1
|
Nebli S, Rebai A, Ayadi I. Screening clusters of charged residues in plants' mitochondrial proteins and biological significance. Mitochondrion 2024; 78:101938. [PMID: 39013535 DOI: 10.1016/j.mito.2024.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Protein function is dependent on charge interactions and charge biased regions, which are involved in a wide range of cellular and biochemical processes. We report the development of a new algorithm implemented in Python and its use to identify charge clusters CC (NegativeCC: NCC, PositiveCC: PCC and MixedCC: MCC) and compare their presence in mitochondrial proteins of plant groups. To characterize the resulting CC, statistical, structural and functional analyses were conducted. The screening of 105 399 protein sequences showed that 2.6 %, 0.48 % and 0.03 % of the proteins contain NCC, PCC and MCC, respectively. Mitochondrial proteins encoded by the nuclear genome of green algae have the biggest proportion of both PCC (1.6 %) and MCC (0.4 %) and mitochondrial proteins coded by the nuclear genome of other plants group have the highest portion of NCC (7.5 %). The mapping of the identified CC showed that they are mainly located in the terminal regions of the protein. Annotation showed that proteins with CC are classified as binding proteins, are included in the transmembrane transport processes, and are mainly located in the membrane. The CC scanning revealed the presence of 2373 and 784 sites and 192 and 149 motif profiles within NCC and PCC, respectively. The investigation of CC within pentatricopeptide repeat-containing proteins revealed that they are involved in correct and specific RNA editing. CC were proven to play a key role in providing insightful structural and functional information of complex protein assemblies which could be useful in biotechnological applications.
Collapse
Affiliation(s)
- Syrine Nebli
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P. O. Box 1177, 3018 Sfax, Tunisia.
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P. O. Box 1177, 3018 Sfax, Tunisia.
| | - Imen Ayadi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, P. O. Box 1177, 3018 Sfax, Tunisia.
| |
Collapse
|
2
|
Meynier V, Hardwick SW, Catala M, Roske JJ, Oerum S, Chirgadze DY, Barraud P, Yue WW, Luisi BF, Tisné C. Structural basis for human mitochondrial tRNA maturation. Nat Commun 2024; 15:4683. [PMID: 38824131 PMCID: PMC11144196 DOI: 10.1038/s41467-024-49132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.
Collapse
Affiliation(s)
- Vincent Meynier
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Steven W Hardwick
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Marjorie Catala
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Johann J Roske
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Stephanie Oerum
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Pierre Barraud
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France
| | - Wyatt W Yue
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Carine Tisné
- Expression Génétique Microbienne, Université Paris Cité, CNRS, Institut de Biologie Physico-Chimique (IBPC), 75005, Paris, France.
| |
Collapse
|
3
|
Kwok van der Giezen F, Honkanen S, Colas des Francs-Small C, Bond C, Small I. Applications of Synthetic Pentatricopeptide Repeat Proteins. PLANT & CELL PHYSIOLOGY 2024; 65:503-515. [PMID: 38035801 PMCID: PMC11094755 DOI: 10.1093/pcp/pcad150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
RNA-binding proteins play integral roles in the regulation of essential processes in cells and as such are attractive targets for engineering to manipulate gene expression at the RNA level. Expression of transcripts in chloroplasts and mitochondria is heavily regulated by pentatricopeptide repeat (PPR) proteins. The diverse roles of PPR proteins and their naturally modular architecture make them ideal candidates for engineering. Synthetic PPR proteins are showing great potential to become valuable tools for controlling the expression of plastid and mitochondrial transcripts. In this review, by 'synthetic', we mean both rationally modified natural PPR proteins and completely novel proteins designed using the principles learned from their natural counterparts. We focus on the many different applications of synthetic PPR proteins, covering both their use in basic research to learn more about protein-RNA interactions and their use to achieve specific outcomes in RNA processing and the control of gene expression. We describe the challenges associated with the design, construction and deployment of synthetic PPR proteins and provide perspectives on how they might be assembled and used in future biotechnology applications.
Collapse
Affiliation(s)
- Farley Kwok van der Giezen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charles Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Rossmanith W, Giegé P, Hartmann RK. Discovery, structure, mechanisms, and evolution of protein-only RNase P enzymes. J Biol Chem 2024; 300:105731. [PMID: 38336295 PMCID: PMC10941002 DOI: 10.1016/j.jbc.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The endoribonuclease RNase P is responsible for tRNA 5' maturation in all domains of life. A unique feature of RNase P is the variety of enzyme architectures, ranging from dual- to multi-subunit ribonucleoprotein forms with catalytic RNA subunits to protein-only enzymes, the latter occurring as single- or multi-subunit forms or homo-oligomeric assemblies. The protein-only enzymes evolved twice: a eukaryal protein-only RNase P termed PRORP and a bacterial/archaeal variant termed homolog of Aquifex RNase P (HARP); the latter replaced the RNA-based enzyme in a small group of thermophilic bacteria but otherwise coexists with the ribonucleoprotein enzyme in a few other bacteria as well as in those archaea that also encode a HARP. Here we summarize the history of the discovery of protein-only RNase P enzymes and review the state of knowledge on structure and function of bacterial HARPs and eukaryal PRORPs, including human mitochondrial RNase P as a paradigm of multi-subunit PRORPs. We also describe the phylogenetic distribution and evolution of PRORPs, as well as possible reasons for the spread of PRORPs in the eukaryal tree and for the recruitment of two additional protein subunits to metazoan mitochondrial PRORP. We outline potential applications of PRORPs in plant biotechnology and address diseases associated with mutations in human mitochondrial RNase P genes. Finally, we consider possible causes underlying the displacement of the ancient RNA enzyme by a protein-only enzyme in a small group of bacteria.
Collapse
Affiliation(s)
- Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Philippe Giegé
- Institute for Plant Molecular Biology, IBMP-CNRS, University of Strasbourg, Strasbourg, France.
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
5
|
Wilhelm CA, Kaitany K, Kelly A, Yacoub M, Koutmos M. The protein-only RNase Ps, endonucleases that cleave pre-tRNA: Biological relevance, molecular architectures, substrate recognition and specificity, and protein interactomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1836. [PMID: 38453211 PMCID: PMC11740979 DOI: 10.1002/wrna.1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 03/09/2024]
Abstract
Protein-only RNase P (PRORP) is an essential enzyme responsible for the 5' maturation of precursor tRNAs (pre-tRNAs). PRORPs are classified into three categories with unique molecular architectures, although all three classes of PRORPs share a mechanism and have similar active sites. Single subunit PRORPs, like those found in plants, have multiple isoforms with different localizations, substrate specificities, and temperature sensitivities. Most recently, Arabidopsis thaliana PRORP2 was shown to interact with TRM1A and B, highlighting a new potential role between these enzymes. Work with At PRORPs led to the development of a ribonuclease that is being used to protect against plant viruses. The mitochondrial RNase P complex, found in metazoans, consists of PRORP, TRMT10C, and SDR5C1, and has also been shown to have substrate specificity, although the cause is unknown. Mutations in mitochondrial tRNA and mitochondrial RNase P have been linked to human disease, highlighting the need to continue understanding this complex. The last class of PRORPs, homologs of Aquifex RNase P (HARPs), is found in thermophilic archaea and bacteria. This most recently discovered type of PRORP forms a large homo-oligomer complex. Although numerous structures of HARPs have been published, it is still unclear how HARPs bind pre-tRNAs and in what ratio. There is also little investigation into the substrate specificity and ideal conditions for HARPs. Moving forward, further work is required to fully characterize each of the three classes of PRORP, the pre-tRNA binding recognition mechanism, the rules of substrate specificity, and how these three distinct classes of PRORP evolved. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
| | - Kipchumba Kaitany
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Abigail Kelly
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew Yacoub
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Markos Koutmos
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Zhang J. Recognition of the tRNA structure: Everything everywhere but not all at once. Cell Chem Biol 2024; 31:36-52. [PMID: 38159570 PMCID: PMC10843564 DOI: 10.1016/j.chembiol.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
tRNAs are among the most abundant and essential biomolecules in cells. These spontaneously folding, extensively structured yet conformationally flexible anionic polymers literally bridge the worlds of RNAs and proteins, and serve as Rosetta stones that decipher and interpret the genetic code. Their ubiquitous presence, functional irreplaceability, and privileged access to cellular compartments and ribosomes render them prime targets for both endogenous regulation and exogenous manipulation. There is essentially no part of the tRNA that is not touched by another interaction partner, either as programmed or imposed by an external adversary. Recent progresses in genetic, biochemical, and structural analyses of the tRNA interactome produced a wealth of new knowledge into their interaction networks, regulatory functions, and molecular interfaces. In this review, I describe and illustrate the general principles of tRNA recognition by proteins and other RNAs, and discuss the underlying molecular mechanisms that deliver affinity, specificity, and functional competency.
Collapse
Affiliation(s)
- Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Arrivé M, Bruggeman M, Skaltsogiannis V, Coudray L, Quan YF, Schelcher C, Cognat V, Hammann P, Chicher J, Wolff P, Gobert A, Giegé P. A tRNA-modifying enzyme facilitates RNase P activity in Arabidopsis nuclei. NATURE PLANTS 2023; 9:2031-2041. [PMID: 37945696 DOI: 10.1038/s41477-023-01564-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
RNase P is the essential activity that performs the 5' maturation of transfer RNA (tRNA) precursors. Beyond the ancestral form of RNase P containing a ribozyme, protein-only RNase P enzymes termed PRORP were identified in eukaryotes. In human mitochondria, PRORP forms a complex with two protein partners to become functional. In plants, although PRORP enzymes are active alone, we investigate their interaction network to identify potential tRNA maturation complexes. Here we investigate functional interactions involving the Arabidopsis nuclear RNase P PRORP2. We show, using an immuno-affinity strategy, that PRORP2 occurs in a complex with the tRNA methyl transferases TRM1A and TRM1B in vivo. Beyond RNase P, these enzymes can also interact with RNase Z. We show that TRM1A/TRM1B localize in the nucleus and find that their double knockout mutation results in a severe macroscopic phenotype. Using a combination of immuno-detections, mass spectrometry and a transcriptome-wide tRNA sequencing approach, we observe that TRM1A/TRM1B are responsible for the m22G26 modification of 70% of cytosolic tRNAs in vivo. We use the transcriptome wide tRNAseq approach as well as RNA blot hybridizations to show that RNase P activity is impaired in TRM1A/TRM1B mutants for specific tRNAs, in particular, tRNAs containing a m22G modification at position 26 that are strongly downregulated in TRM1A/TRM1B mutants. Altogether, results indicate that the m22G-adding enzymes TRM1A/TRM1B functionally cooperate with nuclear RNase P in vivo for the early steps of cytosolic tRNA biogenesis.
