cancers: a study on the mechanisms. Am J Cancer Res 2019; 9:872-886. [PMID: 31218099 PMCID: PMC6556602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023] Open
Abstract
This study aimed to explore how changes in intestinal floras caused by Bacillus subtilis (Bs) inhibited occurrence of ulcerative colitis (UC) and associated cancers. Bs was used as an intervention in an azoxymethane (AOM)/dextran sodium sulfate sodium (DSS) animal model. Stool specimens were analyzed for changes in intestinal floras. Disease activity index (DAI) scores, body mass indices, cancer counts, and other indices were calculated, while changes in the colon mucosa were observed. Compared with AOM/DSS group, carcinogenesis significantly reduced and intestinal inflammations and DAI score alleviated; diversity, evenness, and number of species of floras significantly increased; and relative abundances of Rikenellaceae and Lactobacillus increased when UC developed into cancers in the AOM/DSS + Bs group. Colon epitheliums in the mice were severely damaged in the AOM/DSS group, while mucosae were repaired in the AOM/DSS + Bs group. The mRNA expression levels of IL-6 and IL-17a were lower while those of IL-10 and TGF-β1 were higher, and the expression level of Ki-67 decreased while that of caspase 3 increased in the AOM/DSS + Bs group. Bs intervention could alter the structure of intestinal floras, repair the mucosal barrier, adjust immunity, and reduce the incidence of cancer in the AOM/DSS animal model.
Collapse
Affiliation(s)
- Chuancong Wu
- Department of Gastroenterology, Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Mao Ouyang
- Department of Geriatrics, Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Qin Guo
- Department of Gastroenterology, Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Jia Jia
- Department of Gastroenterology, Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Rui Liu
- Department of Gastroenterology, Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Yufen Jiang
- Department of Gastroenterology, Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Minghua Wu
- Cancer Research Institute, Central South UniversityChangsha 410013, Hunan, China
| | - Shourong Shen
- Department of Gastroenterology, Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|
34
|
Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli. Curr Opin Biotechnol 2019; 56:163-171. [DOI: 10.1016/j.copbio.2018.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022]
|
35
|
Abstract
The Klaenhammer group at North Carolina State University pioneered genomic applications in food microbiology and beneficial lactic acid bacteria used as starter cultures and probiotics. Dr. Todd Klaenhammer was honored to be the first food scientist elected to the National Academy of Sciences (2001). The program was recognized with the highest research awards presented by the American Dairy Science Association (Borden Award 1996), the Institute of Food Technologists (Nicholas Appert Medal, 2007), and the International Dairy Federation (Eli Metchnikoff Award in Biotechnology, 2010) as well as with the Outstanding Achievement Award from the University of Minnesota (2001) and the Oliver Max Gardner Award (2009) for outstanding research across the 16-campus University of North Carolina system. Dr. Klaenhammer is a fellow of the American Association for the Advancement of Science, the American Dairy Science Association, and the Institute of Food Technology. Over his career, six of his PhD graduate students were awarded the annual Kenneth Keller award for the outstanding PhD dissertation that year in the College of Agriculture and Life Sciences. He championed the use of basic microbiology and genomic approaches to set a platform for translational applications of beneficial microbes in foods and their use in food preservation and probiotics and as oral delivery vehicles for vaccines and biotherapeutics. Dr. Klaenhammer was also a founding and co-chief editor of the Annual Review of Food Science and Technology.
Collapse
Affiliation(s)
- Todd Robert Klaenhammer
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA;
| |
Collapse
|
36
|
Jacouton E, Torres Maravilla E, Boucard AS, Pouderous N, Pessoa Vilela AP, Naas I, Chain F, Azevedo V, Langella P, Bermúdez-Humarán LG. Anti-tumoral Effects of Recombinant Lactococcus lactis Strain Secreting IL-17A Cytokine. Front Microbiol 2019; 9:3355. [PMID: 30728820 PMCID: PMC6351453 DOI: 10.3389/fmicb.2018.03355] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/31/2018] [Indexed: 01/02/2023] Open
Abstract
Interleukin-17A (IL-17A) is a pro-inflammatory cytokine produced by TH17 cells that participates and contributes in host defense and autoimmune disease. We have recently reported antitumor properties of the probiotic strain of Lactobacillus casei BL23 in mice and TH17 cells was shown to play an important role in this beneficial effect. In order to better understand the role of IL-17A in cancer, we constructed a recombinant strain of Lactococcus lactis producing this cytokine and we determined its biological activity in: (i) a bioassay test for the induction of IL-6 production by murine fibroblasts 3T3 L1 cells line and (ii) in a mouse allograft model of human papilloma virus (HPV)-induced cancer. Our data show that recombinant L. lactis produces and efficiently secretes biologically active IL-17A cytokine. Interestingly, ∼26% of mice intranasally treated with L. lactis-IL-17A and challenged with TC-1 cells remained tumor free over the experiment, in contrast to control mice treated with the wild type strain of L. lactis which developed 100% of aggressive tumors. In addition, the median size of the ∼74% tumor-bearing mice treated with recombinant L. lactis-IL-17A, was significantly lower than mice treated with L. lactis-wt. Altogether, our results demonstrate that intranasal administration with L. lactis secreting IL-17A results in a partial protection against TC-1-induced tumors in mice, confirming antitumor effects of this cytokine in our cancer model.
