1
|
Kotz J, Martz EJ, Nelson M, Savoie N, Schmitt L, States J, Holton N, Hansen K, Johnson AM. Novel interactions within the silent information regulator heterochromatin complex potentiate inter-subunit communication and gene repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630195. [PMID: 39763739 PMCID: PMC11703230 DOI: 10.1101/2024.12.23.630195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Organisms with smaller genomes often perform multiple functions using one multi-subunit protein complex. The S. cerevisiae Silent Information Regulator complex (SIRc) carries out all of the core functions of heterochromatin. SIR complexes first drive the initiation and spreading of histone deacetylation in an iterative manner. Subsequently, the same complexes are incorporated stably with nucleosomes, driving compaction and repression of the underlying chromatin domain. These two distinct functions of SIRc have each been characterized in much detail, but the mechanism by which the dynamic spreading state switches to stable compaction is not well-understood. This incomplete knowledge of intra-complex communication is partly due to a lack of structural information of the complex as a whole; only structures of fragments have been determined to date. Using cross-linking mass spectrometry in solution, we identified a novel inter-subunit interaction that physically connects the two states of SIRc. The Sir2 deacetylase makes direct interactions with the scaffolding subunit Sir4 through its coiled-coil domain, which also interacts with the Sir3 compaction/repression subunit. Within the hub of interactions are conserved residues in Sir2 that can sense deacetylation state, as well as amino acids that likely diverged and co-evolved to interact with Sir4, promoting species-specific functions. Mutation of this interaction hub disrupts heterochromatic repression, potentially by disrupting a conserved mechanism that communicates completion of deacetylation to switch to compaction. Our work highlights how a single multi-functional chromatin regulatory complex can stage a step-wise mechanism that requires a major transition in activities to achieve epigenetic gene repression.
Collapse
Affiliation(s)
- Jenna Kotz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
- These authors contributed equally
| | - E. J. Martz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
- These authors contributed equally
| | - Maya Nelson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
| | - Nicole Savoie
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
| | - Lauren Schmitt
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
| | - Jordan States
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
| | - Nathan Holton
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
| | - Aaron M. Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver – Anschutz Medical Campus
- Structural Biology, Biochemistry, and Biophysics Program, University of Colorado, Denver – Anschutz Medical Campus
| |
Collapse
|
2
|
Dhillon N, Kamakaka RT. Transcriptional silencing in Saccharomyces cerevisiae: known unknowns. Epigenetics Chromatin 2024; 17:28. [PMID: 39272151 PMCID: PMC11401328 DOI: 10.1186/s13072-024-00553-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae is a persistent and highly stable form of gene repression. It involves DNA silencers and repressor proteins that bind nucleosomes. The silenced state is influenced by numerous factors including the concentration of repressors, nature of activators, architecture of regulatory elements, modifying enzymes and the dynamics of chromatin.Silencers function to increase the residence time of repressor Sir proteins at silenced domains while clustering of silenced domains enables increased concentrations of repressors and helps facilitate long-range interactions. The presence of an accessible NDR at the regulatory regions of silenced genes, the cycling of chromatin configurations at regulatory sites, the mobility of Sir proteins, and the non-uniform distribution of the Sir proteins across the silenced domain, all result in silenced chromatin that only stably silences weak promoters and enhancers via changes in transcription burst duration and frequency.These data collectively suggest that silencing is probabilistic and the robustness of silencing is achieved through sub-optimization of many different nodes of action such that a stable expression state is generated and maintained even though individual constituents are in constant flux.
Collapse
Affiliation(s)
- Namrita Dhillon
- Department of Biomolecular Engineering, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Rohinton T Kamakaka
- Department of MCD Biology, University of California, 1156 High Street, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
3
|
Movilla Miangolarra A, Saxton DS, Yan Z, Rine J, Howard M. Two-way feedback between chromatin compaction and histone modification state explains Saccharomyces cerevisiae heterochromatin bistability. Proc Natl Acad Sci U S A 2024; 121:e2403316121. [PMID: 38593082 PMCID: PMC11032488 DOI: 10.1073/pnas.2403316121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 04/11/2024] Open
Abstract
Compact chromatin is closely linked with gene silencing in part by sterically masking access to promoters, inhibiting transcription factor binding and preventing polymerase from efficiently transcribing a gene. However, a broader hypothesis suggests that chromatin compaction can be both a cause and a consequence of the locus histone modification state, with a tight bidirectional interaction underpinning bistable transcriptional states. To rigorously test this hypothesis, we developed a mathematical model for the dynamics of the HMR locus in Saccharomyces cerevisiae, that incorporates activating histone modifications, silencing proteins, and a dynamic, acetylation-dependent, three-dimensional locus size. Chromatin compaction enhances silencer protein binding, which in turn feeds back to remove activating histone modifications, leading to further compaction. The bistable output of the model was in good agreement with prior quantitative data, including switching rates from expressed to silent states (and vice versa), and protein binding/histone modification levels within the locus. We then tested the model by predicting changes in switching rates as the genetic length of the locus was increased, which were then experimentally verified. Such bidirectional feedback between chromatin compaction and the histone modification state may be a widespread and important regulatory mechanism given the hallmarks of many heterochromatic regions: physical chromatin compaction and dimerizing (or multivalent) silencing proteins.
Collapse
Affiliation(s)
| | - Daniel S. Saxton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Zhi Yan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
4
|
Miangolarra AM, Saxton DS, Yan Z, Rine J, Howard M. Two-way feedback between chromatin compaction and histone modification state explains S. cerevisiae heterochromatin bistability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.12.552948. [PMID: 37645983 PMCID: PMC10461966 DOI: 10.1101/2023.08.12.552948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Compact chromatin is closely linked with gene silencing in part by sterically masking access to promoters, inhibiting transcription factor binding and preventing polymerase from efficiently transcribing a gene. Here, we propose a broader view: chromatin compaction can be both a cause and a consequence of the histone modification state, and this tight bidirectional interaction can underpin bistable transcriptional states. To test this theory, we developed a mathematical model for the dynamics of the HMR locus in S. cerevisiae, that incorporates activating histone modifications, silencing proteins and a dynamic, acetylation-dependent, three-dimensional locus size. Chromatin compaction enhances silencer protein binding, which in turn feeds back to remove activating histone modifications, leading to further compaction. The bistable output of the model was in good agreement with prior quantitative data, including switching rates from expressed to silent states, and vice versa, and protein binding levels within the locus. We then tested the model by predicting changes in switching rates as the genetic length of the locus was increased, which were then experimentally verified. This bidirectional feedback between chromatin compaction and the histone modification state may be an important regulatory mechanism at many loci.
Collapse
Affiliation(s)
- Ander Movilla Miangolarra
- Dept. of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Daniel S Saxton
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhi Yan
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jasper Rine
- Dept. of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Martin Howard
- Dept. of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
5
|
Small EM, Osley MA. A screen for histone mutations that affect quiescence in S. cerevisiae. FEBS J 2023; 290:3539-3562. [PMID: 36871139 DOI: 10.1111/febs.16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Quiescence or G0 is a reversible state in which cells cease division but retain the ability to resume proliferation. Quiescence occurs in all organisms and is essential for stem cell maintenance and tissue renewal. It is also related to chronological lifespan (CLS)-the survival of postmitotic quiescent cells (Q cells) over time-and thus contributes to longevity. Important questions remain regarding the mechanisms that control entry into quiescence, maintenance of quiescence and re-entry of Q cells into the cell cycle. S. cerevisiae has emerged as an excellent organism in which to address these questions because of the ease in which Q cells can be isolated. Following entry into G0, yeast cells remain viable for an extended period and can re-enter the cell cycle when exposed to growth-promoting signals. Histone acetylation is lost during the formation of Q cells and chromatin becomes highly condensed. This unique chromatin landscape regulates quiescence-specific transcriptional repression and has been linked to the formation and maintenance of Q cells. To ask whether other chromatin features regulate quiescence, we conducted two comprehensive screens of histone H3 and H4 mutants and identified mutants that show either altered quiescence entry or CLS. Examination of several quiescence entry mutants found that none of the mutants retain histone acetylation in Q cells but show differences in chromatin condensation. A comparison of H3 and H4 mutants with altered CLS to those with altered quiescence entry found that chromatin plays both overlapping and independent roles in the continuum of the quiescence program.
Collapse
Affiliation(s)
- Eric M Small
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Mary Ann Osley
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
6
|
Mitra M, Coller HA. Screen time: an unbiased search for histone mutations that affect quiescence and chronological aging. FEBS J 2023. [PMID: 37184984 DOI: 10.1111/febs.16788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
Quiescence, reversible cell cycle arrest, is essential for survival during nutrient limitations and the execution of precise developmental patterns. In yeast, entry into quiescence is associated with a loss of histone acetylation as the chromatin becomes tightly condensed. In this issue, Small and Osley performed an unbiased screen of mutations in histone H3 and H4 amino acids in budding yeast and identified histone residues that are critical for quiescence and chronological lifespan. The results indicate that multiple histone amino acids, likely affecting nucleosome structure and a wide range of chromatin-associated processes, can promote or inhibit quiescence entry. Many of the same histone amino acids are also critical regulators of chronological lifespan.