Collapse
Affiliation(s)
- Mathilde Arrivé
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Mathieu Bruggeman
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Vasileios Skaltsogiannis
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Léna Coudray
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Yi-Fat Quan
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Cédric Schelcher
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Valérie Cognat
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade, FR1589 du CNRS, Strasbourg, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade, FR1589 du CNRS, Strasbourg, France
| | - Philippe Wolff
- Plateforme protéomique Strasbourg Esplanade, FR1589 du CNRS, Strasbourg, France
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Anthony Gobert
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Giegé
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
9
|
Wilhelm CA, Mallik L, Kelly AL, Brotzman S, Mendoza J, Anders AG, Leskaj S, Castillo C, Ruotolo BT, Cianfrocco MA, Koutmos M. Bacterial RNA-free RNase P: Structural and functional characterization of multiple oligomeric forms of a minimal protein-only ribonuclease P. J Biol Chem 2023; 299:105327. [PMID: 37806495 PMCID: PMC10652100 DOI: 10.1016/j.jbc.2023.105327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
tRNAs are typically transcribed with extended 5' and 3' ends that must be removed before they attain their active form. One of the first steps of tRNA processing in nearly every organism is the removal of the 5' leader sequence by ribonuclease P (RNase P). Here, we investigate a recently discovered class of RNase P enzymes, Homologs of Aquifex RNase P (HARPs). In contrast to other RNase Ps, HARPs consist only of a metallonuclease domain and lack the canonical substrate recognition domain essential in other classes of proteinaceous RNase P. We determined the cryo-EM structure of Aquifex aeolicus HARP (Aq880) and two crystal structures of Hydrogenobacter thermophilus HARP (Hth1307) to reveal that both enzymes form large ring-like assemblies: a dodecamer in Aq880 and a tetradecamer in Hth1307. In both oligomers, the enzyme active site is 42 Å away from a positively charged helical region, as seen in other protein-only RNase P enzymes, which likely serves to recognize and bind the elbow region of the pre-tRNA substrate. In addition, we use native mass spectrometry to confirm and characterize the previously unreported tetradecamer state. Notably, we find that multiple oligomeric states of Hth1307 are able to cleave pre-tRNAs. Furthermore, our single-turnover kinetic studies indicate that Hth1307 cleaves pre-tRNAs from multiple species with a preference for native substrates. These data provide a closer look at the nuanced similarities and differences in tRNA processing across disparate classes of RNase P.
Collapse
Affiliation(s)
| | - Leena Mallik
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Center for Computational and Genomic Medicine and Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abigail L Kelly
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Shayna Brotzman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Johnny Mendoza
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna G Anders
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Suada Leskaj
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Carmen Castillo
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A Cianfrocco
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Markos Koutmos
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
10
|
Vilardo E, Toth U, Hazisllari E, Hartmann R, Rossmanith W. Cleavage kinetics of human mitochondrial RNase P and contribution of its non-nuclease subunits. Nucleic Acids Res 2023; 51:10536-10550. [PMID: 37779095 PMCID: PMC10602865 DOI: 10.1093/nar/gkad713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
RNase P is the endonuclease responsible for the 5' processing of precursor tRNAs (pre-tRNAs). Unlike the single-subunit protein-only RNase P (PRORP) found in plants or protists, human mitochondrial RNase P is a multi-enzyme assembly that in addition to the homologous PRORP subunit comprises a methyltransferase (TRMT10C) and a dehydrogenase (SDR5C1) subunit; these proteins, but not their enzymatic activities, are required for efficient pre-tRNA cleavage. Here we report a kinetic analysis of the cleavage reaction by human PRORP and its interplay with TRMT10C-SDR5C1 including 12 different mitochondrial pre-tRNAs. Surprisingly, we found that PRORP alone binds pre-tRNAs with nanomolar affinity and can even cleave some of them at reduced efficiency without the other subunits. Thus, the ancient binding mode, involving the tRNA elbow and PRORP's PPR domain, appears basically retained by human PRORP, and its metallonuclease domain is in principle correctly folded and functional. Our findings support a model according to which the main function of TRMT10C-SDR5C1 is to direct PRORP's nuclease domain to the cleavage site, thereby increasing the rate and accuracy of cleavage. This functional dependence of human PRORP on an extra tRNA-binding protein complex likely reflects an evolutionary adaptation to the erosion of canonical structural features in mitochondrial tRNAs.
Collapse
Affiliation(s)
- Elisa Vilardo
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Enxhi Hazisllari
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
11
|
Mao G, Srivastava AS, Wu S, Kosek D, Kirsebom LA. Importance of residue 248 in Escherichia coli RNase P RNA mediated cleavage. Sci Rep 2023; 13:14140. [PMID: 37644068 PMCID: PMC10465520 DOI: 10.1038/s41598-023-41203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
tRNA genes are transcribed as precursors and RNase P generates the matured 5' end of tRNAs. It has been suggested that residue - 1 (the residue immediately 5' of the scissile bond) in the pre-tRNA interacts with the well-conserved bacterial RNase P RNA (RPR) residue A248 (Escherichia coli numbering). The way A248 interacts with residue - 1 is not clear. To gain insight into the role of A248, we analyzed cleavage as a function of A248 substitutions and N-1 nucleobase identity by using pre-tRNA and three model substrates. Our findings are consistent with a model where the structural topology of the active site varies and depends on the identity of the nucleobases at, and in proximity to, the cleavage site and their potential to interact. This leads to positioning of Mg2+ that activates the water that acts as the nucleophile resulting in efficient and correct cleavage. We propose that in addition to be involved in anchoring the substrate the role of A248 is to exclude bulk water from access to the amino acid acceptor stem, thereby preventing non-specific hydrolysis of the pre-tRNA. Finally, base stacking is discussed as a way to protect functionally important base-pairing interactions from non-specific hydrolysis, thereby ensuring high fidelity during RNA processing and the decoding of mRNA.
Collapse
Affiliation(s)
- Guanzhong Mao
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Abhishek S Srivastava
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Shiying Wu
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - David Kosek
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, 751 24, Uppsala, Sweden.
| |
Collapse
|
12
|
Wu Meyers N, Karasik A, Kaitany K, Fierke CA, Koutmos M. Gambogic acid and juglone inhibit RNase P through distinct mechanisms. J Biol Chem 2022; 298:102683. [PMID: 36370850 PMCID: PMC9731865 DOI: 10.1016/j.jbc.2022.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The first step in transfer RNA (tRNA) maturation is the cleavage of the 5' end of precursor tRNA (pre-tRNA) catalyzed by ribonuclease P (RNase P). RNase P is either a ribonucleoprotein complex with a catalytic RNA subunit or a protein-only RNase P (PRORP). In most land plants, algae, and Euglenozoa, PRORP is a single-subunit enzyme. There are currently no inhibitors of PRORP for use as tools to study the biological function of this enzyme. Therefore, we screened for compounds that inhibit the activity of a model PRORP from A. thaliana organelles (PRORP1) using a high throughput fluorescence polarization cleavage assay. Two compounds, gambogic acid and juglone (5-hydroxy-1,4-naphthalenedione) that inhibit PRORP1 in the 1 μM range were identified and analyzed. We found these compounds similarly inhibit human mtRNase P, a multisubunit protein enzyme and are 50-fold less potent against bacterial RNA-dependent RNase P. Our biochemical measurements indicate that gambogic acid is a rapid-binding, uncompetitive inhibitor targeting the PRORP1-substrate complex, while juglone acts as a time-dependent PRORP1 inhibitor. Additionally, X-ray crystal structures of PRORP1 in complex with juglone demonstrate the formation of a covalent complex with cysteine side chains on the surface of the protein. Finally, we propose a model consistent with the kinetic data that involves juglone binding to PRORP1 rapidly to form an inactive enzyme-inhibitor complex and then undergoing a slow step to form an inactive covalent adduct with PRORP1. These inhibitors have the potential to be developed into tools to probe PRORP structure and function relationships.
Collapse
Affiliation(s)
- Nancy Wu Meyers
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Agnes Karasik
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Kipchumba Kaitany
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Carol A Fierke
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| | - Markos Koutmos
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
13
|
Bhatta A, Hillen HS. Structural and mechanistic basis of RNA processing by protein-only ribonuclease P enzymes. Trends Biochem Sci 2022; 47:965-977. [PMID: 35725940 DOI: 10.1016/j.tibs.2022.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
Ribonuclease P (RNase P) enzymes are responsible for the 5' processing of tRNA precursors. In addition to the well-characterised ribozyme-based RNase P enzymes, an evolutionarily distinct group of protein-only RNase Ps exists. These proteinaceous RNase Ps (PRORPs) can be found in all three domains of life and can be divided into two structurally different types: eukaryotic and prokaryotic. Recent structural studies on members of both families reveal a surprising diversity of molecular architectures, but also highlight conceptual and mechanistic similarities. Here, we provide a comparison between the different types of PRORP enzymes and review how the combination of structural, biochemical, and biophysical studies has led to a molecular picture of protein-mediated tRNA processing.
Collapse
Affiliation(s)
- Arjun Bhatta
- Department of Cellular Biochemistry, University Medical Center Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Goettingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Goettingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Goettingen, D-37075 Goettingen, Germany.
| |
Collapse
|
14
|
How RNases Shape Mitochondrial Transcriptomes. Int J Mol Sci 2022; 23:ijms23116141. [PMID: 35682820 PMCID: PMC9181182 DOI: 10.3390/ijms23116141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are the power houses of eukaryote cells. These endosymbiotic organelles of prokaryote origin are considered as semi-autonomous since they have retained a genome and fully functional gene expression mechanisms. These pathways are particularly interesting because they combine features inherited from the bacterial ancestor of mitochondria with characteristics that appeared during eukaryote evolution. RNA biology is thus particularly diverse in mitochondria. It involves an unexpectedly vast array of factors, some of which being universal to all mitochondria and others being specific from specific eukaryote clades. Among them, ribonucleases are particularly prominent. They play pivotal functions such as the maturation of transcript ends, RNA degradation and surveillance functions that are required to attain the pool of mature RNAs required to synthesize essential mitochondrial proteins such as respiratory chain proteins. Beyond these functions, mitochondrial ribonucleases are also involved in the maintenance and replication of mitochondrial DNA, and even possibly in the biogenesis of mitochondrial ribosomes. The diversity of mitochondrial RNases is reviewed here, showing for instance how in some cases a bacterial-type enzyme was kept in some eukaryotes, while in other clades, eukaryote specific enzymes were recruited for the same function.
