1
|
Li X, Fan D, Sun Y, Xu L, Li D, Sun B, Nong S, Li W, Zhang S, Hu B, Li M. Porous Magnetic Soft Grippers for Fast and Gentle Grasping of Delicate Living Objects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409173. [PMID: 39210650 DOI: 10.1002/adma.202409173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Magnetic soft grippers have attracted intensive interest due to their untethered controllability, rapid response, and biological safety. However, manipulating living objects requires a simultaneous increase in shape adaptability and gripping force, which are typically mutually exclusive. Increasing the magnetic particle content enhances the magnetic strength but also increases the elastic modulus, leading to low adaptability and high impact force. Here, a porous magnetic soft gripper (PMSG) is developed by integrating a porous structure into a magnetic silicone elastomer. The design of porous hard magnetic composite is characterized by high magnetization, low modulus, and rough surface. It offers the PMSG good compliance, high gripping force, and low impact force at fast gripping. The PMSG is capable of performing a variety of tasks, including the fast and gentle grasping of delicate living objects. The study provides insight into the design of novel magnetic grippers and may offer a promising outlook for biomedical or scientific applications in the manipulation of delicate organisms.
Collapse
Affiliation(s)
- Xingxiang Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dinggang Fan
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, P. R. China
| | - Yuxuan Sun
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Liwen Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dongxiao Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Boxi Sun
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shutong Nong
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shiwu Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bing Hu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, P. R. China
| | - Mujun Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
2
|
Breuer L, Greenmyer JR, Wilson T. Clinical Diagnosis and Management of Fetal Alcohol Spectrum Disorder and Sensory Processing Disorder in Children. CHILDREN (BASEL, SWITZERLAND) 2024; 11:108. [PMID: 38255421 PMCID: PMC10814837 DOI: 10.3390/children11010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Fetal alcohol spectrum disorder (FASD) is commonly misdiagnosed because of the complexity of presentation and multiple diagnostic criteria. FASD includes four categorical entities (fetal alcohol syndrome, partial fetal alcohol syndrome, alcohol related neurodevelopmental disorder, and alcohol related birth defects). The four FASD diagnostic criteria are facial dysmorphology, growth deficiency, central nervous system dysfunction, and prenatal alcohol exposure. Sensory processing disorders (SPDs) are common in FASD and are observed as inappropriate behavioral responses to environmental stimuli. These can be either a sensory-based motor disorder, sensory discrimination disorder, or sensory modulation disorder. A child with SPD may experience challenges with their fine motor coordination, gross motor coordination, organizational challenges, or behavioral regulation impairments. FASD requires a multidimensional approach to intervention. Although FASD cannot be cured, symptoms can be managed with sleep-based therapies, sensory integration, and cognitive therapies. This paper reviews SPDs in FASD and the interventions that can be used by practitioners to help improve their therapeutic management, although it is unlikely that any single intervention will be the right choice for all patients.
Collapse
Affiliation(s)
- Lorel Breuer
- Department of Biology, Winona State University, Winona, MN 55987, USA;
| | - Jacob R. Greenmyer
- Pediatric Hematology and Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ted Wilson
- Department of Biology, Winona State University, Winona, MN 55987, USA;
| |
Collapse
|
3
|
Ni P, Huang H, Zhang L, Chen Y, Liang Z, Weng Y, Fang Y, Liu H. Mussel Foot Protein Inspired Tape-Type Adhesive with Water-Responsive, High Conformal, Tough, and On-Demand Detachable Adhesion to Wet Tissue. Adv Healthc Mater 2023; 12:e2203342. [PMID: 36912388 DOI: 10.1002/adhm.202203342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Indexed: 03/14/2023]
Abstract
Wet adhesion is highly demanded in noninvasive wound closure, tissue repair, and biomedical devices, but it is still a big challenge for developing biosafe and tough wet bioadhesives due to low or even nonadhesion in the wet state for conventional adhesives. Inspired by the wet-adhesion-contributing factors of mussel foot proteins, a water-responsive dry robust tissue adhesive PAGU tape is made with thickness of <0.5 mm through fast UV-initiated copolymerization of acrylic acid (AA), gelatin (Gel), and hexadecenyl-1,2-catechol (UH). The tape shows strong cohesive mechanical properties and strong interfacial adhesion bonds. Upon application onto wet tissue, the adhesive tape can conform to the tissue, quickly dry tissue surface through absorbing surface/interfacial water and then allows formation of interfacial bonding with a high interfacial toughness of ≈818 J m-2 . Furthermore, it can be readily detached by treating with aq. urea solution. A highly efficient avenue is provided here for producing conformable, tough, and easy detachable wet bioadhesive tapes.