Collapse
Affiliation(s)
- Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Ngubo M, Reid JL, Patterton H. Distinct structural groups of histone H3 and H4 residues have divergent effects on chronological lifespan in Saccharomyces cerevisiae. PLoS One 2022; 17:e0268760. [PMID: 35622816 PMCID: PMC9140238 DOI: 10.1371/journal.pone.0268760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
We have performed a comprehensive analysis of the involvement of histone H3 and H4 residues in the regulation of chronological lifespan in yeast and identify four structural groups in the nucleosome that influence lifespan. We also identify residues where substitution with an epigenetic mimic extends lifespan, providing evidence that a simple epigenetic switch, without possible additional background modifications, causes longevity. Residues where substitution result in the most pronounced lifespan extension are all on the exposed face of the nucleosome, with the exception of H3E50, which is present on the lateral surface, between two DNA gyres. Other residues that have a more modest effect on lifespan extension are concentrated at the extremities of the H3-H4 dimer, suggesting a role in stabilizing the dimer in its nucleosome frame. Residues that reduce lifespan are buried in the histone handshake motif, suggesting that these mutations destabilize the octamer structure. All residues exposed on the nucleosome disk face and that cause lifespan extension are known to interact with Sir3. We find that substitution of H4K16 and H4H18 cause Sir3 to redistribute from telomeres and silent mating loci to secondary positions, often enriched for Rap1, Abf1 or Reb1 binding sites, whereas H3E50 does not. The redistribution of Sir3 in the genome can be reproduced by an equilibrium model based on primary and secondary binding sites with different affinities for Sir3. The redistributed Sir3 cause transcriptional repression at most of the new loci, including of genes where null mutants were previously shown to extend chronological lifespan. The transcriptomic profiles of H4K16 and H4H18 mutant strains are very similar, and compatible with a DNA replication stress response. This is distinct from the transcriptomic profile of H3E50, which matches strong induction of oxidative phosphorylation. We propose that the different groups of residues are involved in binding to heterochromatin proteins, in destabilizing the association of the nucleosome DNA, disrupting binding of the H3-H4 dimer in the nucleosome, or disrupting the structural stability of the octamer, each category impacting on chronological lifespan by a different mechanism.
Collapse
Affiliation(s)
- Mzwanele Ngubo
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Jessica Laura Reid
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Hugh–George Patterton
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
- * E-mail:
| |
Collapse
|
8
|
Oh J, Yeom S, Park J, Lee JS. The regional sequestration of heterochromatin structural proteins is critical to form and maintain silent chromatin. Epigenetics Chromatin 2022; 15:5. [PMID: 35101096 PMCID: PMC8805269 DOI: 10.1186/s13072-022-00435-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe are good models for heterochromatin study. In S. pombe, H3K9 methylation and Swi6, an ortholog of mammalian HP1, lead to heterochromatin formation. However, S. cerevisiae does not have known epigenetic silencing markers and instead has Sir proteins to regulate silent chromatin formation. Although S. cerevisiae and S. pombe form and maintain heterochromatin via mechanisms that appear to be fundamentally different, they share important common features in the heterochromatin structural proteins. Heterochromatin loci are localized at the nuclear periphery by binding to perinuclear membrane proteins, thereby producing distinct heterochromatin foci, which sequester heterochromatin structural proteins. In this review, we discuss the nuclear peripheral anchoring of heterochromatin foci and its functional relevance to heterochromatin formation and maintenance.
Collapse
Affiliation(s)
- Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Soojin Yeom
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Jiyeon Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
9
|
Brothers M, Rine J. Distinguishing between recruitment and spread of silent chromatin structures in Saccharomyces cerevisiae. eLife 2022; 11:75653. [PMID: 35073254 PMCID: PMC8830885 DOI: 10.7554/elife.75653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The formation of heterochromatin at HML, HMR, and telomeres in Saccharomyces cerevisiae involves two main steps: Recruitment of Sir proteins to silencers and their spread throughout the silenced domain. We developed a method to study these two processes at single base-pair resolution. Using a fusion protein between the heterochromatin protein Sir3 and the non-site-specific bacterial adenine methyltransferase M.EcoGII, we mapped sites of Sir3-chromatin interactions genome-wide using long-read Nanopore sequencing to detect adenines methylated by the fusion protein and by ChIP-seq to map the distribution of Sir3-M.EcoGII. A silencing-deficient mutant of Sir3 lacking its Bromo-Adjacent Homology (BAH) domain, sir3-bah∆, was still recruited to HML, HMR, and telomeres. However, in the absence of the BAH domain, it was unable to spread away from those recruitment sites. Overexpression of Sir3 did not lead to further spreading at HML, HMR, and most telomeres. A few exceptional telomeres, like 6R, exhibited a small amount of Sir3 spreading, suggesting that boundaries at telomeres responded variably to Sir3 overexpression. Finally, by using a temperature-sensitive allele of SIR3 fused to M.ECOGII, we tracked the positions first methylated after induction and found that repression of genes at HML and HMR began before Sir3 occupied the entire locus.
Collapse
Affiliation(s)
- Molly Brothers
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Jasper Rine
- Department of Molecular and Cell Biology, University of California, Berkeley
| |
Collapse
|
10
|
Measuring the buffering capacity of gene silencing in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2021; 118:2111841118. [PMID: 34857629 PMCID: PMC8670432 DOI: 10.1073/pnas.2111841118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 11/18/2022] Open
Abstract
Gene silencing, once established, is stably maintained for several generations. Despite the high fidelity of the inheritance of the silent state, individual components of silenced chromatin are in constant flux. Models suggest that silent loci can tolerate fluctuations in Sir proteins and histone acetylation levels, but the level of tolerance is unknown. To understand the quantitative relationships between H4K16 acetylation, Sir proteins, and silencing, we developed assays to quantitatively alter a H4K16 acetylation mimic allele and Sir protein levels and measure the effects of these changes on silencing. Our data suggest that a two- to threefold change in levels of histone marks and specific Sir proteins affects the stability of the silent state of a large chromatin domain. Gene silencing in budding yeast is mediated by Sir protein binding to unacetylated nucleosomes to form a chromatin structure that inhibits transcription. Transcriptional silencing is characterized by the high-fidelity transmission of the silent state. Despite its relative stability, the constituent parts of the silent state are in constant flux, giving rise to a model that silent loci can tolerate such fluctuations without functional consequences. However, the level of tolerance is unknown, and we developed methods to measure the threshold of histone acetylation that causes the silent chromatin state to switch to the active state as well as to measure the levels of the enzymes and structural proteins necessary for silencing. We show that loss of silencing required 50 to 75% acetyl-mimic histones, though the precise levels were influenced by silencer strength and upstream activating sequence (UAS) enhancer/promoter strength. Measurements of repressor protein levels necessary for silencing showed that reducing SIR4 gene dosage two- to threefold significantly weakened silencing, though reducing the gene copy numbers for Sir2 or Sir3 to the same extent did not significantly affect silencing suggesting that Sir4 was a limiting component in gene silencing. Calculations suggest that a mere twofold reduction in the ability of acetyltransferases to acetylate nucleosomes across a large array of nucleosomes may be sufficient to generate a transcriptionally silent domain.
Collapse
|
11
|
Bacic L, Gaullier G, Sabantsev A, Lehmann LC, Brackmann K, Dimakou D, Halic M, Hewitt G, Boulton SJ, Deindl S. Structure and dynamics of the chromatin remodeler ALC1 bound to a PARylated nucleosome. eLife 2021; 10:e71420. [PMID: 34486521 PMCID: PMC8463071 DOI: 10.7554/elife.71420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022] Open
Abstract
The chromatin remodeler ALC1 is recruited to and activated by DNA damage-induced poly(ADP-ribose) (PAR) chains deposited by PARP1/PARP2/HPF1 upon detection of DNA lesions. ALC1 has emerged as a candidate drug target for cancer therapy as its loss confers synthetic lethality in homologous recombination-deficient cells. However, structure-based drug design and molecular analysis of ALC1 have been hindered by the requirement for PARylation and the highly heterogeneous nature of this post-translational modification. Here, we reconstituted an ALC1 and PARylated nucleosome complex modified in vitro using PARP2 and HPF1. This complex was amenable to cryo-EM structure determination without cross-linking, which enabled visualization of several intermediate states of ALC1 from the recognition of the PARylated nucleosome to the tight binding and activation of the remodeler. Functional biochemical assays with PARylated nucleosomes highlight the importance of nucleosomal epitopes for productive remodeling and suggest that ALC1 preferentially slides nucleosomes away from DNA breaks.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Laura C Lehmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Despoina Dimakou
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Mario Halic
- Department of Structural Biology, St Jude Children's Research HospitalMemphisUnited States
| | | | | | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| |
Collapse
|
12
|
Zhang YZ, Yuan J, Zhang L, Chen C, Wang Y, Zhang G, Peng L, Xie SS, Jiang J, Zhu JK, Du J, Duan CG. Coupling of H3K27me3 recognition with transcriptional repression through the BAH-PHD-CPL2 complex in Arabidopsis. Nat Commun 2020; 11:6212. [PMID: 33277495 PMCID: PMC7718874 DOI: 10.1038/s41467-020-20089-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
Histone 3 Lys 27 trimethylation (H3K27me3)-mediated epigenetic silencing plays a critical role in multiple biological processes. However, the H3K27me3 recognition and transcriptional repression mechanisms are only partially understood. Here, we report a mechanism for H3K27me3 recognition and transcriptional repression. Our structural and biochemical data showed that the BAH domain protein AIPP3 and the PHD proteins AIPP2 and PAIPP2 cooperate to read H3K27me3 and unmodified H3K4 histone marks, respectively, in Arabidopsis. The BAH-PHD bivalent histone reader complex silences a substantial subset of H3K27me3-enriched loci, including a number of development and stress response-related genes such as the RNA silencing effector gene ARGONAUTE 5 (AGO5). We found that the BAH-PHD module associates with CPL2, a plant-specific Pol II carboxyl terminal domain (CTD) phosphatase, to form the BAH-PHD-CPL2 complex (BPC) for transcriptional repression. The BPC complex represses transcription through CPL2-mediated CTD dephosphorylation, thereby causing inhibition of Pol II release from the transcriptional start site. Our work reveals a mechanism coupling H3K27me3 recognition with transcriptional repression through the alteration of Pol II phosphorylation states, thereby contributing to our understanding of the mechanism of H3K27me3-dependent silencing.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jianlong Yuan
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lingrui Zhang
- grid.169077.e0000 0004 1937 2197Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Chunxiang Chen
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Yuhua Wang
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Guiping Zhang
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Li Peng
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Si-Si Xie
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jing Jiang
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004 Kaifeng, China
| | - Jian-Kang Zhu
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.169077.e0000 0004 1937 2197Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Jiamu Du
- grid.263817.9Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Cheng-Guo Duan
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004 Kaifeng, China
| |
Collapse
|
13
|
Banday S, Farooq Z, Ganai SA, Altaf M. Therapeutic strategies against hDOT1L as a potential drug target in MLL-rearranged leukemias. Clin Epigenetics 2020; 12:73. [PMID: 32450905 PMCID: PMC7249331 DOI: 10.1186/s13148-020-00860-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Therapeutic intervention of proteins participating in chromatin-mediated signaling with small-molecules is a novel option to reprogram expression networks for restraining disease states. Protein methyltransferases form the prominent family of such proteins regulating gene expression via epigenetic mechanisms thereby representing novel targets for pharmacological intervention. Disruptor of telomeric silencing, hDot1L is the only non-SET domain containing histone methyltransferase that methylates histone H3 at lysine 79. H3K79 methylation mediated by hDot1L plays a crucial role in mixed lineage leukemia (MLL) pathosis. MLL fusion protein mediated mistargeting of DOT1L to aberrant gene locations results in ectopic H3K79 methylation culminating in aberrant expression of leukemogenic genes like HOXA9 and MEIS1. hDOT1L has thus been proposed as a potential target for therapeutic intervention in MLL. This review presents the general overview of hDOT1L and its functional role in distinct biological processes. Furthermore, we discuss various therapeutic strategies against hDOT1L as a promising drug target to vanquish therapeutically challenging MLL.
