1
|
Taton A, Gilderman TS, Ernst DC, Omaga CA, Cohen LA, Rey-Bedon C, Golden JW, Golden SS. Synechococcus elongatus Argonaute reduces natural transformation efficiency and provides immunity against exogenous plasmids. mBio 2023; 14:e0184323. [PMID: 37791787 PMCID: PMC10653904 DOI: 10.1128/mbio.01843-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE S. elongatus is an important cyanobacterial model organism for the study of its prokaryotic circadian clock, photosynthesis, and other biological processes. It is also widely used for genetic engineering to produce renewable biochemicals. Our findings reveal an SeAgo-based defense mechanism in S. elongatus against the horizontal transfer of genetic material. We demonstrate that deletion of the ago gene facilitates genetic studies and genetic engineering of S. elongatus.
Collapse
Affiliation(s)
- Arnaud Taton
- School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Tami S. Gilderman
- School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Dustin C. Ernst
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
| | - Carla A. Omaga
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
| | - Lucas A. Cohen
- School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Camilo Rey-Bedon
- School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - James W. Golden
- School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Susan S. Golden
- School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Cyanobacterial membrane dynamics in the light of eukaryotic principles. Biosci Rep 2023; 43:232406. [PMID: 36602300 PMCID: PMC9950537 DOI: 10.1042/bsr20221269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Intracellular compartmentalization is a hallmark of eukaryotic cells. Dynamic membrane remodeling, involving membrane fission/fusion events, clearly is crucial for cell viability and function, as well as membrane stabilization and/or repair, e.g., during or after injury. In recent decades, several proteins involved in membrane stabilization and/or dynamic membrane remodeling have been identified and described in eukaryotes. Yet, while typically not having a cellular organization as complex as eukaryotes, also bacteria can contain extra internal membrane systems besides the cytoplasmic membranes (CMs). Thus, also in bacteria mechanisms must have evolved to stabilize membranes and/or trigger dynamic membrane remodeling processes. In fact, in recent years proteins, which were initially defined being eukaryotic inventions, have been recognized also in bacteria, and likely these proteins shape membranes also in these organisms. One example of a complex prokaryotic inner membrane system is the thylakoid membrane (TM) of cyanobacteria, which contains the complexes of the photosynthesis light reaction. Cyanobacteria are evolutionary closely related to chloroplasts, and extensive remodeling of the internal membrane systems has been observed in chloroplasts and cyanobacteria during membrane biogenesis and/or at changing light conditions. We here discuss common principles guiding eukaryotic and prokaryotic membrane dynamics and the proteins involved, with a special focus on the dynamics of the cyanobacterial TMs and CMs.
Collapse
|
3
|
Takacs CN, Wachter J, Xiang Y, Ren Z, Karaboja X, Scott M, Stoner MR, Irnov I, Jannetty N, Rosa PA, Wang X, Jacobs-Wagner C. Polyploidy, regular patterning of genome copies, and unusual control of DNA partitioning in the Lyme disease spirochete. Nat Commun 2022; 13:7173. [PMID: 36450725 PMCID: PMC9712426 DOI: 10.1038/s41467-022-34876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Borrelia burgdorferi, the tick-transmitted spirochete agent of Lyme disease, has a highly segmented genome with a linear chromosome and various linear or circular plasmids. Here, by imaging several chromosomal loci and 16 distinct plasmids, we show that B. burgdorferi is polyploid during growth in culture and that the number of genome copies decreases during stationary phase. B. burgdorferi is also polyploid inside fed ticks and chromosome copies are regularly spaced along the spirochete's length in both growing cultures and ticks. This patterning involves the conserved DNA partitioning protein ParA whose localization is controlled by a potentially phage-derived protein, ParZ, instead of its usual partner ParB. ParZ binds its own coding region and acts as a centromere-binding protein. While ParA works with ParZ, ParB controls the localization of the condensin, SMC. Together, the ParA/ParZ and ParB/SMC pairs ensure faithful chromosome inheritance. Our findings underscore the plasticity of cellular functions, even those as fundamental as chromosome segregation.
Collapse
Affiliation(s)
- Constantin N Takacs
- Department of Biology, Stanford University, Palo Alto, CA, USA
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, CA, USA
- The Howard Hughes Medical Institute, Palo Alto, CA, USA
| | - Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Bacterial Vaccine Development Group, Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yingjie Xiang
- Department of Mechanical Engineering, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale West Campus, West Haven, CT, USA
| | - Zhongqing Ren
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Xheni Karaboja
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Molly Scott
- Microbial Sciences Institute, Yale West Campus, West Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Matthew R Stoner
- The Howard Hughes Medical Institute, Palo Alto, CA, USA
- Microbial Sciences Institute, Yale West Campus, West Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Irnov Irnov
- Department of Biology, Stanford University, Palo Alto, CA, USA
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, CA, USA
- The Howard Hughes Medical Institute, Palo Alto, CA, USA
| | - Nicholas Jannetty
- The Howard Hughes Medical Institute, Palo Alto, CA, USA
- Microbial Sciences Institute, Yale West Campus, West Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Patricia A Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN, USA.
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Palo Alto, CA, USA.
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, CA, USA.
- The Howard Hughes Medical Institute, Palo Alto, CA, USA.
| |
Collapse
|
4
|
Santer M, Kupczok A, Dagan T, Uecker H. Fixation dynamics of beneficial alleles in prokaryotic polyploid chromosomes and plasmids. Genetics 2022; 222:6663764. [PMID: 35959975 PMCID: PMC9526072 DOI: 10.1093/genetics/iyac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
Theoretical population genetics has been mostly developed for sexually reproducing diploid and for monoploid (haploid) organisms, focusing on eukaryotes. The evolution of bacteria and archaea is often studied by models for the allele dynamics in monoploid populations. However, many prokaryotic organisms harbor multicopy replicons—chromosomes and plasmids—and theory for the allele dynamics in populations of polyploid prokaryotes remains lacking. Here, we present a population genetics model for replicons with multiple copies in the cell. Using this model, we characterize the fixation process of a dominant beneficial mutation at 2 levels: the phenotype and the genotype. Our results show that depending on the mode of replication and segregation, the fixation of the mutant phenotype may precede genotypic fixation by many generations; we term this time interval the heterozygosity window. We furthermore derive concise analytical expressions for the occurrence and length of the heterozygosity window, showing that it emerges if the copy number is high and selection strong. Within the heterozygosity window, the population is phenotypically adapted, while both alleles persist in the population. Replicon ploidy thus allows for the maintenance of genetic variation following phenotypic adaptation and consequently for reversibility in adaptation to fluctuating environmental conditions.
Collapse
Affiliation(s)
- Mario Santer
- Research group Stochastic Evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Anne Kupczok
- Institute of General Microbiology, Kiel University, 24118 Kiel, Germany.,Bioinformatics group, Department of Plant Sciences, Wageningen University & Research, 6708PB Wageningen, Netherlands
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, 24118 Kiel, Germany
| | - Hildegard Uecker
- Research group Stochastic Evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
5
|
Hua LL, Casas C, Mikawa T. Mitotic Antipairing of Homologous Chromosomes. Results Probl Cell Differ 2022; 70:191-220. [PMID: 36348108 PMCID: PMC9731508 DOI: 10.1007/978-3-031-06573-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome organization is highly dynamic and plays an essential role during cell function. It was recently found that pairs of the homologous chromosomes are continuously separated at mitosis and display a haploid (1n) chromosome set, or "antipairing," organization in human cells. Here, we provide an introduction to the current knowledge of homologous antipairing in humans and its implications in human disease.
Collapse
Affiliation(s)
- Lisa L. Hua
- Department of Biology, Sonoma State University, San Francisco
| | - Christian Casas
- Department of Biology, Sonoma State University, San Francisco
| | - Takashi Mikawa
- Department of Anatomy, Cardiovascular Research Institute, University of California, San Francisco,Corresponding author:
| |
Collapse
|
6
|
Abstract
Circadian clocks are important to much of life on Earth and are of inherent interest to humanity, implicated in fields ranging from agriculture and ecology to developmental biology and medicine. New techniques show that it is not simply the presence of clocks, but coordination between them that is critical for complex physiological processes across the kingdoms of life. Recent years have also seen impressive advances in synthetic biology to the point where parallels can be drawn between synthetic biological and circadian oscillators. This review will emphasize theoretical and experimental studies that have revealed a fascinating dichotomy of coupling and heterogeneity among circadian clocks. We will also consolidate the fields of chronobiology and synthetic biology, discussing key design principles of their respective oscillators.
Collapse
Affiliation(s)
- Chris N Micklem
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.,The Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CH3 0HE, UK
| | - James C W Locke
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
7
|
Gallagher KA, Brun YV. Bacterial chromosome segregation: New insights into non-binary replication and division. Curr Biol 2021; 31:R1044-R1046. [PMID: 34520714 DOI: 10.1016/j.cub.2021.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bdellovibrio bacteriovorus divides in a non-binary manner resulting in an even or odd number of progeny. A new study tracks the spatiotemporal dynamics of chromosome segregation in this species and shows that the process is dependent on the conserved ParA-ParB-parS system.