Collapse
Affiliation(s)
- Peng Ni
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Hongjian Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Lidan Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Yiming Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Ziyi Liang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Yunxiang Weng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Yan Fang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Haiqing Liu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| |
Collapse
|
4
|
Ghosal R, Borrego-Soto G, Eberhart JK. Embryonic ethanol exposure disrupts craniofacial neuromuscular integration in zebrafish larvae. Front Physiol 2023; 14:1131075. [PMID: 36824468 PMCID: PMC9941677 DOI: 10.3389/fphys.2023.1131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Forming a vertebrate head involves the meticulous integration of multiple tissue types during development. Prenatal alcohol exposure is known to cause a variety of birth defects, especially to tissues in the vertebrate head. However, a systematic analysis of coordinated defects across tissues in the head is lacking. Here, we delineate the effects of ethanol on individual tissue types and their integration during craniofacial development. We found that exposure to 1% ethanol induced ectopic cranial muscle and nerve defects with only slight effects on skeletal pattern. Ectopic muscles were, however, unaccompanied by ectopic tendons and could be partially rescued by anesthetizing the larvae before muscle fibers appeared. This finding suggests that the ectopic muscles result from fiber detachment and are not due to an underlying muscle patterning defect. Interestingly, immobilization did not rescue the nerve defects, thus ethanol has an independent effect on each tissue even though they are linked in developmental time and space. Time-course experiments demonstrated an increase in nerve defects with ethanol exposure between 48hpf-4dpf. Time-lapse imaging confirmed the absence of nerve pathfinding or misrouting defects until 48hpf. These results indicate that ethanol-induced nerve defects occur at the time of muscle innervation and after musculoskeletal patterning. Further, we investigated the effect of ethanol on the neuromuscular junctions of the craniofacial muscles and found a reduced number of postsynaptic receptors with no significant effect on the presynaptic terminals. Our study shows that craniofacial soft tissues are particularly susceptible to ethanol-induced damage and that these defects appear independent from one another. Thus, the effects of ethanol on the vertebrate head appear highly pleiotropic.
Collapse
Affiliation(s)
| | | | - Johann K. Eberhart
- Department of Molecular Biosciences, College of Natural Sciences and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
5
|
Boschen KE, Steensen MC, Simon JM, Parnell SE. Short-term transcriptomic changes in the mouse neural tube induced by an acute alcohol exposure. Alcohol 2023; 106:1-9. [PMID: 36202274 PMCID: PMC11096843 DOI: 10.1016/j.alcohol.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023]
Abstract
Alcohol exposure during the formation and closure of the neural tube, or neurulation (embryonic day [E] 8-10 in mice; ∼4th week of human pregnancy), perturbs development of midline brain structures and significantly disrupts gene expression in the rostroventral neural tube (RVNT). Previously, alcohol exposure during neurulation was found to alter gene pathways related to cell proliferation, p53 signaling, ribosome biogenesis, immune signaling, organogenesis, and cell migration 6 or 24 h after administration. Our current study expands upon this work by investigating short-term gene expression changes in the RVNT following a single binge-like alcohol exposure during neurulation. Female C57BL/6J mice were administered a single dose of 2.9 g/kg alcohol or vehicle on E9.0 to target mid-neurulation. The RVNTs of stage-matched embryos were collected 2 or 4 h after exposure and processed for RNA-seq. Functional profiling was performed with g:Profiler, as well as with the CiliaCarta and DisGeNet databases. Two hours following E9.0 alcohol exposure, 650 genes in the RVNT were differentially expressed. Functional enrichment analysis revealed that pathways related to cellular metabolism, gene expression, cell cycle, organogenesis, and Hedgehog signaling were down-regulated, and pathways related to cellular stress response, p53 signaling, and hypoxia were up-regulated by alcohol. Four hours after alcohol exposure, 225 genes were differentially expressed. Biological processes related to metabolism, RNA binding, ribosome biogenesis, and methylation were down-regulated, while protein localization and binding, autophagy, and intracellular signaling pathways were up-regulated. Two hours after alcohol exposure, the differentially expressed genes were associated with disease terms related to eye and craniofacial development and anoxia. These data provide further information regarding the biological functions targeted by alcohol exposure during neurulation in regions of the neural tube that give rise to alcohol-sensitive midline brain structures. Disruption of these gene pathways contributes to the craniofacial and brain malformations associated with prenatal alcohol exposure.
Collapse
Affiliation(s)
- Karen E Boschen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Melina C Steensen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
6
|
Fish EW, Mendoza-Romero HN, Love CA, Dragicevich CJ, Cannizzo MD, Boschen KE, Hepperla A, Simon JM, Parnell SE. The pro-apoptotic Bax gene modifies susceptibility to craniofacial dysmorphology following gastrulation-stage alcohol exposure. Birth Defects Res 2022; 114:1229-1243. [PMID: 35396933 PMCID: PMC10103739 DOI: 10.1002/bdr2.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND During early development, alcohol exposure causes apoptotic cell death in discrete regions of the embryo which are associated with distinctive patterns of later-life abnormalities. In gastrulation, which occurs during the third week of human pregnancy, alcohol targets the ectoderm, the precursor of the eyes, face, and brain. This midline tissue loss leads to the craniofacial dysmorphologies, such as microphthalmia and a smooth philtrum, which define fetal alcohol syndrome (FAS). An important regulator of alcohol-induced cell death is the pro-apoptotic protein Bax. The current study determines if mice lacking the Bax gene are less susceptible to the pathogenic effects of gastrulation-stage alcohol exposure. METHODS Male and female Bax+/- mice mated to produce embryos with full (-/- ) or partial (+/- ) Bax deletions, or Bax+/+ wild-type controls. On Gestational Day 7 (GD 7), embryos received two alcohol (2.9 g/kg, 4 hr apart), or control exposures. A subset of embryos was collected 12 hr later and examined for the presence of apoptotic cell death, while others were examined on GD 17 for the presence of FAS-like facial features. RESULTS Full Bax deletion reduced embryonic apoptotic cell death and the incidence of fetal eye and face malformations, indicating that Bax normally facilitates the development of alcohol-induced defects. An RNA-seq analysis of GD 7 Bax+/+ and Bax-/- embryos revealed 63 differentially expressed genes, some of which may interact with the Bax deletion to further protect against apoptosis. CONCLUSIONS Overall, these experiments identify that Bax is a primary teratogenic mechanism of gastrulation-stage alcohol exposure.