Collapse
Affiliation(s)
- Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Zeenat Farooq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Shabir Ahmad Ganai
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India.,Present Address: Division of Basic Sciences and Humanities, Faculty of Agriculture, SKUAST-Kashmir, Wadura, Sopore, Jammu and Kashmir, 193201, India
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India. .,Centre for Interdisciplinary Research and Innovations, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| |
Collapse
|
14
|
Wang SH, Lee SP, Tung SY, Tsai SP, Tsai HC, Shen HH, Hong JY, Su KC, Chen FJ, Liu BH, Wu YY, Hsiao SP, Tsai MS, Liou GG. Stabilization of Sir3 interactions by an epigenetic metabolic small molecule, O-acetyl-ADP-ribose, on yeast SIR-nucleosome silent heterochromatin. Arch Biochem Biophys 2019; 671:167-174. [PMID: 31295433 DOI: 10.1016/j.abb.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022]
Abstract
In Saccharomyces cerevisiae, Sir proteins mediate heterochromatin epigenetic gene silencing. The assembly of silent heterochromatin requires histone deacetylation by Sir2, conformational change of SIR complexes, and followed by spreading of SIR complexes along the chromatin fiber to form extended silent heterochromatin domains. Sir2 couples histone deacetylation and NAD hydrolysis to generate an epigenetic metabolic small molecule, O-acetyl-ADP-ribose (AAR). Here, we demonstrate that AAR physically associates with Sir3 and that polySir3-AAR formation has a specific and essential role in the assembly of silent SIR-nucleosome pre-heterochromatin filaments. Furthermore, we show that AAR is capable of stabilizing binding of the Sir3 BAH domain to the Sir3 carboxyl-terminal region. Our data suggests that for the assembly of SIR-nucleosome pre-heterochromatin filament, the structural rearrangement of SIR-nucleosome is important and result in creating more stable interactions of Sir3, such as the inter-molecule Sir3-Sir3 interaction, and the Sir3-nucleosome interaction within the filaments. In conclusion, our results reveal the importance of AAR, indicating that it not only affects the conformational rearrangement of SIR complexes but also might function as a critical fine-tuning modulatory component of yeast silent SIR-nucleosome pre-heterochromatin by stabilizing the intermolecular interaction between Sir3 N- and C-terminal regions.
Collapse
Affiliation(s)
- Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University & Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan, ROC
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Shu-Ping Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Hsieh-Chin Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Hsiao-Hsuian Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Jia-Yang Hong
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Kuan-Chung Su
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Feng-Jung Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Bang-Hung Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Yu-Yi Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Sheng-Pin Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC
| | - Ming-Shiun Tsai
- Department of Food Science and Biotechnology, Da-Yeh University, Changhua, 515, Taiwan, ROC
| | - Gunn-Guang Liou
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan, ROC; Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, 350, Taiwan, ROC; Department of Food Science and Biotechnology, Da-Yeh University, Changhua, 515, Taiwan, ROC; Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan, ROC; Guang EM Laboratory, New Taipei, 242, Taiwan, ROC.
| |
Collapse
|
15
|
Structure and function of the Orc1 BAH-nucleosome complex. Nat Commun 2019; 10:2894. [PMID: 31263106 PMCID: PMC6602975 DOI: 10.1038/s41467-019-10609-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/14/2019] [Indexed: 12/03/2022] Open
Abstract
The Origin Recognition Complex (ORC) is essential for replication, heterochromatin formation, telomere maintenance and genome stability in eukaryotes. Here we present the structure of the yeast Orc1 BAH domain bound to the nucleosome core particle. Our data reveal that Orc1, unlike its close homolog Sir3 involved in gene silencing, does not appear to discriminate between acetylated and non-acetylated lysine 16, modification states of the histone H4 tail that specify open and closed chromatin respectively. We elucidate the mechanism for this unique feature of Orc1 and hypothesize that its ability to interact with nucleosomes regardless of K16 modification state enables it to perform critical functions in both hetero- and euchromatin. We also show that direct interactions with nucleosomes are essential for Orc1 to maintain the integrity of rDNA borders during meiosis, a process distinct and independent from its known roles in silencing and replication. The Origin Recognition Complex (ORC) plays conserved and diverse roles in eukaryotes. Here the authors present the structure of a chromatin interacting domain of yeast Orc1 in complex with the nucleosome core particle, revealing that Orc1 interacts with the histone H4 tail irrespective of K16 acetylation; a modification that regulates accessibility to chromatin.
Collapse
|
16
|
Structural Basis of Dot1L Stimulation by Histone H2B Lysine 120 Ubiquitination. Mol Cell 2019; 74:1010-1019.e6. [PMID: 30981630 DOI: 10.1016/j.molcel.2019.03.029] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/01/2019] [Accepted: 03/22/2019] [Indexed: 12/31/2022]
Abstract
The essential histone H3 lysine 79 methyltransferase Dot1L regulates transcription and genomic stability and is deregulated in leukemia. The activity of Dot1L is stimulated by mono-ubiquitination of histone H2B on lysine 120 (H2BK120Ub); however, the detailed mechanism is not understood. We report cryo-EM structures of human Dot1L bound to (1) H2BK120Ub and (2) unmodified nucleosome substrates at 3.5 Å and 4.9 Å, respectively. Comparison of both structures, complemented with biochemical experiments, provides critical insights into the mechanism of Dot1L stimulation by H2BK120Ub. Both structures show Dot1L binding to the same extended surface of the histone octamer. In yeast, this surface is used by silencing proteins involved in heterochromatin formation, explaining the mechanism of their competition with Dot1. These results provide a strong foundation for understanding conserved crosstalk between histone modifications found at actively transcribed genes and offer a general model of how ubiquitin might regulate the activity of chromatin enzymes.
Collapse
|
17
|
Weaver TM, Liu J, Connelly KE, Coble C, Varzavand K, Dykhuizen EC, Musselman CA. The EZH2 SANT1 domain is a histone reader providing sensitivity to the modification state of the H4 tail. Sci Rep 2019; 9:987. [PMID: 30700785 PMCID: PMC6353875 DOI: 10.1038/s41598-018-37699-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
SANT domains are found in a number of chromatin regulators. They contain approximately 50 amino acids and have high similarity to the DNA binding domain of Myb related proteins. Though some SANT domains associate with DNA others have been found to bind unmodified histone tails. There are two SANT domains in Enhancer of Zeste 2 (EZH2), the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2), of unknown function. Here we show that the first SANT domain (SANT1) of EZH2 is a histone binding domain with specificity for the histone H4 N-terminal tail. Using NMR spectroscopy, mutagenesis, and molecular modeling we structurally characterize the SANT1 domain and determine the molecular mechanism of binding to the H4 tail. Though not important for histone binding, we find that the adjacent stimulation response motif (SRM) stabilizes SANT1 and transiently samples its active form in solution. Acetylation of H4K16 (H4K16ac) or acetylation or methylation of H4K20 (H4K20ac and H4K20me3) are seen to abrogate binding of SANT1 to H4, which is consistent with these modifications being anti-correlated with H3K27me3 in-vivo. Our results provide significant insight into this important regulatory region of EZH2 and the first characterization of the molecular mechanism of SANT domain histone binding.
