1
|
Lee H, Park H, Kwak K, Lee CE, Yun J, Lee D, Lee JH, Lee SH, Kang LW. Structural comparison of substrate-binding pockets of serine β-lactamases in classes A, C, and D. J Enzyme Inhib Med Chem 2025; 40:2435365. [PMID: 39714271 DOI: 10.1080/14756366.2024.2435365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
β-lactams have been the most successful antibiotics, but the rise of multi-drug resistant (MDR) bacteria threatens their effectiveness. Serine β-lactamases (SBLs), among the most common causes of resistance, are classified as A, C, and D, with numerous variants complicating structural and substrate spectrum comparisons. This study compares representative SBLs of these classes, focusing on the substrate-binding pocket (SBP). SBP is kidney bean-shaped on the indented surface, formed mainly by loops L1, L2, and L3, and an additional loop Lc in class C. β-lactams bind in a conserved orientation, with the β-lactam ring towards L2 and additional rings towards the space between L1 and L3. Structural comparison shows each class has distinct SBP structures, but subclasses share a conserved scaffold. The SBP structure, accommodating complimentary β-lactams, determines the substrate spectrum of SBLs. The systematic comparison of SBLs, including structural compatibility between β-lactams and SBPs, will help understand their substrate spectrum.
Collapse
Affiliation(s)
- Hyeonmin Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chae-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jiwon Yun
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Donghyun Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Introvigne ML, Destro L, Mologni L, Crippa V, Zardi P, Fini F, Prati F, Caselli E, Zambon A. α-Triazolylboronic Acids: A Novel Scaffold to Target FLT3 in AML. ChemMedChem 2025; 20:e202400622. [PMID: 39331039 PMCID: PMC11694611 DOI: 10.1002/cmdc.202400622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
The treatment of acute myeloid leukemia (AML) presents a challenge to current therapies because of the development of drug resistance. Genetic mutation of FMS-like tyrosine kinase-3 (FLT3) is a target of interest for AML treatment, but the use of FLT3-targeting agents on AML patients has so far resulted in poor overall clinical outcomes.[1] The incorporation of the boronic group in a drug scaffold could enhance the bioavailability and pharmacokinetic profile of conventional anticancer chemotypes. Boronic acids represent an intriguing and unexplored class of compounds in the context of AML, and they are only scantly reported as inhibitors of protein kinases. We identified α-triazolylboronic acids as a novel chemotype for targeting FLT3 by screening a library of structurally heterogeneous in-house boronic acids. Selected compounds show low micromolar activities on enzymatic and cellular assays, selectivity against control cell lines and a recurring binding mode in in-silico studies. Furthermore, control analogues synthesized ad hoc and lacking the boronic acid are inactive, confirming that this group is essential for the activity of the series. All together, these results suggest α-triazolylboronic acids could be a promising novel chemotype for FLT3 inhibition, laying the ground for the design of further compounds.
Collapse
Affiliation(s)
| | - Lorenza Destro
- Department of Chemical and Geological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Luca Mologni
- Department of Medicine and SurgeryUniversity of Milano-BicoccaMonzaItaly
| | - Valentina Crippa
- Department of Medicine and SurgeryUniversity of Milano-BicoccaMonzaItaly
| | - Paolo Zardi
- Department of Chemical and Geological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Francesco Fini
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Fabio Prati
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Emilia Caselli
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Alfonso Zambon
- Department of Chemical and Geological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
3
|
Liu F, Mailhot O, Glenn IS, Vigneron SF, Bassim V, Xu X, Fonseca-Valencia K, Smith MS, Radchenko DS, Fraser JS, Moroz YS, Irwin JJ, Shoichet BK. The impact of Library Size and Scale of Testing on Virtual Screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602536. [PMID: 39026784 PMCID: PMC11257449 DOI: 10.1101/2024.07.08.602536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Virtual libraries for ligand discovery have recently increased 10,000-fold, and this is thought to have improved hit rates and potencies from library docking. This idea has not, however, been experimentally tested in direct comparisons of larger-vs-smaller libraries. Meanwhile, though libraries have exploded, the scale of experimental testing has little changed, with often only dozens of high-ranked molecules investigated, making interpretation of hit rates and affinities uncertain. Accordingly, we docked a 1.7 billion molecule virtual library against the model enzyme AmpC β-lactamase, testing 1,521 new molecules and comparing the results to the same screen with a library of 99 million molecules, where only 44 molecules were tested. Encouragingly, the larger screen outperformed the smaller one: hit rates improved by two-fold, more new scaffolds were discovered, and potency improved. Overall, 50-fold more inhibitors were found, supporting the idea that there are many more compounds to be discovered than are being tested. With so many compounds evaluated, we could ask how the results vary with number tested, sampling smaller sets at random from the 1521. Hit rates and affinities were highly variable when we only sampled dozens of molecules, and it was only when we included several hundred molecules that results converged. As docking scores improved, so too did the likelihood of a molecule binding; hit rates improved steadily with docking score, as did affinities. This also appeared true on reanalysis of large-scale results against the σ2 and dopamine D4 receptors. It may be that as the scale of both the virtual libraries and their testing grows, not only are better ligands found but so too does our ability to rank them.
Collapse
Affiliation(s)
- Fangyu Liu
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Olivier Mailhot
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Isabella S Glenn
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Seth F Vigneron
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Violla Bassim
- Dept. of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco CA 94143, USA
| | - Xinyu Xu
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Karla Fonseca-Valencia
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Matthew S Smith
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | | | - James S Fraser
- Dept. of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco CA 94143, USA
| | - Yurii S Moroz
- Enamine Ltd., Kyiv, 02094, Ukraine
- Chemspace (www.chem-space.com), Chervonotkatska Street 85, Kyїv 02094, Ukraine
- Taras Shevchenko National University of Kyїv, Volodymyrska Street 60, Kyїv 01601, Ukraine
| | - John J Irwin
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| | - Brian K Shoichet
- Dept. of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco CA 94143, USA
| |
Collapse
|
4
|
Hafeez S, Zafar Paracha R, Adnan F. Designing of fragment based inhibitors with improved activity against E. coli AmpC β-lactamase compared to the conventional antibiotics. Saudi J Biol Sci 2024; 31:103884. [PMID: 38125736 PMCID: PMC10730856 DOI: 10.1016/j.sjbs.2023.103884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
One of the most common primary resistance mechanism of multi-drug resistant (MDR) Gram negative pathogenic bacteria to combat β-lactam antibiotics, such as penicillins, cephalosporins and carbapenems is the generation of β- lactamases. The uropathogenic E. coli is mostly getting multi-drug resistance due to the synthesis of AmpC β-lactamases and therefore new antibiotics and inhibitors are needed to treat the evolving infections. The current study was designed for targetting AmpC β-lactamase of E. coli using molecular docking based virtual screening, linking fragments for designing novel compounds and binding mode analysis using molecular dynamic simulation with target protein. The FCH group all-purpose fragment library consisting of 9388 fragments has been screened against AmpC β-lactamase protein of E. coli and the antibiotics and anti-infectives used in treatment of Urinary tract Infections (UTIs) were also screened with AmpC β-lactamase protein. Among the 9388 fragments, 339 fragment candidates were selected and linked with cefepime antibiotic having maximum binding affinity for AmpC target protein. Computational analysis of interactions as well as molecular dynamics (MD) simulations were also conducted for identifying the most promising ligand-pocket complexes from docking investigations to comprehend their thermodynamic properties and verify the docking outcomes as well. Overall, the linked complexes (LCs) showed good binding interactions with AmpC β-lactamase. Interestingly, our fragment-based LCs remained relatively stable in comparison with cefepime antibiotic. Moreover, S12 fragment linked complex remained the most stable during 50 ns with remarkable number of interactions indicating it as promising candidate in novel lead discovery against MDR E. coli infections.
Collapse
Affiliation(s)
- Sidrah Hafeez
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Fazal Adnan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
5
|
Ahmad F, Parvaiz N, MacKerell AD, Azam SS. Non-β Lactam Inhibitors of the Serine β-Lactamase blaCTX-M15 in Drug-Resistant Salmonella typhi. J Chem Inf Model 2023; 63:6681-6695. [PMID: 37847018 PMCID: PMC10698858 DOI: 10.1021/acs.jcim.3c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Antibiotic resistance by bacterial pathogens against widely used β-lactam drugs is a major concern to public health worldwide, resulting in high healthcare cost. The present study aimed to extend previous research by investigating the potential activity of reported compounds against the S. typhi β-lactamase protein. 74 compounds from computational screening reported in our previous study against β-lactamase CMY-10 were subjected to docking studies against blaCTX-M15. Site-Identification by Ligand Competitive Saturation (SILCS)-Monte Carlo (SILCS-MC) was applied to the top two ligands selected from molecular docking studies to predict and refine their conformations for binding conformations against blaCTX-M15. The SILCS-MC method predicted affinities of -8.6 and -10.7 kcal/mol for Top1 and Top2, respectively, indicating low micromolar binding to the blaCTX-M15 active site. MD simulations initiated from SILCS-MC docked orientations were carried out to better characterize the dynamics and stability of the complexes. Important interactions anchoring the ligand within the active site include pi-pi stacked, amide-pi, and pi-alkyl interactions. Simulations of the Top2-blaCTX-M15 complex exhibited stability associated with a wide range of hydrogen-bond and aromatic interactions between the protein and the ligand. Experimental β-lactamase (BL) activity assays showed that Top1 has 0.1 u/mg BL activity, and Top2 has a BL activity of 0.038 u/mg with a minimum inhibitory concentration of 1 mg/mL. The inhibitors proposed in this study are non-β-lactam-based β-lactamase inhibitors that exhibit the potential to be used in combination with β-lactam antibiotics against multidrug-resistant clinical isolates. Thus, Top1 and Top2 represent lead compounds that increase the efficacy of β-lactam antibiotics with a low dose concentration.