Collapse
Affiliation(s)
- Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Haley N Mendoza-Romero
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charlotte A Love
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Constance J Dragicevich
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael D Cannizzo
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karen E Boschen
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Austin Hepperla
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Licheri V, Brigman JL. Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Front Mol Neurosci 2022; 14:753537. [PMID: 34975396 PMCID: PMC8715949 DOI: 10.3389/fnmol.2021.753537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
8
|
Fernandes Y, Lovely CB. Zebrafish models of fetal alcohol spectrum disorders. Genesis 2021; 59:e23460. [PMID: 34739740 DOI: 10.1002/dvg.23460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) describes a wide range of structural deficits and cognitive impairments. FASD impacts up to 5% of children born in the United States each year, making ethanol one of the most common teratogens. Due to limitations and ethical concerns, studies in humans are limited in their ability to study FASD. Animal models have proven critical in identifying and characterizing the mechanisms underlying FASD. In this review, we will focus on the attributes of zebrafish that make it a strong model in which to study ethanol-induced developmental defects. Zebrafish have several attributes that make it an ideal model in which to study FASD. Zebrafish produced large numbers of externally fertilized, translucent embryos. With a high degree of genetic amenability, zebrafish are at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Work from multiple labs has shown that embryonic ethanol exposures result in defects in craniofacial, cardiac, ocular, and neural development. In addition to structural defects, ethanol-induced cognitive and behavioral impairments have been studied in zebrafish. Building upon these studies, work has identified ethanol-sensitive loci that underlie the developmental defects. However, analyses show there is still much to be learned of these gene-ethanol interactions. The zebrafish is ideally suited to expand our understanding of gene-ethanol interactions and their impact on FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.
Collapse
Affiliation(s)
- Yohaan Fernandes
- Department of Biology, University of South Dakota, Vermillion, South Dakota, USA
| | - C Ben Lovely
- Department of Biochemistry and Molecular Genetics, Alcohol Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
9
|
Fish EW, Tucker SK, Peterson RL, Eberhart JK, Parnell SE. Loss of tumor protein 53 protects against alcohol-induced facial malformations in mice and zebrafish. Alcohol Clin Exp Res 2021; 45:1965-1979. [PMID: 34581462 DOI: 10.1111/acer.14688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alcohol exposure during the gastrulation stage of development causes the craniofacial and brain malformations that define fetal alcohol syndrome. These malformations, such as a deficient philtrum, are exemplified by a loss of midline tissue and correspond, at least in part, to regionally selective cell death in the embryo. The tumor suppressor protein Tp53 is an important mechanism for cell death, but the role of Tp53 in the consequences of alcohol exposure during the gastrulation stage has yet to be examined. The current studies used mice and zebrafish to test whether genetic loss of Tp53 is a conserved mechanism to protect against the effects of early developmental stage alcohol exposure. METHODS Female mice, heterozygous for a mutation in the Tp53 gene, were mated with Tp53 heterozygous males, and the resulting embryos were exposed during gastrulation on gestational day 7 (GD 7) to alcohol (two maternal injections of 2.9 g/kg, i.p., 4 h apart) or a vehicle control. Zebrafish mutants or heterozygotes for the tp53zdf1 M214K mutation and their wild-type controls were exposed to alcohol (1.5% or 2%) beginning 6 h postfertilization (hpf), the onset of gastrulation. RESULTS Examination of GD 17 mice revealed that eye defects were the most common phenotype among alcohol-exposed fetuses, occurring in nearly 75% of the alcohol-exposed wild-type fetuses. Tp53 gene deletion reduced the incidence of eye defects in both the heterozygous and mutant fetuses (to about 35% and 20% of fetuses, respectively) and completely protected against alcohol-induced facial malformations. Zebrafish (4 days postfertilization) also demonstrated alcohol-induced reductions of eye size and trabeculae length that were less common and less severe in tp53 mutants, indicating a protective effect of tp53 deletion. CONCLUSIONS These results identify an evolutionarily conserved role of Tp53 as a pathogenic mechanism for alcohol-induced teratogenesis.