Collapse
Affiliation(s)
- Kelley A Gallagher
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Yves V Brun
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal H3C 3J7, Canada.
| |
Collapse
|
8
|
Abstract
Disruption of circadian rhythms causes decreased health and fitness, and evidence from multiple organisms links clock disruption to dysregulation of the cell cycle. However, the function of circadian regulation for the essential process of DNA replication remains elusive. Here, we demonstrate that in the cyanobacterium Synechococcus elongatus, a model organism with the simplest known circadian oscillator, the clock generates rhythms in DNA replication to minimize the number of open replication forks near dusk that would have to complete after sunset. Metabolic rhythms generated by the clock ensure that resources are available early at night to support any remaining replication forks. Combining mathematical modeling and experiments, we show that metabolic defects caused by clock-environment misalignment result in premature replisome disassembly and replicative abortion in the dark, leaving cells with incomplete chromosomes that persist through the night. Our study thus demonstrates that a major function of this ancient clock in cyanobacteria is to ensure successful completion of genome replication in a cycling environment.
Collapse
|
9
|
The Genome Copy Number of the Thermophilic Cyanobacterium Thermosynechococcus elongatus E542 Is Controlled by Growth Phase and Nutrient Availability. Appl Environ Microbiol 2021; 87:AEM.02993-20. [PMID: 33608293 PMCID: PMC8091003 DOI: 10.1128/aem.02993-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/13/2021] [Indexed: 12/20/2022] Open
Abstract
The present study revealed that the genome copy number (ploidy) status in the thermophilic cyanobacterium Thermosynechococcus E542 is regulated by growth phase and various environmental parameters to give us a window into understanding the role of polyploidy. An increased ploidy level is found to be associated with higher metabolic activity and increased vigor by acting as backup genetic information to compensate for damage to the other chromosomal copies. The recently isolated thermophilic cyanobacterium Thermosynechococcus elongatus PKUAC-SCTE542 (here Thermosynechococcus E542) is a promising strain for fundamental and applied research. Here, we used several improved ploidy estimation approaches, which include quantitative PCR (qPCR), spectrofluorometry, and flow cytometry, to precisely determine the ploidy level in Thermosynechococcus E542 across different growth stages and nutritional and stress conditions. The distribution of genome copies per cell among the populations of Thermosynechococcus E542 was also analyzed. The strain tends to maintain 3 or 4 genome copies per cell in lag phase, early growth phase, or stationary phase under standard conditions. Increased ploidy (5.5 ± 0.3) was observed in exponential phase; hence, the ploidy level is growth phase regulated. Nearly no monoploid cells were detected in all growth phases, and prolonged stationary phase could not yield ploidy levels lower than 3 under standard conditions. During the late growth phase, a significantly higher ploidy level was observed in the presence of bicarbonate (7.6 ± 0.7) and high phosphate (6.9 ± 0.2) at the expense of reduced percentages of di- and triploid cells. Meanwhile, the reduction in phosphates decreased the average ploidy level by increasing the percentages of mono- and diploid cells. In contrast, temperature and antibiotic stresses reduced the percentages of mono-, di-, and triploid cells yet maintained average ploidy. The results indicate a possible causality between growth rate, stress, and genome copy number across the conditions tested, but the exact mechanism is yet to be elucidated. Furthermore, the spectrofluorometric approach presented here is a quick and straightforward ploidy estimation method with reasonable accuracy. IMPORTANCE The present study revealed that the genome copy number (ploidy) status in the thermophilic cyanobacterium Thermosynechococcus E542 is regulated by growth phase and various environmental parameters to give us a window into understanding the role of polyploidy. An increased ploidy level is found to be associated with higher metabolic activity and increased vigor by acting as backup genetic information to compensate for damage to the other chromosomal copies. Several improved ploidy estimation approaches that may upgrade the ploidy estimation procedure for cyanobacteria in the future are presented in this work. Furthermore, the new spectrofluorometric method presented here is a rapid and straightforward method of ploidy estimation with reasonable accuracy compared to other laborious methods.
Collapse
|
10
|
Angert ER. Challenges Faced by Highly Polyploid Bacteria with Limits on DNA Inheritance. Genome Biol Evol 2021; 13:6156627. [PMID: 33677487 PMCID: PMC8245194 DOI: 10.1093/gbe/evab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
Most studies of bacterial reproduction have centered on organisms that undergo binary fission. In these models, complete chromosome copies are segregated with great fidelity into two equivalent offspring cells. All genetic material is passed on to offspring, including new mutations and horizontally acquired sequences. However, some bacterial lineages employ diverse reproductive patterns that require management and segregation of more than two chromosome copies. Epulopiscium spp., and their close relatives within the Firmicutes phylum, are intestinal symbionts of surgeonfish (family Acanthuridae). Each of these giant (up to 0.6 mm long), cigar-shaped bacteria contains tens of thousands of chromosome copies. Epulopiscium spp. do not use binary fission but instead produce multiple intracellular offspring. Only ∼1% of the genetic material in an Epulopiscium sp. type B mother cell is directly inherited by its offspring cells. And yet, even in late stages of offspring development, mother-cell chromosome copies continue to replicate. Consequently, chromosomes take on a somatic or germline role. Epulopiscium sp. type B is a strict anaerobe and while it is an obligate symbiont, its host has a facultative association with this intestinal microorganism. Therefore, Epulopiscium sp. type B populations face several bottlenecks that could endanger their diversity and resilience. Multilocus sequence analyses revealed that recombination is important to diversification in populations of Epulopiscium sp. type B. By employing mechanisms common to others in the Firmicutes, the coordinated timing of mother-cell lysis, offspring development and congression may facilitate the substantial recombination observed in Epulopiscium sp. type B populations.
Collapse
|
11
|
The Ethanologenic Bacterium Zymomonas mobilis Divides Asymmetrically and Exhibits Heterogeneity in DNA Content. Appl Environ Microbiol 2021; 87:AEM.02441-20. [PMID: 33452021 DOI: 10.1128/aem.02441-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/23/2020] [Indexed: 02/04/2023] Open
Abstract
The alphaproteobacterium Zymomonas mobilis exhibits extreme ethanologenic physiology, making this species a promising biofuel producer. Numerous studies have investigated its biology relevant to industrial applications and mostly at the population level. However, the organization of single cells in this industrially important polyploid species has been largely uncharacterized. In the present study, we characterized basic cellular behavior of Z. mobilis strain Zm6 under anaerobic conditions at the single-cell level. We observed that growing Z. mobilis cells often divided at a nonmidcell position, which contributed to variant cell size at birth. However, the cell size variance was regulated by a modulation of cell cycle span, mediated by a correlation of bacterial tubulin homologue FtsZ ring accumulation with cell growth. The Z. mobilis culture also exhibited heterogeneous cellular DNA content among individual cells, which might have been caused by asynchronous replication of chromosome that was not coordinated with cell growth. Furthermore, slightly angled divisions might have resulted in temporary curvatures of attached Z. mobilis cells. Overall, the present study uncovers a novel bacterial cell organization in Z. mobilis IMPORTANCE With increasing environmental concerns about the use of fossil fuels, development of a sustainable biofuel production platform has been attracting significant public attention. Ethanologenic Z. mobilis species are endowed with an efficient ethanol fermentation capacity that surpasses, in several respects, that of baker's yeast (Saccharomyces cerevisiae), the most-used microorganism for ethanol production. For development of a Z. mobilis culture-based biorefinery, an investigation of its uncharacterized cell biology is important, because bacterial cellular organization and metabolism are closely associated with each other in a single cell compartment. In addition, the current work demonstrates that the polyploid bacterium Z. mobilis exhibits a distinctive mode of bacterial cell organization, likely reflecting its unique metabolism that does not prioritize incorporation of nutrients for cell growth. Thus, another significant result of this work is to advance our general understanding in the diversity of bacterial cell architecture.
Collapse
|
12
|
Springstein BL, Nürnberg DJ, Weiss GL, Pilhofer M, Stucken K. Structural Determinants and Their Role in Cyanobacterial Morphogenesis. Life (Basel) 2020; 10:E355. [PMID: 33348886 PMCID: PMC7766704 DOI: 10.3390/life10120355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cells have to erect and sustain an organized and dynamically adaptable structure for an efficient mode of operation that allows drastic morphological changes during cell growth and cell division. These manifold tasks are complied by the so-called cytoskeleton and its associated proteins. In bacteria, FtsZ and MreB, the bacterial homologs to tubulin and actin, respectively, as well as coiled-coil-rich proteins of intermediate filament (IF)-like function to fulfil these tasks. Despite generally being characterized as Gram-negative, cyanobacteria have a remarkably thick peptidoglycan layer and possess Gram-positive-specific cell division proteins such as SepF and DivIVA-like proteins, besides Gram-negative and cyanobacterial-specific cell division proteins like MinE, SepI, ZipN (Ftn2) and ZipS (Ftn6). The diversity of cellular morphologies and cell growth strategies in cyanobacteria could therefore be the result of additional unidentified structural determinants such as cytoskeletal proteins. In this article, we review the current advances in the understanding of the cyanobacterial cell shape, cell division and cell growth.