Collapse
Affiliation(s)
- Faisal Ahmad
- Both authors contributed equally and can be considered as first author
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad-45320, Pakistan
| | - Nousheen Parvaiz
- Both authors contributed equally and can be considered as first author
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad-45320, Pakistan
| | - Alexander D. MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad-45320, Pakistan
| |
Collapse
|
6
|
Cheng K, Wu Q, Yao C, Chai Z, Jiang L, Liu M, Li C. Distinct Inhibition Modes of New Delhi Metallo-β-lactamase-1 Revealed by NMR Spectroscopy. JACS AU 2023; 3:849-859. [PMID: 37006760 PMCID: PMC10052233 DOI: 10.1021/jacsau.2c00651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
The wide spread of antibiotic-resistant "superbugs" containing New Delhi metallo-β-lactamase-1 (NDM-1) has become a threat to human health. However, clinically valid antibiotics to treat the superbugs' infection are not available now. Quick, simple, and reliable methods to assess the ligand-binding mode are key to developing and improving inhibitors against NDM-1. Herein, we report a straightforward NMR method to distinguish the NDM-1 ligand-binding mode using distinct NMR spectroscopy patterns of apo- and di-Zn-NDM-1 titrations with various inhibitors. Elucidating the inhibition mechanism will aid the development of efficient inhibitors for NDM-1.
Collapse
Affiliation(s)
- Kai Cheng
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiong Wu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chendie Yao
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhaofei Chai
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ling Jiang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Maili Liu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Conggang Li
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Introvigne ML, Beardsley TJ, Fernando MC, Leonard DA, Wallar BJ, Rudin SD, Taracila MA, Rather PN, Colquhoun JM, Song S, Fini F, Hujer KM, Hujer AM, Prati F, Powers RA, Bonomo RA, Caselli E. Sulfonamidoboronic Acids as "Cross-Class" Inhibitors of an Expanded-Spectrum Class C Cephalosporinase, ADC-33, and a Class D Carbapenemase, OXA-24/40: Strategic Compound Design to Combat Resistance in Acinetobacter baumannii. Antibiotics (Basel) 2023; 12:antibiotics12040644. [PMID: 37107006 PMCID: PMC10135033 DOI: 10.3390/antibiotics12040644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative organism listed as an urgent threat pathogen by the World Health Organization (WHO). Carbapenem-resistant A. baumannii (CRAB), especially, present therapeutic challenges due to complex mechanisms of resistance to β-lactams. One of the most important mechanisms is the production of β-lactamase enzymes capable of hydrolyzing β-lactam antibiotics. Co-expression of multiple classes of β-lactamases is present in CRAB; therefore, the design and synthesis of "cross-class" inhibitors is an important strategy to preserve the efficacy of currently available antibiotics. To identify new, nonclassical β-lactamase inhibitors, we previously identified a sulfonamidomethaneboronic acid CR167 active against Acinetobacter-derived class C β-lactamases (ADC-7). The compound demonstrated affinity for ADC-7 with a Ki = 160 nM and proved to be able to decrease MIC values of ceftazidime and cefotaxime in different bacterial strains. Herein, we describe the activity of CR167 against other β-lactamases in A. baumannii: the cefepime-hydrolysing class C extended-spectrum β-lactamase (ESAC) ADC-33 and the carbapenem-hydrolyzing OXA-24/40 (class D). These investigations demonstrate CR167 as a valuable cross-class (C and D) inhibitor, and the paper describes our attempts to further improve its activity. Five chiral analogues of CR167 were rationally designed and synthesized. The structures of OXA-24/40 and ADC-33 in complex with CR167 and select chiral analogues were obtained. The structure activity relationships (SARs) are highlighted, offering insights into the main determinants for cross-class C/D inhibitors and impetus for novel drug design.
Collapse
Affiliation(s)
- Maria Luisa Introvigne
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Trevor J Beardsley
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Micah C Fernando
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Bradley J Wallar
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Susan D Rudin
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Magdalena A Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Philip N Rather
- Research Service, Atlanta Veterans Medical Center, Decatur, GA 30033, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30307, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Jennifer M Colquhoun
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Shaina Song
- Research Service, Atlanta Veterans Medical Center, Decatur, GA 30033, USA
| | - Francesco Fini
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Kristine M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Andrea M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Fabio Prati
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Emilia Caselli
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
8
|
Chiacchio MA, Legnani L, Fassi EMA, Roda G, Grazioso G. Development of AMBER Parameters for Molecular Simulations of Selected Boron-Based Covalent Ligands. Molecules 2023; 28:molecules28062866. [PMID: 36985837 PMCID: PMC10057150 DOI: 10.3390/molecules28062866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Boron containing compounds (BCCs) aroused increasing interest in the scientific community due to their wide application as drugs in various fields. In order to design new compounds hopefully endowed with pharmacological activity and also investigate their conformational behavior, the support of computational studies is crucial. Nevertheless, the suitable molecular mechanics parameterization and the force fields needed to perform these simulations are not completely available for this class of molecules. In this paper, Amber force field parameters for phenyl-, benzyl-, benzylamino-, and methylamino-boronates, a group of boron-containing compounds involved in different branches of the medicinal chemistry, were created. The robustness of the obtained data was confirmed through molecular dynamics simulations on ligand/β-lactamases covalent complexes. The ligand torsional angles, populated over the trajectory frames, were confirmed by values found in the ligand geometries, located through optimizations at the DFT/B3LYP/6-31g(d) level, using water as a solvent. In summary, this study successfully provided a library of parameters, opening the possibility to perform molecular dynamics simulations of this class of boron-containing compounds.
Collapse
Affiliation(s)
- Maria Assunta Chiacchio
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Laura Legnani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | - Gabriella Roda
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Giovanni Grazioso
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
9
|
The Antibacterial Effect of Boron Compounds and Evaluation of the Effects on Biofilm Formation in the Infection Model of Klebsiella pneumoniae on the HepG2 Cell Line. JOURNAL OF CONTEMPORARY MEDICINE 2023. [DOI: 10.16899/jcm.1176900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: Klebsiella pneumoniae causes hospital-acquired pneumonia, urinary tract infection and bacteremia in immunocompromised patients. Klebsiella pneumoniae, which has become more common recently, causes antibiotic resistance as well as pyogenic liver abscesses and hematogenous metastatic spread in humans. Developing antibiotic resistance complicates the treatment of liver infections. In our study, we aimed to evaluate the effect of boron compounds in an infection model created by Klebsiella pneumoniae 700603.
Materials and Methods: Minimum inhibitory concentration and fractional inhibitory concentration studies, resistance gene levels, and HepG2 cell analyses were performed and evaluated.
Results: We determined the low and high minimum inhibitory concentration values of boron components, sodium perborate monohydrate and etidote, respectively. In addition, sodium perborate monohydrate is also effective on biofilm formation and resistance genes. Our findings have shown that boron compounds are more effective when used in a combination. In the toxicity model created in the cellular study, the boron compounds cytotoxic effect decreased due to their antibacterial effects.
Conclusion: İt seems that boron compounds are effective, and the positive effect increases when used together.
Collapse
|
10
|
Li R, Chen X, Zhou C, Dai QQ, Yang L. Recent advances in β-lactamase inhibitor chemotypes and inhibition modes. Eur J Med Chem 2022; 242:114677. [PMID: 35988449 DOI: 10.1016/j.ejmech.2022.114677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
The effectiveness of β-lactam antibiotics is increasingly influenced by serine β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which can hydrolyze β-lactam antibiotics. The development of effective β-lactamase inhibitors is an important direction to extend use of β-lactam antibiotics. Although six SBL inhibitors have been approved for clinical use, but no MBL inhibitors or MBL/SBL dual-action inhibitors are available so far. Broad-spectrum targeting clinically relevant MBLs and SBLs is currently desirable, while it is not easy to achieve such a purpose owing to structural and mechanistic differences between MBLs and SBLs. In this review, we summarized recent advances of inhibitor chemotypes targeting MBLs and SBLs and their inhibition mechanisms, particularly including lead discovery and structural optimization strategies, with the aim to provide useful information for future efforts to develop new MBL and SBL inhibitors.
Collapse
Affiliation(s)
- Rong Li
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Xi Chen
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China
| | - Cong Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Qing-Qing Dai
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Lingling Yang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, PR China.
| |
Collapse
|
11
|
Abstract
Class C β-lactamases or cephalosporinases can be classified into two functional groups (1, 1e) with considerable molecular variability (≤20% sequence identity). These enzymes are mostly encoded by chromosomal and inducible genes and are widespread among bacteria, including Proteobacteria in particular. Molecular identification is based principally on three catalytic motifs (64SXSK, 150YXN, 315KTG), but more than 70 conserved amino-acid residues (≥90%) have been identified, many close to these catalytic motifs. Nevertheless, the identification of a tiny, phylogenetically distant cluster (including enzymes from the genera Legionella, Bradyrhizobium, and Parachlamydia) has raised questions about the possible existence of a C2 subclass of β-lactamases, previously identified as serine hydrolases. In a context of the clinical emergence of extended-spectrum AmpC β-lactamases (ESACs), the genetic modifications observed in vivo and in vitro (point mutations, insertions, or deletions) during the evolution of these enzymes have mostly involved the Ω- and H-10/R2-loops, which vary considerably between genera, and, in some cases, the conserved triplet 150YXN. Furthermore, the conserved deletion of several amino-acid residues in opportunistic pathogenic species of Acinetobacter, such as A. baumannii, A. calcoaceticus, A. pittii and A. nosocomialis (deletion of residues 304-306), and in Hafnia alvei and H. paralvei (deletion of residues 289-290), provides support for the notion of natural ESACs. The emergence of higher levels of resistance to β-lactams, including carbapenems, and to inhibitors such as avibactam is a reality, as the enzymes responsible are subject to complex regulation encompassing several other genes (ampR, ampD, ampG, etc.). Combinations of resistance mechanisms may therefore be at work, including overproduction or change in permeability, with the loss of porins and/or activation of efflux systems.