Collapse
Affiliation(s)
- Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott K Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, Texas, USA
| | - Rachel L Peterson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Johann K Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, Texas, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Chi OZ, Theis T, Kumar S, Chiricolo A, Liu X, Farooq S, Trivedi N, Young W, Schachner M, Weiss HR. Adhesion molecule L1 inhibition increases infarct size in cerebral ischemia-reperfusion without change in blood-brain barrier disruption. Neurol Res 2021; 43:751-759. [PMID: 34057049 DOI: 10.1080/01616412.2021.1934311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Neural cell adhesion molecule L1CAM (L1) is involved in neuroprotection. To investigate a possible neuroprotective effect of L1 during ischemia, we determined whether blocking L1 with an antagonistic antibody would worsen the outcome of focal cerebral ischemia-reperfusion and increase blood-brain barrier (BBB) disruption. METHODS Transient middle cerebral artery occlusion (MCAO) was performed in anesthetized rats. Five µg of antagonistic mouse IgG monoclonal L1 antibody 324 or non-immune control mouse IgG was applied on the ischemic-reperfused cortex during one hour of MCAO and two hours of reperfusion. At two hours of reperfusion, BBB permeability, size of infarct using tetrazolium staining, number of TUNEL-labeled apoptotic cells, and immunohistochemistry for expression of PTEN and p53 were studied. RESULTS The antagonistic L1 antibody 324 increased the percentage of cortical infarct area (+36%), but did not affect BBB permeability in the ischemic-reperfused cortex. The antagonistic L1 antibody increased number of apoptotic neurons and p53 expression, but decreased PTEN expression. CONCLUSION Functional antagonism of L1 increases infarct size by increasing numbers of apoptotic neurons without affecting BBB permeability during the early stage of cerebral ischemia-reperfusion. Our data suggest that L1 affects primarily the brain parenchyma rather than BBB during early stages of cerebral ischemia-reperfusion and that endogenous brain L1 may be neuroprotective.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Antonio Chiricolo
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Saad Farooq
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nishta Trivedi
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wise Young
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
11
|
Boschen KE, Ptacek TS, Berginski ME, Simon JM, Parnell SE. Transcriptomic analyses of gastrulation-stage mouse embryos with differential susceptibility to alcohol. Dis Model Mech 2021; 14:dmm049012. [PMID: 34137816 PMCID: PMC8246266 DOI: 10.1242/dmm.049012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 12/28/2022] Open
Abstract
Genetics are a known contributor to differences in alcohol sensitivity in humans with fetal alcohol spectrum disorders (FASDs) and in animal models. Our study profiled gene expression in gastrulation-stage embryos from two commonly used, genetically similar mouse substrains, C57BL/6J (6J) and C57BL/6NHsd (6N), that differ in alcohol sensitivity. First, we established normal gene expression patterns at three finely resolved time points during gastrulation and developed a web-based interactive tool. Baseline transcriptional differences across strains were associated with immune signaling. Second, we examined the gene networks impacted by alcohol in each strain. Alcohol caused a more pronounced transcriptional effect in the 6J versus 6N mice, matching the increased susceptibility of the 6J mice. The 6J strain exhibited dysregulation of pathways related to cell death, proliferation, morphogenic signaling and craniofacial defects, while the 6N strain showed enrichment of hypoxia and cellular metabolism pathways. These datasets provide insight into the changing transcriptional landscape across mouse gastrulation, establish a valuable resource that enables the discovery of candidate genes that may modify alcohol susceptibility that can be validated in humans, and identify novel pathogenic mechanisms of alcohol. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Karen E. Boschen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Travis S. Ptacek
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew E. Berginski
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy M. Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott E. Parnell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Dou X, Lee JY, Charness ME. Neuroprotective Peptide NAPVSIPQ Antagonizes Ethanol Inhibition of L1 Adhesion by Promoting the Dissociation of L1 and Ankyrin-G. Biol Psychiatry 2020; 87:656-665. [PMID: 31640849 PMCID: PMC7056560 DOI: 10.1016/j.biopsych.2019.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Ethanol causes developmental neurotoxicity partly by blocking adhesion mediated by the L1 neural cell adhesion molecule. This action of ethanol is antagonized by femtomolar concentrations of the neuropeptide NAPVSIPQ (NAP), an active fragment of the activity-dependent neuroprotective protein (ADNP). How femtomolar concentrations of NAP antagonize millimolar concentrations of ethanol is unknown. L1 sensitivity to ethanol requires L1 association with ankyrin-G; therefore, we asked whether NAP promotes the dissociation of ankyrin-G and L1. METHODS L1-ankyrin-G association was studied using immunoprecipitation, Western blotting, and immunofluorescence in NIH/3T3 cells transfected with wild-type and mutated human L1 genes. Phosphorylation of the ankyrin binding motif in the L1 cytoplasmic domain was studied after NAP treatment of intact cells, rat brain homogenates, and purified protein fragments. RESULTS Femtomolar concentrations of NAP stimulated the phosphorylation of tyrosine-1229 (L1-Y1229) at the ankyrin binding motif of the L1 cytoplasmic domain, leading to the dissociation of L1 from ankyrin-G and the spectrin-actin cytoskeleton. NAP increased the association of L1 and EphB2 and directly activated EphB2 phosphorylation of L1-Y1229. These actions of NAP were reproduced by P7A-NAP, a NAP variant that also blocks the teratogenic actions of ethanol, but not by I6A-NAP, which does not block ethanol teratogenesis as potently. Finally, knockdown of EPHB2 prevented ethanol inhibition of L1 adhesion in NIH/3T3 cells. CONCLUSIONS NAP potently antagonizes ethanol inhibition of L1 adhesion by stimulating EphB2 phosphorylation of L1-Y1229. EphB2 plays a critical role in synaptic development; its potent activation by NAP suggests that ADNP may mediate synaptic development partly by activating EphB2.
