1
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
2
|
Tauber E. Uncovering the circadian transcriptome of Nasonia vitripennis: insights into a non-canonical insect model. Proc Biol Sci 2024; 291:20241848. [PMID: 39591997 DOI: 10.1098/rspb.2024.1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
The study of the circadian clock has greatly benefited from using Drosophila as a model system. Yet accumulating evidence suggests that the fly might not be the canonical insect model. Here, I have analysed the circadian transcriptome of the jewel wasp Nasonia vitripennis by using RNA-seq in both constant darkness and constant light (in contrast to flies, the wasps are rhythmic under continuous light). I identify approximately 6% of the transcriptome as cycling under constant conditions, revealing a bimodal distribution of phases and low cycling amplitude. I examine the biological processes under circadian control in Nasonia, identifying clock control of functions such as metabolism, light response and a variety of neural processes, drawing comparisons between Nasonia and Drosophila. Although there was little similarity between cycling genes in Drosophila and Nasonia, the functions fulfilled by cycling transcripts were similar in both species. Interestingly, of the known Drosophila core clock genes, only Pdp1e, shaggy and Clock showed significant cycling in Nasonia, highlighting the potential diversity in molecular clock mechanisms across insect species.
Collapse
Affiliation(s)
- Eran Tauber
- Department of Evolutionary & Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
3
|
Córdoba LE, Pérez de Rosas AR, García BA, Serradell MDC, Remón C, Mougabure-Cueto GA, Stroppa MM. RNA interference of the clock gene period disrupts circadian rhythms in the expression of genes related to insecticide resistance in the chagas disease vector Triatoma infestans (Hemiptera: Reduviidae). Acta Trop 2024; 257:107329. [PMID: 39033969 DOI: 10.1016/j.actatropica.2024.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
In Triatoma infestans it was observed pyrethroid resistance attributed in part to an elevated oxidative metabolism mediated by cytochromes P450. The nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome P450 reductase (CPR) plays a crucial role in catalysing the electron transfer from NADPH to all cytochrome P450s. The daily variations in the expression of CPR gene and a P450 gene (CYP4EM7), both associated with insecticide resistance, suggested that their expressions would be under the endogenous clock control. To clarify the involvement of the clock in orchestration of the daily fluctuations in CPR and CYP4M7 genes expression, it was proposed to investigate the effect of silencing the clock gene period (per) by RNA interference (RNAi). The results obtained allowed to establish that the silencing of per gene was influenced by intake schemes used in the interference protocols. The silencing of per gene in T. infestans reduced its expression at all the time points analysed and abolished the characteristic rhythm in the transcriptional expression of per mRNA. The effect of the per gene silencing in the expression profiles at the transcriptional level of CPR and CYP4EM7 genes showed the loss of rhythmicity and demonstrated the biological clock involvement in the regulation of t heir expression.
Collapse
Affiliation(s)
- L E Córdoba
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - A R Pérez de Rosas
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - B A García
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Del C Serradell
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - C Remón
- Unidad Operativa de Vectores y Ambiente (UnOVE) Centro Nacional de Diagnóstico e Investigación en Endemo - Epidemias (CeNDIE), Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) Dr. C. MALBRAN, Santa María de Punilla, Córdoba, Argentina
| | - G A Mougabure-Cueto
- Laboratorio de Fisiología de Insectos, Departamento Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, UBA-CONICET). Buenos Aires, Argentina
| | - M M Stroppa
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
4
|
Liu X, Cai YD, Chiu JC. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. J Biol Chem 2024; 300:105616. [PMID: 38159854 PMCID: PMC10810748 DOI: 10.1016/j.jbc.2023.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). We previously observed daily rhythmicity of protein O-GlcNAcylation in a Drosophila model that is sensitive to the timing of food consumption. We showed that the circadian clock is pivotal in regulating daily O-GlcNAcylation rhythms given its control of the feeding-fasting cycle and hence nutrient availability. Interestingly, we reported that the circadian clock also modulates daily O-GlcNAcylation rhythm by regulating molecular mechanisms beyond the regulation of food consumption time. A large body of work now indicates that O-GlcNAcylation is likely a generalized cellular status effector as it responds to various cellular signals and conditions, such as ER stress, apoptosis, and infection. In this review, we summarize the metabolic regulation of protein O-GlcNAcylation through nutrient availability, HBP enzymes, and O-GlcNAc processing enzymes. We discuss the emerging roles of circadian clocks in regulating daily O-GlcNAcylation rhythm. Finally, we provide an overview of other cellular signals or conditions that impact O-GlcNAcylation. Many of these cellular pathways are themselves regulated by the clock and/or metabolism. Our review highlights the importance of maintaining optimal O-GlcNAc rhythm by restricting eating activity to the active period under physiological conditions and provides insights into potential therapeutic targets of O-GlcNAc homeostasis under pathological conditions.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, California, USA.
| |
Collapse
|
5
|
Patop IL, Anduaga AM, Bussi IL, Ceriani MF, Kadener S. Organismal landscape of clock cells and circadian gene expression in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542009. [PMID: 37292867 PMCID: PMC10245886 DOI: 10.1101/2023.05.23.542009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Circadian rhythms time physiological and behavioral processes to 24-hour cycles. It is generally assumed that most cells contain self-sustained circadian clocks that drive circadian rhythms in gene expression that ultimately generating circadian rhythms in physiology. While those clocks supposedly act cell autonomously, current work suggests that in Drosophila some of them can be adjusted by the brain circadian pacemaker through neuropeptides, like the Pigment Dispersing Factor (PDF). Despite these findings and the ample knowledge of the molecular clockwork, it is still unknown how circadian gene expression in Drosophila is achieved across the body. Results Here, we used single-cell and bulk RNAseq data to identify cells within the fly that express core-clock components. Surprisingly, we found that less than a third of the cell types in the fly express core-clock genes. Moreover, we identified Lamina wild field (Lawf) and Ponx-neuro positive (Poxn) neurons as putative new circadian neurons. In addition, we found several cell types that do not express core clock components but are highly enriched for cyclically expressed mRNAs. Strikingly, these cell types express the PDF receptor (Pdfr), suggesting that PDF drives rhythmic gene expression in many cell types in flies. Other cell types express both core circadian clock components and Pdfr, suggesting that in these cells, PDF regulates the phase of rhythmic gene expression. Conclusions Together, our data suggest three different mechanisms generate cyclic daily gene expression in cells and tissues: canonical endogenous canonical molecular clock, PDF signaling-driven expression, or a combination of both.
Collapse
Affiliation(s)
- Ines L. Patop
- Biology Department, Brandeis University, Waltham, MA, 02454, USA
| | | | - Ivana L. Bussi
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA CONICET), Buenos Aires, Argentina
| | - M. Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
6
|
Liu X, Chiu JC. Nutrient-sensitive protein O-GlcNAcylation shapes daily biological rhythms. Open Biol 2022; 12:220215. [PMID: 36099933 PMCID: PMC9470261 DOI: 10.1098/rsob.220215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022] Open
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a nutrient-sensitive protein modification that alters the structure and function of a wide range of proteins involved in diverse cellular processes. Similar to phosphorylation, another protein modification that targets serine and threonine residues, O-GlcNAcylation occupancy on cellular proteins exhibits daily rhythmicity and has been shown to play critical roles in regulating daily rhythms in biology by modifying circadian clock proteins and downstream effectors. We recently reported that daily rhythm in global O-GlcNAcylation observed in Drosophila tissues is regulated via the integration of circadian and metabolic signals. Significantly, mistimed feeding, which disrupts coordination of these signals, is sufficient to dampen daily O-GlcNAcylation rhythm and is predicted to negatively impact animal biological rhythms and health span. In this review, we provide an overview of published and potential mechanisms by which metabolic and circadian signals regulate hexosamine biosynthetic pathway metabolites and enzymes, as well as O-GlcNAc processing enzymes to shape daily O-GlcNAcylation rhythms. We also discuss the significance of functional interactions between O-GlcNAcylation and other post-translational modifications in regulating biological rhythms. Finally, we highlight organ/tissue-specific cellular processes and molecular pathways that could be modulated by rhythmic O-GlcNAcylation to regulate time-of-day-specific biology.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
7
|
Yildirim E, Curtis R, Hwangbo DS. Roles of peripheral clocks: lessons from the fly. FEBS Lett 2022; 596:263-293. [PMID: 34862983 PMCID: PMC8844272 DOI: 10.1002/1873-3468.14251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
To adapt to and anticipate rhythmic changes in the environment such as daily light-dark and temperature cycles, internal timekeeping mechanisms called biological clocks evolved in a diverse set of organisms, from unicellular bacteria to humans. These biological clocks play critical roles in organisms' fitness and survival by temporally aligning physiological and behavioral processes to the external cues. The central clock is located in a small subset of neurons in the brain and drives daily activity rhythms, whereas most peripheral tissues harbor their own clock systems, which generate metabolic and physiological rhythms. Since the discovery of Drosophila melanogaster clock mutants in the early 1970s, the fruit fly has become an extensively studied model organism to investigate the mechanism and functions of circadian clocks. In this review, we primarily focus on D. melanogaster to survey key discoveries and progresses made over the past two decades in our understanding of peripheral clocks. We discuss physiological roles and molecular mechanisms of peripheral clocks in several different peripheral tissues of the fly.