Collapse
|
15
|
Crystal structures and insights into precursor tRNA 5'-end processing by prokaryotic minimal protein-only RNase P. Nat Commun 2022; 13:2290. [PMID: 35484139 PMCID: PMC9051087 DOI: 10.1038/s41467-022-30072-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
Besides the canonical RNA-based RNase P, pre-tRNA 5’-end processing can also be catalyzed by protein-only RNase P (PRORP). To date, various PRORPs have been discovered, but the basis underlying substrate binding and cleavage by HARPs (homolog of Aquifex RNase P) remains elusive. Here, we report structural and biochemical studies of HARPs. Comparison of the apo- and pre-tRNA-complexed structures showed that HARP is able to undergo large conformational changes that facilitate pre-tRNA binding and catalytic site formation. Planctomycetes bacterium HARP exists as dimer in vitro, but gel filtration and electron microscopy analysis confirmed that HARPs from Thermococcus celer, Thermocrinis minervae and Thermocrinis ruber can assemble into larger oligomers. Structural analysis, mutagenesis and in vitro biochemical studies all supported one cooperative pre-tRNA processing mode, in which one HARP dimer binds pre-tRNA at the elbow region whereas 5’-end removal is catalyzed by the partner dimer. Our studies significantly advance our understanding on pre-tRNA processing by PRORPs. HARP are member of protein-only RNase P, which catalyzes pre-tRNA 5’-end processing and maturation. Here, the authors present crystal structure and provide mechanistic insights into pre-tRNA binding and cleavage by HARP proteins.
Collapse
|
16
|
Cornman RS, Cryan PM. Positively selected genes in the hoary bat ( Lasiurus cinereus) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ 2022; 10:e13130. [PMID: 35317076 PMCID: PMC8934532 DOI: 10.7717/peerj.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Bats of the genus Lasiurus occur throughout the Americas and have diversified into at least 20 species among three subgenera. The hoary bat (Lasiurus cinereus) is highly migratory and ranges farther across North America than any other wild mammal. Despite the ecological importance of this species as a major insect predator, and the particular susceptibility of lasiurine bats to wind turbine strikes, our understanding of hoary bat ecology, physiology, and behavior remains poor. Methods To better understand adaptive evolution in this lineage, we used whole-genome sequencing to identify protein-coding sequence and explore signatures of positive selection. Gene models were predicted with Maker and compared to seven well-annotated and phylogenetically representative species. Evolutionary rate analysis was performed with PAML. Results Of 9,447 single-copy orthologous groups that met evaluation criteria, 150 genes had a significant excess of nonsynonymous substitutions along the L. cinereus branch (P < 0.001 after manual review of alignments). Selected genes as a group had biased expression, most strongly in thymus tissue. We identified 23 selected genes with reported immune functions as well as a divergent paralog of Steep1 within suborder Yangochiroptera. Seventeen genes had roles in lipid and glucose metabolic pathways, partially overlapping with 15 mitochondrion-associated genes; these adaptations may reflect the metabolic challenges of hibernation, long-distance migration, and seasonal variation in prey abundance. The genomic distribution of positively selected genes differed significantly from background expectation by discrete Kolmogorov-Smirnov test (P < 0.001). Remarkably, the top three physical clusters all coincided with islands of conserved synteny predating Mammalia, the largest of which shares synteny with the human cat-eye critical region (CECR) on 22q11. This observation coupled with the expansion of a novel Tbx1-like gene family may indicate evolutionary innovation during pharyngeal arch development: both the CECR and Tbx1 cause dosage-dependent congenital abnormalities in thymus, heart, and head, and craniodysmorphy is associated with human orthologs of other positively selected genes as well.
Collapse
|
17
|
Jones SP, Goossen C, Lewis SD, Delaney AM, Gleghorn ML. Not making the cut: Techniques to prevent RNA cleavage in structural studies of RNase-RNA complexes. J Struct Biol X 2022; 6:100066. [PMID: 35340590 PMCID: PMC8943300 DOI: 10.1016/j.yjsbx.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
RNases are varied in the RNA structures and sequences they target for cleavage and are an important type of enzyme in cells. Despite the numerous examples of RNases known, and of those with determined three-dimensional structures, relatively few examples exist with the RNase bound to intact cognate RNA substrate prior to cleavage. To better understand RNase structure and sequence specificity for RNA targets, in vitro methods used to assemble these enzyme complexes trapped in a pre-cleaved state have been developed for a number of different RNases. We have surveyed the Protein Data Bank for such structures and in this review detail methodologies that have successfully been used and relate them to the corresponding structures. We also offer ideas and suggestions for future method development. Many strategies within this review can be used in combination with X-ray crystallography, as well as cryo-EM, and other structure-solving techniques. Our hope is that this review will be used as a guide to resolve future yet-to-be-determined RNase-substrate complex structures.
Collapse
Affiliation(s)
- Seth P. Jones
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| | - Christian Goossen
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Lothrop St, Pittsburgh, PA 15261, United States
| | - Sean D. Lewis
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
- Mayo Clinic, 200 1st St SW, Rochester, MN 5590, United States
| | - Annie M. Delaney
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| | - Michael L. Gleghorn
- School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, United States
| |
Collapse
|
18
|
Skeparnias I, Zhang J. Cooperativity and Interdependency between RNA Structure and RNA-RNA Interactions. Noncoding RNA 2021; 7:ncrna7040081. [PMID: 34940761 PMCID: PMC8704770 DOI: 10.3390/ncrna7040081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Complex RNA–RNA interactions are increasingly known to play key roles in numerous biological processes from gene expression control to ribonucleoprotein granule formation. By contrast, the nature of these interactions and characteristics of their interfaces, especially those that involve partially or wholly structured RNAs, remain elusive. Herein, we discuss different modalities of RNA–RNA interactions with an emphasis on those that depend on secondary, tertiary, or quaternary structure. We dissect recently structurally elucidated RNA–RNA complexes including RNA triplexes, riboswitches, ribozymes, and reverse transcription complexes. These analyses highlight a reciprocal relationship that intimately links RNA structure formation with RNA–RNA interactions. The interactions not only shape and sculpt RNA structures but also are enabled and modulated by the structures they create. Understanding this two-way relationship between RNA structure and interactions provides mechanistic insights into the expanding repertoire of noncoding RNA functions, and may inform the design of novel therapeutics that target RNA structures or interactions.
Collapse
|
19
|
Hochberg I, Demain LA, Richer J, Thompson K, Urquhart JE, Rea A, Pagarkar W, Rodríguez-Palmero A, Schlüter A, Verdura E, Pujol A, Quijada-Fraile P, Amberger A, Deutschmann AJ, Demetz S, Gillespie M, Belyantseva IA, McMillan HJ, Barzik M, Beaman GM, Motha R, Ng KY, O’Sullivan J, Williams SG, Bhaskar SS, Lawrence IR, Jenkinson EM, Zambonin JL, Blumenfeld Z, Yalonetsky S, Oerum S, Rossmanith W, Yue WW, Zschocke J, Munro KJ, Battersby BJ, Friedman TB, Taylor RW, O’Keefe RT, Newman WG, Newman WG. Bi-allelic variants in the mitochondrial RNase P subunit PRORP cause mitochondrial tRNA processing defects and pleiotropic multisystem presentations. Am J Hum Genet 2021; 108:2195-2204. [PMID: 34715011 PMCID: PMC8595931 DOI: 10.1016/j.ajhg.2021.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/07/2021] [Indexed: 02/03/2023] Open
Abstract
Human mitochondrial RNase P (mt-RNase P) is responsible for 5′ end processing of mitochondrial precursor tRNAs, a vital step in mitochondrial RNA maturation, and is comprised of three protein subunits: TRMT10C, SDR5C1 (HSD10), and PRORP. Pathogenic variants in TRMT10C and SDR5C1 are associated with distinct recessive or x-linked infantile onset disorders, resulting from defects in mitochondrial RNA processing. We report four unrelated families with multisystem disease associated with bi-allelic variants in PRORP, the metallonuclease subunit of mt-RNase P. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. Fibroblasts from affected individuals in two families demonstrated decreased steady state levels of PRORP, an accumulation of unprocessed mitochondrial transcripts, and decreased steady state levels of mitochondrial-encoded proteins, which were rescued by introduction of the wild-type PRORP cDNA. In mt-tRNA processing assays performed with recombinant mt-RNase P proteins, the disease-associated variants resulted in diminished mitochondrial tRNA processing. Identification of disease-causing variants in PRORP indicates that pathogenic variants in all three subunits of mt-RNase P can cause mitochondrial dysfunction, each with distinct pleiotropic clinical presentations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - William G Newman
- Division of Evolution, Infection, and Genomics, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK.
| |
Collapse
|
20
|
Cruz J, Lemos B. Post-transcriptional diversity in riboproteins and RNAs in aging and cancer. Semin Cancer Biol 2021; 76:292-300. [PMID: 34474152 PMCID: PMC8627441 DOI: 10.1016/j.semcancer.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/19/2022]
Abstract
Post-transcriptional (PtscM) and post-translational (PtrnM) modifications of nucleotides and amino acids are covalent modifications able to change physio-chemical properties of RNAs and proteins. In the ribosome, the adequate assembly of rRNAs and ribosomal protein subunits in the nucleolus ensures suitable translational activity, with protein synthesis tuned according to intracellular demands of energy production, replication, proliferation, and growth. Disruption in the regulatory control of PtscM and PtrnM can impair ribosome biogenesis and ribosome function. Ribosomal impairment may, in turn, impact the synthesis of proteins engaged in functions as varied as telomere maintenance, apoptosis, and DNA repair, as well as intersect with mitochondria and telomerase activity. These cellular processes often malfunction in carcinogenesis and senescence. Here we discuss regulatory mechanisms of PtscMs and PtrnMs on ribosomal function. We also address chemical modification in rRNAs and their impacts on cellular metabolism, replication control, and senescence. Further, we highlight similarities and differences of PtscMs and PtrnMs in ribosomal intermediates during aging and carcinogenesis. Understanding these regulatory mechanisms may uncover critical steps for the development of more efficient oncologic and anti-aging therapies.