Collapse
Affiliation(s)
- Xiaowei Dou
- Veterans Affairs Boston Healthcare System; Department of Neurology, Harvard Medical School, West Roxbury, MA 02132
| | - Jerry Y. Lee
- Veterans Affairs Boston Healthcare System; Department of Neurology, Harvard Medical School, West Roxbury, MA 02132
| | - Michael E. Charness
- Veterans Affairs Boston Healthcare System; Department of Neurology, Harvard Medical School, West Roxbury, MA 02132,Department of Neurology, Boston University, School of Medicine, Boston, MA 02119, To whom correspondence should be addressed. Michael E. Charness, M.D., VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, MA 02132, Phone: 857-203-6011,
| |
Collapse
|
13
|
Parnell SE, Riley EP, Warren KR, Mitchell KT, Charness ME. The contributions of Dr. Kathleen K. Sulik to fetal alcohol spectrum disorders research and prevention. Alcohol 2018; 69:15-24. [PMID: 29571046 DOI: 10.1016/j.alcohol.2017.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 10/17/2022]
Abstract
Dr. Kathleen Sulik (Kathy) has spent 35 years studying fetal alcohol syndrome (FAS) and fetal alcohol spectrum disorders (FASD). Beginning with her landmark 1981 Science paper describing the early gestational window when alcohol can cause the craniofacial malformations characteristic of FAS, Kathy has contributed a vast amount of research furthering our knowledge of FASD. After her seminal work that definitively demonstrated that alcohol is the causative factor in FAS, she and her lab went on to explore and define the stage-dependent effects of early gestational alcohol exposure on the face and brain in numerous different ways throughout her career. She explored and discovered numerous mechanisms of alcohol's effects on the embryo, as well as describing several genetic factors that can modify susceptibility to developmental alcohol exposure. She did not restrict her research to the face and brain; her lab described in intricate detail the effects of developmental alcohol exposure on many different organs, including the heart, ears, kidneys, and limbs. In addition to her research, and in conjunction with NIAAA and the National Organization on Fetal Alcohol Syndrome (NOFAS), Kathy developed several FASD prevention curricula that are still in use today. Finally, as part of her drive to eradicate FAS and FASD, Kathy labored tirelessly with public policy makers to change how FASD is viewed by the public, how FASD is identified in affected individuals, and how FASD is studied by researchers. While no article could fully cover Kathy's contributions to FASD research and prevention, or her other contributions to embryology and teratology, this review will attempt to illustrate some of the highlights of Kathy's remarkable career.
Collapse
|
14
|
Ferrini F, Dering B, De Giorgio A, Lossi L, Granato A. Effects of Acute Alcohol Exposure on Layer 5 Pyramidal Neurons of Juvenile Mice. Cell Mol Neurobiol 2018; 38:955-963. [PMID: 29224183 PMCID: PMC11482033 DOI: 10.1007/s10571-017-0571-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022]
Abstract
Early-onset drinking during childhood or preadolescence is a serious social problem. Yet, most of the basic neurobiological research on the acute effects of ethanol has been carried out on adult or early postnatal animals. We studied the effect of alcohol exposure on the basic electrophysiological properties and cell viability of layer 5 pyramidal neurons from the somatosensory cortex of juvenile (P21-P23) C57BL/6N mice. After bath application of 50 mM ethanol to acute slices of the somatosensory cortex, no adverse effects were detected on cells survival, whereas the input resistance and firing rate of layer 5 neurons were significantly reduced. While the effect on the input resistance was reversible, the depressing effect on cell firing remained stable after 6 min of alcohol exposure. Ethanol application did not result in any significant change of mIPSC frequency, amplitude, and rise time. A slight increase of mIPSC decay time was observed after 6 min of ethanol exposure. The molecular mechanisms leading to these alterations and their significance for the physiology of the cerebral cortex are briefly discussed.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Benjamin Dering
- Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | | | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, Italy
| | - Alberto Granato
- Department of Psychology, Catholic University, Largo A. Gemelli 1, 20123, Milan, Italy.
| |
Collapse
|
15
|
Dou X, Menkari C, Mitsuyama R, Foroud T, Wetherill L, Hammond P, Suttie M, Chen X, Chen SY, Charness ME. L1 coupling to ankyrin and the spectrin-actin cytoskeleton modulates ethanol inhibition of L1 adhesion and ethanol teratogenesis. FASEB J 2018; 32:1364-1374. [PMID: 29109170 DOI: 10.1096/fj.201700970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ethanol causes fetal alcohol spectrum disorders (FASDs) partly by inhibiting cell adhesion mediated by the L1 neural cell adhesion molecule. Ethanol interacts with an alcohol binding pocket in the L1 extracellular domain (ECD), and dephosphorylation of S1248 in the L1 cytoplasmic domain (CD) renders L1 adhesion insensitive to inhibition by ethanol (L1 insensitive). The mechanism underlying this inside-out signaling is unknown. Here we show that phosphorylation of the human L1-CD at S1152, Y1176, S1181, and S1248 renders L1 sensitive to ethanol by promoting L1 coupling with ankyrin-G and the spectrin-actin cytoskeleton. Knockdown of ankyrin-G or L1 mutations that uncouple L1 from ankyrin reduce L1 sensitivity to ethanol, but not methanol, consistent with a small conformational change in the extracellular alcohol binding pocket. Phosphorylation of Y1176 and ankyrin-G coupling with L1 are higher in NIH/3T3 clonal cell lines in which ethanol inhibits L1 adhesion than in ethanol-resistant NIH/3T3 clonal cell lines. Similarly, phosphorylation of Y1176 is higher in C57BL/6J mice that are sensitive to ethanol teratogenesis than in ethanol resistant C57BL/6N mice. Finally, polymorphisms in genes that encode ankyrin-G and p90rsk, a kinase that phosphorylates S1152, are linked to facial dysmorphology in children with heavy prenatal ethanol exposure. These findings indicate that genes that regulate L1 coupling to ankyrin may influence susceptibility to FASD.-Dou, X., Menkari, C., Mitsuyama, R., Foroud, T., Wetherill, L., Hammond, P., Suttie, M., Chen, X., Chen, S.-Y., Charness, M. E., Collaborative Initiative on Fetal Alcohol Spectrum Disorders. L1 coupling to ankyrin and the spectrin-actin cytoskeleton modulates ethanol inhibition of L1 adhesion and ethanol teratogenesis.