Collapse
Affiliation(s)
- Elsa Jacouton
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Anne-Sophie Boucard
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Pouderous
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ana Paula Pessoa Vilela
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France.,Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Isabelle Naas
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Florian Chain
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Philippe Langella
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | |
Collapse
|
37
|
Jacouton E, Michel ML, Torres-Maravilla E, Chain F, Langella P, Bermúdez-Humarán LG. Elucidating the Immune-Related Mechanisms by Which Probiotic Strain Lactobacillus casei BL23 Displays Anti-tumoral Properties. Front Microbiol 2019; 9:3281. [PMID: 30687269 PMCID: PMC6336716 DOI: 10.3389/fmicb.2018.03281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
We have recently described antitumor properties of Lactobacillus casei BL23 strain in both a mouse allograft model of human papilloma virus (HPV)-induced cancer and dimethylhydrazine-associated colorectal cancer. However, the mechanisms underlying these beneficial effects are still unknown. Interestingly, in vitro cellular models show that this bacterium is able to stimulate the production of high levels of IL-2. Because this cytokine has well-known antitumor properties, we decided to explore its role in the anti-cancer effects of BL23 using the HPV-induced cancer model. We found a negative correlation between IL-2 and tumor size confirming the necessity of IL-2 to protect from tumor development. Then, we blocked IL-2 synthesis using neutralizing monoclonal antibodies in mice that were challenged with lethal levels of tumor cells; this led to a significant reduction in the protective abilities of BL23. Next, we used a genetically modified strain of Lactococcus lactis to deliver exogenous IL-2 to the system, and in doing so, we were able to partially mimic the antitumor properties of BL23. Additionally, we showed the systemic role of T-cells in tumor protection through a negative correlation between tumor size and T-cells subpopulations and an increasement of BL23-specific local Foxp3 levels in tumor-bearing mice. Finally, we observed a negative correlation between tumor size and NK+ cells, but local recruitment of NK cells and cytotoxic activity appeared specific to BL23 treatment. Taken together, our data suggest that IL-2 signaling pathway plays an important role in the anti-tumoral effects of probiotic strain L. casei BL23. These results encourage further investigation in the use of probiotic strains for potential therapeutic applications to clinical practice, in particular for the treatment of colorectal cancer. Furthermore, our approach could be extended and applied to other potential beneficial microorganisms, such as gut microbiota, in order to better understand the crosstalk between microbes and the host.
Collapse
Affiliation(s)
- Elsa Jacouton
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Laure Michel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Florian Chain
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | |
Collapse
|
38
|
Song M, Chan AT. Environmental Factors, Gut Microbiota, and Colorectal Cancer Prevention. Clin Gastroenterol Hepatol 2019; 17:275-289. [PMID: 30031175 PMCID: PMC6314893 DOI: 10.1016/j.cgh.2018.07.012] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
The substantial burden of colorectal cancer and increasing trend in young adults highlight the importance of lifestyle modification as a complement to screening for colorectal cancer prevention. Several dietary and lifestyle factors have been implicated in the development of colorectal cancer, possibly through the intricate metabolic and inflammatory mechanisms. Likewise, as a key metabolic and immune regulator, the gut microbiota has been recognized to play an important role in colorectal tumorigenesis. Increasing data support that environmental factors are crucial determinants for the gut microbial composition and function, whose alterations induce changes in the host gene expression, metabolic regulation, and local and systemic immune response, thereby influencing cancer development. Here, we review the epidemiologic and mechanistic evidence regarding the links between diet and lifestyle and the gut microbiota in the development of colorectal cancer. We focus on factors for which substantial data support their importance for colorectal cancer and their potential role in the gut microbiota, including overweight and obesity, physical activity, dietary patterns, fiber, red and processed meat, marine omega-3 fatty acid, alcohol, and smoking. We also briefly describe other colorectal cancer-preventive factors for which the links with the gut microbiota have been suggested but remain to be mechanistically characterized, including vitamin D status, dairy consumption, and metformin use. Given limitations in available evidence, we highlight the need for further investigations in the relationship between environmental factors, gut microbiota, and colorectal cancer, which may lead to development and clinical translation of potential microbiota-based strategies for cancer prevention.