Collapse
Affiliation(s)
| | - Rachel Curtis
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Dae-Sung Hwangbo
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
8
|
Kumar S, Tunc I, Tansey TR, Pirooznia M, Harbison ST. Identification of Genes Contributing to a Long Circadian Period in Drosophila Melanogaster. J Biol Rhythms 2020; 36:239-253. [PMID: 33274675 DOI: 10.1177/0748730420975946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The endogenous circadian period of animals and humans is typically very close to 24 h. Individuals with much longer circadian periods have been observed, however, and in the case of humans, these deviations have health implications. Previously, we observed a line of Drosophila with a very long average period of 31.3 h for locomotor activity behavior. Preliminary mapping indicated that the long period did not map to known canonical clock genes but instead mapped to multiple chromosomes. Using RNA-Seq, we surveyed the whole transcriptome of fly heads from this line across time and compared it with a wild-type control. A three-way generalized linear model revealed that approximately two-thirds of the genes were expressed differentially among the two genotypes, while only one quarter of the genes varied across time. Using these results, we applied algorithms to search for genes that oscillated over 24 h, identifying genes not previously known to cycle. We identified 166 differentially expressed genes that overlapped with a previous Genome-wide Association Study (GWAS) of circadian behavior, strongly implicating them in the long-period phenotype. We tested mutations in 45 of these genes for their effect on the circadian period. Mutations in Alk, alph, CG10089, CG42540, CG6034, Kairos (CG6123), CG8768, klg, Lar, sick, and tinc had significant effects on the circadian period, with seven of these mutations increasing the circadian period of locomotor activity behavior. Genetic rescue of mutant Kairos restored the circadian period to wild-type levels, suggesting it has a critical role in determining period length in constant darkness.
Collapse
Affiliation(s)
- Shailesh Kumar
- Laboratory of Systems Genetics, Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Ilker Tunc
- Bioinformatics and Computational Biology Core, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Terry R Tansey
- Laboratory of Systems Genetics, Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Susan T Harbison
- Laboratory of Systems Genetics, Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| |
Collapse
|
9
|
Abstract
The identification and characterization of rhythmically expressed mRNAs have been an active area of research over the past 20 years, as these mRNAs are believed to produce the daily rhythms in a wide range of biological processes. Circadian transcriptome studies have used mature mRNA as a primary readout and focused largely on rhythmic RNA synthesis as a regulatory mechanism underlying rhythmic mRNA expression. However, RNA synthesis, RNA degradation, or a combination of both must be rhythmic to drive rhythmic RNA profiles, and it is still unclear to what extent rhythmic synthesis leads to rhythmic RNA profiles. In addition, circadian RNA expression is also often tissue specific. Although a handful of genes cycle in all or most tissues, others are rhythmic only in certain tissues, even though the same core clock mechanism is believed to control the rhythmic RNA profiles in all tissues. This review focuses on the dynamics of rhythmic RNA synthesis and degradation and discusses how these steps collectively determine the rhythmicity, phase, and amplitude of RNA accumulation. In particular, we highlight a possible role of RNA degradation in driving tissue-specific RNA rhythms. By unifying findings from experimental and theoretical studies, we will provide a comprehensive overview of how rhythmic gene expression can be achieved and how each regulatory step contributes to tissue-specific circadian transcriptome output in mammals.
Collapse
Affiliation(s)
| | - Shihoko Kojima
- To whom all correspondence should be addressed: Shihoko Kojima, Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, 1015 Life Science Circle, Blacksburg, VA, 24061, USA; .
| |
Collapse
|
10
|
Chen W, Lin J, Li B, Cao S, Li H, Zhao J, Liu K, Li Y, Li Y, Sun S. Screening and functional prediction of differentially expressed circRNAs in proliferative human aortic smooth muscle cells. J Cell Mol Med 2020; 24:4762-4772. [PMID: 32155686 PMCID: PMC7176856 DOI: 10.1111/jcmm.15150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/09/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is the pathological base of vascular remodelling diseases. Circular RNAs (circRNAs) are important regulators involved in various biological processes. However, the function of circRNAs in VSMC proliferation regulation remains largely unknown. This study was conducted to identify the key differentially expressed circRNAs (DEcircRNAs) and predict their functions in human aortic smooth muscle cell (HASMC) proliferation. To achieve this, DEcircRNAs between proliferative and quiescent HASMCs were detected using a microarray, followed by quantitative real-time RT-PCR validation. A DEcircRNA-miRNA-DEmRNA network was constructed, and functional annotation was performed using Gene Ontology (GO) and KEGG pathway analysis. The function of hsa_circ_0002579 in HASMC proliferation was analysed by Western blot. The functional annotation of the DEcircRNA-miRNA-DEmRNA network indicated that the four DEcircRNAs might play roles in the TGF-β receptor signalling pathway, Ras signalling pathway, AMPK signalling pathway and Wnt signalling pathway. Twenty-seven DEcircRNAs with coding potential were screened. Hsa_circ_0002579 might be a pro-proliferation factor of HASMC. Overall, our study identified the key DEcircRNAs between proliferative and quiescent HASMCs, which might provide new important clues for exploring the functions of circRNAs in vascular remodelling diseases.
Collapse
Affiliation(s)
- Wei Chen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiajie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Shanhu Cao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Huanhuan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Jianzhi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Yiming Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Yang Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Pillman KA, Scheer KG, Hackett-Jones E, Saunders K, Bert AG, Toubia J, Whitfield HJ, Sapkota S, Sourdin L, Pham H, Le TD, Cursons J, Davis MJ, Gregory PA, Goodall GJ, Bracken CP. Extensive transcriptional responses are co-ordinated by microRNAs as revealed by Exon-Intron Split Analysis (EISA). Nucleic Acids Res 2019; 47:8606-8619. [PMID: 31372646 PMCID: PMC6895270 DOI: 10.1093/nar/gkz664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been a subject of intense scrutiny as it facilitates metastasis and alters drug sensitivity. Although EMT-regulatory roles for numerous miRNAs and transcription factors are known, their functions can be difficult to disentangle, in part due to the difficulty in identifying direct miRNA targets from complex datasets and in deciding how to incorporate 'indirect' miRNA effects that may, or may not, represent biologically relevant information. To better understand how miRNAs exert effects throughout the transcriptome during EMT, we employed Exon-Intron Split Analysis (EISA), a bioinformatic technique that separates transcriptional and post-transcriptional effects through the separate analysis of RNA-Seq reads mapping to exons and introns. We find that in response to the manipulation of miRNAs, a major effect on gene expression is transcriptional. We also find extensive co-ordination of transcriptional and post-transcriptional regulatory mechanisms during both EMT and mesenchymal to epithelial transition (MET) in response to TGF-β or miR-200c respectively. The prominent transcriptional influence of miRNAs was also observed in other datasets where miRNA levels were perturbed. This work cautions against a narrow approach that is limited to the analysis of direct targets, and demonstrates the utility of EISA to examine complex regulatory networks involving both transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Katherine A Pillman
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Kaitlin G Scheer
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Emily Hackett-Jones
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Klay Saunders
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - John Toubia
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Holly J Whitfield
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sunil Sapkota
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Laura Sourdin
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Hoang Pham
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia
| | - Thuc D Le
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia
| | - Joseph Cursons
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Melissa J Davis
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA, Australia
| |
Collapse
|
12
|
Ubiquitylation Dynamics of the Clock Cell Proteome and TIMELESS during a Circadian Cycle. Cell Rep 2019; 23:2273-2282. [PMID: 29791839 DOI: 10.1016/j.celrep.2018.04.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 02/10/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Circadian clocks have evolved as time-measuring molecular devices to help organisms adapt their physiology to daily changes in light and temperature. Transcriptional oscillations account for a large fraction of rhythmic protein abundance. However, cycling of various posttranslational modifications, such as ubiquitylation, also contributes to shape the rhythmic protein landscape. In this study, we used an in vivo ubiquitin labeling assay to investigate the circadian ubiquitylated proteome of Drosophila melanogaster. We find that cyclic ubiquitylation affects MEGATOR (MTOR), a chromatin-associated nucleoporin that, in turn, feeds back to regulate the core molecular oscillator. Furthermore, we show that the ubiquitin ligase subunits CULLIN-3 (CUL-3) and SUPERNUMERARY LIMBS (SLMB) cooperate for ubiquitylating the TIMELESS protein. These findings stress the importance of ubiquitylation pathways in the Drosophila circadian clock and reveal a key component of this system.