Collapse
Affiliation(s)
- Xiaowei Dou
- Department of Neurology, Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, Massachusetts, USA
| | - Carrie Menkari
- Department of Neurology, Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, Massachusetts, USA
| | - Rei Mitsuyama
- Department of Neurology, Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, Massachusetts, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Peter Hammond
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| | - Michael Suttie
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| | - Xiaopan Chen
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky, USA; and
| | - Michael E Charness
- Department of Neurology, Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, Massachusetts, USA.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
16
|
Wei Z, Zhao W, Schachner M. Electroacupuncture Restores Locomotor Functions After Mouse Spinal Cord Injury in Correlation With Reduction of PTEN and p53 Expression. Front Mol Neurosci 2018; 11:411. [PMID: 30505267 PMCID: PMC6250832 DOI: 10.3389/fnmol.2018.00411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/22/2018] [Indexed: 02/05/2023] Open
Abstract
Background: We previously showed that electroacupuncture (EA) at Jiaji points promotes expression of adhesion molecule L1 in spinal cord tissue after mouse spinal cord injury (SCI) and contributes to recovery of neural functions. Objective: We investigated the effects of EA on downstream signaling molecules of L1 and molecules relevant to apoptosis with the aim to understand the underlying molecular mechanisms. Methods: Female C57BL/6 mice were divided into a sham group, injury group, injury+acupuncture (AP) group and injury+EA group. We investigated the changes in cognate L1-triggered signaling molecules after SCI by immunofluorescence staining and immunoblot analysis. Results: Protein levels of phosphatase and tensin homolog (PTEN) and p53 were decreased by EA at different time points after injury, whereas the levels of phosphorylated mammalian target of rapamycin (pmTOR), p-Akt and phosphorylated extracellular signal-regulatedkinase (p-Erk) were increased. Also, levels of myelin basic protein (MBP) were increased by EA. AP alone showed less pronounced changes in expression of the investigated molecules, when compared to EA. Conclusion: We propose that EA contributes to neuroprotection by inhibiting PTEN and p53 expression and by increasing the levels of pmTOR/Akt/Erk and of MBP after SCI. These observations allow novel insights into the beneficial effects of EA via L1-triggered signaling molecules after injury.
Collapse
Affiliation(s)
- Zhe Wei
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Faculty of Medicine and Health, Lishui University, Lishui, China
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Melitta Schachner
| |
Collapse
|
17
|
Fish EW, Wieczorek LA, Rumple A, Suttie M, Moy SS, Hammond P, Parnell SE. The enduring impact of neurulation stage alcohol exposure: A combined behavioral and structural neuroimaging study in adult male and female C57BL/6J mice. Behav Brain Res 2017; 338:173-184. [PMID: 29107713 DOI: 10.1016/j.bbr.2017.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Abstract
Prenatal alcohol exposure (PAE) can cause behavioral and brain alterations over the lifespan. In animal models, these effects can occur following PAE confined to critical developmental periods, equivalent to the third and fourth weeks of human gestation, before pregnancy is usually recognized. The current study focuses on PAE during early neurulation and examines the behavioral and brain structural consequences that appear in adulthood. On gestational day 8 C57BL/6J dams received two alcohol (2.8g/kg, i.p), or vehicle, administrations, four hours apart. Male and female offspring were reared to adulthood and examined for performance on the elevated plus maze, rotarod, open field, Morris water maze, acoustic startle, social preference (i.e. three-chambered social approach test), and the hot plate. A subset of these mice was later evaluated using magnetic resonance imaging to detect changes in regional brain volumes and shapes. In males, PAE increased exploratory behaviors on the elevated plus maze and in the open field; these changes were associated with increased fractional anisotropy in the anterior commissure. In females, PAE reduced social preference and the startle response, and decreased cerebral cortex and brain stem volumes. Vehicle-treated females had larger pituitaries than did vehicle-treated males, but PAE attenuated this sex difference. In males, pituitary size correlated with open field activity, while in females, pituitary size correlated with social activity. These findings indicate that early neurulation PAE causes sex specific behavioral and brain changes in adulthood. Changes in the pituitary suggest that this structure is especially vulnerable to neurulation stage PAE.