Collapse
Affiliation(s)
- Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
39
|
A new method for discovering EMAST sequences in animal models of cancer. Sci Rep 2018; 8:13764. [PMID: 30214002 PMCID: PMC6137214 DOI: 10.1038/s41598-018-32057-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/31/2018] [Indexed: 01/28/2023] Open
Abstract
Elevated Microsatellite Alterations at Selected Tetranucleotide repeats (EMAST) occur in up to 60% of colorectal cancers and may associate with aggressive and advanced disease in patients. Although EMAST occurs in many cancer types, current understanding is limited due to the lack of an animal model. Reported here is the design and implementation of an algorithm for detecting EMAST repeats in mice. This algorithm incorporates properties of known human EMAST sequences to identify repeat sequences in animal genomes and was able to identify EMAST-like sequences in the mouse. Seven of the identified repeats were analyzed further in a colon cancer mouse model and six of the seven displayed EMAST instability characteristic of that seen in human colorectal cancers. In conclusion, the algorithm developed successfully identified EMAST repeats in an animal genome and, for the first time, EMAST has been shown to occur in a mouse model of colon cancer.
Collapse
|
40
|
Skowron KB, Shogan BD, Rubin DT, Hyman NH. The New Frontier: the Intestinal Microbiome and Surgery. J Gastrointest Surg 2018; 22:1277-1285. [PMID: 29633119 DOI: 10.1007/s11605-018-3744-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/12/2018] [Indexed: 01/31/2023]
Abstract
The microbiome exerts a remarkable effect on human physiology. The study of the human-microbiome relationship is a burgeoning field with great potential to improve our understanding of health and disease. In this review, we address common surgical problems influenced by the human microbiome and explore what is thus far known about this relationship. These include inflammatory bowel disease, colorectal neoplasms, and diverticular disease. We will also discuss the effect of the microbiome on surgical complications, specifically anastomotic leak. We hope that further research in this field will enlighten our management of these and other surgical problems.
Collapse
Affiliation(s)
- Kinga B Skowron
- Department of Surgery, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 5095, Chicago, IL, 60637, USA
| | - Benjamin D Shogan
- Department of Surgery, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 5095, Chicago, IL, 60637, USA.
| | - David T Rubin
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Medicine, Chicago, IL, USA
| | - Neil H Hyman
- Department of Surgery, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 5095, Chicago, IL, 60637, USA
| |
Collapse
|
41
|
Devaux CA, Raoult D. The Microbiological Memory, an Epigenetic Regulator Governing the Balance Between Good Health and Metabolic Disorders. Front Microbiol 2018; 9:1379. [PMID: 29997595 PMCID: PMC6028609 DOI: 10.3389/fmicb.2018.01379] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022] Open
Abstract
If the transmission of biological information from one generation to the next is based on DNA, most heritable phenotypic traits such as chronic metabolic diseases, are not linked to genetic variation in DNA sequences. Non-genetic heritability might have several causes including epigenetic, parental effect, adaptive social learning, and influence of the ecological environment. Distinguishing among these causes is crucial to resolve major phenotypic enigmas. Strong evidence indicates that changes in DNA expression through various epigenetic mechanisms can be linked to parent-offspring resemblance in terms of sensitivity to metabolic diseases. Among non-genetic heritable traits, early nutrition could account for a long term deviant programming of genes expression responsible for metabolic diseases in adulthood. Nutrition could shape an inadequate gut microbiota (dysbiosis), triggering epigenetic deregulation of transcription which can be observed in chronic metabolic diseases. We review herein the evidence that dysbiosis might be a major cause of heritable epigenetic patterns found to be associated with metabolic diseases. By taking into account the recent advances on the gut microbiome, we have aggregated together different observations supporting the hypothesis that the gut microbiota could promote the molecular crosstalk between bacteria and surrounding host cells which controls the pathological epigenetic signature. We introduce for the first time the concept of "microbiological memory" as the main regulator of the epigenetic signatures, thereby indicating that different causes of non-genetic heritability can interact in complex pathways to produce inheritance.