Collapse
|
12
|
Taylor DM, Anglin J, Hu L, Wang L, Sankaran B, Wang J, Matzuk MM, Prasad BV, Palzkill T. Unique Diacidic Fragments Inhibit the OXA-48 Carbapenemase and Enhance the Killing of Escherichia coli Producing OXA-48. ACS Infect Dis 2021; 7:3345-3354. [PMID: 34817169 PMCID: PMC9677231 DOI: 10.1021/acsinfecdis.1c00501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite the advances in β-lactamase inhibitor development, limited options exist for the class D carbapenemase known as OXA-48. OXA-48 is one of the most prevalent carbapenemases in carbapenem-resistant Enterobacteriaceae infections and is not susceptible to most available β-lactamase inhibitors. Here, we screened various low-molecular-weight compounds (fragments) against OXA-48 to identify functional scaffolds for inhibitor development. Several biphenyl-, naphthalene-, fluorene-, anthraquinone-, and azobenzene-based compounds were found to inhibit OXA-48 with low micromolar potency despite their small size. Co-crystal structures of OXA-48 with several of these compounds revealed key interactions with the carboxylate-binding pocket, Arg214, and various hydrophobic residues of β-lactamase that can be exploited in future inhibitor development. A number of the low-micromolar-potency inhibitors, across different scaffolds, synergize with ampicillin to kill Escherichia coli expressing OXA-48, albeit at high concentrations of the respective inhibitors. Additionally, several compounds demonstrated micromolar potency toward the OXA-24 and OXA-58 class D carbapenemases that are prevalent in Acinetobacter baumannii. This work provides foundational information on a variety of chemical scaffolds that can guide the design of effective OXA-48 inhibitors that maintain efficacy as well as potency toward other major class D carbapenemases.
Collapse
Affiliation(s)
- Doris Mia Taylor
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Justin Anglin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Advanced Light Source, Lawrence Berkeley National Laboratory, CA, 94720, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - B.V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
13
|
Nowak MG, Skwarecki AS, Milewska MJ. Amino Acid Based Antimicrobial Agents - Synthesis and Properties. ChemMedChem 2021; 16:3513-3544. [PMID: 34596961 PMCID: PMC9293202 DOI: 10.1002/cmdc.202100503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Structures of several dozen of known antibacterial, antifungal or antiprotozoal agents are based on the amino acid scaffold. In most of them, the amino acid skeleton is of a crucial importance for their antimicrobial activity, since very often they are structural analogs of amino acid intermediates of different microbial biosynthetic pathways. Particularly, some aminophosphonate or aminoboronate analogs of protein amino acids are effective enzyme inhibitors, as structural mimics of tetrahedral transition state intermediates. Synthesis of amino acid antimicrobials is a particular challenge, especially in terms of the need for enantioselective methods, including the asymmetric synthesis. All these issues are addressed in this review, summing up the current state‐of‐the‐art and presenting perspectives fur further progress.
Collapse
Affiliation(s)
- Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
14
|
Thamilselvan G, Sarveswari HB, Vasudevan S, Stanley A, Shanmugam K, Vairaprakash P, Solomon AP. Development of an Antibiotic Resistance Breaker to Resensitize Drug-Resistant Staphylococcus aureus: In Silico and In Vitro Approach. Front Cell Infect Microbiol 2021; 11:700198. [PMID: 34485178 PMCID: PMC8415528 DOI: 10.3389/fcimb.2021.700198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Efflux pumps are one of the predominant microbial resistant mechanisms leading to the development of multidrug resistance. In Staphylococcus aureus, overexpression of NorA protein enables the efflux of antibiotics belonging to the class of fluoroquinolones and, thus, makes S. aureus resistant. Hence, NorA efflux pumps are being extensively exploited as the potential drug target to evade bacterial resistance and resensitize bacteria to the existing antibiotics. Although several molecules are reported to inhibit NorA efflux pump effectively, boronic acid derivatives were shown to have promising NorA efflux pump inhibition. In this regard, the current study exploits 6-(3-phenylpropoxy)pyridine-3-boronic acid to further improve the activity and reduce cytotoxicity using the bioisostere approach, a classical medicinal chemistry concept. Using the SWISS-Bioisostere online tool, from the parent compound, 42 compounds were obtained upon the replacement of the boronic acid. The 42 compounds were docked with modeled NorA protein, and key molecular interactions of the prominent compounds were assessed. The top hit compounds were further analyzed for their drug-like properties using ADMET studies. The identified potent lead, 5-nitro-2-(3-phenylpropoxy)pyridine (5-NPPP), was synthesized, and in vitro efficacy studies have been proven to show enhanced efflux inhibition, thus acting as a potent antibiotic breaker to resensitize S. aureus without elucidating any cytotoxic effect to the host Hep-G2 cell lines.
Collapse
Affiliation(s)
- Gopalakrishnan Thamilselvan
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Hema Bhagavathi Sarveswari
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Alex Stanley
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India.,Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Pothiappan Vairaprakash
- Department of Chemistry, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
15
|
Trout RE, Zulli A, Mesaros E, Jackson RW, Boyd S, Liu B, Hamrick J, Daigle D, Chatwin CL, John K, McLaughlin L, Cusick SM, Weiss WJ, Pulse ME, Pevear DC, Moeck G, Xerri L, Burns CJ. Discovery of VNRX-7145 (VNRX-5236 Etzadroxil): An Orally Bioavailable β-Lactamase Inhibitor for Enterobacterales Expressing Ambler Class A, C, and D Enzymes. J Med Chem 2021; 64:10155-10166. [PMID: 34191513 PMCID: PMC8311649 DOI: 10.1021/acs.jmedchem.1c00437] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A major
antimicrobial resistance mechanism in Gram-negative bacteria
is the production of β-lactamase enzymes. The increasing emergence
of β-lactamase-producing multi-drug-resistant “superbugs”
has resulted in increases in costly hospital Emergency Department
(ED) visits and hospitalizations due to the requirement for parenteral
antibiotic therapy for infections caused by these difficult-to-treat
bacteria. To address the lack of outpatient treatment, we initiated
an iterative program combining medicinal chemistry, biochemical testing,
microbiological profiling, and evaluation of oral pharmacokinetics.
Lead optimization focusing on multiple smaller, more lipophilic active
compounds, followed by an exploration of oral bioavailability of a
variety of their respective prodrugs, provided 36 (VNRX-7145/VNRX-5236
etzadroxil), the prodrug of the boronic acid-containing β-lactamase
inhibitor 5 (VNRX-5236). In vitro and in vivo studies demonstrated that 5 restored
the activity of the oral cephalosporin antibiotic ceftibuten against
Enterobacterales expressing Ambler class A extended-spectrum β-lactamases,
class A carbapenemases, class C cephalosporinases, and class D oxacillinases.
Collapse
Affiliation(s)
- Robert E Trout
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Allison Zulli
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Eugen Mesaros
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Randy W Jackson
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Steven Boyd
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Bin Liu
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Jodie Hamrick
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Denis Daigle
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Cassandra L Chatwin
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Kaitlyn John
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Lisa McLaughlin
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Susan M Cusick
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - William J Weiss
- UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107-2699, United States
| | - Mark E Pulse
- UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107-2699, United States
| | - Daniel C Pevear
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Greg Moeck
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Luigi Xerri
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Christopher J Burns
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| |
Collapse
|
16
|
Stein RM, Yang Y, Balius TE, O'Meara MJ, Lyu J, Young J, Tang K, Shoichet BK, Irwin JJ. Property-Unmatched Decoys in Docking Benchmarks. J Chem Inf Model 2021; 61:699-714. [PMID: 33494610 PMCID: PMC7913603 DOI: 10.1021/acs.jcim.0c00598] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enrichment of ligands versus property-matched decoys is widely used to test and optimize docking library screens. However, the unconstrained optimization of enrichment alone can mislead, leading to false confidence in prospective performance. This can arise by over-optimizing for enrichment against property-matched decoys, without considering the full spectrum of molecules to be found in a true large library screen. Adding decoys representing charge extrema helps mitigate over-optimizing for electrostatic interactions. Adding decoys that represent the overall characteristics of the library to be docked allows one to sample molecules not represented by ligands and property-matched decoys but that one will encounter in a prospective screen. An optimized version of the DUD-E set (DUDE-Z), as well as Extrema and sets representing broad features of the library (Goldilocks), is developed here. We also explore the variability that one can encounter in enrichment calculations and how that can temper one's confidence in small enrichment differences. The new tools and new decoy sets are freely available at http://tldr.docking.org and http://dudez.docking.org.