Collapse
Affiliation(s)
- Jurandir Cruz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 01246, Brazil
| | - Bernardo Lemos
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
21
|
Shaukat AN, Kaliatsi EG, Skeparnias I, Stathopoulos C. The Dynamic Network of RNP RNase P Subunits. Int J Mol Sci 2021; 22:ijms221910307. [PMID: 34638646 PMCID: PMC8509007 DOI: 10.3390/ijms221910307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Ribonuclease P (RNase P) is an important ribonucleoprotein (RNP), responsible for the maturation of the 5′ end of precursor tRNAs (pre-tRNAs). In all organisms, the cleavage activity of a single phosphodiester bond adjacent to the first nucleotide of the acceptor stem is indispensable for cell viability and lies within an essential catalytic RNA subunit. Although RNase P is a ribozyme, its kinetic efficiency in vivo, as well as its structural variability and complexity throughout evolution, requires the presence of one protein subunit in bacteria to several protein partners in archaea and eukaryotes. Moreover, the existence of protein-only RNase P (PRORP) enzymes in several organisms and organelles suggests a more complex evolutionary timeline than previously thought. Recent detailed structures of bacterial, archaeal, human and mitochondrial RNase P complexes suggest that, although apparently dissimilar enzymes, they all recognize pre-tRNAs through conserved interactions. Interestingly, individual protein subunits of the human nuclear and mitochondrial holoenzymes have additional functions and contribute to a dynamic network of elaborate interactions and cellular processes. Herein, we summarize the role of each RNase P subunit with a focus on the human nuclear RNP and its putative role in flawless gene expression in light of recent structural studies.
Collapse
|
22
|
Bhatta A, Dienemann C, Cramer P, Hillen HS. Structural basis of RNA processing by human mitochondrial RNase P. Nat Struct Mol Biol 2021; 28:713-723. [PMID: 34489609 PMCID: PMC8437803 DOI: 10.1038/s41594-021-00637-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Human mitochondrial transcripts contain messenger and ribosomal RNAs flanked by transfer RNAs (tRNAs), which are excised by mitochondrial RNase (mtRNase) P and Z to liberate all RNA species. In contrast to nuclear or bacterial RNase P, mtRNase P is not a ribozyme but comprises three protein subunits that carry out RNA cleavage and methylation by unknown mechanisms. Here, we present the cryo-EM structure of human mtRNase P bound to precursor tRNA, which reveals a unique mechanism of substrate recognition and processing. Subunits TRMT10C and SDR5C1 form a subcomplex that binds conserved mitochondrial tRNA elements, including the anticodon loop, and positions the tRNA for methylation. The endonuclease PRORP is recruited and activated through interactions with its PPR and nuclease domains to ensure precise pre-tRNA cleavage. The structure provides the molecular basis for the first step of RNA processing in human mitochondria.
Collapse
Affiliation(s)
- Arjun Bhatta
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
23
|
Minimal protein-only RNase P structure reveals insights into tRNA precursor recognition and catalysis. J Biol Chem 2021; 297:101028. [PMID: 34339732 PMCID: PMC8405995 DOI: 10.1016/j.jbc.2021.101028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5' leader sequence of precursor tRNA (pre-tRNA). Ribonucleoprotein RNase P and protein-only RNase P (PRORP) in eukaryotes have been extensively studied, but the mechanism by which a prokaryotic nuclease recognizes and cleaves pre-tRNA is unclear. To gain insights into this mechanism, we studied homologs of Aquifex RNase P (HARPs), thought to be enzymes of approximately 23 kDa comprising only this nuclease domain. We determined the cryo-EM structure of Aq880, the first identified HARP enzyme. The structure unexpectedly revealed that Aq880 consists of both the nuclease and protruding helical (PrH) domains. Aq880 monomers assemble into a dimer via the PrH domain. Six dimers form a dodecamer with a left-handed one-turn superhelical structure. The structure also revealed that the active site of Aq880 is analogous to that of eukaryotic PRORPs. The pre-tRNA docking model demonstrated that 5' processing of pre-tRNAs is achieved by two adjacent dimers within the dodecamer. One dimer is responsible for catalysis, and the PrH domains of the other dimer are responsible for pre-tRNA elbow recognition. Our study suggests that HARPs measure an invariant distance from the pre-tRNA elbow to cleave the 5' leader sequence, which is analogous to the mechanism of eukaryotic PRORPs and the ribonucleoprotein RNase P. Collectively, these findings shed light on how different types of RNase P enzymes utilize the same pre-tRNA processing.
Collapse
|
24
|
Feyh R, Waeber NB, Prinz S, Giammarinaro PI, Bange G, Hochberg G, Hartmann RK, Altegoer F. Structure and mechanistic features of the prokaryotic minimal RNase P. eLife 2021; 10:70160. [PMID: 34180399 PMCID: PMC8266387 DOI: 10.7554/elife.70160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Endonucleolytic removal of 5'-leader sequences from tRNA precursor transcripts (pre-tRNAs) by ribonuclease P (RNase P) is essential for protein synthesis. Beyond RNA-based RNase P enzymes, protein-only versions of the enzyme exert this function in various eukarya (there termed PRORPs) and in some bacteria (Aquifex aeolicus and close relatives); both enzyme types belong to distinct subgroups of the PIN domain metallonuclease superfamily. Homologs of Aquifex RNase P (HARPs) are also expressed in some other bacteria and many archaea, where they coexist with RNA-based RNase P and do not represent the main RNase P activity. Here, we solved the structure of the bacterial HARP from Halorhodospira halophila by cryo-electron microscopy, revealing a novel screw-like dodecameric assembly. Biochemical experiments demonstrate that oligomerization is required for RNase P activity of HARPs. We propose that the tRNA substrate binds to an extended spike-helix (SH) domain that protrudes from the screw-like assembly to position the 5'-end in close proximity to the active site of the neighboring dimer. The structure suggests that eukaryotic PRORPs and prokaryotic HARPs recognize the same structural elements of pre-tRNAs (tRNA elbow region and cleavage site). Our analysis thus delivers the structural and mechanistic basis for pre-tRNA processing by the prokaryotic HARP system.
Collapse
Affiliation(s)
- Rebecca Feyh
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nadine B Waeber
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Simone Prinz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Pietro Ivan Giammarinaro
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georg Hochberg
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
25
|
Luo Y, Wang Y, Huang Y. Schizosaccharomyces pombe Ppr10 and Mpa1 together mediate mitochondrial translational initiation. J Biol Chem 2021; 297:100869. [PMID: 34119521 PMCID: PMC8258696 DOI: 10.1016/j.jbc.2021.100869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are a large family of proteins that act primarily at different posttranscriptional steps of organellar gene expression. We have previously found that the Schizosaccharomyces pombe PPR protein mpal10 interacts with mitochondrial translational activator Mpa1, and both are essential for mitochondrial protein synthesis. However, it is unclear how these two proteins function in mitochondrial protein synthesis in S. pombe. In this study, we further investigated the role of Ppr10 and Mpa1 in mitochondrial protein synthesis. Mitochondrial translational initiation requires two initiation factors, Mti2 and Mti3, which bind to the small subunit of the mitochondrial ribosome (mt-SSU) during the formation of the mitochondrial translational initiation complex. Using sucrose gradient sedimentation analysis, we found that disruption of ppr10, mpa1, or the PPR motifs in Ppr10 impairs the association of Mti2 and Mti3 with the mt-SSU, suggesting that both Ppr10 and Mpa1 may be required for the interaction of Mti2 and Mti3 with the mt-SSU during the assembly of mitochondrial translational initiation complex. Loss of Ppr10 perturbs the association of mitochondrially encoded cytochrome b (cob1) and cytochrome c oxidase subunit 1 (cox1) mRNAs with assembled mitochondrial ribosomes. Proteomic analysis revealed that a fraction of Ppr10 and Mpa1 copurified with a subset of mitoribosomal proteins. The PPR motifs of Ppr10 are necessary for its interaction with Mpa1 and that disruption of these PPR motifs impairs mitochondrial protein synthesis. Our results suggest that Ppr10 and Mpa1 function together to mediate mitochondrial translational initiation.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
26
|
Saoji M, Sen A, Cox RT. Loss of Individual Mitochondrial Ribonuclease P Complex Proteins Differentially Affects Mitochondrial tRNA Processing In Vivo. Int J Mol Sci 2021; 22:ijms22116066. [PMID: 34199774 PMCID: PMC8200052 DOI: 10.3390/ijms22116066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Over a thousand nucleus-encoded mitochondrial proteins are imported from the cytoplasm; however, mitochondrial (mt) DNA encodes for a small number of critical proteins and the entire suite of mt:tRNAs responsible for translating these proteins. Mitochondrial RNase P (mtRNase P) is a three-protein complex responsible for cleaving and processing the 5'-end of mt:tRNAs. Mutations in any of the three proteins can cause mitochondrial disease, as well as mutations in mitochondrial DNA. Great strides have been made in understanding the enzymology of mtRNase P; however, how the loss of each protein causes mitochondrial dysfunction and abnormal mt:tRNA processing in vivo has not been examined in detail. Here, we used Drosophila genetics to selectively remove each member of the complex in order to assess their specific contributions to mt:tRNA cleavage. Using this powerful model, we find differential effects on cleavage depending on which complex member is lost and which mt:tRNA is being processed. These data revealed in vivo subtleties of mtRNase P function that could improve understanding of human diseases.
Collapse
Affiliation(s)
- Maithili Saoji
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA; (M.S.); (A.S.)
- Henry M. Jackson Foundation, Bethesda, MD 20817, USA
- Alector Inc., 131 Oyster Point Blvd, San Francisco, CA 94080, USA
| | - Aditya Sen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA; (M.S.); (A.S.)