Collapse
|
13
|
Abstract
Circadian clocks drive daily rhythms of physiology and behavior in multiple organisms and synchronize these rhythms to environmental cycles of light and temperature. The basic mechanism of the clock consists of a transcription-translation feedback loop, in which key clock proteins negatively regulate their own transcription. Although much of the focus with respect to clock mechanisms has been on the regulation of transcription and on the stability and activity of clock proteins, it is clear that other regulatory processes also have to be involved to explain aspects of clock function. Here, we review the role of alternative splicing in circadian clocks. Starting with a discussion of the Drosophila clock and then extending to other major circadian model systems, we describe how the control of alternative splicing enables organisms to maintain their circadian clocks as well as to respond to environmental inputs, in particular to temperature changes.
Collapse
Affiliation(s)
- Iryna Shakhmantsir
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Lugena AB, Zhang Y, Menet JS, Merlin C. Genome-wide discovery of the daily transcriptome, DNA regulatory elements and transcription factor occupancy in the monarch butterfly brain. PLoS Genet 2019; 15:e1008265. [PMID: 31335862 PMCID: PMC6677324 DOI: 10.1371/journal.pgen.1008265] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 08/02/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022] Open
Abstract
The Eastern North American monarch butterfly, Danaus plexippus, is famous for its spectacular seasonal long-distance migration. In recent years, it has also emerged as a novel system to study how animal circadian clocks keep track of time and regulate ecologically relevant daily rhythmic activities and seasonal behavioral outputs. However, unlike in Drosophila and the mouse, little work has been undertaken in the monarch to identify rhythmic genes at the genome-wide level and elucidate the regulation of their diurnal expression. Here, we used RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC)-sequencing to profile the diurnal transcriptome, open chromatin regions, and transcription factor (TF) footprints in the brain of wild-type monarchs and of monarchs with impaired clock function, including Cryptochrome 2 (Cry2), Clock (Clk), and Cycle-like loss-of-function mutants. We identified 217 rhythmically expressed genes in the monarch brain; many of them were involved in the regulation of biological processes key to brain function, such as glucose metabolism and neurotransmission. Surprisingly, we found no significant time-of-day and genotype-dependent changes in chromatin accessibility in the brain. Instead, we found the existence of a temporal regulation of TF occupancy within open chromatin regions in the vicinity of rhythmic genes in the brains of wild-type monarchs, which is disrupted in clock deficient mutants. Together, this work identifies for the first time the rhythmic genes and modes of regulation by which diurnal transcription rhythms are regulated in the monarch brain. It also illustrates the power of ATAC-sequencing to profile genome-wide regulatory elements and TF binding in a non-model organism for which TF-specific antibodies are not yet available. With a rich biology that includes a clock-regulated migratory behavior and a circadian clock possessing mammalian clock orthologues, the monarch butterfly is an unconventional system with broad appeal to study circadian and seasonal rhythms. While clockwork mechanisms and rhythmic behavioral outputs have been studied in this species, the rhythmic genes that regulate rhythmic daily and seasonal activities remain largely unknown. Likewise, the mechanisms regulating rhythmic gene expression have not been explored in the monarch. Here, we applied genome-wide sequencing approaches to identify genes with rhythmic diurnal expression in the monarch brain, revealing the coordination of key pathways for brain function. We also identified the monarch brain open chromatin regions and provide evidence that regulation of rhythmic gene expression does not occur through temporal regulation of chromatin opening but rather by the time-of-day dependent binding of transcription factors in cis-regulatory elements. Together, our data extend our knowledge of the molecular rhythmic pathways, which may prove important in understanding the mechanisms underlying the daily and seasonal biology of the migratory monarch butterflies.
Collapse
Affiliation(s)
- Aldrin B. Lugena
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Ying Zhang
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Jerome S. Menet
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
In mammals, genetic influences of circadian rhythms occur at many levels. A set of core "clock genes" have been identified that form a feedback loop of gene transcription and translation. The core genetic clockwork generates circadian rhythms in cells throughout the body. Polymorphisms in both core clock genes and interacting genes contribute to individual differences in the expression and properties of circadian rhythms. The circadian clock profoundly influences the patterns of gene expression and cellular functions, providing a mechanistic basis for the impact of the genetic circadian system on normal physiological processes as well as the development of diseases.
Collapse
Affiliation(s)
- Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
| | - Kazuhiro Shimomura
- Center for Sleep and Circadian Biology; Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, 420 East Superior Street, Chicago, IL 60611, USA
| | - Peng Jiang
- Center for Sleep and Circadian Biology; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| |
Collapse
|
16
|
Varela GM, Stroppa MM, García BA. Daily Variations in the Expression of Genes Related to Insecticide Resistance in the Chagas Disease Vector Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 2019; 100:1482-1485. [PMID: 30994101 DOI: 10.4269/ajtmh.19-0155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Pyrethroid resistance has been detected in Triatoma infestans, which in part has been attributed to increased oxidative metabolism of the insecticide by cytochrome P450s. Nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome P450 reductase (CPR) catalyzes electron transfer from NADPH to all known cytochrome P450s. In this study, the expression of the CPR gene at transcriptional level was determined in different tissues and two life stages. The expression patterns showed differences in the tissues and stages studied, suggesting differential metabolic requirements. On the other hand, to investigate the presence of rhythms in the expression of genes related with insecticide resistance, we explored the daily expression profile of the CPR gene and a P450 gene (CYP4EM7) in fat body from adults of T. infestans under different dark/light regimes. The results suggest that CPR gene expression is under endogenous clock regulation and show a rhythmic profile in the expression of the CYP4EM7 gene.
Collapse
Affiliation(s)
- Gonzalo M Varela
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María M Stroppa
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Beatriz A García
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
17
|
PERIOD-controlled deadenylation of the timeless transcript in the Drosophila circadian clock. Proc Natl Acad Sci U S A 2019; 116:5721-5726. [PMID: 30833404 DOI: 10.1073/pnas.1814418116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Drosophila circadian oscillator relies on a negative transcriptional feedback loop, in which the PERIOD (PER) and TIMELESS (TIM) proteins repress the expression of their own gene by inhibiting the activity of the CLOCK (CLK) and CYCLE (CYC) transcription factors. A series of posttranslational modifications contribute to the oscillations of the PER and TIM proteins but few posttranscriptional mechanisms have been described that affect mRNA stability. Here we report that down-regulation of the POP2 deadenylase, a key component of the CCR4-NOT deadenylation complex, alters behavioral rhythms. Down-regulating POP2 specifically increases TIM protein and tim mRNA but not tim pre-mRNA, supporting a posttranscriptional role. Indeed, reduced POP2 levels induce a lengthening of tim mRNA poly(A) tail. Surprisingly, such effects are lost in per 0 mutants, supporting a PER-dependent inhibition of tim mRNA deadenylation by POP2. We report a deadenylation mechanism that controls the oscillations of a core clock gene transcript.
Collapse
|
18
|
Li J, Yu RY, Emran F, Chen BE, Hughes ME. Achilles-Mediated and Sex-Specific Regulation of Circadian mRNA Rhythms in Drosophila. J Biol Rhythms 2019; 34:131-143. [PMID: 30803307 DOI: 10.1177/0748730419830845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The circadian clock is an evolutionarily conserved mechanism that generates the rhythmic expression of downstream genes. The core circadian clock drives the expression of clock-controlled genes, which in turn play critical roles in carrying out many rhythmic physiological processes. Nevertheless, the molecular mechanisms by which clock output genes orchestrate rhythmic signals from the brain to peripheral tissues are largely unknown. Here we explored the role of one rhythmic gene, Achilles, in regulating the rhythmic transcriptome in the fly head. Achilles is a clock-controlled gene in Drosophila that encodes a putative RNA-binding protein. Achilles expression is found in neurons throughout the fly brain using fluorescence in situ hybridization (FISH), and legacy data suggest it is not expressed in core clock neurons. Together, these observations argue against a role for Achilles in regulating the core clock. To assess its impact on circadian mRNA rhythms, we performed RNA sequencing (RNAseq) to compare the rhythmic transcriptomes of control flies and those with diminished Achilles expression in all neurons. Consistent with previous studies, we observe dramatic upregulation of immune response genes upon knock-down of Achilles. Furthermore, many circadian mRNAs lose their rhythmicity in Achilles knock-down flies, suggesting that a subset of the rhythmic transcriptome is regulated either directly or indirectly by Achilles. These Achilles-mediated rhythms are observed in genes involved in immune function and in neuronal signaling, including Prosap, Nemy and Jhl-21. A comparison of RNAseq data from control flies reveals that only 42.7% of clock-controlled genes in the fly brain are rhythmic in both males and females. As mRNA rhythms of core clock genes are largely invariant between the sexes, this observation suggests that sex-specific mechanisms are an important, and heretofore under-appreciated, regulator of the rhythmic transcriptome.