Collapse
Affiliation(s)
- Reed M Stein
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Ying Yang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Trent E Balius
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., P.O. Box B, Frederick, Maryland 21702, United States
| | - Matt J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Palmer Commons, 100 Washtenaw Ave. #2017, Ann Arbor, Michigan 48109, United States
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Jennifer Young
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Khanh Tang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
17
|
Khan MS, Shah JA, Arshad M, Halim SA, Khan A, Shaikh AJ, Riaz N, Khan AJ, Arfan M, Shahid M, Pervez A, Al-Harrasi A, Bilal M. Photocatalytic Decolorization and Biocidal Applications of Nonmetal Doped TiO 2: Isotherm, Kinetic Modeling and In Silico Molecular Docking Studies. Molecules 2020; 25:molecules25194468. [PMID: 33003312 PMCID: PMC7583793 DOI: 10.3390/molecules25194468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Textile dyes and microbial contamination of surface water bodies have been recognized as emerging quality concerns around the globe. The simultaneous resolve of such impurities can pave the route for an amicable technological solution. This study reports the photocatalytic performance and the biocidal potential of nitrogen-doped TiO2 against reactive black 5 (RB5), a double azo dye and E. coli. Molecular docking was performed to identify and quantify the interactions of the TiO2 with β-lactamase enzyme and to predict the biocidal mechanism. The sol-gel technique was employed for the synthesis of different mol% nitrogen-doped TiO2. The synthesized photocatalysts were characterized using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) and diffuse reflectance spectroscopy (DRS). The effects of different synthesis and reaction parameters were studied. RB5 dye degradation was monitored by tracking shifts in the absorption spectrum and percent chemical oxygen demand (COD) removal. The best nanomaterial depicted 5.57 nm crystallite size, 49.54 m2 g−1 specific surface area, 11–40 nm particle size with spherical morphologies, and uniform distribution. The RB5 decolorization data fits well with the pseudo-first-order kinetic model, and the maximum monolayer coverage capacity for the Langmuir adsorption model was found to be 40 mg g−1 with Kads of 0.113 mg−1. The LH model yielded a higher coefficient KC (1.15 mg L−1 h−1) compared to the adsorption constant KLH (0.3084 L mg−1). 90% COD removal was achieved in 60 min of irradiation, confirmed by the disappearance of spectral peaks. The best-optimized photocatalysts showed a noticeable biocidal potential against human pathogenic strain E. coli in 150 min. The biocidal mechanism of best-optimized photocatalyst was predicted by molecular docking simulation against E. coli β-lactamase enzyme. The docking score (−7.6 kcal mol−1) and the binding interaction with the active site residues (Lys315, Thr316, and Glu272) of β-lactamase further confirmed that inhibition of β-lactamase could be a most probable mechanism of biocidal activity.
Collapse
Affiliation(s)
- Muhammad Saqib Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Jehanzeb Ali Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering (IESE), SCEE, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (S.A.H.); (A.K.)
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (S.A.H.); (A.K.)
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan;
| | - Nadia Riaz
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Asim Jahangir Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Muhammad Arfan
- Department of Chemistry, SNS, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan;
| | - Arshid Pervez
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (S.A.H.); (A.K.)
- Correspondence: (A.A.-H.); (M.B.); Tel.: +968-25446328 (A.A.-H.); +92-992-383591 (M.B.)
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (M.S.K.); (J.A.S.); (N.R.); (A.J.K.); (A.P.)
- Correspondence: (A.A.-H.); (M.B.); Tel.: +968-25446328 (A.A.-H.); +92-992-383591 (M.B.)
| |
Collapse
|
18
|
Silva MP, Saraiva L, Pinto M, Sousa ME. Boronic Acids and Their Derivatives in Medicinal Chemistry: Synthesis and Biological Applications. Molecules 2020; 25:E4323. [PMID: 32967170 PMCID: PMC7571202 DOI: 10.3390/molecules25184323] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/20/2022] Open
Abstract
Boron containing compounds have not been widely studied in Medicinal Chemistry, mainly due to the idea that this group could confer some toxicity. Nowadays, this concept has been demystified and, especially after the discovery of the drug bortezomib, the interest for these compounds, mainly boronic acids, has been growing. In this review, several activities of boronic acids, such as anticancer, antibacterial, antiviral activity, and even their application as sensors and delivery systems are addressed. The synthetic processes used to obtain these active compounds are also referred. Noteworthy, the molecular modification by the introduction of boronic acid group to bioactive molecules has shown to modify selectivity, physicochemical, and pharmacokinetic characteristics, with the improvement of the already existing activities. Besides, the preparation of compounds with this chemical group is relatively simple and well known. Taking into consideration these findings, this review reinforces the relevance of extending the studies with boronic acids in Medicinal Chemistry, in order to obtain new promising drugs shortly.
Collapse
Affiliation(s)
- Mariana Pereira Silva
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (M.P.S.); (M.P.)
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Madalena Pinto
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (M.P.S.); (M.P.)
| | - Maria Emília Sousa
- CIIMAR, Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; (M.P.S.); (M.P.)
| |
Collapse
|
19
|
Chen J, Huang T, Gong X, Yu Z, Shi Y, Yan Y, Zheng Y, Liu X, Li G, Wu Y. Ruthenium‐Catalyzed
meta
‐Selective C−H Nitration of Biologically Important Aryltetrazoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jian Chen
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Tianle Huang
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Xinrui Gong
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Zhu‐Jun Yu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Yuesen Shi
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Yu‐Hang Yan
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Yang Zheng
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Xuexin Liu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Guo‐Bo Li
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| |
Collapse
|
20
|
Johnson ME, Fung LWM. Structural approaches to pathway-specific antimicrobial agents. Transl Res 2020; 220:114-121. [PMID: 32105648 PMCID: PMC7293926 DOI: 10.1016/j.trsl.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
This perspective provides an overview of the evolution of antibiotic discovery from a largely phenotypic-based effort, through an intensive structure-based design focus, to a more holistic approach today. The current focus on antibiotic development incorporates assay and discovery conditions that replicate the host environment as much as feasible. They also incorporate several strategies, including target identification and validation within the whole cell environment, a variety of target deconvolution methods, and continued refinement of structure-based design approaches.
Collapse
Affiliation(s)
- Michael E Johnson
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois.
| | - Leslie W-M Fung
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
21
|
Design and discovery of boronic acid drugs. Eur J Med Chem 2020; 195:112270. [DOI: 10.1016/j.ejmech.2020.112270] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 12/15/2022]
|
22
|
Peppoloni S, Pericolini E, Colombari B, Pinetti D, Cermelli C, Fini F, Prati F, Caselli E, Blasi E. The β-Lactamase Inhibitor Boronic Acid Derivative SM23 as a New Anti- Pseudomonas aeruginosa Biofilm. Front Microbiol 2020; 11:35. [PMID: 32117094 PMCID: PMC7018986 DOI: 10.3389/fmicb.2020.00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative nosocomial pathogen, often causative agent of severe device-related infections, given its great capacity to form biofilm. P. aeruginosa finely regulates the expression of numerous virulence factors, including biofilm production, by Quorum Sensing (QS), a cell-to-cell communication mechanism used by many bacteria. Selective inhibition of QS-controlled pathogenicity without affecting bacterial growth may represent a novel promising strategy to overcome the well-known and widespread drug resistance of P. aeruginosa. In this study, we investigated the effects of SM23, a boronic acid derivate specifically designed as β-lactamase inhibitor, on biofilm formation and virulence factors production by P. aeruginosa. Our results indicated that SM23: (1) inhibited biofilm development and production of several virulence factors, such as pyoverdine, elastase, and pyocyanin, without affecting bacterial growth; (2) decreased the levels of 3-oxo-C12-HSL and C4-HSL, two QS-related autoinducer molecules, in line with a dampened lasR/lasI system; (3) failed to bind to bacterial cells that had been preincubated with P. aeruginosa-conditioned medium; and (4) reduced both biofilm formation and pyoverdine production by P. aeruginosa onto endotracheal tubes, as assessed by a new in vitro model closely mimicking clinical settings. Taken together, our results indicate that, besides inhibiting β-lactamase, SM23 can also act as powerful inhibitor of P. aeruginosa biofilm, suggesting that it may have a potential application in the prevention and treatment of biofilm-associated P. aeruginosa infections.
Collapse
Affiliation(s)
- Samuele Peppoloni
- Department of Surgical, Medical, Dental and Morphological Sciences With Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences With Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Bruna Colombari
- Department of Surgical, Medical, Dental and Morphological Sciences With Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Diego Pinetti
- Centro Interdipartimentale "Grandi Strumenti" (CIGS), University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Cermelli
- Department of Surgical, Medical, Dental and Morphological Sciences With Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Fini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Blasi
- Department of Surgical, Medical, Dental and Morphological Sciences With Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
23
|
González-Bello C, Rodríguez D, Pernas M, Rodríguez Á, Colchón E. β-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs. J Med Chem 2019; 63:1859-1881. [PMID: 31663735 DOI: 10.1021/acs.jmedchem.9b01279] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Infections caused by resistant bacteria are nowadays too common, and some pathogens have even become resistant to multiple types of antibiotics, in which case few or even no treatments are available. In recent years, the most successful strategy in anti-infective drug discovery for the treatment of such problematic infections is the combination therapy "antibiotic + inhibitor of resistance". These inhibitors allow the repurposing of antibiotics that have already proven to be safe and effective for clinical use. Three main types of compounds have been developed to block the principal bacterial resistance mechanisms: (i) β-lactamase inhibitors; (ii) outer membrane permeabilizers; (iii) efflux pump inhibitors. This Perspective is focused on β-lactamase inhibitors that disable the most prevalent cause of antibiotic resistance in Gram-negative bacteria, i.e., the deactivation of the most widely used antibiotics, β-lactams (penicillins, cephalosporines, carbapenems, and monobactams), by the production of β-lactamases. An overview of the most recently identified β-lactamase inhibitors and of combination therapy is provided. The article also covers the mechanism of action of the different types of β-lactamase enzymes as a basis for inhibitor design and target inactivation.