Collapse
Affiliation(s)
- Benjamin L. Springstein
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis J. Nürnberg
- Department of Physics, Biophysics and Biochemistry of Photosynthetic Organisms, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Gregor L. Weiss
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena 1720010, Chile;
| |
Collapse
|
13
|
Springstein BL, Weissenbach J, Koch R, Stücker F, Stucken K. The role of the cytoskeletal proteins MreB and FtsZ in multicellular cyanobacteria. FEBS Open Bio 2020; 10:2510-2531. [PMID: 33112491 PMCID: PMC7714070 DOI: 10.1002/2211-5463.13016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023] Open
Abstract
Multiseriate and true‐branching cyanobacteria are at the peak of prokaryotic morphological complexity. However, little is known about the mechanisms governing multiplanar cell division and morphogenesis. Here, we study the function of the prokaryotic cytoskeletal proteins, MreB and FtsZ in Fischerella muscicola PCC 7414 and Chlorogloeopsis fritschii PCC 6912. Vancomycin and HADA labeling revealed a mixed apical, septal, and lateral trichome growth mode in F. muscicola, whereas C. fritschii exhibits septal growth. In all morphotypes from both species, MreB forms either linear filaments or filamentous strings and can interact with FtsZ. Furthermore, multiplanar cell division in F. muscicola likely depends on FtsZ dosage. Our results lay the groundwork for future studies on cytoskeletal proteins in morphologically complex cyanobacteria.
Collapse
Affiliation(s)
| | - Julia Weissenbach
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| | - Robin Koch
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| | - Fenna Stücker
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| | - Karina Stucken
- Institute of General Microbiology, Christian-Albrechts University of Kiel, Germany
| |
Collapse
|
14
|
Sun Y, Huang F, Dykes GF, Liu LN. Diurnal Regulation of In Vivo Localization and CO 2-Fixing Activity of Carboxysomes in Synechococcus elongatus PCC 7942. Life (Basel) 2020; 10:E169. [PMID: 32872408 PMCID: PMC7555275 DOI: 10.3390/life10090169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Carboxysomes are the specific CO2-fixing microcompartments in all cyanobacteria. Although it is known that the organization and subcellular localization of carboxysomes are dependent on external light conditions and are highly relevant to their functions, how carboxysome organization and function are actively orchestrated in natural diurnal cycles has remained elusive. Here, we explore the dynamic regulation of carboxysome positioning and carbon fixation in the model cyanobacterium Synechococcus elongatus PCC 7942 in response to diurnal light-dark cycles, using live-cell confocal imaging and Rubisco assays. We found that carboxysomes are prone to locate close to the central line along the short axis of the cell and exhibit a greater preference of polar distribution in the dark phase, coupled with a reduction in carbon fixation. Moreover, we show that deleting the gene encoding the circadian clock protein KaiA could lead to an increase in carboxysome numbers per cell and reduced portions of pole-located carboxysomes. Our study provides insight into the diurnal regulation of carbon fixation in cyanobacteria and the general cellular strategies of cyanobacteria living in natural habitat for environmental acclimation.
Collapse
Affiliation(s)
| | | | | | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (Y.S.); (F.H.); (G.F.D.)
| |
Collapse
|
15
|
Rubisco accumulation factor 1 (Raf1) plays essential roles in mediating Rubisco assembly and carboxysome biogenesis. Proc Natl Acad Sci U S A 2020; 117:17418-17428. [PMID: 32636267 PMCID: PMC7382273 DOI: 10.1073/pnas.2007990117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carboxysomes are membrane-free organelles for carbon assimilation in cyanobacteria. The carboxysome consists of a proteinaceous shell that structurally resembles virus capsids and internal enzymes including ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the primary carbon-fixing enzyme in photosynthesis. The formation of carboxysomes requires hierarchical self-assembly of thousands of protein subunits, initiated from Rubisco assembly and packaging to shell encapsulation. Here we study the role of Rubisco assembly factor 1 (Raf1) in Rubisco assembly and carboxysome formation in a model cyanobacterium, Synechococcus elongatus PCC7942 (Syn7942). Cryo-electron microscopy reveals that Raf1 facilitates Rubisco assembly by mediating RbcL dimer formation and dimer-dimer interactions. Syn7942 cells lacking Raf1 are unable to form canonical intact carboxysomes but generate a large number of intermediate assemblies comprising Rubisco, CcaA, CcmM, and CcmN without shell encapsulation and a low abundance of carboxysome-like structures with reduced dimensions and irregular shell shapes and internal organization. As a consequence, the Raf1-depleted cells exhibit reduced Rubisco content, CO2-fixing activity, and cell growth. Our results provide mechanistic insight into the chaperone-assisted Rubisco assembly and biogenesis of carboxysomes. Advanced understanding of the biogenesis and stepwise formation process of the biogeochemically important organelle may inform strategies for heterologous engineering of functional CO2-fixing modules to improve photosynthesis.
Collapse
|
16
|
Ohbayashi R, Hirooka S, Onuma R, Kanesaki Y, Hirose Y, Kobayashi Y, Fujiwara T, Furusawa C, Miyagishima SY. Evolutionary Changes in DnaA-Dependent Chromosomal Replication in Cyanobacteria. Front Microbiol 2020; 11:786. [PMID: 32411117 PMCID: PMC7198777 DOI: 10.3389/fmicb.2020.00786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/02/2020] [Indexed: 12/02/2022] Open
Abstract
Replication of the circular bacterial chromosome is initiated at a unique origin (oriC) in a DnaA-dependent manner in which replication proceeds bidirectionally from oriC to ter. The nucleotide compositions of most bacteria differ between the leading and lagging DNA strands. Thus, the chromosomal DNA sequence typically exhibits an asymmetric GC skew profile. Further, free-living bacteria without genomes encoding dnaA were unknown. Thus, a DnaA-oriC-dependent replication initiation mechanism may be essential for most bacteria. However, most cyanobacterial genomes exhibit irregular GC skew profiles. We previously found that the Synechococcus elongatus chromosome, which exhibits a regular GC skew profile, is replicated in a DnaA-oriC-dependent manner, whereas chromosomes of Synechocystis sp. PCC 6803 and Nostoc sp. PCC 7120, which exhibit an irregular GC skew profile, are replicated from multiple origins in a DnaA-independent manner. Here we investigate the variation in the mechanisms of cyanobacterial chromosome replication. We found that the genomes of certain free-living species do not encode dnaA and such species, including Cyanobacterium aponinum PCC 10605 and Geminocystis sp. NIES-3708, replicate their chromosomes from multiple origins. Synechococcus sp. PCC 7002, which is phylogenetically closely related to dnaA-lacking free-living species as well as to dnaA-encoding but DnaA-oriC-independent Synechocystis sp. PCC 6803, possesses dnaA. In Synechococcus sp. PCC 7002, dnaA was not essential and its chromosomes were replicated from a unique origin in a DnaA-oriC independent manner. Our results also suggest that loss of DnaA-oriC-dependency independently occurred multiple times during cyanobacterial evolution and raises a possibility that the loss of dnaA or loss of DnaA-oriC dependency correlated with an increase in ploidy level.
Collapse
Affiliation(s)
- Ryudo Ohbayashi
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Ryo Onuma
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Yusuke Kobayashi
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan.,Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| |
Collapse
|
17
|
Pope MA, Hodge JA, Nixon PJ. An Improved Natural Transformation Protocol for the Cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2020; 11:372. [PMID: 32351517 PMCID: PMC7174562 DOI: 10.3389/fpls.2020.00372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
The naturally transformable cyanobacterium Synechocystis sp. PCC 6803 is a widely used chassis strain for the photosynthetic production of chemicals. However, Synechocystis possesses multiple genome copies per cell which means that segregating mutations across all genome copies can be time-consuming. Here we use flow cytometry in combination with DNA staining to investigate the effect of phosphate deprivation on the genome copy number of the glucose-tolerant GT-P sub-strain of Synechocystis 6803. Like the PCC 6803 wild type strain, the ploidy of GT-P cells grown in BG-11 medium is growth phase dependent with an average genome copy number of 6.05 ± 0.27 in early growth (OD740 = 0.1) decreasing to 2.49 ± 0.11 in late stationary phase (OD740 = 7). We show that a 10-fold reduction in the initial phosphate concentration of the BG-11 growth medium reduces the average genome copy number of GT-P cells from 4.51 ± 0.20 to 2.94 ± 0.13 and increases the proportion of monoploid cells from 0 to 6% after 7 days of growth. In addition, we also show that the DnaA protein, which unusually for bacteria is not required for DNA replication in Synechocystis, plays a role in restoring polyploidy upon subsequent phosphate supplementation. Based on these observations, we have developed an alternative natural transformation protocol involving phosphate depletion that decreases the time required to obtain fully segregated mutants.