Collapse
Affiliation(s)
- Jiajia Li
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Renee Yin Yu
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec, Canada
| | - Farida Emran
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec, Canada
| | - Brian E Chen
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montréal, Québec, Canada.,Departments of Medicine and Neurology and Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Michael E Hughes
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Du J, Zhang Y, Xue Y, Zhao X, Zhao X, Wei Y, Li Z, Zhang Y, Zhao Z. Diurnal protein oscillation profiles in Drosophila head. FEBS Lett 2018; 592:3736-3749. [PMID: 30311939 DOI: 10.1002/1873-3468.13267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 11/08/2022]
Abstract
Circadian clocks control daily rhythms in physiology, metabolism and behaviour in most organisms. Proteome-wide analysis of protein oscillations is still lacking in Drosophila. In this study, the total protein and phosphorylated protein in Drosophila heads in a 24-h daily time-course were assayed by using the isobaric tags for relative and absolute quantitation (iTRAQ) method, and 10 and 7 oscillating proteins as well as 19 and 22 oscillating phosphoproteins in the w1118 control and ClkJrk mutant strains were separately identified. Lastly, we performed a mini screen to investigate the functions of some oscillating proteins in circadian locomotion rhythms. This study provides the first proteomic profiling of diurnally oscillating proteins in fly heads, thereby providing a basis for further mechanistic studies of these proteins in circadian rhythm.
Collapse
Affiliation(s)
- Juan Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yifan Zhang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongbo Xue
- Department of Biology, University of Nevada, Reno, NV, USA
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianguo Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yu Wei
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, NV, USA
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Hall H, Ma J, Shekhar S, Leon-Salas WD, Weake VM. Blue light induces a neuroprotective gene expression program in Drosophila photoreceptors. BMC Neurosci 2018; 19:43. [PMID: 30029619 PMCID: PMC6053765 DOI: 10.1186/s12868-018-0443-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/14/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Light exposure induces oxidative stress, which contributes to ocular diseases of aging. Blue light provides a model for light-induced oxidative stress, lipid peroxidation and retinal degeneration in Drosophila melanogaster. In contrast to mature adults, which undergo retinal degeneration when exposed to prolonged blue light, newly-eclosed flies are resistant to blue light-induced retinal degeneration. Here, we sought to characterize the gene expression programs induced by blue light in flies of different ages to identify neuroprotective pathways utilized by photoreceptors to cope with light-induced oxidative stress. RESULTS To identify gene expression changes induced by blue light exposure, we profiled the nuclear transcriptome of Drosophila photoreceptors from one- and six-day-old flies exposed to blue light and compared these with dark controls. Flies were exposed to 3 h blue light, which increases levels of reactive oxygen species but does not cause retinal degeneration. We identified substantial gene expression changes in response to blue light only in six-day-old flies. In six-day-old flies, blue light induced a neuroprotective gene expression program that included upregulation of stress response pathways and downregulation of genes involved in light response, calcium influx and ion transport. An intact phototransduction pathway and calcium influx were required for upregulation, but not downregulation, of genes in response to blue light, suggesting that distinct pathways mediate the blue light-associated transcriptional response. CONCLUSION Our data demonstrate that under phototoxic conditions, Drosophila photoreceptors upregulate stress response pathways and simultaneously, downregulate expression of phototransduction components, ion transporters, and calcium channels. Together, this gene expression program both counteracts the calcium influx resulting from prolonged light exposure, and ameliorates the oxidative stress resulting from this calcium influx. Thus, six-day-old flies can withstand up to 3 h blue light exposure without undergoing retinal degeneration. Developmental transitions during the first week of adult Drosophila life lead to an altered gene expression program in photoreceptors that includes reduced expression of genes that maintain redox and calcium homeostasis, reducing the capacity of six-day-old flies to cope with longer periods (8 h) of light exposure. Together, these data provide insight into the neuroprotective gene regulatory mechanisms that enable photoreceptors to withstand light-induced oxidative stress.
Collapse
Affiliation(s)
- Hana Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jingqun Ma
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.,Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Sudhanshu Shekhar
- Interdisciplinary Life Science (PULSe), Purdue University, West Lafayette, IN, 47907, USA
| | - Walter D Leon-Salas
- Purdue Polytechnic Institute, Purdue University, West Lafayette, IN, 47907, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, 47907, USA.
| |
Collapse
|
21
|
Cusumano P, Biscontin A, Sandrelli F, Mazzotta GM, Tregnago C, De Pittà C, Costa R. Modulation of miR-210 alters phasing of circadian locomotor activity and impairs projections of PDF clock neurons in Drosophila melanogaster. PLoS Genet 2018; 14:e1007500. [PMID: 30011269 PMCID: PMC6062148 DOI: 10.1371/journal.pgen.1007500] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/26/2018] [Accepted: 06/19/2018] [Indexed: 01/03/2023] Open
Abstract
Single microRNAs are usually associated with hundreds of putative target genes that can influence multiple phenotypic traits in Drosophila, ranging from development to behaviour. We investigated the function of Drosophila miR-210 in circadian behaviour by misexpressing it within circadian clock cells. Manipulation of miR-210 expression levels in the PDF (pigment dispersing factor) positive neurons affected the phase of locomotor activity, under both light-dark conditions and constant darkness. PER cyclical expression was not affected in clock neurons, however, when miR-210 was up-regulated, a dramatic alteration in the morphology of PDF ventral lateral neuron (LNv) arborisations was observed. The effect of miR-210 in shaping neuronal projections was confirmed in vitro, using a Drosophila neuronal cell line. A transcriptomic analysis revealed that miR-210 overexpression affects the expression of several genes belonging to pathways related to circadian processes, neuronal development, GTPases signal transduction and photoreception. Collectively, these data reveal the role of miR-210 in modulating circadian outputs in flies and guiding/remodelling PDF positive LNv arborisations and indicate that miR-210 may have pleiotropic effects on the clock, light perception and neuronal development. In recent years, the role of microRNAs in regulating the endogenous circadian clock and its rhythmic outputs for behaviour/physiology has been recognized. We have observed that depletion or over-expression of miR-210 in Drosophila melanogaster modulates the phase of locomotor activity, without affecting the molecular oscillation of the pacemaker neurons. Moreover, miR-210 over-expression dramatically alters the pattern of projections from the PDF-positive Lateral Neurons (LNvs). Differentially expressed genes detected in miR-210 over-expressing flies implicated circadian processes, neuronal development, and photoreception. Taken together, our findings indicate the involvement of miR-210 in modulating circadian output and remodelling the projections of PDF clock neurons, and suggest that miR-210 may have pleiotropic effects on clock, light perception and neuronal development.
Collapse
Affiliation(s)
- Paola Cusumano
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Claudia Tregnago
- Department of Women and Children’s Health, University of Padova, Padova, Italy
| | - Cristiano De Pittà
- Department of Biology, University of Padova, Padova, Italy
- * E-mail: (CD); (RC)
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
- * E-mail: (CD); (RC)
| |
Collapse
|
22
|
Beta RAA, Balatsos NAA. Tales around the clock: Poly(A) tails in circadian gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1484. [PMID: 29911349 DOI: 10.1002/wrna.1484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 11/07/2022]
Abstract
Circadian rhythms are ubiquitous time-keeping processes in eukaryotes with a period of ~24 hr. Light is perhaps the main environmental cue (zeitgeber) that affects several aspects of physiology and behaviour, such as sleep/wake cycles, orientation of birds and bees, and leaf movements in plants. Temperature can serve as the main zeitgeber in the absence of light cycles, even though it does not lead to rhythmicity through the same mechanism as light. Additional cues include feeding patterns, humidity, and social rhythms. At the molecular level, a master oscillator orchestrates circadian rhythms and organizes molecular clocks located in most cells. The generation of the 24 hr molecular clock is based on transcriptional regulation, as it drives intrinsic rhythmic changes based on interlocked transcription/translation feedback loops that synchronize expression of genes. Thus, processes and factors that determine rhythmic gene expression are important to understand circadian rhythms. Among these, the poly(A) tails of RNAs play key roles in their stability, translational efficiency and degradation. In this article, we summarize current knowledge and discuss perspectives on the role and significance of poly(A) tails and associating factors in the context of the circadian clock. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > 3' End Processing.