Collapse
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Diana Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Marina Pernas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Ángela Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Esther Colchón
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
24
|
González-Bello C. Recently developed synthetic compounds with anti-infective activity. Curr Opin Pharmacol 2019; 48:17-23. [DOI: 10.1016/j.coph.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
|
25
|
Lyu J, Wang S, Balius TE, Singh I, Levit A, Moroz YS, O'Meara MJ, Che T, Algaa E, Tolmachova K, Tolmachev AA, Shoichet BK, Roth BL, Irwin JJ. Ultra-large library docking for discovering new chemotypes. Nature 2019; 566:224-229. [PMID: 30728502 PMCID: PMC6383769 DOI: 10.1038/s41586-019-0917-9] [Citation(s) in RCA: 595] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/04/2019] [Indexed: 11/09/2022]
Abstract
Despite intense interest in expanding chemical space, libraries containing hundreds-of-millions to billions of diverse molecules have remained inaccessible. Here we investigate structure-based docking of 170 million make-on-demand compounds from 130 well-characterized reactions. The resulting library is diverse, representing over 10.7 million scaffolds that are otherwise unavailable. For each compound in the library, docking against AmpC β-lactamase (AmpC) and the D4 dopamine receptor were simulated. From the top-ranking molecules, 44 and 549 compounds were synthesized and tested for interactions with AmpC and the D4 dopamine receptor, respectively. We found a phenolate inhibitor of AmpC, which revealed a group of inhibitors without known precedent. This molecule was optimized to 77 nM, which places it among the most potent non-covalent AmpC inhibitors known. Crystal structures of this and other AmpC inhibitors confirmed the docking predictions. Against the D4 dopamine receptor, hit rates fell almost monotonically with docking score, and a hit-rate versus score curve predicted that the library contained 453,000 ligands for the D4 dopamine receptor. Of 81 new chemotypes discovered, 30 showed submicromolar activity, including a 180-pM subtype-selective agonist of the D4 dopamine receptor.
Collapse
Affiliation(s)
- Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Trent E Balius
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Isha Singh
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Anat Levit
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Yurii S Moroz
- National Taras Shevchenko University of Kiev, Kiev, Ukraine
- Chemspace, Riga, Latvia
| | - Matthew J O'Meara
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Enkhjargal Algaa
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Linciano P, Cendron L, Gianquinto E, Spyrakis F, Tondi D. Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design. ACS Infect Dis 2019; 5:9-34. [PMID: 30421910 DOI: 10.1021/acsinfecdis.8b00247] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The worldwide emergence of New Delhi metallo-β-lactamase-1 (NDM-1) as a carbapenemase able to hydrolyze nearly all available β-lactam antibiotics has characterized the past decade, endangering efficacious antibacterial treatments. No inhibitors for NDM-1 are available in therapy, nor are promising compounds in the pipeline for future NDM-1 inhibitors. We report the studies dedicated to the design and development of effective NDM-1 inhibitors. The discussion for each agent moves from the employed design strategy to the ability of the identified inhibitor to synergize β-lactam antibiotics. A structural analysis of NDM-1 mechanism of action based on selected X-ray complexes is also reported: the intrinsic flexibility of the binding site and the comparison between penicillin/cephalosporin and carbapenem mechanisms of hydrolysis are evaluated. Despite the valuable progress in terms of structural and mechanistic information, the design of a potent NDM-1 inhibitor to be introduced in therapy remains challenging. Certainly, only the deep knowledge of NDM-1 architecture and of the variable mechanism of action that NDM-1 employs against different classes of substrates could orient a successful drug discovery campaign.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
27
|
Erlanson DA, Davis BJ, Jahnke W. Fragment-Based Drug Discovery: Advancing Fragments in the Absence of Crystal Structures. Cell Chem Biol 2018; 26:9-15. [PMID: 30482678 DOI: 10.1016/j.chembiol.2018.10.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/12/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023]
Abstract
Fragment-based drug discovery typically requires an interplay between screening methods, structural methods, and medicinal chemistry. X-ray crystallography is generally the method of choice to obtain three-dimensional structures of the bound ligand/protein complex, but this can sometimes be difficult, particularly for early, low-affinity fragment hits. In this Perspective, we discuss strategies to advance and evolve fragments in the absence of crystal structures of protein-fragment complexes, although the structure of the unliganded protein may be available. The strategies can involve other structural techniques, such as NMR spectroscopy, molecular modeling, or a variety of chemical approaches. Often, these strategies are aimed at guiding evolution of initial fragment hits to a stage where crystal structures can be obtained for further structure-based optimization.
Collapse
Affiliation(s)
- Daniel A Erlanson
- Carmot Therapeutics, Inc., 740 Heinz Avenue, Berkeley, CA 94710, USA.
| | - Ben J Davis
- Vernalis (R&D) Ltd, Granta Park, Cambridge, UK.
| | - Wolfgang Jahnke
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Novartis Campus, Basel, Switzerland.
| |
Collapse
|
28
|
Lamoree B, Hubbard RE. Using Fragment-Based Approaches to Discover New Antibiotics. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2018; 23:495-510. [PMID: 29923463 PMCID: PMC6024353 DOI: 10.1177/2472555218773034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 12/29/2022]
Abstract
Fragment-based lead discovery has emerged over the past two decades as a successful approach to generate novel lead candidates in drug discovery programs. The two main advantages over conventional high-throughput screening (HTS) are more efficient sampling of chemical space and tighter control over the physicochemical properties of the lead candidates. Antibiotics are a class of drugs with particularly strict property requirements for efficacy and safety. The development of novel antibiotics has slowed down so much that resistance has now evolved against every available antibiotic drug. Here we give an overview of fragment-based approaches in screening and lead discovery projects for new antibiotics. We discuss several successful hit-to-lead development examples. Finally, we highlight the current challenges and opportunities for fragment-based lead discovery toward new antibiotics.
Collapse
Affiliation(s)
- Bas Lamoree
- YSBL, Department of Chemistry, University of York, Heslington, York, UK
| | - Roderick E. Hubbard
- YSBL, Department of Chemistry, University of York, Heslington, York, UK
- Vernalis Research, Granta Park, Abington, Cambridge, UK
| |
Collapse
|
29
|
Zhou J, Stapleton P, Haider S, Healy J. Boronic acid inhibitors of the class A β-lactamase KPC-2. Bioorg Med Chem 2018; 26:2921-2927. [PMID: 29784271 DOI: 10.1016/j.bmc.2018.04.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
The rapid rise of antimicrobial resistance is one of the greatest challenges currently facing medical science. The most common cause of resistance to β-lactam antibiotics is the expression of β-lactamase enzymes, such as KPC-2. As such the development of novel inhibitors of KPC-2 and related enzymes is of the upmost importance. We report the design and synthesis of novel boronic acid transition state analogs containing a 1,4-substituted 1,2,3-triazole linker based on the known inhibitor 3-nitrophenyl boronic acid and demonstrate that they are promising scaffolds for the development inhibitors of KPC-2 with the ability to recover sensitivity to the antibiotic cefotaxime.
Collapse
Affiliation(s)
- Jingyuan Zhou
- UCL School of Pharmacy, 29-39 Brunswick Sq., London WC1N 1AX, UK
| | - Paul Stapleton
- UCL School of Pharmacy, 29-39 Brunswick Sq., London WC1N 1AX, UK
| | - Shozeb Haider
- UCL School of Pharmacy, 29-39 Brunswick Sq., London WC1N 1AX, UK
| | - Jess Healy
- UCL School of Pharmacy, 29-39 Brunswick Sq., London WC1N 1AX, UK.
| |
Collapse
|
30
|
van den Akker F, Bonomo RA. Exploring Additional Dimensions of Complexity in Inhibitor Design for Serine β-Lactamases: Mechanistic and Intra- and Inter-molecular Chemistry Approaches. Front Microbiol 2018; 9:622. [PMID: 29675000 PMCID: PMC5895744 DOI: 10.3389/fmicb.2018.00622] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/19/2018] [Indexed: 01/14/2023] Open
Abstract
As a bacterial resistance strategy, serine β-lactamases have evolved from cell wall synthesizing enzymes known as penicillin-binding proteins (PBP), by not only covalently binding β-lactam antibiotics but, also acquiring mechanisms of deacylating these antibiotics. This critical deacylation step leads to release of hydrolyzed and inactivated β-lactams, thereby providing resistance for the bacteria against these antibiotics targeting the cell wall. To combat β-lactamase-mediated antibiotic resistance, numerous β-lactamase inhibitors were developed that utilize various strategies to inactivate the β-lactamase. Most of these compounds are “mechanism-based” inhibitors that in some manner mimic the β-lactam substrate, having a carbonyl moiety and a negatively charged carboxyl or sulfate group. These compounds form a covalent adduct with the catalytic serine via an initial acylation step. To increase the life-time of the inhibitory covalent adduct intermediates, a remarkable array of different strategies was employed to improve inhibition potency. Such approaches include post-acylation intra- and intermolecular chemical rearrangements as well as affecting the deacylation water. These approaches transform the inhibitor design process from a 3-dimensional problem (i.e., XYZ coordinates) to one with additional dimensions of complexity as the reaction coordinate and time spent at each chemical state need to be taken into consideration. This review highlights the mechanistic intricacies of the design efforts of the β-lactamase inhibitors which so far have resulted in the development of “two generations” and 5 clinically available inhibitors.