- Henry M. Jackson Foundation, Bethesda, MD 20817, USA
| | - Rachel T. Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA; (M.S.); (A.S.)
- Correspondence:
| |
Collapse
|
27
|
Karasik A, Wilhelm CA, Fierke CA, Koutmos M. Disease-associated mutations in mitochondrial precursor tRNAs affect binding, m1R9 methylation, and tRNA processing by mtRNase P. RNA (NEW YORK, N.Y.) 2021; 27:420-432. [PMID: 33380464 PMCID: PMC7962481 DOI: 10.1261/rna.077198.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Mitochondrial diseases linked to mutations in mitochondrial (mt) tRNA sequences are common. However, the contributions of these tRNA mutations to the development of diseases is mostly unknown. Mutations may affect interactions with (mt)tRNA maturation enzymes or protein synthesis machinery leading to mitochondrial dysfunction. In human mitochondria, in most cases the first step of tRNA processing is the removal of the 5' leader of precursor tRNAs (pre-tRNA) catalyzed by the three-component enzyme, mtRNase P. Additionally, one component of mtRNase P, mitochondrial RNase P protein 1 (MRPP1), catalyzes methylation of the R9 base in pre-tRNAs. Despite the central role of 5' end processing in mitochondrial tRNA maturation, the link between mtRNase P and diseases is mostly unexplored. Here, we investigate how 11 different human disease-linked mutations in (mt)pre-tRNAIle, (mt)pre-tRNALeu(UUR), and (mt)pre-tRNAMet affect the activities of mtRNase P. We find that several mutations weaken the pre-tRNA binding affinity (KD s are approximately two- to sixfold higher than that of wild-type), while the majority of mutations decrease 5' end processing and methylation activity catalyzed by mtRNase P (up to ∼55% and 90% reduction, respectively). Furthermore, all of the investigated mutations in (mt)pre-tRNALeu(UUR) alter the tRNA fold which contributes to the partial loss of function of mtRNase P. Overall, these results reveal an etiological link between early steps of (mt)tRNA-substrate processing and mitochondrial disease.
Collapse
Affiliation(s)
- Agnes Karasik
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Catherine A Wilhelm
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Carol A Fierke
- Department of Chemistry, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Markos Koutmos
- Department of Chemistry, Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
28
|
Teramoto T, Kaitany KJ, Kakuta Y, Kimura M, Fierke CA, Hall TMT. Pentatricopeptide repeats of protein-only RNase P use a distinct mode to recognize conserved bases and structural elements of pre-tRNA. Nucleic Acids Res 2020; 48:11815-11826. [PMID: 32719843 DOI: 10.1093/nar/gkaa627] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Pentatricopeptide repeat (PPR) motifs are α-helical structures known for their modular recognition of single-stranded RNA sequences with each motif in a tandem array binding to a single nucleotide. Protein-only RNase P 1 (PRORP1) in Arabidopsis thaliana is an endoribonuclease that uses its PPR domain to recognize precursor tRNAs (pre-tRNAs) as it catalyzes removal of the 5'-leader sequence from pre-tRNAs with its NYN metallonuclease domain. To gain insight into the mechanism by which PRORP1 recognizes tRNA, we determined a crystal structure of the PPR domain in complex with yeast tRNAPhe at 2.85 Å resolution. The PPR domain of PRORP1 bound to the structurally conserved elbow of tRNA and recognized conserved structural features of tRNAs using mechanisms that are different from the established single-stranded RNA recognition mode of PPR motifs. The PRORP1 PPR domain-tRNAPhe structure revealed a conformational change of the PPR domain upon tRNA binding and moreover demonstrated the need for pronounced overall flexibility in the PRORP1 enzyme conformation for substrate recognition and catalysis. The PRORP1 PPR motifs have evolved strategies for protein-tRNA interaction analogous to tRNA recognition by the RNA component of ribonucleoprotein RNase P and other catalytic RNAs, indicating convergence on a common solution for tRNA substrate recognition.
Collapse
Affiliation(s)
- Takamasa Teramoto
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.,Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Makoto Kimura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.,Departments of Chemistry and Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
29
|
Karasik A, Fierke CA, Koutmos M. Interplay between substrate recognition, 5' end tRNA processing and methylation activity of human mitochondrial RNase P. RNA (NEW YORK, N.Y.) 2019; 25:1646-1660. [PMID: 31455609 PMCID: PMC6859853 DOI: 10.1261/rna.069310.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/16/2019] [Indexed: 05/07/2023]
Abstract
Human mitochondrial ribonuclease P (mtRNase P) is an essential three-protein complex that catalyzes the 5' end maturation of mitochondrial precursor tRNAs (pre-tRNAs). Mitochondrial RNase P Protein 3 (MRPP3), a protein-only RNase P (PRORP), is the nuclease component of the mtRNase P complex and requires a two-protein S-adenosyl-methionine (SAM)-dependent methyltransferase MRPP1/2 subcomplex to function. Dysfunction of mtRNase P is linked to several human mitochondrial diseases, such as mitochondrial myopathies. Despite its central role in mitochondrial RNA processing, little is known about how the protein subunits of mtRNase P function synergistically. Here, we use purified mtRNase P to demonstrate that mtRNase P recognizes, cleaves, and methylates some, but not all, mitochondrial pre-tRNAs in vitro. Additionally, mtRNase P does not process all mitochondrial pre-tRNAs uniformly, suggesting the possibility that some pre-tRNAs require additional factors to be cleaved in vivo. Consistent with this, we found that addition of the TRMT10C (MRPP1) cofactor SAM enhances the ability of mtRNase P to bind and cleave some mitochondrial pre-tRNAs. Furthermore, the presence of MRPP3 can enhance the methylation activity of MRPP1/2. Taken together, our data demonstrate that the subunits of mtRNase P work together to efficiently recognize, process, and methylate human mitochondrial pre-tRNAs.
Collapse
Affiliation(s)
- Agnes Karasik
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Carol A Fierke
- Department of Chemistry, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Markos Koutmos
- Department of Chemistry, Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
30
|
Bouchoucha A, Waltz F, Bonnard G, Arrivé M, Hammann P, Kuhn L, Schelcher C, Zuber H, Gobert A, Giegé P. Determination of protein-only RNase P interactome in Arabidopsis mitochondria and chloroplasts identifies a complex between PRORP1 and another NYN domain nuclease. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:549-561. [PMID: 31319441 DOI: 10.1111/tpj.14458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
The essential type of endonuclease that removes 5' leader sequences from transfer RNA precursors is called RNase P. While ribonucleoprotein RNase P enzymes containing a ribozyme are found in all domains of life, another type of RNase P called 'PRORP', for 'PROtein-only RNase P', is composed of protein that occurs only in a wide variety of eukaryotes, in organelles and in the nucleus. Here, to find how PRORP functions integrate with other cell processes, we explored the protein interaction network of PRORP1 in Arabidopsis mitochondria and chloroplasts. Although PRORP proteins function as single subunit enzymes in vitro, we found that PRORP1 occurs in protein complexes and is present in high-molecular-weight fractions that contain mitochondrial ribosomes. The analysis of immunoprecipitated protein complexes identified proteins involved in organellar gene expression processes. In particular, direct interaction was established between PRORP1 and MNU2 a mitochondrial nuclease. A specific domain of MNU2 and a conserved signature of PRORP1 were found to be directly accountable for this protein interaction. Altogether, results revealed the existence of an RNA maturation complex in Arabidopsis mitochondria and suggested that PRORP proteins cooperated with other gene expression factors for RNA maturation in vivo.
Collapse
Affiliation(s)
- Ayoub Bouchoucha
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Florent Waltz
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Géraldine Bonnard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Mathilde Arrivé
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 15 rue René Descartes, Strasbourg, F-67084, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 15 rue René Descartes, Strasbourg, F-67084, France
| | - Cédric Schelcher
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anthony Gobert
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Giegé
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Miranda RG, McDermott JJ, Barkan A. RNA-binding specificity landscapes of designer pentatricopeptide repeat proteins elucidate principles of PPR-RNA interactions. Nucleic Acids Res 2019; 46:2613-2623. [PMID: 29294070 PMCID: PMC5861457 DOI: 10.1093/nar/gkx1288] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/18/2017] [Indexed: 01/30/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are helical-repeat proteins that offer a promising scaffold for the engineering of proteins to bind specified RNAs. PPR tracts bind RNA in a modular 1-repeat, 1-nucleotide fashion. An amino acid code specifying the bound nucleotide has been elucidated. However, this code does not fully explain the sequence specificity of native PPR proteins. Furthermore, it does not address nuances such as the contribution toward binding affinity of various repeat-nucleotide pairs or the impact of mismatches between a repeat and aligning nucleotide. We used an in vitro bind-n-seq approach to describe the population of sequences bound by four artificial PPR proteins built from consensus scaffolds. The specificity of these proteins can be accounted for by canonical code-based nucleotide recognition. The results show, however, that interactions near the 3′-end of binding sites make less contribution to binding affinity than do those near the 5′-end, that proteins with 11 and 14 repeats exhibit similar affinity for their intended targets but 14-repeats are more permissive for mismatches, and that purine-binding repeats are less tolerant of transversion mismatches than are pyrimidine-binding motifs. These findings have implications for mechanisms that establish PPR–RNA interactions and for optimizing PPR design to minimize off-target interactions.
Collapse
Affiliation(s)
- Rafael G Miranda
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - James J McDermott
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
32
|
Gobert A, Bruggeman M, Giegé P. Involvement of PIN-like domain nucleases in tRNA processing and translation regulation. IUBMB Life 2019; 71:1117-1125. [PMID: 31066520 DOI: 10.1002/iub.2062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/24/2019] [Indexed: 12/29/2022]
Abstract
Transfer RNAs require essential maturation steps to become functional. Among them, RNase P removes 5' leader sequences of pre-tRNAs. Although RNase P was long thought to occur universally as ribonucleoproteins, different types of protein-only RNase P enzymes were discovered in both eukaryotes and prokaryotes. Interestingly, all these enzymes belong to the super-group of PilT N-terminal-like nucleases (PIN)-like ribonucleases. This wide family of enzymes can be subdivided into major subgroups. Here, we review recent studies at both functional and mechanistic levels on three PIN-like ribonucleases groups containing enzymes connected to tRNA maturation and/or translation regulation. The evolutive distribution of these proteins containing PIN-like domains as well as their organization and fusion with various functional domains is discussed and put in perspective with the diversity of functions they acquired during evolution, for the maturation and homeostasis of tRNA and a wider array of RNA substrates. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1117-1125, 2019.