Collapse
Affiliation(s)
- Rafailia A A Beta
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nikolaos A A Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
23
|
Wang Q, Abruzzi KC, Rosbash M, Rio DC. Striking circadian neuron diversity and cycling of Drosophila alternative splicing. eLife 2018; 7:35618. [PMID: 29863472 PMCID: PMC6025963 DOI: 10.7554/elife.35618] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/31/2018] [Indexed: 11/13/2022] Open
Abstract
Although alternative pre-mRNA splicing (AS) significantly diversifies the neuronal proteome, the extent of AS is still unknown due in part to the large number of diverse cell types in the brain. To address this complexity issue, we used an annotation-free computational method to analyze and compare the AS profiles between small specific groups of Drosophila circadian neurons. The method, the Junction Usage Model (JUM), allows the comprehensive profiling of both known and novel AS events from specific RNA-seq libraries. The results show that many diverse and novel pre-mRNA isoforms are preferentially expressed in one class of clock neuron and also absent from the more standard Drosophila head RNA preparation. These AS events are enriched in potassium channels important for neuronal firing, and there are also cycling isoforms with no detectable underlying transcriptional oscillations. The results suggest massive AS regulation in the brain that is also likely important for circadian regulation.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Center for RNA Systems Biology (CRSB), University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States
| | - Katharine C Abruzzi
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavior Genomics, Brandeis University, Waltham, United States
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavior Genomics, Brandeis University, Waltham, United States
| | - Donald C Rio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Center for RNA Systems Biology (CRSB), University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, United States
| |
Collapse
|
24
|
Giebultowicz JM. Circadian regulation of metabolism and healthspan in Drosophila. Free Radic Biol Med 2018; 119:62-68. [PMID: 29277395 PMCID: PMC5910265 DOI: 10.1016/j.freeradbiomed.2017.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022]
Abstract
Circadian clocks generate daily rhythms in gene expression, cellular functions, physiological processes and behavior. The core clock mechanism consists of transcriptional-translational negative feedback loops that turn over with an endogenous circa 24h period. Classical genetic experiments in the fly Drosophila melanogaster played an essential role in identification of clock genes that turned out to be largely conserved between flies and mammals. Like in mammals, circadian clocks in flies generate transcriptional rhythms in a variety of metabolic pathways related to feeding and detoxification. Given that rhythms pervade metabolism and the loss of metabolic homeostasis is involved in aging and disease, there is increasing interest in understanding how the clocks and the rhythms they control change during aging. The importance of circadian clocks for healthy aging is supported by studies reporting that genetic or environmental clock disruptions are associated with reduced healthspan and lifespan. For example, arrhythmia caused by mutations in core clock genes lead to symptoms of accelerated aging in both flies and mammals, including neurodegenerative phenotypes. Despite the wealth of descriptive data, the mechanisms by which functional clocks confer healthspan and lifespan benefits are poorly understood. Studies in Drosophila discussed here are beginning to unravel causative relationships between the circadian system and aging. In particular, recent data suggest that clocks may be involved in inducing rhythmic expression of specific genes late in life in response to age-related increase in oxidative stress. This review will summarize insights into links between circadian system and aging in Drosophila, which were obtained using powerful genetics tools available for this model organism and taking advantage of the short adult lifespan in flies that is measured in days rather than years.
Collapse
|
25
|
Ma Y, Gil S, Grasser KD, Mas P. Targeted Recruitment of the Basal Transcriptional Machinery by LNK Clock Components Controls the Circadian Rhythms of Nascent RNAs in Arabidopsis. THE PLANT CELL 2018; 30:907-924. [PMID: 29618629 PMCID: PMC5973845 DOI: 10.1105/tpc.18.00052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 05/21/2023]
Abstract
The rhythms of steady-state mRNA expression pervade nearly all circadian systems. However, the mechanisms behind the rhythmic transcriptional synthesis and its correlation with circadian expression remain fully unexplored, particularly in plants. Here, we discovered a multifunctional protein complex that orchestrates the rhythms of transcriptional activity in Arabidopsis thaliana The expression of the circadian oscillator genes TIMING OF CAB EXPRESSION1/PSEUDO-RESPONSE REGULATOR1 and PSEUDO-RESPONSE REGULATOR5 initially relies on the modular function of the clock-related factor REVEILLE8: its MYB domain provides the DNA binding specificity, while its LCL domain recruits the clock components, NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED proteins (LNKs), to target promoters. LNKs, in turn, specifically interact with RNA Polymerase II and the transcript elongation FACT complex to rhythmically co-occupy the target loci. The functional interaction of these components is central for chromatin status, transcript initiation, and elongation as well as for proper rhythms in nascent RNAs. Thus, our findings explain how genome readout of environmental information ultimately results in rhythmic changes of gene expression.
Collapse
Affiliation(s)
- Yuan Ma
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Sergio Gil
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Klaus D Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemistry Center, University of Regensburg, D-93053 Regensburg, Germany
| | - Paloma Mas
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| |
Collapse
|
26
|
Torres M, Becquet D, Franc JL, François-Bellan AM. Circadian processes in the RNA life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1467. [PMID: 29424086 DOI: 10.1002/wrna.1467] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/24/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
The circadian clock drives daily rhythms of multiple physiological processes, allowing organisms to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of at least 30% of expressed genes. While the ability for the endogenous timekeeping system to generate a 24-hr cycle is a cell-autonomous mechanism based on negative autoregulatory feedback loops of transcription and translation involving core-clock genes and their protein products, it is now increasingly evident that additional mechanisms also govern the circadian oscillations of clock-controlled genes. Such mechanisms can take place post-transcriptionally during the course of the RNA life cycle. It has been shown that many steps during RNA processing are regulated in a circadian manner, thus contributing to circadian gene expression. These steps include mRNA capping, alternative splicing, changes in splicing efficiency, and changes in RNA stability controlled by the tail length of polyadenylation or the use of alternative polyadenylation sites. RNA transport can also follow a circadian pattern, with a circadian nuclear retention driven by rhythmic expression within the nucleus of particular bodies (the paraspeckles) and circadian export to the cytoplasm driven by rhythmic proteins acting like cargo. Finally, RNA degradation may also follow a circadian pattern through the rhythmic involvement of miRNAs. In this review, we summarize the current knowledge of the post-transcriptional circadian mechanisms known to play a prominent role in shaping circadian gene expression in mammals. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Editing and Modification RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Manon Torres
- CNRS, CRN2M-UMR7286, Faculté de Médecine Nord, Aix-Marseille Université, Marseille, France
| | - Denis Becquet
- CNRS, CRN2M-UMR7286, Faculté de Médecine Nord, Aix-Marseille Université, Marseille, France
| | - Jean-Louis Franc
- CNRS, CRN2M-UMR7286, Faculté de Médecine Nord, Aix-Marseille Université, Marseille, France
| | | |
Collapse
|
27
|
Hsieh PN, Zhang L, Jain MK. Coordination of cardiac rhythmic output and circadian metabolic regulation in the heart. Cell Mol Life Sci 2018; 75:403-416. [PMID: 28825119 PMCID: PMC5765194 DOI: 10.1007/s00018-017-2606-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
Over the course of a 24-h day, demand on the heart rises and falls with the sleep/wake cycles of the organism. Cardiac metabolism oscillates appropriately, with the relative contributions of major energy sources changing in a circadian fashion. The cardiac peripheral clock is hypothesized to drive many of these changes, yet the precise mechanisms linking the cardiac clock to metabolism remain a source of intense investigation. Here we summarize the current understanding of circadian alterations in cardiac metabolism and physiology, with an emphasis on novel findings from unbiased transcriptomic studies. Additionally, we describe progress in elucidating the links between the cardiac peripheral clock outputs and cardiac metabolism, as well as their implications for cardiac physiology.
Collapse
Affiliation(s)
- Paishiun Nelson Hsieh
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 2103 Cornell Road, Room 4-503, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mukesh Kumar Jain
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 2103 Cornell Road, Room 4-503, Cleveland, OH, USA.
- Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH, USA.
| |
Collapse
|
28
|
Xue Y, Zhang Y. Emerging roles for microRNA in the regulation of Drosophila circadian clock. BMC Neurosci 2018; 19:1. [PMID: 29338692 PMCID: PMC5769547 DOI: 10.1186/s12868-018-0401-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background The circadian clock, which operates within an approximately 24-h period, is closely linked to the survival and fitness of almost all living organisms. The circadian clock is generated through a negative transcription-translation feedback loop. microRNAs (miRNAs) are small non-coding RNAs comprised of approximately 22 nucleotides that post-transcriptionally regulate target mRNA by either inducing mRNA degradation or inhibiting translation. Results In recent years, miRNAs have been found to play important roles in the regulation of the circadian clock, especially in Drosophila. In this review, we will use fruit flies as an example, and summarize the progress achieved in the study of miRNA-mediated clock regulation. Three main aspects of the circadian clock, namely, the free-running period, locomotion phase, and circadian amplitude, are discussed in detail in the context of how miRNAs are involved in these regulations. In addition, approaches regarding the discovery of circadian-related miRNAs and their targets are also discussed. Conclusions Research in the last decade suggests that miRNA-mediated post-transcriptional regulation is crucial to the generation and maintenance of a robust circadian clock in animals. In flies, miRNAs are known to modulate circadian rhythmicity and the free-running period, as well as circadian outputs. Further characterization of miRNAs, especially in the circadian input, will be a vital step toward a more comprehensive understanding of the functions underlying miRNA-control of the circadian clock.