Collapse
Affiliation(s)
- Focco van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Robert A Bonomo
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Medicine, Pharmacology, Molecular Biology and Microbiology, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Medical Service and Geriatric Research, Education, and Clinical Centers (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Case Western Reserve University-VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
| |
Collapse
|
31
|
Bouza AA, Swanson HC, Smolen KA, VanDine AL, Taracila MA, Romagnoli C, Caselli E, Prati F, Bonomo RA, Powers RA, Wallar BJ. Structure-Based Analysis of Boronic Acids as Inhibitors of Acinetobacter-Derived Cephalosporinase-7, a Unique Class C β-Lactamase. ACS Infect Dis 2018; 4:325-336. [PMID: 29144724 DOI: 10.1021/acsinfecdis.7b00152] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Acinetobacter baumannii is a multidrug resistant pathogen that infects more than 12 000 patients each year in the US. Much of the resistance to β-lactam antibiotics in Acinetobacter spp. is mediated by class C β-lactamases known as Acinetobacter-derived cephalosporinases (ADCs). ADCs are unaffected by clinically used β-lactam-based β-lactamase inhibitors. In this study, five boronic acid transition state analog inhibitors (BATSIs) were evaluated for inhibition of the class C cephalosporinase ADC-7. Our goal was to explore the properties of BATSIs designed to probe the R1 binding site. Ki values ranged from low micromolar to subnanomolar, and circular dichroism (CD) demonstrated that each inhibitor stabilizes the β-lactamase-inhibitor complexes. Additionally, X-ray crystal structures of ADC-7 in complex with five inhibitors were determined (resolutions from 1.80 to 2.09 Å). In the ADC-7/CR192 complex, the BATSI with the lowest Ki (0.45 nM) and greatest Δ Tm (+9 °C), a trifluoromethyl substituent, interacts with Arg340. Arg340 is unique to ADCs and may play an important role in the inhibition of ADC-7. The ADC-7/BATSI complexes determined in this study shed light into the unique recognition sites in ADC enzymes and also offer insight into further structure-based optimization of these inhibitors.
Collapse
Affiliation(s)
- Alexandra A. Bouza
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Hollister C. Swanson
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Kali A. Smolen
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Alison L. VanDine
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Magdalena A. Taracila
- Research
Service, Louis Stokes Cleveland Department of Veterans Affairs Medical
Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Chiara Romagnoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Emilia Caselli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Robert A. Bonomo
- Research
Service, Louis Stokes Cleveland Department of Veterans Affairs Medical
Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Rachel A. Powers
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| | - Bradley J. Wallar
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, Allendale, Michigan 49401, United States
| |
Collapse
|
32
|
Computational and biological profile of boronic acids for the detection of bacterial serine- and metallo-β-lactamases. Sci Rep 2017; 7:17716. [PMID: 29255163 PMCID: PMC5735191 DOI: 10.1038/s41598-017-17399-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
β-Lactamases (BLs) able to hydrolyze β-lactam antibiotics and more importantly the last resort carbapenems, represent a major mechanism of resistance in Gram-negative bacteria showing multi-drug or extensively drug resistant phenotypes. The early detection of BLs responsible of resistant infections is challenging: approaches aiming at the identification of new BLs inhibitors (BLI) can thus serve as the basis for the development of highly needed diagnostic tools. Starting from benzo-[b]-thiophene-2-boronic acid (BZB), a nanomolar inhibitor of AmpC β-lactamase (K i = 27 nM), we have identified and characterized a set of BZB analogues able to inhibit clinically-relevant β-lactamases, including AmpC, Extended-Spectrum BLs (ESBL), KPC- and OXA-type carbapenemases and metallo-β-lactamases (MBL). A multiligand set of boronic acid (BA) β-lactamase inhibitors was obtained using covalent molecular modeling, synthetic chemistry, enzyme kinetics and antibacterial susceptibility testing. Data confirmed the possibility to discriminate between clinically-relevant β-lactamases on the basis of their inhibition profile. Interestingly, this work also allowed the identification of potent KPC-2 and NDM-1 inhibitors able to potentiate the activity of cefotaxime (CTX) and ceftazidime (CAZ) against resistant clinical isolates (MIC reduction, 32-fold). Our results open the way to the potential use of our set of compounds as a diagnostic tool for the sensitive detection of clinically-relevant β-lactamases.
Collapse
|
33
|
Docquier JD, Mangani S. An update on β-lactamase inhibitor discovery and development. Drug Resist Updat 2017; 36:13-29. [PMID: 29499835 DOI: 10.1016/j.drup.2017.11.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 11/27/2022]
Abstract
Antibiotic resistance, and the emergence of pan-resistant clinical isolates, seriously threatens our capability to treat bacterial diseases, including potentially deadly hospital-acquired infections. This growing issue certainly requires multiple adequate responses, including the improvement of both diagnosis methods and use of antibacterial agents, and obviously the development of novel antibacterial drugs, especially active against Gram-negative pathogens, which represent an urgent medical need. Considering the clinical relevance of both β-lactam antibiotics and β-lactamase-mediated resistance, the discovery and development of combinations including a β-lactamase inhibitor seems to be particularly attractive, despite being extremely challenging due to the enormous diversity, both structurally and mechanistically, of the potential β-lactamase targets. This review will cover the evolution of currently available β-lactamase inhibitors along with the most recent research leading to new β-lactamase inhibitors of potential clinical interest or already in the stage of clinical development.
Collapse
Affiliation(s)
- Jean-Denis Docquier
- Department of Medical Biotechnology, University of Siena, Viale Bracci 16, 53100 Siena, Italy.
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
34
|
González-Bello C. Antibiotic adjuvants - A strategy to unlock bacterial resistance to antibiotics. Bioorg Med Chem Lett 2017; 27:4221-4228. [PMID: 28827113 DOI: 10.1016/j.bmcl.2017.08.027] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 12/11/2022]
Abstract
Resistance to available antibiotics in pathogenic bacteria is currently a global challenge since the number of strains that are resistant to multiple types of antibiotics has increased dramatically each year and has spread worldwide. To unlock this problem, the use of an 'antibiotic adjuvant' in combination with an antibiotic is now being exploited. This approach enables us to prolong the lifespan of these life-saving drugs. This digests review provides an overview of the main types of antibiotic adjuvants, the basis of their operation and the remaining issues to be tackled in this field. Particular emphasis is placed on those compounds that are already in clinical development, namely β-lactamase inhibitors.
Collapse
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
35
|
Schillaci D, Spanò V, Parrino B, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G, Cascioferro S. Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. J Med Chem 2017; 60:8268-8297. [PMID: 28594170 DOI: 10.1021/acs.jmedchem.7b00215] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is urgent need for new therapeutic strategies to fight the global threat of antibiotic resistance. The focus of this Perspective is on chemical agents that target the most common mechanisms of antibiotic resistance such as enzymatic inactivation of antibiotics, changes in cell permeability, and induction/activation of efflux pumps. Here we assess the current landscape and challenges in the treatment of antibiotic resistance mechanisms at both bacterial cell and community levels. We also discuss the potential clinical application of chemical inhibitors of antibiotic resistance mechanisms as add-on treatments for serious drug-resistant infections. Enzymatic inhibitors, such as the derivatives of the β-lactamase inhibitor avibactam, are closer to the clinic than other molecules. For example, MK-7655, in combination with imipenem, is in clinical development for the treatment of infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa, which are difficult to treat. In addition, other molecules targeting multidrug-resistance mechanisms, such as efflux pumps, are under development and hold promise for the treatment of multidrug resistant infections.
Collapse
Affiliation(s)
- Domenico Schillaci
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo , Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
36
|
Lanier M, Cole DC, Istratiy Y, Klein MG, Schwartz PA, Tjhen R, Jennings A, Hixon MS. Repurposing Suzuki Coupling Reagents as a Directed Fragment Library Targeting Serine Hydrolases and Related Enzymes. J Med Chem 2017; 60:5209-5215. [PMID: 28564542 PMCID: PMC5483892 DOI: 10.1021/acs.jmedchem.6b01224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Serine hydrolases are susceptible to potent reversible inhibition by boronic acids. Large collections of chemically diverse boronic acid fragments are commercially available because of their utility in coupling chemistry. We repurposed the approximately 650 boronic acid reagents in our collection as a directed fragment library targeting serine hydrolases and related enzymes. Highly efficient hits (LE > 0.6) often result. The utility of the approach is illustrated with the results against autotaxin, a phospholipase implicated in cardiovascular disease.