Collapse
Affiliation(s)
- Anthony Gobert
- Institut de Biologie de Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Mathieu Bruggeman
- Institut de Biologie de Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Giegé
- Institut de Biologie de Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
33
|
Chen TH, Sotomayor M, Gopalan V. Biochemical Studies Provide Insights into the Necessity for Multiple Arabidopsis thaliana Protein-Only RNase P Isoenzymes. J Mol Biol 2018; 431:615-624. [PMID: 30414965 DOI: 10.1016/j.jmb.2018.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/22/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
Abstract
RNase P catalyzes removal of the 5' leader from precursor tRNAs (pre-tRNAs) in all three domains of life. Some eukaryotic cells contain multiple forms of the protein-only RNase P (PRORP) variant, prompting efforts to unravel this seeming redundancy. Previous studies concluded that there were only modest differences in the processing of typical pre-tRNAs by the three isoforms in Arabidopsis thaliana [AtPRORP1 (organellar), AtPRORP2 and AtPRORP3 (nuclear)]. Here, we investigated if different physical attributes of the three isoforms might engender payoffs under specific conditions. Our temperature-activity profiling studies revealed that AtPRORPs display substrate-identity dependent behavior at elevated temperatures (37-45 °C), with the organellar variant outperforming the nuclear counterparts. Echoing these findings, molecular dynamics simulations revealed that AtPRORP2 relative to AtPRORP1 samples a wider conformational ensemble that deviates from the crystal structure. Results from our biochemical studies and molecular dynamics simulations support the idea that AtPRORPs have overlapping but not necessarily redundant attributes and inspire new perspectives on the suitability of each variant to perform its function(s) in a specific cellular locale.
Collapse
Affiliation(s)
- Tien-Hao Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Oerum S, Roovers M, Rambo RP, Kopec J, Bailey HJ, Fitzpatrick F, Newman JA, Newman WG, Amberger A, Zschocke J, Droogmans L, Oppermann U, Yue WW. Structural insight into the human mitochondrial tRNA purine N1-methyltransferase and ribonuclease P complexes. J Biol Chem 2018; 293:12862-12876. [PMID: 29880640 PMCID: PMC6102140 DOI: 10.1074/jbc.ra117.001286] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/24/2018] [Indexed: 01/17/2023] Open
Abstract
Mitochondrial tRNAs are transcribed as long polycistronic transcripts of precursor tRNAs and undergo posttranscriptional modifications such as endonucleolytic processing and methylation required for their correct structure and function. Among them, 5'-end processing and purine 9 N1-methylation of mitochondrial tRNA are catalyzed by two proteinaceous complexes with overlapping subunit composition. The Mg2+-dependent RNase P complex for 5'-end cleavage comprises the methyltransferase domain-containing protein tRNA methyltransferase 10C, mitochondrial RNase P subunit (TRMT10C/MRPP1), short-chain oxidoreductase hydroxysteroid 17β-dehydrogenase 10 (HSD17B10/MRPP2), and metallonuclease KIAA0391/MRPP3. An MRPP1-MRPP2 subcomplex also catalyzes the formation of 1-methyladenosine/1-methylguanosine at position 9 using S-adenosyl-l-methionine as methyl donor. However, a lack of structural information has precluded insights into how these complexes methylate and process mitochondrial tRNA. Here, we used a combination of X-ray crystallography, interaction and activity assays, and small angle X-ray scattering (SAXS) to gain structural insight into the two tRNA modification complexes and their components. The MRPP1 N terminus is involved in tRNA binding and monomer-monomer self-interaction, whereas the C-terminal SPOUT fold contains key residues for S-adenosyl-l-methionine binding and N1-methylation. The entirety of MRPP1 interacts with MRPP2 to form the N1-methylation complex, whereas the MRPP1-MRPP2-MRPP3 RNase P complex only assembles in the presence of precursor tRNA. This study proposes low-resolution models of the MRPP1-MRPP2 and MRPP1-MRPP2-MRPP3 complexes that suggest the overall architecture, stoichiometry, and orientation of subunits and tRNA substrates.
Collapse
Affiliation(s)
- Stephanie Oerum
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | | | - Robert P Rambo
- Diamond Light Source, Harwell Science and Innovation Center, Didcot OX11 0QG, United Kingdom
| | - Jola Kopec
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Henry J Bailey
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Fiona Fitzpatrick
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Joseph A Newman
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - William G Newman
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, University of Manchester, Manchester, M13 9WL, United Kingdom
| | - Albert Amberger
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Johannes Zschocke
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Louis Droogmans
- Laboratoire de Microbiologie, Universite libre de Bruxelles, 1050 Belgium
| | - Udo Oppermann
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom; Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Oxford OX3 7LD, United Kingdom.
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom.
| |
Collapse
|
35
|
Ferreira N, Rackham O, Filipovska A. Regulation of a minimal transcriptome by repeat domain proteins. Semin Cell Dev Biol 2018; 76:132-141. [DOI: 10.1016/j.semcdb.2017.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
|
36
|
Klemm BP, Karasik A, Kaitany KJ, Shanmuganathan A, Henley MJ, Thelen AZ, Dewar AJL, Jackson ND, Koutmos M, Fierke CA. Molecular recognition of pre-tRNA by Arabidopsis protein-only Ribonuclease P. RNA (NEW YORK, N.Y.) 2017; 23:1860-1873. [PMID: 28874505 PMCID: PMC5689006 DOI: 10.1261/rna.061457.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/31/2017] [Indexed: 05/06/2023]
Abstract
Protein-only ribonuclease P (PRORP) is an enzyme responsible for catalyzing the 5' end maturation of precursor transfer ribonucleic acids (pre-tRNAs) encoded by various cellular compartments in many eukaryotes. PRORPs from plants act as single-subunit enzymes and have been used as a model system for analyzing the function of the metazoan PRORP nuclease subunit, which requires two additional proteins for efficient catalysis. There are currently few molecular details known about the PRORP-pre-tRNA complex. Here, we characterize the determinants of substrate recognition by the single subunit Arabidopsis thaliana PRORP1 and PRORP2 using kinetic and thermodynamic experiments. The salt dependence of binding affinity suggests 4-5 contacts with backbone phosphodiester bonds on substrates, including a single phosphodiester contact with the pre-tRNA 5' leader, consistent with prior reports of short leader requirements. PRORPs contain an N-terminal pentatricopeptide repeat (PPR) domain, truncation of which results in a >30-fold decrease in substrate affinity. While most PPR-containing proteins have been implicated in single-stranded sequence-specific RNA recognition, we find that the PPR motifs of PRORPs recognize pre-tRNA substrates differently. Notably, the PPR domain residues most important for substrate binding in PRORPs do not correspond to positions involved in base recognition in other PPR proteins. Several of these residues are highly conserved in PRORPs from algae, plants, and metazoans, suggesting a conserved strategy for substrate recognition by the PRORP PPR domain. Furthermore, there is no evidence for sequence-specific interactions. This work clarifies molecular determinants of PRORP-substrate recognition and provides a new predictive model for the PRORP-substrate complex.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Agnes Karasik
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Aranganathan Shanmuganathan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Matthew J Henley
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Adam Z Thelen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Allison J L Dewar
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nathaniel D Jackson
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Markos Koutmos
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
37
|
Matelska D, Steczkiewicz K, Ginalski K. Comprehensive classification of the PIN domain-like superfamily. Nucleic Acids Res 2017; 45:6995-7020. [PMID: 28575517 PMCID: PMC5499597 DOI: 10.1093/nar/gkx494] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
PIN-like domains constitute a widespread superfamily of nucleases, diverse in terms of the reaction mechanism, substrate specificity, biological function and taxonomic distribution. Proteins with PIN-like domains are involved in central cellular processes, such as DNA replication and repair, mRNA degradation, transcription regulation and ncRNA maturation. In this work, we identify and classify the most complete set of PIN-like domains to provide the first comprehensive analysis of sequence–structure–function relationships within the whole PIN domain-like superfamily. Transitive sequence searches using highly sensitive methods for remote homology detection led to the identification of several new families, including representatives of Pfam (DUF1308, DUF4935) and CDD (COG2454), and 23 other families not classified in the public domain databases. Further sequence clustering revealed relationships between individual sequence clusters and showed heterogeneity within some families, suggesting a possible functional divergence. With five structural groups, 70 defined clusters, over 100,000 proteins, and broad biological functions, the PIN domain-like superfamily constitutes one of the largest and most diverse nuclease superfamilies. Detailed analyses of sequences and structures, domain architectures, and genomic contexts allowed us to predict biological function of several new families, including new toxin-antitoxin components, proteins involved in tRNA/rRNA maturation and transcription/translation regulation.
Collapse
Affiliation(s)
- Dorota Matelska
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
38
|
Abstract
RNase P is an essential tRNA-processing enzyme in all domains of life. We identified an unknown type of protein-only RNase P in the hyperthermophilic bacterium Aquifex aeolicus: Without an RNA subunit and the smallest of its kind, the 23-kDa polypeptide comprises a metallonuclease domain only. The protein has RNase P activity in vitro and rescued the growth of Escherichia coli and Saccharomyces cerevisiae strains with inactivations of their more complex and larger endogenous ribonucleoprotein RNase P. Homologs of Aquifex RNase P (HARP) were identified in many Archaea and some Bacteria, of which all Archaea and most Bacteria also encode an RNA-based RNase P; activity of both RNase P forms from the same bacterium or archaeon could be verified in two selected cases. Bioinformatic analyses suggest that A. aeolicus and related Aquificaceae likely acquired HARP by horizontal gene transfer from an archaeon.