Collapse
|
18
|
Abstract
While the model bacteria Escherichia coli and Bacillus subtilis harbor single chromosomes, which is known as monoploidy, some freshwater cyanobacteria contain multiple chromosome copies per cell throughout their cell cycle, which is known as polyploidy. In the model cyanobacteria Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803, chromosome copy number (ploidy) is regulated in response to growth phase and environmental factors. In S. elongatus 7942, chromosome replication is asynchronous both among cells and chromosomes. Comparative analysis of S. elongatus 7942 and S. sp. 6803 revealed a variety of DNA replication mechanisms. In this review, the current knowledge of ploidy and DNA replication mechanisms in cyanobacteria is summarized together with information on the features common with plant chloroplasts. It is worth noting that the occurrence of polyploidy and its regulation are correlated with certain cyanobacterial lifestyles and are shared between some cyanobacteria and chloroplasts. ABBREVIATIONS NGS: next-generation sequencing; Repli-seq: replication sequencing; BrdU: 5-bromo-2'-deoxyuridine; TK: thymidine kinase; GCSI: GC skew index; PET: photosynthetic electron transport; RET: respiration electron transport; Cyt b6f complex: cytochrome b6f complex; PQ: plastoquinone; PC: plastocyanin.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| |
Collapse
|
19
|
Springstein BL, Woehle C, Weissenbach J, Helbig AO, Dagan T, Stucken K. Identification and characterization of novel filament-forming proteins in cyanobacteria. Sci Rep 2020; 10:1894. [PMID: 32024928 PMCID: PMC7002697 DOI: 10.1038/s41598-020-58726-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022] Open
Abstract
Filament-forming proteins in bacteria function in stabilization and localization of proteinaceous complexes and replicons; hence they are instrumental for myriad cellular processes such as cell division and growth. Here we present two novel filament-forming proteins in cyanobacteria. Surveying cyanobacterial genomes for coiled-coil-rich proteins (CCRPs) that are predicted as putative filament-forming proteins, we observed a higher proportion of CCRPs in filamentous cyanobacteria in comparison to unicellular cyanobacteria. Using our predictions, we identified nine protein families with putative intermediate filament (IF) properties. Polymerization assays revealed four proteins that formed polymers in vitro and three proteins that formed polymers in vivo. Fm7001 from Fischerella muscicola PCC 7414 polymerized in vitro and formed filaments in vivo in several organisms. Additionally, we identified a tetratricopeptide repeat protein - All4981 - in Anabaena sp. PCC 7120 that polymerized into filaments in vitro and in vivo. All4981 interacts with known cytoskeletal proteins and is indispensable for Anabaena viability. Although it did not form filaments in vitro, Syc2039 from Synechococcus elongatus PCC 7942 assembled into filaments in vivo and a Δsyc2039 mutant was characterized by an impaired cytokinesis. Our results expand the repertoire of known prokaryotic filament-forming CCRPs and demonstrate that cyanobacterial CCRPs are involved in cell morphology, motility, cytokinesis and colony integrity.
Collapse
Affiliation(s)
- Benjamin L Springstein
- Institute of General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
- Department of Microbiology, Blavatnick Institute, Harvard Medical School, Boston, MA, USA.
| | - Christian Woehle
- Institute of General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Max Planck Institute for Plant Breeding Research, Max Planck-Genome-centre Cologne, Cologne, Germany
| | - Julia Weissenbach
- Institute of General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Andreas O Helbig
- Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena, Chile.
| |
Collapse
|
20
|
Sun Y, Wollman AJM, Huang F, Leake MC, Liu LN. Single-Organelle Quantification Reveals Stoichiometric and Structural Variability of Carboxysomes Dependent on the Environment. THE PLANT CELL 2019; 31:1648-1664. [PMID: 31048338 PMCID: PMC6635877 DOI: 10.1105/tpc.18.00787] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/02/2019] [Indexed: 05/25/2023]
Abstract
The carboxysome is a complex, proteinaceous organelle that plays essential roles in carbon assimilation in cyanobacteria and chemoautotrophs. It comprises hundreds of protein homologs that self-assemble in space to form an icosahedral structure. Despite its significance in enhancing CO2 fixation and potentials in bioengineering applications, the formation of carboxysomes and their structural composition, stoichiometry, and adaptation to cope with environmental changes remain unclear. Here we use live-cell single-molecule fluorescence microscopy, coupled with confocal and electron microscopy, to decipher the absolute protein stoichiometry and organizational variability of single β-carboxysomes in the model cyanobacterium Synechococcus elongatus PCC7942. We determine the physiological abundance of individual building blocks within the icosahedral carboxysome. We further find that the protein stoichiometry, diameter, localization, and mobility patterns of carboxysomes in cells depend sensitively on the microenvironmental levels of CO2 and light intensity during cell growth, revealing cellular strategies of dynamic regulation. These findings, also applicable to other bacterial microcompartments and macromolecular self-assembling systems, advance our knowledge of the principles that mediate carboxysome formation and structural modulation. It will empower rational design and construction of entire functional metabolic factories in heterologous organisms, for example crop plants, to boost photosynthesis and agricultural productivity.
Collapse
Affiliation(s)
- Yaqi Sun
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Adam J M Wollman
- Biological Physical Sciences Institute, Departments of Physics and Biology, University of York, YO10 5DD, United Kingdom
| | - Fang Huang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Mark C Leake
- Biological Physical Sciences Institute, Departments of Physics and Biology, University of York, YO10 5DD, United Kingdom
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
21
|
Reyes-Lamothe R, Sherratt DJ. The bacterial cell cycle, chromosome inheritance and cell growth. Nat Rev Microbiol 2019; 17:467-478. [DOI: 10.1038/s41579-019-0212-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Abstract
Polyploidy has evolved many times across the kingdom of life. The relationship between cell growth and chromosome replication in bacteria has been studied extensively in monoploid model organisms such as Escherichia coli but not in polyploid organisms. Our study of the polyploid cyanobacterium Synechococcus elongatus demonstrates that replicating chromosome number is restricted and regulated by DnaA to maintain a relatively stable gene copy number/cell volume ratio during cell growth. In addition, our results suggest that polyploidy confers resistance to UV, which damages DNA. This compensatory polyploidy is likely necessitated by photosynthesis, which requires sunlight and generates damaging reactive oxygen species, and may also explain how polyploid bacteria can adapt to extreme environments with high risk of DNA damage. Homologous chromosome number (ploidy) has diversified among bacteria, archaea, and eukaryotes over evolution. In bacteria, model organisms such as Escherichia coli possess a single chromosome encoding the entire genome during slow growth. In contrast, other bacteria, including cyanobacteria, maintain multiple copies of individual chromosomes (polyploid). Although a correlation between ploidy level and cell size has been observed in bacteria and eukaryotes, it is poorly understood how replication of multicopy chromosomes is regulated and how ploidy level is adjusted to cell size. In addition, the advantages conferred by polyploidy are largely unknown. Here we show that only one or a few multicopy chromosomes are replicated at once in the cyanobacterium Synechococcus elongatus and that this restriction depends on regulation of DnaA activity. Inhibiting the DnaA intrinsic ATPase activity in S. elongatus increased the number of replicating chromosomes and chromosome number per cell but did not affect cell growth. In contrast, when cell growth rate was increased or decreased, DnaA level, DnaA activity, and the number of replicating chromosomes also increased or decreased in parallel, resulting in nearly constant chromosome copy number per unit of cell volume at constant temperature. When chromosome copy number was increased by inhibition of DnaA ATPase activity or reduced culture temperature, cells exhibited greater resistance to UV light. Thus, it is suggested that the stepwise replication of the genome enables cyanobacteria to maintain nearly constant gene copy number per unit of cell volume and that multicopy chromosomes function as backup genetic information to compensate for genomic damage.
Collapse
|
23
|
Random Chromosome Partitioning in the Polyploid Bacterium Thermus thermophilus HB27. G3-GENES GENOMES GENETICS 2019; 9:1249-1261. [PMID: 30792193 PMCID: PMC6469415 DOI: 10.1534/g3.119.400086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Little is known about chromosome segregation in polyploid prokaryotes. In this study, whether stringent or variable chromosome segregation occurs in polyploid thermophilic bacterium Thermus thermophilus was analyzed. A stable heterozygous strain (HL01) containing two antibiotic resistance markers at one gene locus was generated. The inheritance of the two alleles in the progeny of the heterozygous strain was then followed. During incubation without selection pressure, the fraction of heterozygous cells decreased and that of homozygous cells increased, while the relative abundance of each allele in the whole population remained constant, suggesting chromosome segregation had experienced random event. Consistently, in comparison with Bacillus subtilis in which the sister chromosomes were segregated equally, the ratios of DNA content in two daughter cells of T. thermophilus had a broader distribution and a larger standard deviation, indicating that the DNA content in the two daughter cells was not always identical. Further, the protein homologs (i.e., ParA and MreB) which have been suggested to be involved in bacterial chromosome partitioning did not actively participate in the chromosome segregation in T. thermophilus. Therefore, it seems that protein-based chromosome segregation machineries are less critical for the polyploid T. thermophilus, and chromosome segregation in this bacterium are not stringently controlled but tend to be variable, and random segregation can occur.