Collapse
Affiliation(s)
- Tyler M Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jiachen Liu
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Katelyn E Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chris Coble
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Katayoun Varzavand
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
18
|
Structural insights into trans-histone regulation of H3K4 methylation by unique histone H4 binding of MLL3/4. Nat Commun 2019; 10:36. [PMID: 30604749 PMCID: PMC6318328 DOI: 10.1038/s41467-018-07906-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/04/2018] [Indexed: 12/29/2022] Open
Abstract
MLL3 and MLL4 are two closely related members of the SET1/MLL family of histone H3K4 methyltransferases and are responsible for monomethylating histone H3K4 on enhancers, which are essential in regulating cell-type-specific gene expression. Mutations of MLL3 or MLL4 have been reported in different types of cancer. Recently, the PHD domains of MLL3/4 have been reported to recruit the MLL3/4 complexes to their target genes by binding to histone H4 during the NT2/D1 stem cell differentiation. Here we show that an extended PHD domain (ePHD6) involving the sixth PHD domain and its preceding zinc finger in MLL3 and MLL4 specifically recognizes an H4H18-containing histone H4 fragment and that modifications of residues surrounding H4H18 modulate H4 binding to MLL3/4. Our in vitro methyltransferase assays and cellular experiments further reveal that the interaction between ePHD6 of MLL3/4 and histone H4 is required for their nucleosomal methylation activity and MLL4-mediated neuronal differentiation of NT2/D1 cells. MLL3 and MLL4 are members of the SET1/MLL family of histone H3K4 methyltransferases, which are responsible for monomethylating histone H3K4 on enhancers. Here the authors show that an extended PHD domain (ePHD6) in MLL3 and MLL4 specifically recognizes an H4H18-containing fragment of histone H4, and that modifications of residues surrounding H4H18 modulate H4 binding to MLL3/4.
Collapse
|
19
|
Swygert SG, Senapati S, Bolukbasi MF, Wolfe SA, Lindsay S, Peterson CL. SIR proteins create compact heterochromatin fibers. Proc Natl Acad Sci U S A 2018; 115:12447-12452. [PMID: 30455303 PMCID: PMC6298083 DOI: 10.1073/pnas.1810647115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heterochromatin is a silenced chromatin region essential for maintaining genomic stability and driving developmental processes. The complicated structure and dynamics of heterochromatin have rendered it difficult to characterize. In budding yeast, heterochromatin assembly requires the SIR proteins-Sir3, believed to be the primary structural component of SIR heterochromatin, and the Sir2-4 complex, responsible for the targeted recruitment of SIR proteins and the deacetylation of lysine 16 of histone H4. Previously, we found that Sir3 binds but does not compact nucleosomal arrays. Here we reconstitute chromatin fibers with the complete complement of SIR proteins and use sedimentation velocity, molecular modeling, and atomic force microscopy to characterize the stoichiometry and conformation of SIR chromatin fibers. In contrast to fibers with Sir3 alone, our results demonstrate that SIR arrays are highly compact. Strikingly, the condensed structure of SIR heterochromatin fibers requires both the integrity of H4K16 and an interaction between Sir3 and Sir4. We propose a model in which a dimer of Sir3 bridges and stabilizes two adjacent nucleosomes, while a Sir2-4 heterotetramer interacts with Sir3 associated with a nucleosomal trimer, driving fiber compaction.
Collapse
Affiliation(s)
- Sarah G Swygert
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Subhadip Senapati
- Center for Single Molecule Biophysics, Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Mehmet F Bolukbasi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Scot A Wolfe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Stuart Lindsay
- Center for Single Molecule Biophysics, Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
20
|
Hocher A, Ruault M, Kaferle P, Descrimes M, Garnier M, Morillon A, Taddei A. Expanding heterochromatin reveals discrete subtelomeric domains delimited by chromatin landscape transitions. Genome Res 2018; 28:1867-1881. [PMID: 30355601 PMCID: PMC6280759 DOI: 10.1101/gr.236554.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/20/2018] [Indexed: 01/20/2023]
Abstract
The eukaryotic genome is divided into chromosomal domains of heterochromatin and euchromatin. Transcriptionally silent heterochromatin is found at subtelomeric regions, leading to the telomeric position effect (TPE) in yeast, fly, and human. Heterochromatin generally initiates and spreads from defined loci, and diverse mechanisms prevent the ectopic spread of heterochromatin into euchromatin. Here, we overexpressed the silencing factor Sir3 at varying levels in yeast and found that Sir3 spreads into extended silent domains (ESDs), eventually reaching saturation at subtelomeres. We observed the spread of Sir3 into subtelomeric domains associated with specific histone marks in wild-type cells, and stopping at zones of histone mark transitions including H3K79 trimethylation levels. Our study shows that the conserved H3K79 methyltransferase Dot1 is essential in restricting Sir3 spread beyond ESDs, thus ensuring viability upon overexpression of Sir3. Last, our analyses of published data demonstrate how ESDs unveil uncharacterized discrete domains isolating structural and functional subtelomeric features from the rest of the genome. Our work offers a new approach on how to separate subtelomeres from the core chromosome.
Collapse
Affiliation(s)
- Antoine Hocher
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Myriam Ruault
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Petra Kaferle
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Marc Descrimes
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Mickaël Garnier
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Antonin Morillon
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Angela Taddei
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France.,Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR3664, F-75005 Paris, France
| |
Collapse
|
21
|
Leiva-Peláez O, Gutiérrez-Escobedo G, López-Fuentes E, Cruz-Mora J, De Las Peñas A, Castaño I. Molecular characterization of the silencing complex SIR in Candida glabrata hyperadherent clinical isolates. Fungal Genet Biol 2018; 118:21-31. [PMID: 29857197 DOI: 10.1016/j.fgb.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 11/30/2022]
Abstract
An important virulence factor for the fungal pathogen Candida glabrata is the ability to adhere to the host cells, which is mediated by the expression of adhesins. Epa1 is responsible for ∼95% of the in vitro adherence to epithelial cells and is the founding member of the Epa family of adhesins. The majority of EPA genes are localized close to different telomeres, which causes transcriptional repression due to subtelomeric silencing. In C. glabrata there are three Sir proteins (Sir2, Sir3 and Sir4) that are essential for subtelomeric silencing. Among a collection of 79 clinical isolates, some display a hyperadherent phenotype to epithelial cells compared to our standard laboratory strain, BG14. These isolates also express several subtelomeric EPA genes simultaneously. We cloned the SIR2, SIR3 and SIR4 genes from the hyperadherent isolates and from the BG14 and the sequenced strain CBS138 in a replicative vector to complement null mutants in each of these genes in the BG14 background. All the SIR2 and SIR4 alleles tested from selected hyper-adherent isolates were functional and efficient to silence a URA3 reporter gene inserted in a subtelomeric region. The SIR3 alleles from these isolates were also functional, except the allele from isolate MC2 (sir3-MC2), which was not functional to silence the reporter and did not complement the hyperadherent phenotype of the BG14 sir3Δ. Consistently, sir3-MC2 allele is recessive to the SIR3 allele from BG14. Sir3 and Sir4 alleles from the hyperadherent isolates contain several polymorphisms and two of them are present in all the hyperadherent isolates analyzed. Instead, the Sir3 and Sir4 alleles from the BG14 and another non-adherent isolate do not display these polymorphisms and are identical to each other. The particular combination of polymorphisms in sir3-MC2 and in SIR4-MC2 could explain in part the hyperadherent phenotype displayed by this isolate.
Collapse
Affiliation(s)
- Osney Leiva-Peláez
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la Presa San José #2055, Col. Lomas 4a, San Luis Potosí 78216, Mexico
| | - Guadalupe Gutiérrez-Escobedo
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la Presa San José #2055, Col. Lomas 4a, San Luis Potosí 78216, Mexico
| | - Eunice López-Fuentes
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la Presa San José #2055, Col. Lomas 4a, San Luis Potosí 78216, Mexico
| | - José Cruz-Mora
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la Presa San José #2055, Col. Lomas 4a, San Luis Potosí 78216, Mexico
| | - Alejandro De Las Peñas
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la Presa San José #2055, Col. Lomas 4a, San Luis Potosí 78216, Mexico
| | - Irene Castaño
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la Presa San José #2055, Col. Lomas 4a, San Luis Potosí 78216, Mexico.
| |
Collapse
|
22
|
Bilokapic S, Strauss M, Halic M. Cryo-EM of nucleosome core particle interactions in trans. Sci Rep 2018; 8:7046. [PMID: 29728587 PMCID: PMC5935684 DOI: 10.1038/s41598-018-25429-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/23/2018] [Indexed: 11/09/2022] Open
Abstract
Nucleosomes, the basic unit of chromatin, are repetitively spaced along DNA and regulate genome expression and maintenance. The long linear chromatin molecule is extensively condensed to fit DNA inside the nucleus. How distant nucleosomes interact to build tertiary chromatin structure remains elusive. In this study, we used cryo-EM to structurally characterize different states of long range nucleosome core particle (NCP) interactions. Our structures show that NCP pairs can adopt multiple conformations, but, commonly, two NCPs are oriented with the histone octamers facing each other. In this conformation, the dyad of both nucleosome core particles is facing the same direction, however, the NCPs are laterally shifted and tilted. The histone octamer surface and histone tails in trans NCP pairs remain accessible to regulatory proteins. The overall conformational flexibility of the NCP pair suggests that chromatin tertiary structure is dynamic and allows access of various chromatin modifying machineries to nucleosomes.
Collapse
Affiliation(s)
- Silvija Bilokapic
- Department of Biochemistry, Gene Center, University of Munich LMU, 81377, Munich, Germany
| | - Mike Strauss
- Cryo-EM facility, Max Planck for Biochemistry, 82152, Martiensried, Germany
| | - Mario Halic
- Department of Biochemistry, Gene Center, University of Munich LMU, 81377, Munich, Germany.
| |
Collapse
|
23
|
Zukowski A, Johnson AM. The interplay of histone H2B ubiquitination with budding and fission yeast heterochromatin. Curr Genet 2018; 64:799-806. [PMID: 29464330 DOI: 10.1007/s00294-018-0812-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Mono-ubiquitinated histone H2B (H2B-Ub) is important for chromatin regulation of transcription, chromatin assembly, and also influences heterochromatin. In this review, we discuss the effects of H2B-Ub from nucleosome to higher-order chromatin structure. We then assess what is currently known of the role of H2B-Ub in heterochromatic silencing in budding and fission yeasts (S. cerevisiae and S. pombe), which have distinct silencing mechanisms. In budding yeast, the SIR complex initiates heterochromatin assembly with the aid of a H2B-Ub deubiquitinase, Ubp10. In fission yeast, the RNAi-dependent pathway initiates heterochromatin in the context of low H2B-Ub. We examine how the different silencing machineries overcome the challenge of H2B-Ub chromatin and highlight the importance of using these microorganisms to further our understanding of H2B-Ub in heterochromatic silencing pathways.