Collapse
Affiliation(s)
- Christian A. Devaux
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix-Marseille University, Marseille, France
- Centre National de la Recherche Scientifique, Marseille, France
| | - Didier Raoult
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix-Marseille University, Marseille, France
| |
Collapse
|
42
|
Tilg H, Adolph TE, Gerner RR, Moschen AR. The Intestinal Microbiota in Colorectal Cancer. Cancer Cell 2018; 33:954-964. [PMID: 29657127 DOI: 10.1016/j.ccell.2018.03.004] [Citation(s) in RCA: 536] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/08/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
Experimental evidence from the past years highlights a key role for the intestinal microbiota in inflammatory and malignant gastrointestinal diseases. Diet exhibits a strong impact on microbial composition and provides risk for developing colorectal carcinoma (CRC). Large metagenomic studies in human CRC associated microbiome signatures with the colorectal adenoma-carcinoma sequence, suggesting a fundamental role of the intestinal microbiota in the evolution of gastrointestinal malignancy. Basic science established a critical function for the intestinal microbiota in promoting tumorigenesis. Further studies are needed to decipher the mechanisms of tumor promotion and microbial co-evolution in CRC, which may be exploited therapeutically in the future.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria.
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria
| | - Romana R Gerner
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory of Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander R Moschen
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria; Christian Doppler Laboratory of Mucosal Immunology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Azad MAK, Sarker M, Li T, Yin J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9478630. [PMID: 29854813 PMCID: PMC5964481 DOI: 10.1155/2018/9478630] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
Probiotics are microbial strains that are beneficial to health, and their potential has recently led to a significant increase in research interest in their use to modulate the gut microbiota. The animal gut is a complex ecosystem of host cells, microbiota, and available nutrients, and the microbiota prevents several degenerative diseases in humans and animals via immunomodulation. The gut microbiota and its influence on human nutrition, metabolism, physiology, and immunity are addressed, and several probiotic species and strains are discussed to improve the understanding of modulation of gut microbiota. This paper provides a broad review of several Lactobacillus spp., Bifidobacterium spp., and other coliform bacteria as the most promising probiotic species and their role in the prevention of degenerative diseases, such as obesity, diabetes, cancer, cardiovascular diseases, malignancy, liver disease, and inflammatory bowel disease. This review also discusses a recent study of Saccharomyces spp. in which inflammation was prevented by promotion of proinflammatory immune function via the production of short-chain fatty acids. A summary of gut microbiota alteration with future perspectives is also provided.
Collapse
Affiliation(s)
- Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manobendro Sarker
- Department of Food Engineering and Technology, State University of Bangladesh, Dhaka 1205, Bangladesh
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Bumgardner SA, Zhang L, LaVoy AS, Andre B, Frank CB, Kajikawa A, Klaenhammer TR, Dean GA. Nod2 is required for antigen-specific humoral responses against antigens orally delivered using a recombinant Lactobacillus vaccine platform. PLoS One 2018; 13:e0196950. [PMID: 29734365 PMCID: PMC5937747 DOI: 10.1371/journal.pone.0196950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
Safe and efficacious orally-delivered mucosal vaccine platforms are desperately needed to combat the plethora of mucosally transmitted pathogens. Lactobacillus spp. have emerged as attractive candidates to meet this need and are known to activate the host innate immune response in a species- and strain-specific manner. For selected bacterial isolates and mutants, we investigated the role of key innate immune pathways required for induction of innate and subsequent adaptive immune responses. Co-culture of murine macrophages with L. gasseri (strain NCK1785), L. acidophilus (strain NCFM), or NCFM-derived mutants—NCK2025 and NCK2031—elicited an M2b-like phenotype associated with TH2 skewing and immune regulatory function. For NCFM, this M2b phenotype was dependent on expression of lipoteichoic acid and S layer proteins. Through the use of macrophage genetic knockouts, we identified Toll-like receptor 2 (TLR2), the cytosolic nucleotide-binding oligomerization domain containing 2 (NOD2) receptor, and the inflammasome-associated caspase-1 as contributors to macrophage activation, with NOD2 cooperating with caspase-1 to induce inflammasome derived interleukin (IL)-1β in a pyroptosis-independent fashion. Finally, utilizing an NCFM-based mucosal vaccine platform with surface expression of human immunodeficiency virus type 1 (HIV-1) Gag or membrane proximal external region (MPER), we demonstrated that NOD2 signaling is required for antigen-specific mucosal and systemic humoral responses. We show that lactobacilli differentially utilize innate immune pathways and highlight NOD2 as a key mediator of macrophage function and antigen-specific humoral responses to a Lactobacillus acidophilus mucosal vaccine platform.