Collapse
|
24
|
Mitotic antipairing of homologous and sex chromosomes via spatial restriction of two haploid sets. Proc Natl Acad Sci U S A 2018; 115:E12235-E12244. [PMID: 30530674 PMCID: PMC6310853 DOI: 10.1073/pnas.1809583115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitotic recombination must be prevented to maintain genetic stability across daughter cells, but the underlying mechanism remains elusive. We report that mammalian cells impede homologous chromosome pairing during mitosis by keeping the two haploid chromosome sets apart, positioning them to either side of a meridional plane defined by the centrosomes. Chromosome oscillation analysis revealed collective genome behavior of noninteracting chromosome sets. Male translocation mice with a maternal-derived supernumerary chromosome display the tracer chromosome exclusively to the haploid set containing the X chromosome. This haploid set-based antipairing motif is shared by multiple cell types, is doubled in tetraploid cells, and is lost in carcinoma cells. The data provide a model of nuclear polarity through the antipairing of homologous chromosomes during mitosis. Pairing homologous chromosomes is required for recombination. However, in nonmeiotic stages it can lead to detrimental consequences, such as allelic misregulation and genome instability, and is rare in human somatic cells. How mitotic recombination is prevented—and how genetic stability is maintained across daughter cells—is a fundamental, unanswered question. Here, we report that both human and mouse cells impede homologous chromosome pairing by keeping two haploid chromosome sets apart throughout mitosis. Four-dimensional analysis of chromosomes during cell division revealed that a haploid chromosome set resides on either side of a meridional plane, crossing two centrosomes. Simultaneous tracking of chromosome oscillation and the spindle axis, using fluorescent CENP-A and centrin1, respectively, demonstrates collective genome behavior/segregation of two haploid sets throughout mitosis. Using 3D chromosome imaging of a translocation mouse with a supernumerary chromosome, we found that this maternally derived chromosome is positioned by parental origin. These data, taken together, support the identity of haploid sets by parental origin. This haploid set-based antipairing motif is shared by multiple cell types, doubles in tetraploid cells, and is lost in a carcinoma cell line. The data support a mechanism of nuclear polarity that sequesters two haploid sets along a subcellular axis. This topological segregation of haploid sets revisits an old model/paradigm and provides implications for maintaining mitotic fidelity.
Collapse
|
25
|
The Min Oscillator Defines Sites of Asymmetric Cell Division in Cyanobacteria during Stress Recovery. Cell Syst 2018; 7:471-481.e6. [PMID: 30414921 DOI: 10.1016/j.cels.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/04/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022]
Abstract
When resources are abundant, many rod-shaped bacteria reproduce through precise, symmetric divisions. However, realistic environments entail fluctuations between restrictive and permissive growth conditions. Here, we use time-lapse microscopy to study the division of the cyanobacterium Synechococcus elongatus as illumination intensity varies. We find that dim conditions produce elongated cells whose divisions follow a simple rule: cells shorter than ∼8 μm divide symmetrically, but above this length divisions become asymmetric, typically producing a short ∼3-μm daughter. We show that this division strategy is implemented by the Min system, which generates multi-node patterns and traveling waves in longer cells that favor the production of a short daughter. Mathematical modeling reveals that the feedback loops that create oscillatory Min patterns are needed to implement these generalized cell division rules. Thus, the Min system, which enforces symmetric divisions in short cells, acts to strongly suppress mid-cell divisions when S. elongatus cells are long.
Collapse
|
26
|
Ohbayashi R, Yoshikawa H, Watanabe S. Direct Visualization of the Multicopy Chromosomes in Cyanobacterium Synechococcus elongatus PCC 7942. Bio Protoc 2018; 8:e2958. [PMID: 34395766 DOI: 10.21769/bioprotoc.2958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 11/02/2022] Open
Abstract
Cyanobacteria are prokaryotic organisms that carry out oxygenic photosynthesis. The fresh water cyanobacterium Synechococcus elongatus PCC 7942 is a model organism for the study of photosynthesis and gene regulation, and for biotechnological applications. Besides several freshwater cyanobacteria, S. elongatus 7942 also contains multiple chromosomal copies per cell at all stages of its cell cycle. Here, we describe a method for the direct visualization of multicopy chromosomes in S. elongatus 7942 by fluorescence in situ hybridization (FISH).
Collapse
Affiliation(s)
- Ryudo Ohbayashi
- Department of Cell Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
27
|
Perez-Sepulveda B, Pitt F, N'Guyen AN, Ratin M, Garczarek L, Millard A, Scanlan DJ. Relative stability of ploidy in a marine Synechococcus across various growth conditions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:428-432. [PMID: 29327508 DOI: 10.1111/1758-2229.12614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Marine picocyanobacteria of the genus Synechococcus are ubiquitous phototrophs in oceanic systems. Consistent with these organisms occupying vast tracts of the nutrient impoverished ocean, most marine Synechococcus so far studied are monoploid, i.e., contain a single chromosome copy. The exception is the oligoploid strain Synechococcus sp. WH7803, which on average possesses around 4 chromosome copies. Here, we set out to understand the role of resource availability (through nutrient deplete growth) and physical stressors (UV, exposure to low and high temperature) in regulating ploidy level in this strain. Using qPCR to assay ploidy status we demonstrate the relative stability of chromosome copy number in Synechococcus sp. WH7803. Such robustness in maintaining an oligoploid status even under nutrient and physical stress is indicative of a fundamental role, perhaps facilitating recombination of damaged DNA regions as a result of prolonged exposure to oxidative stress, or allowing added flexibility in gene expression via possessing multiple alleles.
Collapse
Affiliation(s)
| | - Frances Pitt
- School of Life Sciences, University of Warwick, Coventry, UK
| | - An N N'Guyen
- Sorbonne Universités, UPMC-Université Paris 06, CNRS UMR 7144, Station Biologique, Roscoff, France
| | - Morgane Ratin
- Sorbonne Universités, UPMC-Université Paris 06, CNRS UMR 7144, Station Biologique, Roscoff, France
| | - Laurence Garczarek
- Sorbonne Universités, UPMC-Université Paris 06, CNRS UMR 7144, Station Biologique, Roscoff, France
| | - Andrew Millard
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
28
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
29
|
Hussain S, Wivagg CN, Szwedziak P, Wong F, Schaefer K, Izoré T, Renner LD, Holmes MJ, Sun Y, Bisson-Filho AW, Walker S, Amir A, Löwe J, Garner EC. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife 2018; 7:32471. [PMID: 29469806 PMCID: PMC5854468 DOI: 10.7554/elife.32471] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/21/2018] [Indexed: 12/26/2022] Open
Abstract
MreB is essential for rod shape in many bacteria. Membrane-associated MreB filaments move around the rod circumference, helping to insert cell wall in the radial direction to reinforce rod shape. To understand how oriented MreB motion arises, we altered the shape of Bacillus subtilis. MreB motion is isotropic in round cells, and orientation is restored when rod shape is externally imposed. Stationary filaments orient within protoplasts, and purified MreB tubulates liposomes in vitro, orienting within tubes. Together, this demonstrates MreB orients along the greatest principal membrane curvature, a conclusion supported with biophysical modeling. We observed that spherical cells regenerate into rods in a local, self-reinforcing manner: rapidly propagating rods emerge from small bulges, exhibiting oriented MreB motion. We propose that the coupling of MreB filament alignment to shape-reinforcing peptidoglycan synthesis creates a locally-acting, self-organizing mechanism allowing the rapid establishment and stable maintenance of emergent rod shape. Many bacteria are surrounded by both a cell membrane and a cell wall – a rigid outer covering made of sugars and short protein chains. The cell wall often determines which of a variety of shapes – such as rods or spheres – the bacteria grow into. One protein required to form the rod shape is called MreB. This protein forms filaments that bind to the bacteria’s cell membrane and associate with the enzymes that build the cell wall. Together, these filament-enzyme complexes rotate around the cell to build and reinforce the cell wall in a hoop-like manner. But how do the MreB filaments know how to move around the circumference of the rod, instead of moving in any other direction? Using a technique called total internal reflection microscopy to study how MreB filaments move across bacteria cells, Hussain, Wivagg et al. show that the filaments sense the shape of a bacterium by orienting along the direction of greatest curvature. As a result, the filaments in rod-shaped cells orient and move around the rod, while in spherical bacteria they move in all directions. However, spherical bacteria can regenerate into rods from small surface ‘bulges’. The MreB filaments in the bulges move in an oriented way, helping them to generate the rod shape. Hussain, Wivagg et al. also found that forcing cells that lack a cell wall into a rod shape caused the MreB filaments bound to the cell membrane to orient and circle around the rod. This shows that the organization of the filaments is sufficient to shape the cell wall. In the future, determining what factors control the activity of the MreB filaments and the enzymes they associate with might reveal new targets for antibiotics that disrupt the cell wall and so kill the bacteria. This will require higher resolution microscopes to be used to examine the cell wall in more detail. The activity of all the proteins involved in building cell walls will also need to be extensively characterized.
Collapse
Affiliation(s)
- Saman Hussain
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Carl N Wivagg
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Piotr Szwedziak
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Felix Wong
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, United States
| | - Kaitlin Schaefer
- Department of Microbiology and Immunology, Harvard University, Cambridge, United States
| | - Thierry Izoré
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Lars D Renner
- Leibniz Institute of Polymer Research, Dresden, Germany
| | - Matthew J Holmes
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Yingjie Sun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | | | - Suzanne Walker
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Ariel Amir
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, United States
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
30
|
Hutchison E, Yager NA, Taw MN, Taylor M, Arroyo F, Sannino DR, Angert ER. Developmental stage influences chromosome segregation patterns and arrangement in the extremely polyploid, giant bacterium Epulopiscium sp. type B. Mol Microbiol 2017; 107:68-80. [PMID: 29024073 DOI: 10.1111/mmi.13860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022]
Abstract
Few studies have described chromosomal dynamics in bacterial cells with more than two complete chromosome copies or described changes with respect to development in polyploid cells. We examined the arrangement of chromosomal loci in the very large, highly polyploid, uncultivated intestinal symbiont Epulopiscium sp. type B using fluorescent in situ hybridization. We found that in new offspring, chromosome replication origins (oriCs) are arranged in a three-dimensional array throughout the cytoplasm. As development progresses, most oriCs become peripherally located. Siblings within a mother cell have similar numbers of oriCs. When chromosome orientation was assessed in situ by labeling two chromosomal regions, no specific pattern was detected. The Epulopiscium genome codes for many of the conserved positional guide proteins used for chromosome segregation in bacteria. Based on this study, we present a model that conserved chromosomal maintenance proteins, combined with entropic demixing, provide the forces necessary for distributing oriCs. Without the positional regulation afforded by radial confinement, chromosomes are more randomly oriented in Epulopiscium than in most small rod-shaped cells. Furthermore, we suggest that the random orientation of individual chromosomes in large polyploid cells would not hamper reproductive success as it would in smaller cells with more limited genomic resources.