Collapse
Affiliation(s)
- Alexis Zukowski
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver - School of Medicine, 12801 E. 17th Ave., Aurora, CO, 80045, USA
| | - Aaron M Johnson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver - School of Medicine, 12801 E. 17th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
24
|
Korolev N, Lyubartsev AP, Nordenskiöld L. A systematic analysis of nucleosome core particle and nucleosome-nucleosome stacking structure. Sci Rep 2018; 8:1543. [PMID: 29367745 PMCID: PMC5784010 DOI: 10.1038/s41598-018-19875-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Chromatin condensation is driven by the energetically favourable interaction between nucleosome core particles (NCPs). The close NCP-NCP contact, stacking, is a primary structural element of all condensed states of chromatin in vitro and in vivo. However, the molecular structure of stacked nucleosomes as well as the nature of the interactions involved in its formation have not yet been systematically studied. Here we undertake an investigation of both the structural and physico-chemical features of NCP structure and the NCP-NCP stacking. We introduce an “NCP-centred” set of parameters (NCP-NCP distance, shift, rise, tilt, and others) that allows numerical characterisation of the mutual positions of the NCPs in the stacking and in any other structures formed by the NCP. NCP stacking in more than 140 published NCP crystal structures were analysed. In addition, coarse grained (CG) MD simulations modelling NCP condensation was carried out. The CG model takes into account details of the nucleosome structure and adequately describes the long range electrostatic forces as well as excluded volume effects acting in chromatin. The CG simulations showed good agreement with experimental data and revealed the importance of the H2A and H4 N-terminal tail bridging and screening as well as tail-tail correlations in the stacked nucleosomes.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
25
|
Zukowski A, Al-Afaleq NO, Duncan ED, Yao T, Johnson AM. Recruitment and allosteric stimulation of a histone-deubiquitinating enzyme during heterochromatin assembly. J Biol Chem 2017; 293:2498-2509. [PMID: 29288197 DOI: 10.1074/jbc.ra117.000498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/22/2017] [Indexed: 02/02/2023] Open
Abstract
Heterochromatin formation in budding yeast is regulated by the silent information regulator (SIR) complex. The SIR complex comprises the NAD-dependent deacetylase Sir2, the scaffolding protein Sir4, and the nucleosome-binding protein Sir3. Transcriptionally active regions present a challenge to SIR complex-mediated de novo heterochromatic silencing due to the presence of antagonistic histone post-translational modifications, including acetylation and methylation. Methylation of histone H3K4 and H3K79 is dependent on monoubiquitination of histone H2B (H2B-Ub). The SIR complex cannot erase H2B-Ub or histone methylation on its own. The deubiquitinase (DUB) Ubp10 is thought to promote heterochromatic silencing by maintaining low H2B-Ub at sub-telomeres. Here, we biochemically characterized the interactions between Ubp10 and the SIR complex machinery. We demonstrate that a direct interaction between Ubp10 and the Sir2/4 sub-complex facilitates Ubp10 recruitment to chromatin via a co-assembly mechanism. Using hydrolyzable H2B-Ub analogs, we show that Ubp10 activity is lower on nucleosomes compared with H2B-Ub in solution. We find that Sir2/4 stimulates Ubp10 DUB activity on nucleosomes, likely through a combination of targeting and allosteric regulation. This coupling mechanism between the silencing machinery and its DUB partner allows erasure of active PTMs and the de novo transition of a transcriptionally active DNA region to a silent chromatin state.
Collapse
Affiliation(s)
- Alexis Zukowski
- From the Department of Biochemistry and Molecular Genetics and.,Molecular Biology Program, University of Colorado, Denver-Anschutz Medical Campus, Aurora, Colorado 80045 and
| | - Nouf Omar Al-Afaleq
- the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Emily D Duncan
- From the Department of Biochemistry and Molecular Genetics and.,Molecular Biology Program, University of Colorado, Denver-Anschutz Medical Campus, Aurora, Colorado 80045 and
| | - Tingting Yao
- the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Aaron M Johnson
- From the Department of Biochemistry and Molecular Genetics and .,Molecular Biology Program, University of Colorado, Denver-Anschutz Medical Campus, Aurora, Colorado 80045 and
| |
Collapse
|
26
|
Accessibility of the histone H3 tail in the nucleosome for binding of paired readers. Nat Commun 2017; 8:1489. [PMID: 29138400 PMCID: PMC5686127 DOI: 10.1038/s41467-017-01598-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 10/03/2017] [Indexed: 12/03/2022] Open
Abstract
Combinatorial polyvalent contacts of histone-binding domains or readers commonly mediate localization and activities of chromatin-associated proteins. A pair of readers, the PHD fingers of the protein CHD4, has been shown to bivalently recognize histone H3 tails. Here we describe a mechanism by which these linked but independent readers bind to the intact nucleosome core particle (NCP). Comprehensive NMR, chemical reactivity, molecular dynamics, and fluorescence analyses point to the critical roles of intra-nucleosomal histone-DNA interactions that reduce the accessibility of H3 tails in NCP, the nucleosomal DNA, and the linker between readers in modulating nucleosome- and/or histone-binding activities of the readers. We show that the second PHD finger of CHD4 initiates recruitment to the nucleosome, however both PHDs are required to alter the NCP dynamics. Our findings reveal a distinctive regulatory mechanism for the association of paired readers with the nucleosome that provides an intricate balance between cooperative and individual activities of the readers. The chromatin remodeller CHD4 contains two PHD finger reader domains that have been shown to bivalently recognize H3 histone tails. Here, the authors describe a mechanism by which the PHD fingers bind to the intact nucleosome core particle, revealing both cooperative and individual interactions.
Collapse
|
27
|
Deshpande I, Seeber A, Shimada K, Keusch JJ, Gut H, Gasser SM. Structural Basis of Mec1-Ddc2-RPA Assembly and Activation on Single-Stranded DNA at Sites of Damage. Mol Cell 2017; 68:431-445.e5. [PMID: 29033322 DOI: 10.1016/j.molcel.2017.09.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/18/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
Mec1-Ddc2 (ATR-ATRIP) is a key DNA-damage-sensing kinase that is recruited through the single-stranded (ss) DNA-binding replication protein A (RPA) to initiate the DNA damage checkpoint response. Activation of ATR-ATRIP in the absence of DNA damage is lethal. Therefore, it is important that damage-specific recruitment precedes kinase activation, which is achieved at least in part by Mec1-Ddc2 homodimerization. Here, we report a structural, biochemical, and functional characterization of the yeast Mec1-Ddc2-RPA assembly. High-resolution co-crystal structures of Ddc2-Rfa1 and Ddc2-Rfa1-t11 (K45E mutant) N termini and of the Ddc2 coiled-coil domain (CCD) provide insight into Mec1-Ddc2 homodimerization and damage-site targeting. Based on our structural and functional findings, we present a Mec1-Ddc2-RPA-ssDNA composite structural model. By way of validation, we show that RPA-dependent recruitment of Mec1-Ddc2 is crucial for maintaining its homodimeric state at ssDNA and that Ddc2's recruitment domain and CCD are important for Mec1-dependent survival of UV-light-induced DNA damage.
Collapse
Affiliation(s)
- Ishan Deshpande
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Jeremy J Keusch
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Heinz Gut
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
28
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
29
|
Variants of the Sir4 Coiled-Coil Domain Improve Binding to Sir3 for Heterochromatin Formation in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:1117-1126. [PMID: 28188183 PMCID: PMC5386860 DOI: 10.1534/g3.116.037739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterochromatin formation in the yeast Saccharomyces cerevisiae is characterized by the assembly of the Silent Information Regulator (SIR) complex, which consists of the histone deacetylase Sir2 and the structural components Sir3 and Sir4, and binds to unmodified nucleosomes to provide gene silencing. Sir3 contains an AAA+ ATPase-like domain, and mutations in an exposed loop on the surface of this domain abrogate Sir3 silencing function in vivo, as well in vitro binding to the Sir2/Sir4 subcomplex. Here, we found that the removal of a single methyl group in the C-terminal coiled-coil domain (mutation T1314S) of Sir4 was sufficient to restore silencing at the silent mating-type loci HMR and HML to a Sir3 version with a mutation in this loop. Restoration of telomeric silencing required further mutations of Sir4 (E1310V and K1325R). Significantly, these mutations in Sir4 restored in vitro complex formation between Sir3 and the Sir4 coiled-coil, indicating that the improved affinity between Sir3 and Sir4 is responsible for the restoration of silencing. Altogether, these observations highlight remarkable properties of selected amino-acid changes at the Sir3-Sir4 interface that modulate the affinity of the two proteins.