Collapse
Affiliation(s)
- Yongbo Xue
- Department of Biology, University of Nevada, Reno, 1664 North Virginia St., Reno, NV, 89557-0315, USA
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, 1664 North Virginia St., Reno, NV, 89557-0315, USA.
| |
Collapse
|
29
|
Pelham JF, Mosier AE, Hurley JM. Characterizing Time-of-Day Conformational Changes in the Intrinsically Disordered Proteins of the Circadian Clock. Methods Enzymol 2018; 611:503-529. [DOI: 10.1016/bs.mie.2018.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Niepoth N, Ke G, de Roode JC, Groot AT. Comparing Behavior and Clock Gene Expression between Caterpillars, Butterflies, and Moths. J Biol Rhythms 2017; 33:52-64. [DOI: 10.1177/0748730417746458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Natalie Niepoth
- *Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Gao Ke
- *Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacobus C. de Roode
- *Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA, USA
| | - Astrid T. Groot
- *Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
31
|
Cardinal Epigenetic Role of non-coding Regulatory RNAs in Circadian Rhythm. Mol Neurobiol 2017; 55:3564-3576. [PMID: 28516429 DOI: 10.1007/s12035-017-0573-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
Circadian rhythm which governs basic physiological activities like sleeping, feeding and energy consumption is regulated by light-controlled central clock genes in the pacemaker neuron. The timekeeping machinery with unique transcriptional and post-transcriptional feedback loops is controlled by different small regulatory RNAs in the brain. Roles of the multiple neuronal genes, especially post-transcriptional regulation, splicing, polyadenylation, mature mRNA editing, and stability of translation products, are controlled by epigenetic activities orchestrated via small RNAs. Collectively, these mechanisms regulate clock and light-controlled genes for effecting pacemaker activity and entrainment. Regulatory small RNAs of the circadian circuit, timekeeping mechanism, synchronization of regular entrainment, oscillation, and rhythmicity are regulated by diversified RNA molecules. Regulatory small RNAs operate critical roles in brain activities including the neuronal clock activity. In this report, we propose the emergence of the earlier unexpected small RNAs for a historic perspective of epigenetic regulation of the brain clock system.
Collapse
|
32
|
Mellor J. The molecular basis of metabolic cycles and their relationship to circadian rhythms. Nat Struct Mol Biol 2017; 23:1035-1044. [PMID: 27922609 DOI: 10.1038/nsmb.3311] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
Abstract
Metabolic cycles result from the partitioning of oxidative and reductive metabolism into rhythmic phases of gene expression and oscillating post-translational protein modifications. Relatively little is known about how these switches in gene expression are controlled, although recent studies have suggested that transcription itself may play a central role. This review explores the molecular basis of the metabolic and gene-expression oscillations in the yeast Saccharomyces cerevisiae, as well as how they relate to other biological time-keeping mechanisms, such as circadian rhythms.
Collapse
Affiliation(s)
- Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
MicroRNA-92a is a circadian modulator of neuronal excitability in Drosophila. Nat Commun 2017; 8:14707. [PMID: 28276426 PMCID: PMC5347142 DOI: 10.1038/ncomms14707] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/24/2017] [Indexed: 01/01/2023] Open
Abstract
Many biological and behavioural processes of animals are governed by an endogenous circadian clock, which is dependent on transcriptional regulation. Here we address post-transcriptional regulation and the role of miRNAs in Drosophila circadian rhythms. At least six miRNAs show cycling expression levels within the pigment dispersing factor (PDF) cell-pacemaker neurons; only mir-92a peaks during the night. In vivo calcium monitoring, dynamics of PDF projections, ArcLight, GCaMP6 imaging and sleep assays indicate that mir-92a suppresses neuronal excitability. In addition, mir-92a levels within PDF cells respond to light pulses and also affect the phase shift response. Translating ribosome affinity purification (TRAP) and in vitro luciferase reporter assay indicate that mir-92a suppresses expression of sirt2, which is homologous to human sir2 and sirt3. sirt2 RNAi also phenocopies mir-92a overexpression. These experiments indicate that sirt2 is a functional mir-92a target and that mir-92a modulates PDF neuronal excitability via suppressing SIRT2 levels in a rhythmic manner. Accumulating evidence suggests that microRNAs play a role in circadian regulation. Here the authors show that in the Drosophila brain, mir-92a suppresses the excitability of PDF neurons—key circadian pacemaker cells in Drosophila—via inhibiting the translation of its target sirt2.
Collapse
|
34
|
Abstract
This review summarizes various mathematical models of cell-autonomous mammalian circadian clock. We present the basics necessary for understanding of the cell-autonomous mammalian circadian oscillator, modern experimental data essential for its reconstruction and some special problems related to the validation of mathematical circadian oscillator models. This work compares existing mathematical models of circadian oscillator and the results of the computational studies of the oscillating systems. Finally, we discuss applications of the mathematical models of mammalian circadian oscillator for solving specific problems in circadian rhythm biology.
Collapse
|
35
|
Circadian deep sequencing reveals stress-response genes that adopt robust rhythmic expression during aging. Nat Commun 2017; 8:14529. [PMID: 28221375 PMCID: PMC5321795 DOI: 10.1038/ncomms14529] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 11/08/2022] Open
Abstract
Disruption of the circadian clock, which directs rhythmic expression of numerous output genes, accelerates aging. To enquire how the circadian system protects aging organisms, here we compare circadian transcriptomes in heads of young and old Drosophila melanogaster. The core clock and most output genes remained robustly rhythmic in old flies, while others lost rhythmicity with age, resulting in constitutive over- or under-expression. Unexpectedly, we identify a subset of genes that adopted increased or de novo rhythmicity during aging, enriched for stress-response functions. These genes, termed late-life cyclers, were also rhythmically induced in young flies by constant exposure to exogenous oxidative stress, and this upregulation is CLOCK-dependent. We also identify age-onset rhythmicity in several putative primary piRNA transcripts overlapping antisense transposons. Our results suggest that, as organisms age, the circadian system shifts greater regulatory priority to the mitigation of accumulating cellular stress.
Collapse
|
36
|
Abruzzi KC, Zadina A, Luo W, Wiyanto E, Rahman R, Guo F, Shafer O, Rosbash M. RNA-seq analysis of Drosophila clock and non-clock neurons reveals neuron-specific cycling and novel candidate neuropeptides. PLoS Genet 2017; 13:e1006613. [PMID: 28182648 PMCID: PMC5325595 DOI: 10.1371/journal.pgen.1006613] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/24/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
Locomotor activity rhythms are controlled by a network of ~150 circadian neurons within the adult Drosophila brain. They are subdivided based on their anatomical locations and properties. We profiled transcripts “around the clock” from three key groups of circadian neurons with different functions. We also profiled a non-circadian outgroup, dopaminergic (TH) neurons. They have cycling transcripts but fewer than clock neurons as well as low expression and poor cycling of clock gene transcripts. This suggests that TH neurons do not have a canonical circadian clock and that their gene expression cycling is driven by brain systemic cues. The three circadian groups are surprisingly diverse in their cycling transcripts and overall gene expression patterns, which include known and putative novel neuropeptides. Even the overall phase distributions of cycling transcripts are distinct, indicating that different regulatory principles govern transcript oscillations. This surprising cell-type diversity parallels the functional heterogeneity of the different neurons. Organisms ranging from bacteria to humans contain circadian clocks. They keep internal time and also integrate environmental cues such as light to provide external time information for entrainment. In the fruit fly Drosophila melanogaster, ~150 brain neurons contain the circadian machinery and are critical for controlling behavior. Several subgroups of these clock neurons have been identified by their anatomical locations and specific functions. Our work aims to profile these neurons and to characterize their molecular contents: what to they contain and how do they differ? To this end, we have purified 3 important subgroups of clock neurons and identified their expressed genes at different times of day. Some are expressed at all times, whereas others are “cycling,” i.e., expressed more strongly at a particular time of day like the morning. Interestingly, each circadian subgroup is quite different. The data provide hints about what functions each group of neurons carries out and how they may work together to keep time. In addition, even a non-circadian group of neurons has cycling genes and has implications for the extent to which all cells have or do not have a functional circadian clock.
Collapse
Affiliation(s)
- Katharine C. Abruzzi
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Abigail Zadina
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Weifei Luo
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Evelyn Wiyanto
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Reazur Rahman
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Fang Guo
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Orie Shafer
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Michael Rosbash
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
- * E-mail:
| |
Collapse
|
37
|
Millius A, Ueda HR. Systems Biology-Derived Discoveries of Intrinsic Clocks. Front Neurol 2017; 8:25. [PMID: 28220104 PMCID: PMC5292584 DOI: 10.3389/fneur.2017.00025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
A systems approach to studying biology uses a variety of mathematical, computational, and engineering tools to holistically understand and model properties of cells, tissues, and organisms. Building from early biochemical, genetic, and physiological studies, systems biology became established through the development of genome-wide methods, high-throughput procedures, modern computational processing power, and bioinformatics. Here, we highlight a variety of systems approaches to the study of biological rhythms that occur with a 24-h period-circadian rhythms. We review how systems methods have helped to elucidate complex behaviors of the circadian clock including temperature compensation, rhythmicity, and robustness. Finally, we explain the contribution of systems biology to the transcription-translation feedback loop and posttranslational oscillator models of circadian rhythms and describe new technologies and "-omics" approaches to understand circadian timekeeping and neurophysiology.