Collapse
Affiliation(s)
- Elizabeth Hutchison
- Department of Biology, SUNY Geneseo, Geneseo, NY, USA.,Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | - May N Taw
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | | | - Francine Arroyo
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - David R Sannino
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
31
|
Watanabe S, Noda A, Ohbayashi R, Uchioke K, Kurihara A, Nakatake S, Morioka S, Kanesaki Y, Chibazakura T, Yoshikawa H. ParA-like protein influences the distribution of multi-copy chromosomes in cyanobacterium Synechococcus elongatus PCC 7942. MICROBIOLOGY-SGM 2017; 164:45-56. [PMID: 29165230 DOI: 10.1099/mic.0.000577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While many bacteria, such as Escherichia coli and Bacillus subtilis, harbour a single-copy chromosome, freshwater cyanobacteria have multiple copies of each chromosome per cell. Although it has been reported that multi-copy chromosomes are evenly distributed along the major axis of the cell in cyanobacterium Synechococcus elongatus PCC 7942, the distribution mechanism of these chromosomes remains unclear. In S. elongatus, the carboxysome, a metabolic microcompartment for carbon fixation that is distributed in a similar manner to the multi-copy chromosomes, is regulated by ParA-like protein (hereafter ParA). To elucidate the role of ParA in the distribution of multi-copy chromosomes, we constructed and analysed ParA disruptant and overexpressing strains of S. elongatus. Our fluorescence in situ hybridization assay revealed that the parA disruptants displayed an aberrant distribution of their multi-copy chromosomes. In the parA disruptant the multiple origin and terminus foci, corresponding to the intracellular position of each chromosomal region, were aggregated, which was compensated by the expression of exogenous ParA from other genomic loci. The parA disruptant is sensitive to UV-C compared to the WT strain. Additionally, giant cells appeared under ParA overexpression at the late stage of growth indicating that excess ParA indirectly inhibits cell division. Screening of the ParA-interacting proteins by yeast two-hybrid analysis revealed four candidates that are involved in DNA repair and cell membrane biogenesis. These results suggest that ParA is involved in the pleiotropic cellular functions with these proteins, while parA is dispensable for cell viability in S. elongatus.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Aska Noda
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ryudo Ohbayashi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Japan.,Department of Cell Genetics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Kana Uchioke
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ami Kurihara
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shizuka Nakatake
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Sayumi Morioka
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yu Kanesaki
- Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Japan
| |
Collapse
|
32
|
Jun S, Rust MJ. A Fundamental Unit of Cell Size in Bacteria. Trends Genet 2017; 33:433-435. [PMID: 28545962 DOI: 10.1016/j.tig.2017.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
A new study clarifies a relationship between growth, gene expression, and cell size in cyanobacteria. Quite unexpectedly, cyanobacteria and Escherichia coli appear to share an invariance principle to coordinate growth and chromosome replication. This principle allows quantitative predictions of cell size across a range of growth conditions in both organisms.
Collapse
Affiliation(s)
- Suckjoon Jun
- University of California San Diego, Department of Physics and Section of Molecular Biology, Division of Biology, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Michael J Rust
- University of Chicago, Department of Molecular Genetics and Cell Biology, Department of Physics, 900 E 57th St., Chicago, IL 60637, USA.
| |
Collapse
|
33
|
Zheng XY, O'Shea EK. Cyanobacteria Maintain Constant Protein Concentration despite Genome Copy-Number Variation. Cell Rep 2017; 19:497-504. [PMID: 28423314 DOI: 10.1016/j.celrep.2017.03.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/25/2022] Open
Abstract
The cyanobacterium Synechococcus elongatus PCC 7942 has multiple copies of its single chromosome, and the copy number varies in individual cells, providing an ideal system to study the effect of genome copy-number variation on cell size and gene expression. Using single-cell fluorescence imaging, we found that protein concentration remained constant across individual cells regardless of genome copy number. Cell volume and the total protein amount from a single gene were both positively, linearly correlated with genome copy number, suggesting that changes in cell volume play an important role in buffering genome copy-number variance. This study provides a quantitative examination of gene expression regulation in cells with variable genome copies and sheds light on the compensation mechanisms for variance in genome copy number.
Collapse
Affiliation(s)
- Xiao-Yu Zheng
- Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Erin K O'Shea
- Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
34
|
MacCready JS, Schossau J, Osteryoung KW, Ducat DC. Robust Min-system oscillation in the presence of internal photosynthetic membranes in cyanobacteria. Mol Microbiol 2016; 103:483-503. [PMID: 27891682 DOI: 10.1111/mmi.13571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
The oscillatory Min system of Escherichia coli defines the cell division plane by regulating the site of FtsZ-ring formation and represents one of the best-understood examples of emergent protein self-organization in nature. The oscillatory patterns of the Min-system proteins MinC, MinD and MinE (MinCDE) are strongly dependent on the geometry of membranes they bind. Complex internal membranes within cyanobacteria could disrupt this self-organization by sterically occluding or sequestering MinCDE from the plasma membrane. Here, it was shown that the Min system in the cyanobacterium Synechococcus elongatus PCC 7942 oscillates from pole-to-pole despite the potential spatial constraints imposed by their extensive thylakoid network. Moreover, reaction-diffusion simulations predict robust oscillations in modeled cyanobacterial cells provided that thylakoid network permeability is maintained to facilitate diffusion, and suggest that Min proteins require preferential affinity for the plasma membrane over thylakoids to correctly position the FtsZ ring. Interestingly, in addition to oscillating, MinC exhibits a midcell localization dependent on MinD and the DivIVA-like protein Cdv3, indicating that two distinct pools of MinC are coordinated in S. elongatus. Our results provide the first direct evidence for Min oscillation outside of E. coli and have broader implications for Min-system function in bacteria and organelles with internal membrane systems.
Collapse
Affiliation(s)
- Joshua S MacCready
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Jory Schossau
- Department of Computer Science, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Daniel C Ducat
- Department of Biochemistry, MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
35
|
Ultrastructure of compacted DNA in cyanobacteria by high-voltage cryo-electron tomography. Sci Rep 2016; 6:34934. [PMID: 27731339 PMCID: PMC5059737 DOI: 10.1038/srep34934] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/20/2016] [Indexed: 01/15/2023] Open
Abstract
Some cyanobacteria exhibit compaction of DNA in synchrony with their circadian rhythms accompanying cell division. Since the structure is transient, it has not yet been described in detail. Here, we successfully visualize the ultrastructure of compacted DNA in the cyanobacterium Synechococcus elongatus PCC 7942 under rigorous synchronized cultivation by means of high-voltage cryo-electron tomography. In 3D reconstructions of rapidly frozen cells, the compacted DNA appears as an undulating rod resembling a eukaryotic condensed chromosome. The compacted DNA also includes many small and paired polyphosphate bodies (PPBs), some of which seem to maintain contact with DNA that appears to twist away from them, indicating that they may act as interactive suppliers and regulators of phosphate for DNA synthesis. These observations throw light on the duplication and segregation mechanisms of cyanobacterial DNA and point to an important role for PPBs.
Collapse
|
36
|
Johnson TJ, Gibbons JL, Gu L, Zhou R, Gibbons WR. Molecular genetic improvements of cyanobacteria to enhance the industrial potential of the microbe: A review. Biotechnol Prog 2016; 32:1357-1371. [DOI: 10.1002/btpr.2358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/30/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Tylor J. Johnson
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
- Dept. of MicrobiologyThe University of TennesseeKnoxville TN37996
| | - Jaimie L. Gibbons
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - Liping Gu
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - Ruanbao Zhou
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - William R. Gibbons
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| |
Collapse
|
37
|
Abstract
If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation.