Collapse
|
30
|
Behrouzi R, Lu C, Currie MA, Jih G, Iglesias N, Moazed D. Heterochromatin assembly by interrupted Sir3 bridges across neighboring nucleosomes. eLife 2016; 5. [PMID: 27835568 PMCID: PMC5106214 DOI: 10.7554/elife.17556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023] Open
Abstract
Heterochromatin is a conserved feature of eukaryotic chromosomes with central roles in regulation of gene expression and maintenance of genome stability. Heterochromatin formation involves spreading of chromatin-modifying factors away from initiation points over large DNA domains by poorly understood mechanisms. In Saccharomyces cerevisiae, heterochromatin formation requires the SIR complex, which contains subunits with histone-modifying, histone-binding, and self-association activities. Here, we analyze binding of the Sir proteins to reconstituted mono-, di-, tri-, and tetra-nucleosomal chromatin templates and show that key Sir-Sir interactions bridge only sites on different nucleosomes but not sites on the same nucleosome, and are therefore 'interrupted' with respect to sites on the same nucleosome. We observe maximal binding affinity and cooperativity to unmodified di-nucleosomes and propose that nucleosome pairs bearing unmodified histone H4-lysine16 and H3-lysine79 form the fundamental units of Sir chromatin binding and that cooperative binding requiring two appropriately modified nucleosomes mediates selective Sir recruitment and spreading.
Collapse
Affiliation(s)
- Reza Behrouzi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Chenning Lu
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Mark A Currie
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Gloria Jih
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Nahid Iglesias
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Danesh Moazed
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
31
|
Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation. Genetics 2016; 204:177-90. [PMID: 27489001 DOI: 10.1534/genetics.116.190835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022] Open
Abstract
As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.
Collapse
|
32
|
Zocco M, Marasovic M, Pisacane P, Bilokapic S, Halic M. The Chp1 chromodomain binds the H3K9me tail and the nucleosome core to assemble heterochromatin. Cell Discov 2016; 2:16004. [PMID: 27462451 PMCID: PMC4849473 DOI: 10.1038/celldisc.2016.4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 01/16/2023] Open
Abstract
To maintain genome stability, cells pack large portions of their genome into silent chromatin or heterochromatin. Histone H3 lysine 9 methylation, a hallmark of heterochromatin, is recognized by conserved readers called chromodomains. But how chromodomains interact with their actual binding partner, the H3K9 methylated nucleosome, remains elusive. We have determined the structure of a nucleosome trimethylated at lysine 9 of histone H3 (H3K9me3 Nucleosome) in a complex with the chromodomain of Chp1, a protein required for RNA interference-dependent heterochromatin formation in fission yeast. The cryo-electron microscopy structure reveals that the chromodomain of Chp1 binds the histone H3 lysine 9 methylated tail and the core of the nucleosome, primarily histones H3 and H2B. Mutations in chromodomain of Chp1 loops, which interact with the nucleosome core, abolished this interaction in vitro. Moreover, fission yeast cells with Chp1 loop mutations have a defect in Chp1 recruitment and heterochromatin formation. This study reveals the structural basis for heterochromatic silencing and suggests that chromodomains could read histone code in the H3 tail and the nucleosome core, which would provide an additional layer of regulation.
Collapse
Affiliation(s)
- Manuel Zocco
- Department of Biochemistry, Gene Center, University of Munich , Munich, Germany
| | - Mirela Marasovic
- Department of Biochemistry, Gene Center, University of Munich , Munich, Germany
| | - Paola Pisacane
- Department of Biochemistry, Gene Center, University of Munich , Munich, Germany
| | - Silvija Bilokapic
- Department of Biochemistry, Gene Center, University of Munich , Munich, Germany
| | - Mario Halic
- Department of Biochemistry, Gene Center, University of Munich , Munich, Germany
| |
Collapse
|
33
|
Fang Q, Chen P, Wang M, Fang J, Yang N, Li G, Xu RM. Human cytomegalovirus IE1 protein alters the higher-order chromatin structure by targeting the acidic patch of the nucleosome. eLife 2016; 5. [PMID: 26812545 PMCID: PMC4764553 DOI: 10.7554/elife.11911] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/21/2016] [Indexed: 12/25/2022] Open
Abstract
Human cytomegalovirus (hCMV) immediate early 1 (IE1) protein associates with condensed chromatin of the host cell during mitosis. We have determined the structure of the chromatin-tethering domain (CTD) of IE1 bound to the nucleosome core particle, and discovered that the specific interaction between IE1-CTD and the H2A-H2B acidic patch impairs the compaction of higher-order chromatin structure. Our results suggest that IE1 loosens up the folding of host chromatin during hCMV infections. DOI:http://dx.doi.org/10.7554/eLife.11911.001 Most of the DNA in a cell is tightly wrapped around groups of proteins called histones, which gives the impression of beads on a string. These bead-like structures are called nucleosomes, and interactions between histones in different nucleosomes can link one nucleosome to another, to package the DNA into a very condensed form. Viruses sometimes interact with this condensed DNA; for example, a virus called human cytomegalovirus is known to attach to condensed DNA when cells are preparing to divide. But the consequences of these interactions are not always clear. Now, Fang, Chen et al. have worked out the three-dimensional structure of a protein from the cytomegalovirus while it is attached to a nucleosome. This structure revealed that the viral protein connects to same part of the histones that otherwise helps pull the nucleosomes together. Further experiments then compared how the cytomegalovirus protein attaches to nucleosomes with the interaction between nucleosomes and a similar protein from a different virus. Both viral proteins were seen to interact with the same part of the histone protein, but in different ways. Next, Fang, Chen et al. showed that the DNA is more loosely packed when the cytomegalovirus protein is attached to the nucleosomes. This was not the case for the similar protein from the other virus. The experiments show that small differences in the ways viral proteins interact with condensed DNA can change their effects on DNA packaging. Additionally, these findings may help scientists to better understand how the binding of the cytomegalovirus protein to the nucleosomes might affect this virus’s ability to infect or cause illness in humans. DOI:http://dx.doi.org/10.7554/eLife.11911.002
Collapse
Affiliation(s)
- Qianglin Fang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingzhu Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Junnan Fang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Speranzini V, Pilotto S, Sixma TK, Mattevi A. Touch, act and go: landing and operating on nucleosomes. EMBO J 2016; 35:376-88. [PMID: 26787641 DOI: 10.15252/embj.201593377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2022] Open
Abstract
Chromatin-associated enzymes are responsible for the installation, removal and reading of precise post-translation modifications on DNA and histone proteins. They are specifically recruited to the target gene by associated factors, and as a result of their activity, they contribute in modulating cell identity and differentiation. Structural and biophysical approaches are broadening our knowledge on these processes, demonstrating that DNA, histone tails and histone surfaces can each function as distinct yet functionally interconnected anchoring points promoting nucleosome binding and modification. The mechanisms underlying nucleosome recognition have been described for many histone modifiers and related readers. Here, we review the recent literature on the structural organization of these nucleosome-associated proteins, the binding properties that drive nucleosome modification and the methodological advances in their analysis. The overarching conclusion is that besides acting on the same substrate (the nucleosome), each system functions through characteristic modes of action, which bring about specific biological functions in gene expression regulation.
Collapse
Affiliation(s)
| | - Simona Pilotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
35
|
Abstract
The conformation of DNA bound in nucleosomes depends on the DNA sequence. Questions such as how nucleosomes are positioned and how they potentially bind sequence-dependent nuclear factors require near-atomic resolution structures of the nucleosome core containing different DNA sequences; despite this, only the DNA for two similar α-satellite sequences and a sequence (601) selected in vitro have been visualized bound in the nucleosome core. Here we report the 2.6-Å resolution X-ray structure of a nucleosome core particle containing the DNA sequence of nucleosome A of the 3'-LTR of the mouse mammary tumor virus (147 bp MMTV-A). To our knowledge, this is the first nucleosome core particle structure containing a promoter sequence and crystallized from Mg(2+) ions. It reveals sequence-dependent DNA conformations not seen previously, including kinking into the DNA major groove.
Collapse
|
36
|
Shaytan AK, Armeev GA, Goncearenco A, Zhurkin VB, Landsman D, Panchenko AR. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions. J Mol Biol 2015; 428:221-237. [PMID: 26699921 DOI: 10.1016/j.jmb.2015.12.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies.
Collapse
Affiliation(s)
- Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Grigoriy A Armeev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Goncearenco
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Victor B Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
37
|
The biological functions of Naa10 - From amino-terminal acetylation to human disease. Gene 2015; 567:103-31. [PMID: 25987439 DOI: 10.1016/j.gene.2015.04.085] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023]
Abstract
N-terminal acetylation (NTA) is one of the most abundant protein modifications known, and the N-terminal acetyltransferase (NAT) machinery is conserved throughout all Eukarya. Over the past 50 years, the function of NTA has begun to be slowly elucidated, and this includes the modulation of protein-protein interaction, protein-stability, protein function, and protein targeting to specific cellular compartments. Many of these functions have been studied in the context of Naa10/NatA; however, we are only starting to really understand the full complexity of this picture. Roughly, about 40% of all human proteins are substrates of Naa10 and the impact of this modification has only been studied for a few of them. Besides acting as a NAT in the NatA complex, recently other functions have been linked to Naa10, including post-translational NTA, lysine acetylation, and NAT/KAT-independent functions. Also, recent publications have linked mutations in Naa10 to various diseases, emphasizing the importance of Naa10 research in humans. The recent design and synthesis of the first bisubstrate inhibitors that potently and selectively inhibit the NatA/Naa10 complex, monomeric Naa10, and hNaa50 further increases the toolset to analyze Naa10 function.