Collapse
Affiliation(s)
- Arthur Millius
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka, Japan
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Dekhang R, Wu C, Smith KM, Lamb TM, Peterson M, Bredeweg EL, Ibarra O, Emerson JM, Karunarathna N, Lyubetskaya A, Azizi E, Hurley JM, Dunlap JC, Galagan JE, Freitag M, Sachs MS, Bell-Pedersen D. The Neurospora Transcription Factor ADV-1 Transduces Light Signals and Temporal Information to Control Rhythmic Expression of Genes Involved in Cell Fusion. G3 (BETHESDA, MD.) 2017; 7:129-142. [PMID: 27856696 PMCID: PMC5217103 DOI: 10.1534/g3.116.034298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
Abstract
Light and the circadian clock have a profound effect on the biology of organisms through the regulation of large sets of genes. Toward understanding how light and the circadian clock regulate gene expression, we used genome-wide approaches to identify the direct and indirect targets of the light-responsive and clock-controlled transcription factor ADV-1 in Neurospora crassa A large proportion of ADV-1 targets were found to be light- and/or clock-controlled, and enriched for genes involved in development, metabolism, cell growth, and cell fusion. We show that ADV-1 is necessary for transducing light and/or temporal information to its immediate downstream targets, including controlling rhythms in genes critical to somatic cell fusion. However, while ADV-1 targets are altered in predictable ways in Δadv-1 cells in response to light, this is not always the case for rhythmic target gene expression. These data suggest that a complex regulatory network downstream of ADV-1 functions to generate distinct temporal dynamics of target gene expression relative to the central clock mechanism.
Collapse
Affiliation(s)
- Rigzin Dekhang
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Teresa M Lamb
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | | | - Erin L Bredeweg
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Oneida Ibarra
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Jillian M Emerson
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | | | | | - Elham Azizi
- Bioinformatics Program, Boston University, Massachusetts 02215
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - James E Galagan
- Bioinformatics Program, Boston University, Massachusetts 02215
- National Emerging Infectious Diseases Laboratories, Boston University, Massachusetts 02118
- Department of Microbiology, Boston University, Massachusetts 02215
- Department of Biomedical Engineering, Boston University, Massachusetts 02215
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | | |
Collapse
|
39
|
Subramanian P, Kaliyamoorthy K, Jayapalan JJ, Abdul-Rahman PS, Haji Hashim O. Influence of Quercetin in the Temporal Regulation of Redox Homeostasis in Drosophila melanogaster. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:3778206. [PMID: 28931163 PMCID: PMC5605229 DOI: 10.1093/jisesa/iex040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 06/07/2023]
Abstract
Numerous biological processes are governed by the biological clock. Studies using Drosophila melanogaster (L.) are valuable that could be of importance for their effective applications on rodent studies. In this study, the beneficial role of quercetin (a flavonoid) on H2O2 induced stress in D. melanogaster was investigated. D. melanogaster flies were divided into four groups (group I - control, group II - H2O2 (acute exposure), group III - quercetin, and group IV - quercetin + H2O2 treated). Negative geotaxis assay, oxidative stress indicators (protein carbonyls, thiobarbituric reactive substances [TBARS]), and antioxidants (superoxide dismutase [SOD], catalase [CAT], glutathione-S-transferase [GST], glutathione peroxidase, and reduced glutathione [GSH]) were measured at 4 h intervals over 24 h and temporal expression of heat shock protein-70 (Hsp70), Upd1 (homolog of IL-6 in Drosophila), and nitric oxide synthase (Nos) was analyzed by Western blotting. Groups II and IV showed altered biochemical rhythms (compared with controls). Decreased mesor values of negative geotaxis, SOD, CAT, GST, and GSH were noticed in H2O2, increased mesor of oxidative stress indicators (TBARS and protein carbonyl content) and a reversibility of the rhythmic characteristics were conspicuous after quercetin treatment. The expression levels of Hsp70, Upd1, and Nos were noticeably maximum at 04:00. Significant elevation of expression by H2O2 was nearly normalized by quercetin treatment. The possible mechanism by which quercetin modulates oxidant-antioxidant imbalance under oxidative stress could be ascribed to the modulation of the rhythmic properties. Our results will be helpful to understand the molecular interlink between circadian rhythm and oxidative stress mechanism.
Collapse
Affiliation(s)
- Perumal Subramanian
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram 608 002, Tamil Nadu, India (; )
| | - Kanimozhi Kaliyamoorthy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram 608 002, Tamil Nadu, India (; )
| | - Jaime Jacqueline Jayapalan
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ()
| | - Puteri Shafinaz Abdul-Rahman
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ()
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia (; )
| | - Onn Haji Hashim
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ()
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia (; )
| |
Collapse
|
40
|
Chen X, Rahman R, Guo F, Rosbash M. Genome-wide identification of neuronal activity-regulated genes in Drosophila. eLife 2016; 5. [PMID: 27936378 PMCID: PMC5148613 DOI: 10.7554/elife.19942] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022] Open
Abstract
Activity-regulated genes (ARGs) are important for neuronal functions like long-term memory and are well-characterized in mammals but poorly studied in other model organisms like Drosophila. Here we stimulated fly neurons with different paradigms and identified ARGs using high-throughput sequencing from brains as well as from sorted neurons: they included a narrow set of circadian neurons as well as dopaminergic neurons. Surprisingly, many ARGs are specific to the stimulation paradigm and very specific to neuron type. In addition and unlike mammalian immediate early genes (IEGs), fly ARGs do not have short gene lengths and are less enriched for transcription factor function. Chromatin assays using ATAC-sequencing show that the transcription start sites (TSS) of ARGs do not change with neural firing but are already accessible prior to stimulation. Lastly based on binding site enrichment in ARGs, we identified transcription factor mediators of firing and created neuronal activity reporters. DOI:http://dx.doi.org/10.7554/eLife.19942.001
Collapse
Affiliation(s)
- Xiao Chen
- Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, United States
| | - Reazur Rahman
- Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, United States
| | - Fang Guo
- Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, United States
| | - Michael Rosbash
- Howard Hughes Medical Institute, Brandeis University, Waltham, United States.,National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
41
|
Chow ES, Long DM, Giebultowicz JM. Circadian rhythm in mRNA expression of the glutathione synthesis gene Gclc is controlled by peripheral glial clocks in Drosophila melanogaster. PHYSIOLOGICAL ENTOMOLOGY 2016; 41:369-377. [PMID: 28503020 PMCID: PMC5423673 DOI: 10.1111/phen.12164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Circadian coordination of metabolism, physiology, and behaviour is found in all living kingdoms. Clock genes are transcriptional regulators, and their rhythmic activities generate daily rhythms in clock-controlled genes which result in cellular and organismal rhythms. Insects provide numerous examples of rhythms in behaviour and reproduction, but less is known about control of metabolic processes by circadian clocks in insects. Recent data suggest that several pathways involved in protecting cells from oxidative stress may be modulated by the circadian system, including genes involved in glutathione (GSH) biosynthesis. Specifically, rhythmic expression of the gene encoding the catalytic subunit (Gclc) of the rate-limiting GSH biosynthetic enzyme was detected in Drosophila melanogaster heads. The aim of this study was to determine which clocks in the fly multi-oscillatory circadian system are responsible for Gclc rhythms. Genetic disruption of tissue-specific clocks in D. melanogaster revealed that transcriptional rhythms in Gclc mRNA levels occur independently of the central pacemaker neurons, because these rhythms persisted in heads of behaviourally arrhythmic flies with a disabled central clock but intact peripheral clocks. Disrupting the clock specifically in glial cells abolished rhythmic expression of Gclc, suggesting that glia play an important role in Gclc transcriptional regulation, which may contribute to maintaining homeostasis in the fly nervous system.
Collapse
Affiliation(s)
- Eileen S Chow
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, U.S.A
| | - Dani M Long
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, U.S.A
- IGERT in Aging Sciences, Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon, U.S.A
| | | |
Collapse
|
42
|
Westermark PO. Linking Core Promoter Classes to Circadian Transcription. PLoS Genet 2016; 12:e1006231. [PMID: 27504829 PMCID: PMC4978467 DOI: 10.1371/journal.pgen.1006231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/08/2016] [Indexed: 01/09/2023] Open
Abstract
Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs), is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription.