Collapse
|
38
|
Sun Y, Casella S, Fang Y, Huang F, Faulkner M, Barrett S, Liu LN. Light Modulates the Biosynthesis and Organization of Cyanobacterial Carbon Fixation Machinery through Photosynthetic Electron Flow. PLANT PHYSIOLOGY 2016; 171:530-41. [PMID: 26956667 PMCID: PMC4854705 DOI: 10.1104/pp.16.00107] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/06/2016] [Indexed: 05/08/2023]
Abstract
Cyanobacteria have evolved effective adaptive mechanisms to improve photosynthesis and CO2 fixation. The central CO2-fixing machinery is the carboxysome, which is composed of an icosahedral proteinaceous shell encapsulating the key carbon fixation enzyme, Rubisco, in the interior. Controlled biosynthesis and ordered organization of carboxysomes are vital to the CO2-fixing activity of cyanobacterial cells. However, little is known about how carboxysome biosynthesis and spatial positioning are physiologically regulated to adjust to dynamic changes in the environment. Here, we used fluorescence tagging and live-cell confocal fluorescence imaging to explore the biosynthesis and subcellular localization of β-carboxysomes within a model cyanobacterium, Synechococcus elongatus PCC7942, in response to light variation. We demonstrated that β-carboxysome biosynthesis is accelerated in response to increasing light intensity, thereby enhancing the carbon fixation activity of the cell. Inhibition of photosynthetic electron flow impairs the accumulation of carboxysomes, indicating a close coordination between β-carboxysome biogenesis and photosynthetic electron transport. Likewise, the spatial organization of carboxysomes in the cell correlates with the redox state of photosynthetic electron transport chain. This study provides essential knowledge for us to modulate the β-carboxysome biosynthesis and function in cyanobacteria. In translational terms, the knowledge is instrumental for design and synthetic engineering of functional carboxysomes into higher plants to improve photosynthesis performance and CO2 fixation.
Collapse
Affiliation(s)
- Yaqi Sun
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Selene Casella
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Yi Fang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Fang Huang
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Matthew Faulkner
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Steve Barrett
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom (Y.S., S.C., Y.F., F.H., M.F., L.-N.L.); and Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom (S.B.)
| |
Collapse
|
39
|
Benson PJ, Purcell-Meyerink D, Hocart CH, Truong TT, James GO, Rourke L, Djordjevic MA, Blackburn SI, Price GD. Factors Altering Pyruvate Excretion in a Glycogen Storage Mutant of the Cyanobacterium, Synechococcus PCC7942. Front Microbiol 2016; 7:475. [PMID: 27092129 PMCID: PMC4820439 DOI: 10.3389/fmicb.2016.00475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/22/2016] [Indexed: 12/20/2022] Open
Abstract
Interest in the production of carbon commodities from photosynthetically fixed CO2 has focused attention on cyanobacteria as a target for metabolic engineering and pathway investigation. We investigated the redirection of carbon flux in the model cyanobacterial species, Synechococcus elongatus PCC 7942, under nitrogen deprivation, for optimized production of the industrially desirable compound, pyruvate. Under nitrogen limited conditions, excess carbon is naturally stored as the multi-branched polysaccharide, glycogen, but a block in glycogen synthesis, via knockout mutation in the gene encoding ADP-glucose pyrophosphorylase (glgC), results in the accumulation of the organic acids, pyruvate and 2-oxoglutarate, as overflow excretions into the extracellular media. The ΔglgC strain, under 48 h of N-deprivation was shown to excrete pyruvate for the first time in this strain. Additionally, by increasing culture pH, to pH 10, it was possible to substantially elevate excretion of pyruvate, suggesting the involvement of an unknown substrate/proton symporter for export. The ΔglgC mutant was also engineered to express foreign transporters for glucose and sucrose, and then grown photomixotrophically with exogenous organic carbon supply, as added 5 mM glucose or sucrose during N- deprivation. Under these conditions we observed a fourfold increase in extracellular pyruvate excretion when glucose was added, and a smaller increase with added sucrose. Although the magnitude of pyruvate excretion did not correlate with the capacity of the ΔglgC strain for bicarbonate-dependent photosynthetic O2 evolution, or with light intensity, there was, however, a positive correlation observed between the density of the starter culture prior to N-deprivation and the final extracellular pyruvate concentration. The factors that contribute to enhancement of pyruvate excretion are discussed, as well as consideration of whether the source of carbon for pyruvate excretion might be derived from photosynthetic CO2 fixation or from remobilisation of existing carbon stores.
Collapse
Affiliation(s)
- Phoebe J Benson
- Research School of Biology, Plant Sciences, Australian National University, Canberra ACT, Australia
| | - Diane Purcell-Meyerink
- Research School of Biology, Plant Sciences, Australian National University, CanberraACT, Australia; North Australia Marine Research Alliance, Arafura Timor Research Facility, DarwinNT, Australia
| | - Charles H Hocart
- Research School of Biology, Plant Sciences, Australian National University, Canberra ACT, Australia
| | - Thy T Truong
- Research School of Biology, Plant Sciences, Australian National University, Canberra ACT, Australia
| | - Gabriel O James
- Research School of Biology, Plant Sciences, Australian National University, CanberraACT, Australia; Heliase Genomics, University of AucklandAuckland, New Zealand
| | - Loraine Rourke
- Research School of Biology, Plant Sciences, Australian National University, Canberra ACT, Australia
| | - Michael A Djordjevic
- Research School of Biology, Plant Sciences, Australian National University, Canberra ACT, Australia
| | - Susan I Blackburn
- CSIRO National Research Collections Australia, Hobart TAS, Australia
| | - G D Price
- Research School of Biology, Plant Sciences, Australian National University, Canberra ACT, Australia
| |
Collapse
|
40
|
Discrete gene replication events drive coupling between the cell cycle and circadian clocks. Proc Natl Acad Sci U S A 2016; 113:4063-8. [PMID: 27035936 DOI: 10.1073/pnas.1507291113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push-pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene.
Collapse
|
41
|
Diversification of DnaA dependency for DNA replication in cyanobacterial evolution. ISME JOURNAL 2015; 10:1113-21. [PMID: 26517699 DOI: 10.1038/ismej.2015.194] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/01/2015] [Accepted: 09/27/2015] [Indexed: 11/08/2022]
Abstract
Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor.
Collapse
|
42
|
Yokoo R, Hood RD, Savage DF. Live-cell imaging of cyanobacteria. PHOTOSYNTHESIS RESEARCH 2015; 126:33-46. [PMID: 25366827 DOI: 10.1007/s11120-014-0049-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Cyanobacteria are a diverse bacterial phylum whose members possess a high degree of ultrastructural organization and unique gene regulatory mechanisms. Unraveling this complexity will require the use of live-cell fluorescence microscopy, but is impeded by the inherent fluorescent background associated with light-harvesting pigments and the need to feed photosynthetic cells light. Here, we outline a roadmap for overcoming these challenges. Specifically, we show that although basic cyanobacterial biology creates challenging experimental constraints, these restrictions can be mitigated by the careful choice of fluorophores and microscope instrumentation. Many of these choices are motivated by recent successful live-cell studies. We therefore also highlight how live-cell imaging has advanced our understanding of bacterial microcompartments, circadian rhythm, and the organization and segregation of the bacterial nucleoid.
Collapse
Affiliation(s)
- Rayka Yokoo
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rachel D Hood
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - David F Savage
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Energy Biosciences Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
43
|
Watanabe S, Ohbayashi R, Kanesaki Y, Saito N, Chibazakura T, Soga T, Yoshikawa H. Intensive DNA Replication and Metabolism during the Lag Phase in Cyanobacteria. PLoS One 2015; 10:e0136800. [PMID: 26331851 PMCID: PMC4558043 DOI: 10.1371/journal.pone.0136800] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022] Open
Abstract
Unlike bacteria such as Escherichia coli and Bacillus subtilis, several species of freshwater cyanobacteria are known to contain multiple chromosomal copies per cell, at all stages of their cell cycle. We have characterized the replication of multi-copy chromosomes in the cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Synechococcus 7942). In Synechococcus 7942, the replication of multi-copy chromosome is asynchronous, not only among cells but also among multi-copy chromosomes. This suggests that DNA replication is not tightly coupled to cell division in Synechococcus 7942. To address this hypothesis, we analysed the relationship between DNA replication and cell doubling at various growth phases of Synechococcus 7942 cell culture. Three distinct growth phases were characterised in Synechococcus 7942 batch culture: lag phase, exponential phase, and arithmetic (linear) phase. The chromosomal copy number was significantly higher during the lag phase than during the exponential and linear phases. Likewise, DNA replication activity was higher in the lag phase cells than in the exponential and linear phase cells, and the lag phase cells were more sensitive to nalidixic acid, a DNA gyrase inhibitor, than cells in other growth phases. To elucidate physiological differences in Synechococcus 7942 during the lag phase, we analysed the metabolome at each growth phase. In addition, we assessed the accumulation of central carbon metabolites, amino acids, and DNA precursors at each phase. The results of these analyses suggest that Synechococcus 7942 cells prepare for cell division during the lag phase by initiating intensive chromosomal DNA replication and accumulating metabolites necessary for the subsequent cell division and elongation steps that occur during the exponential growth and linear phases.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ryudo Ohbayashi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Yu Kanesaki
- Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Natsumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
- * E-mail:
| |
Collapse
|
44
|
Soppa J. Polyploidy in archaea and bacteria: about desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. J Mol Microbiol Biotechnol 2015; 24:409-19. [PMID: 25732342 DOI: 10.1159/000368855] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During recent years, it has become clear that many species of archaea and bacteria are polyploid and contain more than 10 copies of their chromosome. In this contribution, eight examples are discussed to highlight different aspects of polyploidy in prokaryotes. The species discussed are the bacteria Azotobacter vinelandii, Deinococcus radiodurans, Sinorhizobium meliloti, and Epulopiscium as well as the archaea Methanocaldococcus jannaschii, Methanococcus maripaludis, Haloferax volcanii, and haloarchaeal isolates from salt deposits. The topics include possible laboratory artifacts, resistance against double-strand breaks, long-term survival, relaxation of DNA segregation and septum formation, enforced polyploidy by a eukaryotic host, genome equalization by gene conversion, and the nongenetic usage of genomic DNA as a phosphate storage polymer. Together, the selected topics give an overview of the biodiversity of polyploidy in archaea and bacteria.