Collapse
|
38
|
Nucleosome avidities and transcriptional silencing in yeast. Curr Biol 2015; 25:1215-20. [PMID: 25891403 DOI: 10.1016/j.cub.2015.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 02/02/2015] [Accepted: 03/05/2015] [Indexed: 11/22/2022]
Abstract
A classical example of "transcriptional silencing" is found in the yeast S. cerevisiae mating-type switch [1, 2]. The gene pairs a1/a2 and α1/α2, positioned at the loci HMR and HML, respectively, are silenced by Sir proteins recruited by proteins that bind sites flanking each locus. Transfer of either gene pair to the Sir-free MAT locus, or mutation of the Sirs, allows expression of those genes at levels sufficient to foster yeast mating. Here we confirm that, in the absence of Sirs, a1 and a2 at HMR are expressed at low levels [3]. This level is low because, we show, the relevant transcriptional activators, which work from regulatory sites located between the divergently transcribed genes, are weak. That property-weak activation-is a prerequisite for effective silencing upon recruitment of Sirs. We use our quantitative nucleosome occupancy assay to show that Sirs (which bind nucleosomes) increase the avidities with which those nucleosomes form at the promoters. That increase can account for at least part of the repressive effects of the Sirs and can explain why silencing is effective in countering weak activation only. We suggest that "silencing" in higher eukaryotes (e.g., by Polycomb or HP1) follows similar rules [4, 5] and note where such effects could be important.
Collapse
|
39
|
Sneppen K, Dodd IB. Cooperative stabilization of the SIR complex provides robust epigenetic memory in a model of SIR silencing in Saccharomyces cerevisiae. Epigenetics 2015; 10:293-302. [PMID: 25830651 PMCID: PMC4622568 DOI: 10.1080/15592294.2015.1017200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
How alternative chromatin-based regulatory states can be made stable and heritable in order to provide robust epigenetic memory is poorly understood. Here, we develop a stochastic model of the silencing system in Saccharomyces cerevisiae that incorporates cooperative binding of the repressive SIR complex and antisilencing histone modifications, in addition to positive feedback in Sir2 recruitment. The model was able to reproduce key features of SIR regulation of an HM locus, including heritable bistability, dependence on the silencer elements, and sensitivity to SIR dosage. We found that antisilencing methylation of H3K79 by Dot1 was not needed to generate these features, but acted to reduce spreading of SIR binding, consistent with its proposed role in containment of silencing. In contrast, cooperative inter-nucleosome interactions mediated by the SIR complex were critical for concentrating SIR binding around the silencers in the absence of barriers, and for providing bistability in SIR binding. SIR-SIR interactions magnify the cooperativity in the Sir2-histone deacetylation positive feedback reaction and complete a double-negative feedback circuit involving antisilencing modifications. Thus, our modeling underscores the potential importance of cooperative interactions between nucleosome-bound complexes both in the SIR system and in other chromatin-based complexes in epigenetic regulation.
Collapse
Affiliation(s)
- Kim Sneppen
- a Centre for Models of Life; Niels Bohr Institute; University of Copenhagen; Copenhagen , Denmark
| | | |
Collapse
|
40
|
Parnell TJ, Schlichter A, Wilson BG, Cairns BR. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism. eLife 2015; 4:e06073. [PMID: 25821983 PMCID: PMC4423118 DOI: 10.7554/elife.06073] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/28/2015] [Indexed: 12/19/2022] Open
Abstract
ISWI family chromatin remodelers typically organize nucleosome arrays, while SWI/SNF family remodelers (RSC) typically disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. RSC and ISW1a largely co-localize, and genomic nucleosome studies using rsc isw1 mutant combinations revealed opposing functions: promoters classified with a nucleosome-deficient region (NDR) gain nucleosome occupancy in rsc mutants, but this gain is attenuated in rsc isw1 double mutants. Furthermore, promoters lacking NDRs have the highest occupancy of both remodelers, consistent with regulation by nucleosome occupancy, and decreased transcription in rsc mutants. Taken together, we provide the first genetic and genomic evidence for RSC-ISW1a antagonism and reveal different mechanisms at two different promoter architectures. DOI:http://dx.doi.org/10.7554/eLife.06073.001 The genome of an organism can contain hundreds to thousands of genes. However, these genes are not all active at the same time. Instead, mechanisms exist that control when genes are switched off or on. One such mechanism alters how tightly DNA is packaged into a structure called chromatin. To form chromatin, DNA is wrapped around histone proteins at different points along its length; these structures are known as nucleosomes. Once formed, chromatin can either adopt a tightly packed form that represses gene activity or a less compact form associated with gene activation. The proteins that control how chromatin is packed are called ‘chromatin remodelers’. These proteins work in complexes that either disassemble chromatin—for example, by repositioning nucleosomes or removing histones—or organize chromatin by replacing nucleosomes and making it more compact. Studies in many organisms have identified two key families of chromatin remodelers. In yeast, the ISWI family of complexes assembles chromatin and a protein complex called RSC disassembles chromatin. Parnell, Schlichter et al. used a range of genetic techniques to investigate whether these two chromatin-remodeling complexes work against each other in a species of yeast called Saccharomyces cerevisiae. The results suggest that this is indeed the case. Both the ISWI complex and the RSC complex bind to regions of DNA called promoters, which are found at the start of a gene and help to regulate its activity. Parnell, Schlichter et al. found that the RSC complex helps to activate genes by establishing or maintaining regions of nucleosome-poor chromatin at a promoter. The chromatin is relaxed in these regions, which allows the proteins that activate genes to access the DNA. This effect is partially counteracted by the ISWI complex, which repositions nucleosomes across the promoters to fill the gaps created by the RSC complex. In comparison, Parnell, Schlichter et al. found that promoters that do not have regions of nucleosome-poor chromatin contain a larger number of both of the remodeling complexes and have a high turnover of histone proteins. This suggests that at these sites, the RSC proteins are needed to overcome the assembly of nucleosomes by the ISWI complex in order to activate the gene. Thus, these two chromatin remodelers, ISWI and RSC, compete at promoters to determine whether they contain or lack nucleosomes, which helps determine whether the gene is silent or active, respectively. Future work will look further at how the ‘winner’ is determined: how transcription factors or signaling systems within the cell bias the recruitment or activity of RSC or ISWI at particular promoters, to determine gene activity. DOI:http://dx.doi.org/10.7554/eLife.06073.002
Collapse
Affiliation(s)
- Timothy J Parnell
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Alisha Schlichter
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Boris G Wilson
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Bradley R Cairns
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
41
|
Direct interactions promote eviction of the Sir3 heterochromatin protein by the SWI/SNF chromatin remodeling enzyme. Proc Natl Acad Sci U S A 2014; 111:17827-32. [PMID: 25453095 DOI: 10.1073/pnas.1420096111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin is a specialized chromatin structure that is central to eukaryotic transcriptional regulation and genome stability. Despite its globally repressive role, heterochromatin must also be dynamic, allowing for its repair and replication. In budding yeast, heterochromatin formation requires silent information regulators (Sirs) Sir2p, Sir3p, and Sir4p, and these Sir proteins create specialized chromatin structures at telomeres and silent mating-type loci. Previously, we found that the SWI/SNF chromatin remodeling enzyme can catalyze the ATP-dependent eviction of Sir3p from recombinant nucleosomal arrays, and this activity enhances early steps of recombinational repair in vitro. Here, we show that the ATPase subunit of SWI/SNF, Swi2p/Snf2p, interacts with the heterochromatin structural protein Sir3p. Two interaction surfaces are defined, including an interaction between the ATPase domain of Swi2p and the nucleosome binding, Bromo-Adjacent-Homology domain of Sir3p. A SWI/SNF complex harboring a Swi2p subunit that lacks this Sir3p interaction surface is unable to evict Sir3p from nucleosomes, even though its ATPase and remodeling activities are intact. In addition, we find that the interaction between Swi2p and Sir3p is key for SWI/SNF to promote resistance to replication stress in vivo and for establishment of heterochromatin at telomeres.
Collapse
|
42
|
Abstract
Gene expression is controlled through the recruitment of large coregulator complexes to specific gene loci to regulate chromatin structure by modifying epigenetic marks on DNA and histones. Metastasis-associated protein 1 (MTA1) is an essential component of the nucleosome remodelling and deacetylase (NuRD) complex that acts as a scaffold protein to assemble enzymatic activity and nucleosome targeting proteins. MTA1 consists of four characterised domains, a number of interaction motifs, and regions that are predicted to be intrinsically disordered. The ELM2-SANT domain is one of the best-characterised regions of MTA1, which recruits histone deacetylase 1 (HDAC1) and activates the enzyme in the presence of inositol phosphate. MTA1 is highly upregulated in several types of aggressive tumours and is therefore a possible target for cancer therapy. In this review, we summarise the structure and function of the four domains of MTA1 and discuss the possible functions of less well-characterised regions of the protein.
Collapse
Affiliation(s)
- Christopher J. Millard
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN UK
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN UK
| | - John W. R. Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN UK
| |
Collapse
|
43
|
Nucleosome-positioning sequence repeats impact chromatin silencing in yeast minichromosomes. Genetics 2014; 198:1015-29. [PMID: 25189873 DOI: 10.1534/genetics.114.169508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic gene expression occurs in the context of structurally distinct chromosomal domains such as the relatively open, gene-rich, and transcriptionally active euchromatin and the condensed and gene-poor heterochromatin where its specific chromatin environment inhibits transcription. To study gene silencing by heterochromatin, we created a minichromosome reporter system where the gene silencer elements were used to repress the URA3 reporter gene. The minichromosome reporters were propagated in yeast Saccharomyces cerevisiae at a stable copy number. Conduction of gene silencing through nucleosome arrays was studied by placing various repeats of clone-601 DNA with high affinity for histones between the silencer and reporter in the yeast minichromosomes. High-resolution chromatin mapping with micrococcal nuclease showed that the clone-601 nucleosome positioning downstream of the HML-E gene silencing element was not significantly altered by chromatin silencing. Using URA3 reporter assays, we observed that gene silencing was conducted through arrays of up to eight nucleosomes. We showed that the shorter nucleosome repeat lengths, typical of yeast (167 and 172 bp), were more efficient in conducting silencing in vivo compared to the longer repeats (207 bp) typical of higher eukaryotes. Both the longer and the shorter repeat lengths were able to conduct silencing in minichromosomes independently of clone-601 nucleosome positioning orientations vs. the silencer element. We suggest that the shorter nucleosome linkers are more suitable for conducting gene silencing than the long repeats in yeast due to their higher propensity to support native-like chromatin higher-order folding.