Collapse
|
39
|
Wang C, Aubé F, Planchard N, Quadrado M, Dargel-Graffin C, Nogué F, Mireau H. The pentatricopeptide repeat protein MTSF2 stabilizes a nad1 precursor transcript and defines the 3΄ end of its 5΄-half intron. Nucleic Acids Res 2017; 45:6119-6134. [PMID: 28334831 PMCID: PMC5449624 DOI: 10.1093/nar/gkx162] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
RNA expression in plant mitochondria implies a large number of post-transcriptional events in which transcript processing and stabilization are essential. In this study, we analyzed the function of the Arabidopsis mitochondrial stability factor 2 gene (MTSF2) and show that the encoded pentatricopeptide repeat protein is essential for the accumulation of stable nad1 mRNA. The production of mature nad1 requires the assembly of three independent RNA precursors via two trans-splicing reactions. Genetic analyses revealed that the lack of nad1 in mtsf2 mutants results from the specific destabilization of the nad1 exons 2-3 precursor transcript. We further demonstrated that MTSF2 binds to its 3΄ extremity with high affinity, suggesting a protective action by blocking exoribonuclease progression. By defining the 3΄ end of nad1 exons 2-3 precursor, MTSF2 concomitantly determines the 3΄ extremity of the first half of the trans-intron found at the end of the transcript. Therefore, binding of the MTSF2 protein to nad1 exons 2-3 precursor evolved both to stabilize the transcript and to define a 3΄ extremity compatible with the trans-splicing reaction needed to reconstitute mature nad1. We thus reveal that the range of transcripts stabilized by association with protective protein on their 3΄ end concerns also mitochondrial precursor transcripts.
Collapse
Affiliation(s)
- Chuande Wang
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- Paris-Sud University, Université Paris-Saclay, 91405 Orsay Cedex, France
- These authors contributed equally to the paper as first authors
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- These authors contributed equally to the paper as first authors
| | - Noelya Planchard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- Paris-Sud University, Université Paris-Saclay, 91405 Orsay Cedex, France
- These authors contributed equally to the paper as first authors
| | - Martine Quadrado
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Céline Dargel-Graffin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- To whom correspondence should be addressed. Tel: +33 130 833 070; Fax: +33 130 833 319;
| |
Collapse
|
40
|
Pinker F, Schelcher C, Fernandez-Millan P, Gobert A, Birck C, Thureau A, Roblin P, Giegé P, Sauter C. Biophysical analysis of Arabidopsis protein-only RNase P alone and in complex with tRNA provides a refined model of tRNA binding. J Biol Chem 2017; 292:13904-13913. [PMID: 28696260 PMCID: PMC5572917 DOI: 10.1074/jbc.m117.782078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/06/2017] [Indexed: 11/06/2022] Open
Abstract
RNase P is a universal enzyme that removes 5' leader sequences from tRNA precursors. The enzyme is therefore essential for maturation of functional tRNAs and mRNA translation. RNase P represents a unique example of an enzyme that can occur either as ribonucleoprotein or as protein alone. The latter form of the enzyme, called protein-only RNase P (PRORP), is widespread in eukaryotes in which it can provide organellar or nuclear RNase P activities. Here, we have focused on Arabidopsis nuclear PRORP2 and its interaction with tRNA substrates. Affinity measurements helped assess the respective importance of individual pentatricopeptide repeat motifs in PRORP2 for RNA binding. We characterized the PRORP2 structure by X-ray crystallography and by small-angle X-ray scattering in solution as well as that of its complex with a tRNA precursor by small-angle X-ray scattering. Of note, our study reports the first structural data of a PRORP-tRNA complex. Combined with complementary biochemical and biophysical analyses, our structural data suggest that PRORP2 undergoes conformational changes to accommodate its substrate. In particular, the catalytic domain and the RNA-binding domain can move around a central hinge. Altogether, this work provides a refined model of the PRORP-tRNA complex that illustrates how protein-only RNase P enzymes specifically bind tRNA and highlights the contribution of protein dynamics to achieve this specific interaction.
Collapse
Affiliation(s)
- Franziska Pinker
- From the Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France,; Université de Strasbourg, CNRS, Institut de Biologie Moléculaire des Plantes, UPR 2357, F-67084 Strasbourg, France
| | - Cédric Schelcher
- Université de Strasbourg, CNRS, Institut de Biologie Moléculaire des Plantes, UPR 2357, F-67084 Strasbourg, France
| | - Pablo Fernandez-Millan
- From the Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
| | - Anthony Gobert
- Université de Strasbourg, CNRS, Institut de Biologie Moléculaire des Plantes, UPR 2357, F-67084 Strasbourg, France
| | - Catherine Birck
- Université de Strasbourg, CNRS, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, F-67404 Illkirch, France
| | - Aurélien Thureau
- Synchrotron SOLEIL, l'Orme des Merisiers, F-91410 Saint Aubin, France
| | - Pierre Roblin
- Synchrotron SOLEIL, l'Orme des Merisiers, F-91410 Saint Aubin, France; Unité de Recherche Biopolymères, Interactions, Assemblages (URBIA-Nantes), Institut National de la Recherche Agronomique Centre de Nantes, 60 rue de la Géraudière, UR 1268, F-44316 Nantes, France
| | - Philippe Giegé
- Université de Strasbourg, CNRS, Institut de Biologie Moléculaire des Plantes, UPR 2357, F-67084 Strasbourg, France,.
| | - Claude Sauter
- From the Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France,.
| |
Collapse
|
41
|
Wang Y, Yan J, Zhang Q, Ma X, Zhang J, Su M, Wang X, Huang Y. The Schizosaccharomyces pombe PPR protein Ppr10 associates with a novel protein Mpa1 and acts as a mitochondrial translational activator. Nucleic Acids Res 2017; 45:3323-3340. [PMID: 28334955 PMCID: PMC5389468 DOI: 10.1093/nar/gkx127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/14/2017] [Indexed: 01/15/2023] Open
Abstract
The pentatricopeptide repeat (PPR) proteins characterized by tandem repeats of a degenerate 35-amino-acid motif function in all aspects of organellar RNA metabolism, many of which are essential for organellar gene expression. In this study, we report the characterization of a fission yeast Schizosaccharomyces pombe PPR protein, Ppr10 and a novel Ppr10-associated protein, designated Mpa1. The ppr10 deletion mutant exhibits growth defects in respiratory media, and is dramatically impaired for viability during the late-stationary phase. Deletion of ppr10 affects the accumulation of specific mitochondrial mRNAs. Furthermore, deletion of ppr10 severely impairs mitochondrial protein synthesis, suggesting that Ppr10 plays a general role in mitochondrial protein synthesis. Ppr10 interacts with Mpa1 in vivo and in vitro and the two proteins colocalize in the mitochondrial matrix. The ppr10 and mpa1 deletion mutants exhibit very similar phenotypes. One of Mpa1's functions is to maintain the normal protein level of Ppr10 protein by protecting it from degradation by the mitochondrial matrix protease Lon1. Our findings suggest that Ppr10 functions as a general mitochondrial translational activator, likely through interaction with mitochondrial mRNAs and mitochondrial translation initiation factor Mti2, and that Ppr10 requires Mpa1 association for stability and function.
Collapse
Affiliation(s)
- Yirong Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jianhua Yan
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingzhen Zhang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xuting Ma
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Juan Zhang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Minghui Su
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xiaojun Wang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
42
|
Senissar M, Manav MC, Brodersen DE. Structural conservation of the PIN domain active site across all domains of life. Protein Sci 2017; 26:1474-1492. [PMID: 28508407 DOI: 10.1002/pro.3193] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 01/26/2023]
Abstract
The PIN (PilT N-terminus) domain is a compact RNA-binding protein domain present in all domains of life. This 120-residue domain consists of a central and parallel β sheet surrounded by α helices, which together organize 4-5 acidic residues in an active site that binds one or more divalent metal ions and in many cases has endoribonuclease activity. In bacteria and archaea, the PIN domain is primarily associated with toxin-antitoxin loci, consisting of a toxin (the PIN domain nuclease) and an antitoxin that inhibits the function of the toxin under normal growth conditions. During nutritional or antibiotic stress, the antitoxin is proteolytically degraded causing activation of the PIN domain toxin leading to a dramatic reprogramming of cellular metabolism to cope with the new situation. In eukaryotes, PIN domains are commonly found as parts of larger proteins and are involved in a range of processes involving RNA cleavage, including ribosomal RNA biogenesis and nonsense-mediated mRNA decay. In this review, we provide a comprehensive overview of the structural characteristics of the PIN domain and compare PIN domains from all domains of life in terms of structure, active site architecture, and activity.
Collapse
Affiliation(s)
- M Senissar
- Centre for Bacterial Stress Response and Persistence, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus, 8000, Denmark
| | - M C Manav
- Centre for Bacterial Stress Response and Persistence, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus, 8000, Denmark
| | - D E Brodersen
- Centre for Bacterial Stress Response and Persistence, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus, 8000, Denmark
| |
Collapse
|
43
|
Miranda RG, Rojas M, Montgomery MP, Gribbin KP, Barkan A. RNA-binding specificity landscape of the pentatricopeptide repeat protein PPR10. RNA (NEW YORK, N.Y.) 2017; 23:586-599. [PMID: 28108520 PMCID: PMC5340921 DOI: 10.1261/rna.059568.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/09/2017] [Indexed: 05/02/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins comprise a large family of helical repeat proteins that influence gene expression in mitochondria and chloroplasts. PPR tracts can bind RNA via a modular one repeat-one nucleotide mechanism in which the nucleotide is specified by the identities of several amino acids in each repeat. This mode of recognition, the so-called PPR code, offers opportunities for the prediction of native PPR binding sites and the design of proteins to bind specified RNAs. However, a deep understanding of the parameters that dictate the affinity and specificity of PPR-RNA interactions is necessary to realize these goals. We report a comprehensive analysis of the sequence specificity of PPR10, a protein that binds similar RNA sequences of ∼18 nucleotides (nt) near the chloroplast atpH and psaJ genes in maize. We assessed the contribution of each nucleotide in the atpH binding site to PPR10 affinity in vitro by analyzing the effects of single-nucleotide changes at each position. In a complementary approach, the RNAs bound by PPR10 from partially randomized RNA pools were analyzed by deep sequencing. The results revealed three patches in which nucleotide identity has a major impact on binding affinity. These include 5 nt for which protein contacts were not observed in a PPR10-RNA crystal structure and 4 nt that are not explained by current views of the PPR code. These findings highlight aspects of PPR-RNA interactions that pose challenges for binding site prediction and design.