Collapse
Affiliation(s)
- Jörg Soppa
- Biocentre, Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
45
|
Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. FRONTIERS IN PLANT SCIENCE 2015; 6:46. [PMID: 25699072 PMCID: PMC4318279 DOI: 10.3389/fpls.2015.00046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/16/2015] [Indexed: 05/18/2023]
Abstract
Nostoc is widely known for its ability to fix atmospheric nitrogen and the establishment of symbiotic relationship with a wide range of plants from various taxonomic groups. Several strains of Nostoc produce phytohormones that promote growth of its plant partners. Nostoc OS-1 was therefore selected for study because of the presence of putative ipdC gene that encodes a key enzyme to produce Indole-3-acetic acid (IAA). The results indicated that both cellular and released IAA was found high with increasing incubation time and reached to a peak value (i.e., 21 pmol mg(-1)ch-a) on the third week as determined by UPLC-ESI-MS/MS. Also the Nostoc OS-1 strain efficiently colonized the roots and promoted the growth of rice as well as wheat under axenic conditions and induced ipdC gene that suggested the possible involvement of IAA in these phenotypes. To confirm the impact of IAA on root colonization efficiency and plant promoting phenotypes of Nostoc OS-1, an ipdC knockout mutant was generated by homologous recombinant method. The amount of releasing IAA, in vitro growth, root colonization, and plant promoting efficiency of the ipdC knockout mutant was observed significantly lower than wild type strain under axenic conditions. Importantly, these phenotypes were restored to wild-type levels when the ipdC knockout mutant was complemented with wild type ipdC gene. These results together suggested that ipdC and/or synthesized IAA of Nostoc OS-1 is required for its efficient root colonization and plant promoting activity.
Collapse
Affiliation(s)
- Anwar Hussain
- Department of Botany, University College of Science Shankar Campus, Abdul Wali Khan University Mardan, MardanPakistan
| | - Syed T. Shah
- Nuclear Institute for Food and Agriculture, Tarnab PeshawarPakistan
| | - Hazir Rahman
- Department of Microbiology, Kohat University of Science and Technology, KohatPakistan
| | - Muhammad Irshad
- Department of Botany, University College of Science Shankar Campus, Abdul Wali Khan University Mardan, MardanPakistan
| | - Amjad Iqbal
- Department of Food Science, University College of Science Shankar Campus, Abdul Wali Khan University Mardan, MardanPakistan
| |
Collapse
|
46
|
Hammar P, Angermayr SA, Sjostrom SL, van der Meer J, Hellingwerf KJ, Hudson EP, Joensson HN. Single-cell screening of photosynthetic growth and lactate production by cyanobacteria. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:193. [PMID: 26613003 PMCID: PMC4660834 DOI: 10.1186/s13068-015-0380-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/09/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Photosynthetic cyanobacteria are attractive for a range of biotechnological applications including biofuel production. However, due to slow growth, screening of mutant libraries using microtiter plates is not feasible. RESULTS We present a method for high-throughput, single-cell analysis and sorting of genetically engineered l-lactate-producing strains of Synechocystis sp. PCC6803. A microfluidic device is used to encapsulate single cells in picoliter droplets, assay the droplets for l-lactate production, and sort strains with high productivity. We demonstrate the separation of low- and high-producing reference strains, as well as enrichment of a more productive l-lactate-synthesizing population after UV-induced mutagenesis. The droplet platform also revealed population heterogeneity in photosynthetic growth and lactate production, as well as the presence of metabolically stalled cells. CONCLUSIONS The workflow will facilitate metabolic engineering and directed evolution studies and will be useful in studies of cyanobacteria biochemistry and physiology.
Collapse
Affiliation(s)
- Petter Hammar
- />Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- />Novo Nordisk Foundation Center for Biosustainability, KTH Royal Institute of Technology, Stockholm, Sweden
| | - S. Andreas Angermayr
- />Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- />Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Staffan L. Sjostrom
- />Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- />Novo Nordisk Foundation Center for Biosustainability, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Josefin van der Meer
- />Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Klaas J. Hellingwerf
- />Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Elton P. Hudson
- />Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Haakan N. Joensson
- />Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- />Novo Nordisk Foundation Center for Biosustainability, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
47
|
Cohen SE, Erb ML, Pogliano J, Golden SS. Best practices for fluorescence microscopy of the cyanobacterial circadian clock. Methods Enzymol 2015; 551:211-21. [PMID: 25662459 PMCID: PMC4479491 DOI: 10.1016/bs.mie.2014.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This chapter deals with methods of monitoring the subcellular localization of proteins in single cells in the circadian model system Synechococcus elongatus PCC 7942. While genetic, biochemical, and structural insights into the cyanobacterial circadian oscillator have flourished, difficulties in achieving informative subcellular imaging in cyanobacterial cells have delayed progress of the cell biology aspects of the clock. Here, we describe best practices for using fluorescent protein tags to monitor localization. Specifically, we address how to vet fusion proteins and overcome challenges in microscopic imaging of very small autofluorescent cells.
Collapse
Affiliation(s)
- Susan E. Cohen
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Marcella L. Erb
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Susan S. Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093,Corresponding author: Susan S. Golden (), Division of Biological Sciences, 9500 Gilman Dr. MC0116, AP&M Annex 4721, La Jolla, CA 92093-0116. Phone: 858-246-0658, Fax: 858-534-7108
| |
Collapse
|
48
|
Le TB, Laub MT. New approaches to understanding the spatial organization of bacterial genomes. Curr Opin Microbiol 2014; 22:15-21. [PMID: 25305533 DOI: 10.1016/j.mib.2014.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/17/2014] [Indexed: 11/16/2022]
Abstract
In all organisms, chromosomal DNA must be compacted nearly three orders of magnitude to fit within the limited volume of a cell. However, chromosomes cannot be haphazardly packed, and instead must adopt structures compatible with numerous cellular processes, including DNA replication, chromosome segregation, recombination, and gene expression. Recent technical advances have dramatically enhanced our understanding of how chromosomes are organized in vivo and have begun to reveal the mechanisms and forces responsible. Here, we review the current arsenal of techniques used to query chromosome structure, focusing first on single-cell fluorescence microscopy approaches that directly examine chromosome structure and then on population-averaged biochemical methods that infer chromosome structure based on the interaction frequencies of different loci. We describe the power of these techniques, highlighting the major advances they have produced while also discussing their limitations.
Collapse
Affiliation(s)
- Tung Bk Le
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
49
|
Abstract
A periodic bias in nucleotide frequency with a period of about 11 bp is characteristic for bacterial genomes. This signal is commonly interpreted to relate to the helical pitch of negatively supercoiled DNA. Functions in supercoiling-dependent RNA transcription or as a 'structural code' for DNA packaging have been suggested. Cyanobacterial genomes showed especially strong periodic signals and, on the other hand, DNA supercoiling and supercoiling-dependent transcription are highly dynamic and underlie circadian rhythms of these phototrophic bacteria. Focusing on this phylum and dinucleotides, we find that a minimal motif of AT-tracts (AT2) yields the strongest signal. Strong genome-wide periodicity is ancestral to a clade of unicellular and polyploid species but lost upon morphological transitions into two baeocyte-forming and a symbiotic species. The signal is intermediate in heterocystous species and weak in monoploid picocyanobacteria. A pronounced 'structural code' may support efficient nucleoid condensation and segregation in polyploid cells. The major source of the AT2 signal are protein-coding regions, where it is encoded preferentially in the first and third codon positions. The signal shows only few relations to supercoiling-dependent and diurnal RNA transcription in Synechocystis sp. PCC 6803. Strong and specific signals in two distinct transposons suggest roles in transposase transcription and transpososome formation.
Collapse
Affiliation(s)
- Robert Lehmann
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany
| | - Rainer Machné
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany Institute for Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1090, Vienna, Austria
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany
| |
Collapse
|
50
|
Circadian control of global gene expression by the cyanobacterial master regulator RpaA. Cell 2014; 155:1396-408. [PMID: 24315105 PMCID: PMC3935230 DOI: 10.1016/j.cell.2013.11.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/23/2013] [Accepted: 10/28/2013] [Indexed: 01/09/2023]
Abstract
The cyanobacterial circadian clock generates genome-wide transcriptional oscillations and regulates cell division, but the underlying mechanisms are not well understood. Here, we show that the response regulator RpaA serves as the master regulator of these clock outputs. Deletion of rpaA abrogates gene expression rhythms globally and arrests cells in a dawn-like expression state. Although rpaA deletion causes core oscillator failure by perturbing clock gene expression, rescuing oscillator function does not restore global expression rhythms. We show that phosphorylated RpaA regulates the expression of not only clock components, generating feedback on the core oscillator, but also a small set of circadian effectors that, in turn, orchestrate genome-wide transcriptional rhythms. Expression of constitutively active RpaA is sufficient to switch cells from a dawn-like to a dusk-like expression state as well as to block cell division. Hence, complex global circadian phenotypes can be generated by controlling the phosphorylation of a single transcription factor.
Collapse
|