Collapse
Affiliation(s)
- Sara A. Bumgardner
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lin Zhang
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alora S. LaVoy
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Barbara Andre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chad B. Frank
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Akinobu Kajikawa
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Setagaya, Tokyo, Japan
| | - Todd R. Klaenhammer
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gregg A. Dean
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
45
|
Romano G, Chagani S, Kwong LN. The path to metastatic mouse models of colorectal cancer. Oncogene 2018; 37:2481-2489. [DOI: 10.1038/s41388-018-0155-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
|
46
|
Bishehsari F, Engen PA, Preite NZ, Tuncil YE, Naqib A, Shaikh M, Rossi M, Wilber S, Green SJ, Hamaker BR, Khazaie K, Voigt RM, Forsyth CB, Keshavarzian A. Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. Genes (Basel) 2018; 9:genes9020102. [PMID: 29462896 PMCID: PMC5852598 DOI: 10.3390/genes9020102] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies propose a protective role for dietary fiber in colon cancer (CRC). One possible mechanism of fiber is its fermentation property in the gut and ability to change microbiota composition and function. Here, we investigate the role of a dietary fiber mixture in polyposis and elucidate potential mechanisms using TS4Cre × cAPCl°x468 mice. Stool microbiota profiling was performed, while functional prediction was done using PICRUSt. Stool short-chain fatty acid (SCFA) metabolites were measured. Histone acetylation and expression of SCFA butyrate receptor were assessed. We found that SCFA-producing bacteria were lower in the polyposis mice, suggesting a decline in the fermentation product of dietary fibers with polyposis. Next, a high fiber diet was given to polyposis mice, which significantly increased SCFA-producing bacteria as well as SCFA levels. This was associated with an increase in SCFA butyrate receptor and a significant decrease in polyposis. In conclusion, we found polyposis to be associated with dysbiotic microbiota characterized by a decline in SCFA-producing bacteria, which was targetable by high fiber treatment, leading to an increase in SCFA levels and amelioration of polyposis. The prebiotic activity of fiber, promoting beneficial bacteria, could be the key mechanism for the protective effects of fiber on colon carcinogenesis. SCFA-promoting fermentable fibers are a promising dietary intervention to prevent CRC.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Nailliw Z Preite
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Yunus E Tuncil
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN USA.
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA.
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Marco Rossi
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Sherry Wilber
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA.
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA.
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN USA.
| | - Khashayarsha Khazaie
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
- Department of Physiology, Rush University Medical Center, Chicago, IL USA.
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht Netherlands.
- Department of Pharmacology, Rush University Medical Center, Chicago, IL USA.
| |
Collapse
|
47
|
Mast cells promote small bowel cancer in a tumor stage-specific and cytokine-dependent manner. Proc Natl Acad Sci U S A 2018; 115:1588-1592. [PMID: 29429965 PMCID: PMC5816178 DOI: 10.1073/pnas.1716804115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We show that distinct subsets of mast cells (MCs) expand with sequential oncogenic events in small bowel cancer. Mucosal mast cells (MMCs) previously detected early during Trichinella spiralis infection expand in adenomatous polyps in an IL-10–dependent manner. Connective tissue mast cells (CTMCs), earlier shown to expand during the resolution of inflammation following clearance of T. spiralis, are independent of IL-10 and associate with the transition of polyps to adenocarcinoma. IL-33 upregulates the CTMC lineage-specific protease murine mast cell protease 6 (mMCP6). Ablation of mMCP6 attenuates tumor growth. Thus, tissue sentinel cells respond to oncogenic events and cellular transformation in effect to help promote cancer. Delineating the types of MCs present at various stages of disease offers actionable cellular targets for therapeutic intervention in disease progression. Mast cells (MCs) are tissue resident sentinels that mature and orchestrate inflammation in response to infection and allergy. While they are also frequently observed in tumors, the contribution of MCs to carcinogenesis remains unclear. Here, we show that sequential oncogenic events in gut epithelia expand different types of MCs in a temporal-, spatial-, and cytokine-dependent manner. The first wave of MCs expands focally in benign adenomatous polyps, which have elevated levels of IL-10, IL-13, and IL-33, and are rich in type-2 innate lymphoid cells (ILC2s). These vanguard MCs adhere to the transformed epithelial cells and express murine mast cell protease 2 (mMCP2; a typical mucosal MC protease) and, to a lesser extent, the connective tissue mast cell (CTMC) protease mMCP6. Persistence of MCs is strictly dependent on T cell-derived IL-10, and their loss in the absence of IL-10–expressing T cells markedly delays small bowel (SB) polyposis. MCs expand profusely in polyposis-prone mice when T cells overexpress IL-10. The frequency of polyp-associated MCs is unaltered in response to broad-spectrum antibiotics, arguing against a microbial component driving their recruitment. Intriguingly, when polyps become invasive, a second wave of mMCP5+/mMCP6+ CTMCs expands in the tumor stroma and at invasive tumor borders. Ablation of mMCP6 expression attenuates polyposis, but invasive properties of the remaining lesions remain intact. Our findings argue for a multistep process in SB carcinogenesis in which distinct MC subsets, and their elaborated proteases, guide disease progression.