Collapse
Affiliation(s)
- Marion Lanier
- Medicinal Chemistry - Gastrointestinal Drug Discovery Unit, ‡Structural Biology & Biophysics, §Modeling & Simulation-Global DMPK, Gastrointestinal Drug Discovery Unit, Takeda California, Inc. , 10410 Science Center Drive, San Diego, California 92121, United States
| | - Derek C Cole
- Medicinal Chemistry - Gastrointestinal Drug Discovery Unit, ‡Structural Biology & Biophysics, §Modeling & Simulation-Global DMPK, Gastrointestinal Drug Discovery Unit, Takeda California, Inc. , 10410 Science Center Drive, San Diego, California 92121, United States
| | - Yelena Istratiy
- Medicinal Chemistry - Gastrointestinal Drug Discovery Unit, ‡Structural Biology & Biophysics, §Modeling & Simulation-Global DMPK, Gastrointestinal Drug Discovery Unit, Takeda California, Inc. , 10410 Science Center Drive, San Diego, California 92121, United States
| | - Michael G Klein
- Medicinal Chemistry - Gastrointestinal Drug Discovery Unit, ‡Structural Biology & Biophysics, §Modeling & Simulation-Global DMPK, Gastrointestinal Drug Discovery Unit, Takeda California, Inc. , 10410 Science Center Drive, San Diego, California 92121, United States
| | - Phillip A Schwartz
- Medicinal Chemistry - Gastrointestinal Drug Discovery Unit, ‡Structural Biology & Biophysics, §Modeling & Simulation-Global DMPK, Gastrointestinal Drug Discovery Unit, Takeda California, Inc. , 10410 Science Center Drive, San Diego, California 92121, United States
| | - Richard Tjhen
- Medicinal Chemistry - Gastrointestinal Drug Discovery Unit, ‡Structural Biology & Biophysics, §Modeling & Simulation-Global DMPK, Gastrointestinal Drug Discovery Unit, Takeda California, Inc. , 10410 Science Center Drive, San Diego, California 92121, United States
| | - Andy Jennings
- Medicinal Chemistry - Gastrointestinal Drug Discovery Unit, ‡Structural Biology & Biophysics, §Modeling & Simulation-Global DMPK, Gastrointestinal Drug Discovery Unit, Takeda California, Inc. , 10410 Science Center Drive, San Diego, California 92121, United States
| | - Mark S Hixon
- Medicinal Chemistry - Gastrointestinal Drug Discovery Unit, ‡Structural Biology & Biophysics, §Modeling & Simulation-Global DMPK, Gastrointestinal Drug Discovery Unit, Takeda California, Inc. , 10410 Science Center Drive, San Diego, California 92121, United States
| |
Collapse
|
37
|
Genovese F, Lazzari S, Venturi E, Costantino L, Blazquez J, Ibacache-Quiroga C, Costi MP, Tondi D. Design, synthesis and biological evaluation of non-covalent AmpC β-lactamases inhibitors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1809-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Werner JP, Mitchell JM, Taracila MA, Bonomo RA, Powers RA. Exploring the potential of boronic acids as inhibitors of OXA-24/40 β-lactamase. Protein Sci 2017; 26:515-526. [PMID: 27997706 DOI: 10.1002/pro.3100] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023]
Abstract
β-lactam antibiotics are crucial to the management of bacterial infections in the medical community. Due to overuse and misuse, clinically significant bacteria are now resistant to many commercially available antibiotics. The most widespread resistance mechanism to β-lactams is the expression of β-lactamase enzymes. To overcome β-lactamase mediated resistance, inhibitors were designed to inactivate these enzymes. However, current inhibitors (clavulanic acid, tazobactam, and sulbactam) for β-lactamases also contain the characteristic β-lactam ring, making them susceptible to resistance mechanisms employed by bacteria. This presents a critical need for novel, non-β-lactam inhibitors that can circumvent these resistance mechanisms. The carbapenem-hydrolyzing class D β-lactamases (CHDLs) are of particular concern, given that they efficiently hydrolyze potent carbapenem antibiotics. Unfortunately, these enzymes are not inhibited by clinically available β-lactamase inhibitors, nor are they effectively inhibited by the newest, non-β-lactam inhibitor, avibactam. Boronic acids are known transition state analog inhibitors of class A and C β-lactamases, and are not extensively characterized as inhibitors of class D β-lactamases. Importantly, boronic acids provide a novel way to potentially inhibit class D β-lactamases. Sixteen boronic acids were selected and tested for inhibition of the CHDL OXA-24/40. Several compounds were identified as effective inhibitors of OXA-24/40, with Ki values as low as 5 μM. The X-ray crystal structures of OXA-24/40 in complex with BA3, BA4, BA8, and BA16 were determined and revealed the importance of interactions with hydrophobic residues Tyr112 and Trp115. These boronic acids serve as progenitors in optimization efforts of a novel series of inhibitors for class D β-lactamases.
Collapse
Affiliation(s)
- Josephine P Werner
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| | - Joshua M Mitchell
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| | - Magdalena A Taracila
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, 44106.,Departments of Medicine, Pharmacology, Biochemistry and Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, 44106.,Departments of Medicine, Pharmacology, Biochemistry and Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| |
Collapse
|
39
|
Structure-based approach for identification of novel phenylboronic acids as serine-β-lactamase inhibitors. J Comput Aided Mol Des 2016; 30:851-861. [DOI: 10.1007/s10822-016-9962-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022]
|
40
|
Wang DY, Abboud MI, Markoulides MS, Brem J, Schofield CJ. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med Chem 2016; 8:1063-84. [PMID: 27327972 DOI: 10.4155/fmc-2016-0078] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Avibactam, which is the first non-β-lactam β-lactamase inhibitor to be introduced for clinical use, is a broad-spectrum serine β-lactamase inhibitor with activity against class A, class C, and, some, class D β-lactamases. We provide an overview of efforts, which extend to the period soon after the discovery of the penicillins, to develop clinically useful non-β-lactam compounds as antibacterials, and, subsequently, penicillin-binding protein and β-lactamase inhibitors. Like the β-lactam inhibitors, avibactam works via a mechanism involving covalent modification of a catalytically important nucleophilic serine residue. However, unlike the β-lactam inhibitors, avibactam reacts reversibly with its β-lactamase targets. We discuss chemical factors that may account for the apparently special nature of β-lactams and related compounds as antibacterials and β-lactamase inhibitors, including with respect to resistance. Avenues for future research including non-β-lactam antibacterials acting similarly to β-lactams are discussed.
Collapse
Affiliation(s)
| | | | | | - Jürgen Brem
- Department of Chemistry, University of Oxford, UK
| | | |
Collapse
|
41
|
Crystal Structures of KPC-2 and SHV-1 β-Lactamases in Complex with the Boronic Acid Transition State Analog S02030. Antimicrob Agents Chemother 2016; 60:1760-6. [PMID: 26729491 DOI: 10.1128/aac.02643-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/27/2015] [Indexed: 01/29/2023] Open
Abstract
Resistance to expanded-spectrum cephalosporins and carbapenems has rendered certain strains of Klebsiella pneumoniae the most problematic pathogens infecting patients in the hospital and community. This broad-spectrum resistance to β-lactamases emerges in part via the expression of KPC-2 and SHV-1 β-lactamases and variants thereof. KPC-2 carbapenemase is particularly worrisome, as the genetic determinant encoding this β-lactamase is rapidly spread via plasmids. Moreover, KPC-2, a class A enzyme, is difficult to inhibit with mechanism-based inactivators (e.g., clavulanate). In order to develop new β-lactamase inhibitors (BLIs) to add to the limited available armamentarium that can inhibit KPC-2, we have structurally probed the boronic acid transition state analog S02030 for its inhibition of KPC-2 and SHV-1. S02030 contains a boronic acid, a thiophene, and a carboxyl triazole moiety. We present here the 1.54- and 1.87-Å resolution crystal structures of S02030 bound to SHV-1 and KPC-2 β-lactamases, respectively, as well as a comparative analysis of the S02030 binding modes, including a previously determined S02030 class C ADC-7 β-lactamase complex. S02030 is able to inhibit vastly different serine β-lactamases by interacting with the conserved features of these active sites, which includes (i) forming the bond with catalytic serine via the boron atom, (ii) positioning one of the boronic acid oxygens in the oxyanion hole, and (iii) utilizing its amide moiety to make conserved interactions across the width of the active site. In addition, S02030 is able to overcome more distantly located structural differences between the β-lactamases. This unique feature is achieved by repositioning the more polar carboxyl-triazole moiety, generated by click chemistry, to create polar interactions as well as reorient the more hydrophobic thiophene moiety. The former is aided by the unusual polar nature of the triazole ring, allowing it to potentially form a unique C-H…O 2.9-Å hydrogen bond with S130 in KPC-2.
Collapse
|
42
|
Du X, Zhou J, Shi J, Xu B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem Rev 2015; 115:13165-307. [PMID: 26646318 PMCID: PMC4936198 DOI: 10.1021/acs.chemrev.5b00299] [Citation(s) in RCA: 1379] [Impact Index Per Article: 137.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Indexed: 12/19/2022]
Abstract
In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers.