Collapse
Affiliation(s)
- Pål O. Westermark
- Institute for Theoretical Biology, Charité –Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
43
|
Hurley JM, Loros JJ, Dunlap JC. Circadian Oscillators: Around the Transcription-Translation Feedback Loop and on to Output. Trends Biochem Sci 2016; 41:834-846. [PMID: 27498225 DOI: 10.1016/j.tibs.2016.07.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022]
Abstract
From cyanobacteria to mammals, organisms have evolved timing mechanisms to adapt to environmental changes in order to optimize survival and improve fitness. To anticipate these regular daily cycles, many organisms manifest ∼24h cell-autonomous oscillations that are sustained by transcription-translation-based or post-transcriptional negative-feedback loops that control a wide range of biological processes. With an eye to identifying emerging common themes among cyanobacterial, fungal, and animal clocks, some major recent developments in the understanding of the mechanisms that regulate these oscillators and their output are discussed. These include roles for antisense transcription, intrinsically disordered proteins, codon bias in clock genes, and a more focused discussion of post-transcriptional and translational regulation as a part of both the oscillator and output.
Collapse
Affiliation(s)
- Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Jennifer J Loros
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
44
|
Li LJ, Huang Q, Pan HF, Ye DQ. Circular RNAs and systemic lupus erythematosus. Exp Cell Res 2016; 346:248-54. [DOI: 10.1016/j.yexcr.2016.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/20/2016] [Indexed: 01/01/2023]
|
45
|
Subramanian P, Jayapalan JJ, Abdul-Rahman PS, Arumugam M, Hashim OH. Temporal regulation of proteome profile in the fruit fly, Drosophila melanogaster. PeerJ 2016; 4:e2080. [PMID: 27257555 PMCID: PMC4888302 DOI: 10.7717/peerj.2080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/03/2016] [Indexed: 12/11/2022] Open
Abstract
Background. Diurnal rhythms of protein synthesis controlled by the biological clock underlie the rhythmic physiology in the fruit fly, Drosophila melanogaster. In this study, we conducted a proteome-wide investigation of rhythmic protein accumulation in D. melanogaster. Materials and Methods. Total protein collected from fly samples harvested at 4 h intervals over the 24 h period were subjected to two-dimensional gel electrophoresis, trypsin digestion and MS/MS analysis. Protein spots/clusters were identified with MASCOT search engine and Swiss-Prot database. Expression of proteins was documented as percentage of volume contribution using the Image Master 2D Platinum software. Results. A total of 124 protein spots/clusters were identified using MS/MS analysis. Significant variation in the expression of 88 proteins over the 24-h period was observed. A relatively higher number of proteins was upregulated during the night compared to the daytime. The complexity of temporal regulation of the D. melanogaster proteome was further reflected from functional annotations of the differently expressed proteins, with those that were upregulated at night being restricted to the heat shock proteins and proteins involved in metabolism, muscle activity, protein synthesis/folding/degradation and apoptosis, whilst those that were overexpressed in the daytime were apparently involved in metabolism, muscle activity, ion-channel/cellular transport, protein synthesis/folding/degradation, redox homeostasis, development and transcription. Conclusion. Our data suggests that a wide range of proteins synthesized by the fruit fly, D. melanogaster, is under the regulation of the biological clock.
Collapse
Affiliation(s)
- Perumal Subramanian
- Department of Biochemistry and Biotechnology, Annamalai University , Chidambaram, Tamil Nadu , India
| | - Jaime J Jayapalan
- University of Malaya Centre for Proteomics Research (UMCPR), Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Puteri S Abdul-Rahman
- University of Malaya Centre for Proteomics Research (UMCPR), Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Manjula Arumugam
- Department of Biochemistry and Biotechnology, Annamalai University , Chidambaram, Tamil Nadu , India
| | - Onn H Hashim
- University of Malaya Centre for Proteomics Research (UMCPR), Department of Molecular Medicine, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
46
|
mir-276a strengthens Drosophila circadian rhythms by regulating timeless expression. Proc Natl Acad Sci U S A 2016; 113:E2965-72. [PMID: 27162360 DOI: 10.1073/pnas.1605837113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Circadian rhythms in metazoan eukaryotes are controlled by an endogenous molecular clock. It functions in many locations, including subsets of brain neurons (clock neurons) within the central nervous system. Although the molecular clock relies on transcription/translation feedback loops, posttranscriptional regulation also plays an important role. Here, we show that the abundant Drosophila melanogaster microRNA mir-276a regulates molecular and behavioral rhythms by inhibiting expression of the important clock gene timeless (tim). Misregulation of mir-276a in clock neurons alters tim expression and increases arrhythmicity under standard constant darkness (DD) conditions. mir-276a expression itself appears to be light-regulated because its levels oscillate under 24-h light-dark (LD) cycles but not in DD. mir-276a is regulated by the transcription activator Chorion factor 2 in flies and in tissue-culture cells. Evidence from flies mutated using the clustered, regularly interspaced, short palindromic repeats (CRISPR) tool shows that mir-276a inhibits tim expression: Deleting the mir-276a-binding site in the tim 3' UTR causes elevated levels of TIM and ∼50% arrhythmicity. We suggest that this pathway contributes to the more robust rhythms observed under light/dark LD conditions than under DD conditions.
Collapse
|
47
|
Lück S, Westermark PO. Circadian mRNA expression: insights from modeling and transcriptomics. Cell Mol Life Sci 2016; 73:497-521. [PMID: 26496725 PMCID: PMC11108398 DOI: 10.1007/s00018-015-2072-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/08/2023]
Abstract
Circadian clocks synchronize organisms to the 24 h rhythms of the environment. These clocks persist under constant conditions, have their origin at the cellular level, and produce an output of rhythmic mRNA expression affecting thousands of transcripts in many mammalian cell types. Here, we review the charting of circadian output rhythms in mRNA expression, focusing on mammals. We emphasize the challenges in statistics, interpretation, and quantitative descriptions that such investigations have faced and continue to face, and outline remaining outstanding questions.
Collapse
Affiliation(s)
- Sarah Lück
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Invalidenstrasse 43, 10115, Berlin, Germany
| | - Pål O Westermark
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Invalidenstrasse 43, 10115, Berlin, Germany.
| |
Collapse
|
48
|
Benegiamo G, Brown SA, Panda S. RNA Dynamics in the Control of Circadian Rhythm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:107-22. [PMID: 27256384 DOI: 10.1007/978-3-319-29073-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The circadian oscillator is based on transcription-translation feedback loops that generate 24 h oscillations in gene expression. Although circadian regulation of mRNA expression at the transcriptional level is one of the most important steps for the generation of circadian rhythms within the cell, multiple lines of evidence point to a disconnect between transcript oscillation and protein oscillation. This can be explained by regulatory RNA-binding proteins acting on the nascent transcripts to modulate their processing, export, translation and degradation rates. In this chapter we will review what is known about the different steps involved in circadian gene expression from transcription initiation to mRNA stability and translation efficiency. The role of ribonucleoprotein particles in the generation of rhythmic gene expression is only starting to be elucidated, but it is likely that they cooperate with the basal transcriptional machinery to help to maintain the precision of the clock under diverse cellular and environmental conditions.
Collapse
Affiliation(s)
- Giorgia Benegiamo
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.,Salk Institute for Biological Studies, 10010, North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010, North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
49
|
Circadian Control of Global Transcription. BIOMED RESEARCH INTERNATIONAL 2015; 2015:187809. [PMID: 26682214 PMCID: PMC4670846 DOI: 10.1155/2015/187809] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/04/2015] [Indexed: 01/10/2023]
Abstract
Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions.
Collapse
|
50
|
Montenegro-Montero A, Larrondo LF. In the Driver's Seat: The Case for Transcriptional Regulation and Coupling as Relevant Determinants of the Circadian Transcriptome and Proteome in Eukaryotes. J Biol Rhythms 2015; 31:37-47. [PMID: 26446874 DOI: 10.1177/0748730415607321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian clocks drive daily oscillations in a variety of biological processes through the coordinate orchestration of precise gene expression programs. Global expression profiling experiments have suggested that a significant fraction of the transcriptome and proteome is under circadian control, and such output rhythms have historically been assumed to rely on the rhythmic transcription of these genes. Recent genome-wide studies, however, have challenged this long-held view and pointed to a major contribution of posttranscriptional regulation in driving oscillations at the messenger RNA (mRNA) level, while others have highlighted extensive clock translational regulation, regardless of mRNA rhythms. There are various examples of genes that are uniformly transcribed throughout the day but that exhibit rhythmic mRNA levels, and of flat mRNAs, with oscillating protein levels, and such observations have largely been considered to result from independent regulation at each step. These studies have thereby obviated any connections, or coupling, that might exist between the different steps of gene expression and the impact that any of them could have on subsequent ones. Here, we argue that due to both biological and technical reasons, the jury is still out on the determination of the relative contributions of each of the different stages of gene expression in regulating output molecular rhythms. In addition, we propose that through a variety of coupling mechanisms, gene transcription (even when apparently arrhythmic) might play a much relevant role in determining oscillations in gene expression than currently estimated, regulating rhythms at downstream steps. Furthermore, we posit that eukaryotic genomes regulate daily RNA polymerase II (RNAPII) recruitment and histone modifications genome-wide, setting the stage for global nascent transcription, but that tissue-specific mechanisms locally specify the different processes under clock control.
Collapse
Affiliation(s)
- Alejandro Montenegro-Montero
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis F Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|