Collapse
Affiliation(s)
- Rafael G Miranda
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | - Kyle P Gribbin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
44
|
Martin WJ, Reiter NJ. Structural Roles of Noncoding RNAs in the Heart of Enzymatic Complexes. Biochemistry 2016; 56:3-13. [PMID: 27935277 DOI: 10.1021/acs.biochem.6b01106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over billions of years of evolution, nature has embraced proteins as the major workhorse molecules of the cell. However, nearly every aspect of metabolism is dependent upon how structured RNAs interact with proteins, ligands, and other nucleic acids. Key processes, including telomere maintenance, RNA processing, and protein synthesis, require large RNAs that assemble into elaborate three-dimensional shapes. These RNAs can (i) act as flexible scaffolds for protein subunits, (ii) participate directly in substrate recognition, and (iii) serve as catalytic components. Here, we juxtapose the near atomic level interactions of three ribonucleoprotein complexes: ribonuclease P (involved in 5' pre-tRNA processing), the spliceosome (responsible for pre-mRNA splicing), and telomerase (an RNA-directed DNA polymerase that extends the ends of chromosomes). The focus of this perspective is profiling the structural and dynamic roles of RNAs at the core of these enzymes, highlighting how large RNAs contribute to molecular recognition and catalysis.
Collapse
Affiliation(s)
- William J Martin
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Nicholas J Reiter
- Department of Biochemistry, Vanderbilt University , Nashville, Tennessee 37232, United States
| |
Collapse
|
45
|
Walczyk D, Gößringer M, Rossmanith W, Zatsepin TS, Oretskaya TS, Hartmann RK. Analysis of the Cleavage Mechanism by Protein-Only RNase P Using Precursor tRNA Substrates with Modifications at the Cleavage Site. J Mol Biol 2016; 428:4917-4928. [PMID: 27769719 DOI: 10.1016/j.jmb.2016.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/28/2016] [Accepted: 10/16/2016] [Indexed: 12/23/2022]
Abstract
Ribonuclease P (RNase P) is the enzyme that endonucleolytically removes 5'-precursor sequences from tRNA transcripts in all domains of life. RNase P activities are either ribonucleoprotein (RNP) or protein-only RNase P (PRORP) enzymes, raising the question about the mechanistic strategies utilized by these architecturally different enzyme classes to catalyze the same type of reaction. Here, we analyzed the kinetics and cleavage-site selection by PRORP3 from Arabidopsis thaliana (AtPRORP3) using precursor tRNAs (pre-tRNAs) with individual modifications at the canonical cleavage site, with either Rp- or Sp-phosphorothioate, or 2'-deoxy, 2'-fluoro, 2'-amino, or 2'-O-methyl substitutions. We observed a small but robust rescue effect of Sp-phosphorothioate-modified pre-tRNA in the presence of thiophilic Cd2+ ions, consistent with metal-ion coordination to the (pro-)Sp-oxygen during catalysis. Sp-phosphorothioate, 2'-deoxy, 2'-amino, and 2'-O-methyl modification redirected the cleavage mainly to the next unmodified phosphodiester in the 5'-direction. Our findings are in line with the 2'-OH substituent at nucleotide -1 being involved in an H-bonding acceptor function. In contrast to bacterial RNase P, AtPRORP3 was found to be able to utilize the canonical and upstream cleavage site with similar efficiency (corresponding to reduced cleavage fidelity), and the two cleavage pathways appear less interdependent than in the bacterial RNA-based system.
Collapse
Affiliation(s)
- Dennis Walczyk
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Timofei S Zatsepin
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; Skolkovo Institute of Science and Technology, 3 Nobel street, Innovation Center "Skolkovo", 143026 Skolkovo, Russia
| | - Tatiana S Oretskaya
- Chemistry Department and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany.
| |
Collapse
|
46
|
Cleavage of Model Substrates by Arabidopsis thaliana PRORP1 Reveals New Insights into Its Substrate Requirements. PLoS One 2016; 11:e0160246. [PMID: 27494328 PMCID: PMC4975455 DOI: 10.1371/journal.pone.0160246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022] Open
Abstract
Two broad classes of RNase P trim the 5' leader of precursor tRNAs (pre-tRNAs): ribonucleoprotein (RNP)- and proteinaceous (PRORP)-variants. These two RNase P types, which use different scaffolds for catalysis, reflect independent evolutionary paths. While the catalytic RNA-based RNP form is present in all three domains of life, the PRORP family is restricted to eukaryotes. To obtain insights on substrate recognition by PRORPs, we examined the 5' processing ability of recombinant Arabidopsis thaliana PRORP1 (AtPRORP1) using a panel of pre-tRNASer variants and model hairpin-loop derivatives (pATSer type) that consist of the acceptor-T-stem stack and the T-/D-loop. Our data indicate the importance of the identity of N-1 (the residue immediately 5' to the cleavage site) and the N-1:N+73 base pair for cleavage rate and site selection of pre-tRNASer and pATSer. The nucleobase preferences that we observed mirror the frequency of occurrence in the complete suite of organellar pre-tRNAs in eight algae/plants that we analyzed. The importance of the T-/D-loop in pre-tRNASer for tight binding to AtPRORP1 is indicated by the 200-fold weaker binding of pATSer compared to pre-tRNASer, while the essentiality of the T-loop for cleavage is reflected by the near-complete loss of activity when a GAAA-tetraloop replaced the T-loop in pATSer. Substituting the 2'-OH at N-1 with 2'-H also resulted in no detectable cleavage, hinting at the possible role of this 2'-OH in coordinating Mg2+ ions critical for catalysis. Collectively, our results indicate similarities but also key differences in substrate recognition by the bacterial RNase P RNP and AtPRORP1: while both forms exploit the acceptor-T-stem stack and the elbow region in the pre-tRNA, the RNP form appears to require more recognition determinants for cleavage-site selection.
Collapse
|
47
|
Abil Z, Zhao H. Engineering reprogrammable RNA-binding proteins for study and manipulation of the transcriptome. MOLECULAR BIOSYSTEMS 2016; 11:2658-65. [PMID: 26166256 DOI: 10.1039/c5mb00289c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the expanding interest in RNA biology, interest in artificial RNA-binding proteins (RBPs) is likewise increasing. RBPs can be designed in a modular fashion, whereby effector and RNA-binding domains are combined in chimeric proteins that exhibit both functions and can be applied for regulation of a broad range of biological processes. The elucidation of the RNA recognition code for Pumilio and fem-3 mRNA-binding factor (PUF) homology proteins allowed engineering of artificial RBPs for targeting endogenous mRNAs. In this review, we will focus on the recent advances in elucidating and reprogramming PUF domain specificity, update on several promising applications of PUF-based designer RBPs, and discuss some other domains that hold the potential to be used as the RNA-binding scaffolds for designer RBP engineering.
Collapse
Affiliation(s)
- Zhanar Abil
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
48
|
Schelcher C, Sauter C, Giegé P. Mechanistic and Structural Studies of Protein-Only RNase P Compared to Ribonucleoproteins Reveal the Two Faces of the Same Enzymatic Activity. Biomolecules 2016; 6:biom6030030. [PMID: 27348014 PMCID: PMC5039416 DOI: 10.3390/biom6030030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/16/2022] Open
Abstract
RNase P, the essential activity that performs the 5′ maturation of tRNA precursors, can be achieved either by ribonucleoproteins containing a ribozyme present in the three domains of life or by protein-only enzymes called protein-only RNase P (PRORP) that occur in eukaryote nuclei and organelles. A fast growing list of studies has investigated three-dimensional structures and mode of action of PRORP proteins. Results suggest that similar to ribozymes, PRORP proteins have two main domains. A clear functional analogy can be drawn between the specificity domain of the RNase P ribozyme and PRORP pentatricopeptide repeat domain, and between the ribozyme catalytic domain and PRORP N4BP1, YacP-like Nuclease domain. Moreover, both types of enzymes appear to dock with the acceptor arm of tRNA precursors and make specific contacts with the corner of pre-tRNAs. While some clear differences can still be delineated between PRORP and ribonucleoprotein (RNP) RNase P, the two types of enzymes seem to use, fundamentally, the same catalytic mechanism involving two metal ions. The occurrence of PRORP and RNP RNase P represents a remarkable example of convergent evolution. It might be the unique witness of an ongoing replacement of catalytic RNAs by proteins for enzymatic activities.
Collapse
Affiliation(s)
- Cédric Schelcher
- UPR 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du général Zimmer, F-67084 Strasbourg, France.
| | - Claude Sauter
- UPR 9002, Centre National de la Recherche Scientifique, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 15 rue René Descartes, Strasbourg F-67084, France.
| | - Philippe Giegé
- UPR 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 rue du général Zimmer, F-67084 Strasbourg, France.
| |
Collapse
|
49
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
50
|
Chen TH, Tanimoto A, Shkriabai N, Kvaratskhelia M, Wysocki V, Gopalan V. Use of chemical modification and mass spectrometry to identify substrate-contacting sites in proteinaceous RNase P, a tRNA processing enzyme. Nucleic Acids Res 2016; 44:5344-55. [PMID: 27166372 PMCID: PMC4914120 DOI: 10.1093/nar/gkw391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
Among all enzymes in nature, RNase P is unique in that it can use either an RNA- or a protein-based active site for its function: catalyzing cleavage of the 5′-leader from precursor tRNAs (pre-tRNAs). The well-studied catalytic RNase P RNA uses a specificity module to recognize the pre-tRNA and a catalytic module to perform cleavage. Similarly, the recently discovered proteinaceous RNase P (PRORP) possesses two domains – pentatricopeptide repeat (PPR) and metallonuclease (NYN) – that are present in some other RNA processing factors. Here, we combined chemical modification of lysines and multiple-reaction monitoring mass spectrometry to identify putative substrate-contacting residues in Arabidopsis thaliana PRORP1 (AtPRORP1), and subsequently validated these candidate sites by site-directed mutagenesis. Using biochemical studies to characterize the wild-type (WT) and mutant derivatives, we found that AtPRORP1 exploits specific lysines strategically positioned at the tips of it's V-shaped arms, in the first PPR motif and in the NYN domain proximal to the catalytic center, to bind and cleave pre-tRNA. Our results confirm that the protein- and RNA-based forms of RNase P have distinct modules for substrate recognition and cleavage, an unanticipated parallel in their mode of action.
Collapse
Affiliation(s)
- Tien-Hao Chen
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Akiko Tanimoto
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Nikoloz Shkriabai
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | - Vicki Wysocki
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|