Collapse
Affiliation(s)
- Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Junfeng Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
43
|
Tilvawala R, Cammarata M, Adediran SA, Brodbelt JS, Pratt RF. A New Covalent Inhibitor of Class C β-Lactamases Reveals Extended Active Site Specificity. Biochemistry 2015; 54:7375-84. [DOI: 10.1021/acs.biochem.5b01149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ronak Tilvawala
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Michael Cammarata
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - S. A. Adediran
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Jennifer S. Brodbelt
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - R. F. Pratt
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
44
|
Choi H, Kim HJ, Matsuura A, Mikami B, Yoon HJ, Lee HH. Structural and functional studies of a metallo-β-lactamase unveil a new type of structurally encoded nickel-containing heterodinuclear site. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2054-65. [PMID: 26457429 DOI: 10.1107/s1399004715014807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 08/06/2015] [Indexed: 11/10/2022]
Abstract
The selection of correct metal ions with high fidelity against competing cellular cations is crucial for the function of many metalloenzymes; however, the understanding of the principles that govern metal selectivity is still incomplete. In this study, the crystal structure of the Tm1162 protein from Thermotoga maritima, a metallo-β-lactamase, is reported. Several crystal structures of wild-type Tm1162 and its mutants were solved. Homologues of Tm1162 are widely distributed in bacteria and archaea, including several human pathogens. The monomer possesses an αβ/βα fold, with the core β-strands having the β-sheet sandwich structure common to the metallo-β-lactamase superfamily. Tm1162 exists as a trimer in the crystal and this trimeric unit is likely to be present in solution. In the trimer, three active sites reside at the interface between subunits, suggesting that the oligomeric assembly is crucial for catalysis. A new type of structurally encoded heterodinuclear site has been identified by confirming the identity of nickel-containing heteronuclear sites in Tm1162 via X-ray absorption spectroscopy and anomalous difference Fourier maps. The second coordination sphere, including His8 and Glu73, maintains the side-chain orientations of histidines and stabilizes the metal-binding site. Nickel coordination was crucial for the oligomerization of Tm1162. The nickel-dependent and manganese-dependent β-lactamase and phosphodiesterase activities of Tm1162 have also been characterized.
Collapse
Affiliation(s)
- Hwajung Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hee Jung Kim
- Department of Bio and Nano Chemistry, Kookmin University, Seoul 136-702, Republic of Korea
| | - Atsushi Matsuura
- Department of Bio and Nano Chemistry, Kookmin University, Seoul 136-702, Republic of Korea
| | - Bunzo Mikami
- Laboratory of Quality Design and Exploitation, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Hye Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
45
|
Pollock J, Borkin D, Lund G, Purohit T, Dyguda-Kazimierowicz E, Grembecka J, Cierpicki T. Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein-Ligand Complexes. J Med Chem 2015; 58:7465-74. [PMID: 26288158 PMCID: PMC4584387 DOI: 10.1021/acs.jmedchem.5b00975] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Multipolar interactions involving
fluorine and the protein backbone
have been frequently observed in protein–ligand complexes.
Such fluorine–backbone interactions may substantially contribute
to the high affinity of small molecule inhibitors. Here we found that
introduction of trifluoromethyl groups into two different sites in
the thienopyrimidine class of menin–MLL inhibitors considerably
improved their inhibitory activity. In both cases, trifluoromethyl
groups are engaged in short interactions with the backbone of menin.
In order to understand the effect of fluorine, we synthesized a series
of analogues by systematically changing the number of fluorine atoms,
and we determined high-resolution crystal structures of the complexes
with menin. We found that introduction of fluorine at favorable geometry
for interactions with backbone carbonyls may improve the activity
of menin–MLL inhibitors as much as 5- to 10-fold. In order
to facilitate the design of multipolar fluorine–backbone interactions
in protein–ligand complexes, we developed a computational algorithm
named FMAP, which calculates fluorophilic sites in proximity to the
protein backbone. We demonstrated that FMAP could be used to rationalize
improvement in the activity of known protein inhibitors upon introduction
of fluorine. Furthermore, FMAP may also represent a valuable tool
for designing new fluorine substitutions and support ligand optimization
in drug discovery projects. Analysis of the menin–MLL inhibitor
complexes revealed that the backbone in secondary structures is particularly
accessible to the interactions with fluorine. Considering that secondary
structure elements are frequently exposed at protein interfaces, we
postulate that multipolar fluorine–backbone interactions may
represent a particularly attractive approach to improve inhibitors
of protein–protein interactions.
Collapse
Affiliation(s)
- Jonathan Pollock
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitry Borkin
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - George Lund
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Trupta Purohit
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Edyta Dyguda-Kazimierowicz
- Molecular Modeling and Quantum Chemistry Group, Department of Chemistry, Wrocław University of Technology , Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
46
|
Homologous ligands accommodated by discrete conformations of a buried cavity. Proc Natl Acad Sci U S A 2015; 112:5039-44. [PMID: 25847998 DOI: 10.1073/pnas.1500806112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Conformational change in protein-ligand complexes is widely modeled, but the protein accommodation expected on binding a congeneric series of ligands has received less attention. Given their use in medicinal chemistry, there are surprisingly few substantial series of congeneric ligand complexes in the Protein Data Bank (PDB). Here we determine the structures of eight alkyl benzenes, in single-methylene increases from benzene to n-hexylbenzene, bound to an enclosed cavity in T4 lysozyme. The volume of the apo cavity suffices to accommodate benzene but, even with toluene, larger cavity conformations become observable in the electron density, and over the series two other major conformations are observed. These involve discrete changes in main-chain conformation, expanding the site; few continuous changes in the site are observed. In most structures, two discrete protein conformations are observed simultaneously, and energetic considerations suggest that these conformations are low in energy relative to the ground state. An analysis of 121 lysozyme cavity structures in the PDB finds that these three conformations dominate the previously determined structures, largely modeled in a single conformation. An investigation of the few congeneric series in the PDB suggests that discrete changes are common adaptations to a series of growing ligands. The discrete, but relatively few, conformational states observed here, and their energetic accessibility, may have implications for anticipating protein conformational change in ligand design.
Collapse
|
47
|
Sgrignani J, Novati B, Colombo G, Grazioso G. Covalent docking of selected boron-based serine beta-lactamase inhibitors. J Comput Aided Mol Des 2015; 29:441-50. [DOI: 10.1007/s10822-015-9834-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
48
|
Romagnoli C, Caselli E, Prati F. Synthesis of 1,2,3-triazol-1-yl-methaneboronic acids via click chemistry: an easy access to a new potential scaffold for protease inhibitors. European J Org Chem 2015; 2015:1075-1083. [PMID: 26257579 DOI: 10.1002/ejoc.201403408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stereoselective synthesis of previously unreported 1,2,3-triazol-1-yl-methaneboronic acids has been achieved from azidomethaneboronates by Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC). The proximity of the cycloaddition reaction center to the boronic group is not detrimental for the stability of the sp3-carbon-boron bond nor to the stereoisomeric composition, further expanding the field of application of click chemistry to new boronate substrates and offering a new potential scaffold for protease inhibitors.
Collapse
Affiliation(s)
- Chiara Romagnoli
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio-Emilia, Via Campi 183, 41125 Modena (MO)
| | - Emilia Caselli
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio-Emilia, Via Campi 183, 41125 Modena (MO)
| | - Fabio Prati
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio-Emilia, Via Campi 183, 41125 Modena (MO)
| |
Collapse
|
49
|
Serres A, Gibold L, Dalmasso G, Robin F, Bonnet R, Delmas J. Evaluation of the efficiency of cefoxitin/cefepime combination against Enterobacteriaceae resistant to expanded-spectrum cephalosporins. Int J Antimicrob Agents 2015; 45:86-7. [DOI: 10.1016/j.ijantimicag.2014.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
|
50
|
Powers RA, Swanson HC, Taracila MA, Florek NW, Romagnoli C, Caselli E, Prati F, Bonomo RA, Wallar BJ. Biochemical and structural analysis of inhibitors targeting the ADC-7 cephalosporinase of Acinetobacter baumannii. Biochemistry 2014; 53:7670-9. [PMID: 25380506 PMCID: PMC4263437 DOI: 10.1021/bi500887n] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
β-Lactam
resistance in Acinetobacter baumannii presents one
of the greatest challenges to contemporary antimicrobial chemotherapy.
Much of this resistance to cephalosporins derives from the expression
of the class C β-lactamase enzymes, known as Acinetobacter-derived cephalosporinases (ADCs). Currently, β-lactamase inhibitors
are structurally similar to β-lactam substrates and are not
effective inactivators of this class C cephalosporinase. Herein, two boronic acid transition state inhibitors
(BATSIs S02030 and SM23) that are chemically distinct from β-lactams
were designed and tested for inhibition of ADC enzymes. BATSIs SM23
and S02030 bind with high affinity to ADC-7, a chromosomal cephalosporinase
from Acinetobacter baumannii (Ki = 21.1 ± 1.9 nM and 44.5 ± 2.2 nM, respectively).
The X-ray crystal structures of ADC-7 were determined in both the
apo form (1.73 Å resolution) and in complex with S02030 (2.0
Å resolution). In the complex, S02030 makes several canonical
interactions: the O1 oxygen of S02030 is bound in the oxyanion hole,
and the R1 amide group makes key interactions with conserved residues
Asn152 and Gln120. In addition, the carboxylate group of the inhibitor
is meant to mimic the C3/C4 carboxylate found
in β-lactams. The C3/C4 carboxylate recognition
site in class C enzymes is comprised of Asn346 and Arg349 (AmpC numbering),
and these residues are conserved in ADC-7. Interestingly, in the ADC-7/S02030
complex, the inhibitor carboxylate group is observed to interact with
Arg340, a residue that distinguishes ADC-7 from the related class
C enzyme AmpC. A thermodynamic analysis suggests that ΔH driven compounds may be optimized to generate
new lead agents. The ADC-7/BATSI complex provides insight into recognition
of non-β-lactam inhibitors by ADC enzymes and offers a starting
point for the structure-based optimization of this class of novel
β-lactamase inhibitors against a key resistance target.
Collapse
Affiliation(s)
- Rachel A Powers
- Department of Chemistry, Grand Valley State University , 1 Campus Drive, Allendale, Michigan 49401, United States
| | | | | | | | | | | | | | | | | |
Collapse
|