Collapse
Affiliation(s)
- E W Fish
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States.
| | - L A Wieczorek
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - A Rumple
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - M Suttie
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - S S Moy
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - P Hammond
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - S E Parnell
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| |
Collapse
|
18
|
Germanaud D, Toutain S. Exposition prénatale à l’alcool et troubles causés par l’alcoolisation fœtale. ACTA ACUST UNITED AC 2017. [DOI: 10.3917/cont.046.0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
19
|
Lovely C, Rampersad M, Fernandes Y, Eberhart J. Gene-environment interactions in development and disease. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.247. [PMID: 27626243 PMCID: PMC5191946 DOI: 10.1002/wdev.247] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Abstract
Developmental geneticists continue to make substantial jumps in our understanding of the genetic pathways that regulate development. This understanding stems predominantly from analyses of genetically tractable model organisms developing in laboratory environments. This environment is vastly different from that in which human development occurs. As such, most causes of developmental defects in humans are thought to involve multifactorial gene-gene and gene-environment interactions. In this review, we discuss how gene-environment interactions with environmental teratogens may predispose embryos to structural malformations. We elaborate on the growing number of gene-ethanol interactions that might underlie susceptibility to fetal alcohol spectrum disorders. WIREs Dev Biol 2017, 6:e247. doi: 10.1002/wdev.247 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- C Lovely
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Mindy Rampersad
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Yohaan Fernandes
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Johann Eberhart
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
20
|
Drinking During Pregnancy and the Developing Brain: Is Any Amount Safe? Trends Cogn Sci 2016; 20:80-82. [PMID: 26801950 DOI: 10.1016/j.tics.2015.09.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022]
Abstract
Heavy prenatal alcohol exposure can have lifelong, disabling effects on brain and cognition. Unlike animal studies, research on light-to-moderate drinking in humans demonstrates less consistent impact. Discussions of negative research findings in popular media underestimate potential adverse outcomes and complicate decisions about risks versus benefits of light-to-moderate drinking during pregnancy.
Collapse
|
21
|
Eberhart JK, Parnell SE. The Genetics of Fetal Alcohol Spectrum Disorders. Alcohol Clin Exp Res 2016; 40:1154-65. [PMID: 27122355 DOI: 10.1111/acer.13066] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/04/2016] [Indexed: 12/29/2022]
Abstract
The term "fetal alcohol spectrum disorders" (FASD) defines the full range of ethanol (EtOH)-induced birth defects. Numerous variables influence the phenotypic outcomes of embryonic EtOH exposure. Among these variables, genetics appears to play an important role, yet our understanding of the genetic predisposition to FASD is still in its infancy. We review the current literature that relates to the genetics of FASD susceptibility and gene-EtOH interactions. Where possible, we comment on potential mechanisms of reported gene-EtOH interactions. Early indications of genetic sensitivity to FASD came from human and animal studies using twins or inbred strains, respectively. These analyses prompted searches for susceptibility loci involved in EtOH metabolism and analyses of candidate loci, based on phenotypes observed in FASD. More recently, genetic screens in animal models have provided an additional insight into the genetics of FASD. Understanding FASD requires that we understand the many factors influencing phenotypic outcome following embryonic EtOH exposure. We are gaining ground on understanding some of the genetics behind FASD, yet much work remains to be carried out. Coordinated analyses using human patients and animal models are likely to be highly fruitful in uncovering the genetics behind FASD.
Collapse
Affiliation(s)
- Johann K Eberhart
- Department of Molecular Biosciences, Institute for Cell and Molecular Biology, Institute for Neuroscience, Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Valenzuela CF, Medina AE, Wozniak JR, Klintsova AY. Proceedings of the 2015 Annual Meeting of the Fetal Alcohol Spectrum Disorders Study Group. Alcohol 2016; 50:37-42. [PMID: 26695590 DOI: 10.1016/j.alcohol.2015.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
The 2015 Fetal Alcohol Spectrum Disorders Study Group (FASDSG) meeting was titled "Basic Mechanisms and Translational Implications." Despite decades of basic science and clinical research, our understanding of the mechanisms by which ethanol affects fetal development is still in its infancy. The first keynote presentation focused on the role of heat shock protein pathways in the actions of ethanol in the developing brain. The second keynote presentation addressed the use of magnetoencephalography to characterize brain function in children with FASD. The conference also included talks by representatives from several government agencies, short presentations by junior and senior investigators that showcased the latest in FASD research, and award presentations. An important part of the meeting was the presentation of the 2015 Henry Rosett award to Dr. Michael Charness in honor of his achievements in research on FASD.