Collapse
|
48
|
Coleman OI, Haller D. Bacterial Signaling at the Intestinal Epithelial Interface in Inflammation and Cancer. Front Immunol 2018; 8:1927. [PMID: 29354132 PMCID: PMC5760496 DOI: 10.3389/fimmu.2017.01927] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract provides a compartmentalized interface with an enormous repertoire of immune and metabolic activities, where the multicellular structure of the mucosa has acquired mechanisms to sense luminal factors, such as nutrients, microbes, and a variety of host-derived and microbial metabolites. The GI tract is colonized by a complex ecosystem of microorganisms, which have developed a highly coevolved relationship with the host’s cellular and immune system. Intestinal epithelial pattern recognition receptors (PRRs) substantially contribute to tissue homeostasis and immune surveillance. The role of bacteria-derived signals in intestinal epithelial homeostasis and repair has been addressed in mouse models deficient in PRRs and signaling adaptors. While critical for host physiology and the fortification of barrier function, the intestinal microbiota poses a considerable health challenge. Accumulating evidence indicates that dysbiosis is associated with the pathogenesis of numerous GI tract diseases, including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Aberrant signal integration at the epithelial cell level contributes to such diseases. An increased understanding of bacterial-specific structure recognition and signaling mechanisms at the intestinal epithelial interface is of great importance in the translation to future treatment strategies. In this review, we summarize the growing understanding of the regulation and function of the intestinal epithelial barrier, and discuss microbial signaling in the dynamic host–microbe mutualism in both health and disease.
Collapse
Affiliation(s)
| | - Dirk Haller
- Technical University of Munich, Munich, Germany.,ZIEL-Institute for Food & Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
49
|
Bonvalet M, Daillère R, Roberti MP, Rauber C, Zitvogel L. The Impact of the Intestinal Microbiota in Therapeutic Responses Against Cancer. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
50
|
Sherwani MA, Tufail S, Muzaffar AF, Yusuf N. The skin microbiome and immune system: Potential target for chemoprevention? PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 34:25-34. [PMID: 28766918 PMCID: PMC7289174 DOI: 10.1111/phpp.12334] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 01/08/2023]
Abstract
There has been increasing interest in understanding the role of the human microbiome in skin diseases. Microbiome studies are being utilized in skin cancer research in numerous ways. Commensal bacteria are being studied as a potential tool to judge the biggest environmental risk of skin cancer, ultraviolet (UV) radiation. Owing to the recognized link of skin microbes in the process of inflammation, there have been theories linking commensal bacteria to skin cancer. Viral metagenomics has also provided insight into virus linked forms of skin cancers. Speculations can be drawn for skin microbiome that in a manner similar to gut microbiome, they can be involved in chemoprevention of skin cancer. Nonetheless, there are definitely huge gaps in our knowledge of the relationship of microbiome and skin cancers, especially in relation to chemoprevention. The utilization of microbiome in skin cancer research seems to be a promising field and may help yield novel skin cancer prevention and treatment options. This review focuses on recent utilization of the microbiome in skin cancer research, and it explores the potential of utilizing the microbiome in prevention, earlier diagnosis, and treatment of skin cancers.
Collapse
Affiliation(s)
| | - Saba Tufail
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, UP, India
| | | | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|