Collapse
|
23
|
Dou X, Charness ME. Effect of lipid raft disruption on ethanol inhibition of l1 adhesion. Alcohol Clin Exp Res 2015; 38:2707-11. [PMID: 25421507 PMCID: PMC4278581 DOI: 10.1111/acer.12556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/24/2014] [Indexed: 12/21/2022]
Abstract
Background Alcohol causes fetal alcohol spectrum disorders in part by disrupting the function of the neural cell adhesion molecule L1. Alcohol inhibits L1-mediated cell–cell adhesion in diverse cell types and inhibits L1-mediated neurite outgrowth in cerebellar granule neurons (CGNs). A recent report indicates that ethanol (EtOH) induces the translocation of L1 into CGN lipid rafts and that disruption of lipid rafts prevents EtOH inhibition of L1-mediated neurite outgrowth. The same butanol–pentanol cutoff was noted for alcohol-induced translocation of L1 into lipid rafts that was reported previously for alcohol inhibition of L1 adhesion, suggesting that EtOH might inhibit L1 adhesion by shifting L1 into lipid rafts. Methods The NIH/3T3 cell line, 2A2-L1s, is a well-characterized EtOH-sensitive clonal cell line that stably expresses human L1. Cells were treated with 25 mM EtOH, 5 μM filipin, or both. Lipid rafts were enriched in membrane fractions by preparation of detergent-resistant membrane (DRMs) fractions. Caveolin-1 was used as a marker of lipid rafts, and L1 and Src were quantified by Western blotting in lipid-raft-enriched membrane fractions and by immunohistochemistry. Results EtOH (25 mM) increased the percentage of L1, but not Src, in 2A2-L1s membrane fractions enriched in lipid rafts. Filipin, an agent known to disrupt lipid rafts, decreased the percentage of caveolin and L1 in DRMs from 2A2-L1s cells. Filipin also blocked EtOH-induced translocation of L1 into lipid rafts from 2A2-L1s cells but did not significantly affect L1 adhesion or EtOH inhibition of L1 adhesion. Conclusions These findings indicate that EtOH does not inhibit L1 adhesion in NIH/3T3 cells by inducing the translocation of L1 into lipid rafts.
Collapse
Affiliation(s)
- Xiaowei Dou
- VA Boston Healthcare System, Harvard Medical School, West Roxbury, Massachusetts
| | | |
Collapse
|
24
|
Saito T, Okada S, Yamada E, Shimoda Y, Osaki A, Tagaya Y, Shibusawa R, Okada J, Yamada M. Effect of dapagliflozin on colon cancer cell [Rapid Communication]. Endocr J 2015; 62:1133-7. [PMID: 26522271 DOI: 10.1507/endocrj.ej15-0396] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dapagliflozin is a SGLT2 (Sodium/Glucose cotransporter 2) inhibitor that reduces circulating glucose levels in type 2 diabetic patients by blocking the SGLT2-dependent reabsorption of glucose in the kidney. Dapagliflozin is metabolized by UGT1A9 (UDP Glucuronosyltransferase 1 family, Polypeptidase A9), suppressing its SGLT2 inhibitor activity. However little information is available on whether dapagliflozin acts in the absence of dapagliflozin metabolism. Treatment with 0.5μM dapagliflozin significantly reduced the number of HCT116 cells, which express SGLT2 but not UGT1A9. This was independent of SGLT2 inhibition, as the SGLT2 inhibitor phlorizin had no effect. Dapagliflozin also enhanced Erk phosphorylation but without changing levels of uncleaved and cleaved PPAR and uncleaved caspase-3, suggesting that the cause of the decrease in HCT116 cell number was apoptosis independent cell death. Taken together, these data indicate a new potential role for dapagliflozin as an anticancer reagent in tumor cell populations that do not express UGT1A9.
Collapse
Affiliation(s)
- Tsugumichi Saito
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Prenatal alcohol exposure (PAE) is one of the most prevalent and modifiable risk factors for somatic, behavioral, and neurological abnormalities. Affected individuals exhibit a wide range of such features referred to as fetal alcohol spectrum disorders (FASD). These are characterized by a more or less specific pattern of minor facial dysmorphic features, growth deficiency and central nervous system symptoms. Nevertheless, whereas the diagnosis of the full-blown fetal alcohol syndrome does not pose a major challenge, only a tentative diagnosis of FASD can be reached if only mild features are present and/or maternal alcohol consumption during pregnancy cannot be verified. The respective disorders have lifelong implications. The teratogenic mechanisms induced by PAE can lead to various additional somatic findings and structural abnormalities of cerebrum and cerebellum. At the functional level, cognition, motor coordination, attention, language development, executive functions, memory, social perception and emotion processing are impaired to a variable extent. The long-term development is characterized by disruption and failure in many domains; an age-adequate independency is frequently not achieved. In addition to primary prevention, individual therapeutic interventions and tertiary prevention are warranted; provision of extensive education to affected subjects and their caregivers is crucial. Protective environments are often required to prevent negative consequences such as delinquency, indebtedness or experience of physical/sexual abuse.
Collapse
|
26
|
Sulik KK. Fetal alcohol spectrum disorder: pathogenesis and mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:463-75. [PMID: 25307590 DOI: 10.1016/b978-0-444-62619-6.00026-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This chapter provides an overview of animal model-based studies that have generated information critical to our understanding of the pathogenesis and mechanisms underlying alcohol-induced birth defects, in particular those involving the brain. Focus is placed on the developing organism itself, rather than the mother, placenta, or other extraembryonic tissues. Components of the cascades of alcohol-induced damage that are considered herein are excessive cell death, changes in the cell cycle and proliferation, cell migration, cell morphogenesis, and gene expression as well as free radical damage and interference with cell signaling. The roles played by one or more of these various factors in the genesis of structural and functional birth defects are dependent upon alcohol exposure patterns and dosage, the involved tissue, and the prenatal stage(s) at the time of exposure. Technologic advances and rapidly increasing knowledge in the fields of genetics, cell, developmental, and neurobiology are critical to accurately piecing together experimental evidence in refining our understanding of the genesis of alcohol-induced birth defects, to the planning and execution of future studies, and to applying the knowledge gained to diminish the severity or occurrence of fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Kathleen K Sulik
- Department of Cell Biology and Physiology and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
|