Collapse
|
44
|
Solution-state conformation and stoichiometry of yeast Sir3 heterochromatin fibres. Nat Commun 2014; 5:4751. [PMID: 25163529 PMCID: PMC4151189 DOI: 10.1038/ncomms5751] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/21/2014] [Indexed: 12/21/2022] Open
Abstract
Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed. However, surprisingly little is known about the structure of heterochromatin or its dynamics in solution. In budding yeast, formation of heterochromatin at telomeres and the HM silent mating type loci require the Sir3 protein. Here, we use a combination of sedimentation velocity, atomic force microscopy, and nucleosomal array capture to characterize the stoichiometry and conformation of Sir3 nucleosomal arrays. The results indicate that Sir3 interacts with nucleosomal arrays with a stoichiometry of two Sir3 monomers per nucleosome. We also find that Sir3 fibers are less compact than canonical – magnesium-induced 30 nm fibers. We suggest that heterochromatin proteins promote silencing by “coating” nucleosomal arrays, stabilizing interactions between nucleosomal histones and DNA.
Collapse
|
45
|
Musselman CA, Gibson MD, Hartwick EW, North JA, Gatchalian J, Poirier MG, Kutateladze TG. Binding of PHF1 Tudor to H3K36me3 enhances nucleosome accessibility. Nat Commun 2014; 4:2969. [PMID: 24352064 PMCID: PMC4007151 DOI: 10.1038/ncomms3969] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/18/2013] [Indexed: 01/15/2023] Open
Abstract
The Tudor domain of human PHF1 recognizes trimethylated lysine 36 of histone H3 (H3K36me3). This interaction modulates methyltransferase activity of the PRC2 complex and plays a role in retention of PHF1 at the DNA damage sites. We have previously determined the structural basis for the association of Tudor with a methylated histone peptide. Here we detail the molecular mechanism of binding of the Tudor domain to the H3KC36me3-nucleosome core particle (H3KC36me3-NCP). Using a combination of TROSY NMR and FRET we show that Tudor concomitantly interacts with H3K36me3 and DNA. Binding of the PHF1 Tudor domain to the H3KC36me3-NCP stabilizes the nucleosome in a conformation in which the nucleosomal DNA is more accessible to DNA-binding regulatory proteins. Our data provide a mechanistic explanation for the consequence of reading of the active mark H3K36me3 by the PHF1 Tudor domain.
Collapse
Affiliation(s)
- Catherine A Musselman
- 1] Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA [2]
| | - Matthew D Gibson
- Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - Erik W Hartwick
- Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Justin A North
- Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - Jovylyn Gatchalian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Michael G Poirier
- Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - Tatiana G Kutateladze
- 1] Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA [2] Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
46
|
Al-Ani G, Malik SS, Eastlund A, Briggs K, Fischer CJ. ISWI remodels nucleosomes through a random walk. Biochemistry 2014; 53:4346-57. [PMID: 24898619 PMCID: PMC4100782 DOI: 10.1021/bi500226b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chromatin remodeler ISWI is capable of repositioning clusters of nucleosomes to create well-ordered arrays or moving single nucleosomes from the center of DNA fragments toward the ends without disrupting their integrity. Using standard electrophoresis assays, we have monitored the ISWI-catalyzed repositioning of different nucleosome samples each containing a different length of DNA symmetrically flanking the initially centrally positioned histone octamer. We find that ISWI moves the histone octamer between distinct and thermodynamically stable positions on the DNA according to a random walk mechanism. Through the application of a spectrophotometric assay for nucleosome repositioning, we further characterized the repositioning activity of ISWI using short nucleosome substrates and were able to determine the macroscopic rate of nucleosome repositioning by ISWI. Additionally, quantitative analysis of repositioning experiments performed at various ISWI concentrations revealed that a monomeric ISWI is sufficient to obtain the observed repositioning activity as the presence of a second ISWI bound had no effect on the rate of nucleosome repositioning. We also found that ATP hydrolysis is poorly coupled to nucleosome repositioning, suggesting that DNA translocation by ISWI is not energetically rate-limiting for the repositioning reaction. This is the first calculation of a microscopic ATPase coupling efficiency for nucleosome repositioning and also further supports our conclusion that a second bound ISWI does not contribute to the repositioning reaction.
Collapse
Affiliation(s)
- Gada Al-Ani
- Department of Molecular Biosciences, University of Kansas , 2034 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | | | | | | | | |
Collapse
|
47
|
Al-Ani G, Briggs K, Malik SS, Conner M, Azuma Y, Fischer CJ. Quantitative determination of binding of ISWI to nucleosomes and DNA shows allosteric regulation of DNA binding by nucleotides. Biochemistry 2014; 53:4334-45. [PMID: 24898734 PMCID: PMC4100786 DOI: 10.1021/bi500224t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
regulation of chromatin structure is controlled by a family
of molecular motors called chromatin remodelers. The ability of these
enzymes to remodel chromatin structure is dependent on their ability
to couple ATP binding and hydrolysis into the mechanical work that
drives nucleosome repositioning. The necessary first step in determining
how these essential enzymes perform this function is to characterize
both how they bind nucleosomes and how this interaction is regulated
by ATP binding and hydrolysis. With this goal in mind, we monitored
the interaction of the chromatin remodeler ISWI with fluorophore-labeled
nucleosomes and DNA through associated changes in fluorescence anisotropy
of the fluorophore upon binding of ISWI to these substrates. We determined
that one ISWI molecule binds to a 20 bp double-stranded DNA substrate
with an affinity of 18 ± 2 nM. In contrast, two ISWI molecules
can bind to the core nucleosome with short linker DNA with stoichiometric
macroscopic equilibrium constants: 1/β1 = 1.3 ±
0.6 nM, and 1/β2 = 13 ± 7 nM2. Furthermore,
to improve our understanding of the mechanism of DNA translocation
by ISWI, and hence nucleosome repositioning, we determined the effect
of nucleotide analogues on substrate binding by ISWI. While the affinity
of ISWI for the nucleosome substrate with short lengths of flanking
DNA was not affected by the presence of nucleotides, the affinity
of ISWI for the DNA substrate is weakened in the presence of nonhydrolyzable
ATP analogues but not by ADP.
Collapse
Affiliation(s)
- Gada Al-Ani
- Department of Molecular Biosciences, University of Kansas , 2034 Haworth Hall, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | | | | | | | | | | |
Collapse
|
48
|
Du J, Patel DJ. Structural biology-based insights into combinatorial readout and crosstalk among epigenetic marks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:719-27. [PMID: 24747177 DOI: 10.1016/j.bbagrm.2014.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/20/2014] [Accepted: 04/11/2014] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms control gene regulation by writing, reading and erasing specific epigenetic marks. Within the context of multi-disciplinary approaches applied to investigate epigenetic regulation in diverse systems, structural biology techniques have provided insights at the molecular level of key interactions between upstream regulators and downstream effectors. The early structural efforts focused on studies at the single domain-single mark level have been rapidly extended to research at the multiple domain-multiple mark level, thereby providing additional insights into connections within the complicated epigenetic regulatory network. This review focuses on recent results from structural studies on combinatorial readout and crosstalk among epigenetic marks. It starts with an overview of multiple readout of histone marks associated with both single and dual histone tails, as well as the potential crosstalk between them. Next, this review further expands on the simultaneous readout by epigenetic modules of histone and DNA marks, thereby establishing connections between histone lysine methylation and DNA methylation at the nucleosomal level. Finally, the review discusses the role of pre-existing epigenetic marks in directing the writing/erasing of certain epigenetic marks. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Jiamu Du
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
49
|
Abstract
Heterochromatin imparts regional, promoter-independent repression of genes and is epigenetically heritable. Understanding how silencing achieves this regional repression is a fundamental problem in genetics and development. Current models of yeast silencing posit that Sir proteins, recruited by transcription factors bound to the silencers, spread throughout the silenced region. To test this model directly at high resolution, we probed the silenced chromatin architecture by chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (ChIP-seq) of Sir proteins, histones, and a key histone modification, H4K16-acetyl. These analyses revealed that Sir proteins are strikingly concentrated at and immediately adjacent to the silencers, with lower levels of enrichment over the promoters at HML and HMR, the critical targets for transcriptional repression. The telomeres also showed discrete peaks of Sir enrichment yet a continuous domain of hypoacetylated histone H4K16. Surprisingly, ChIP-seq of cross-linked chromatin revealed a distribution of nucleosomes at silenced loci that was similar to Sir proteins, whereas native nucleosome maps showed a regular distribution throughout silenced loci, indicating that cross-linking captured a specialized chromatin organization imposed by Sir proteins. This specialized chromatin architecture observed in yeast informs the importance of a steric contribution to regional repression in other organisms.
Collapse
Affiliation(s)
- Deborah M Thurtle
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
50
|
Abstract
Nuclear receptors are transcription factors that regulate gene expression through the ligand-controlled recruitment of a diverse group of proteins known as coregulators. Most nuclear receptor coregulators function in large multi-protein complexes that modify chromatin and thereby regulate the transcription of target genes. Structural and functional studies are beginning to reveal how these complexes are assembled bringing together multiple functionalities that mediate: recruitment to specific genomic loci through interaction with transcription factors; recruitment of enzymatic activities that either modify or remodel chromatin and targeting the complexes to their chromatin substrate. These activities are regulated by post-translational modifications, alternative splicing and small signalling molecules. This review focuses on our current understanding of coregulator complexes and aims to highlight the common principles that are beginning to emerge.
Collapse
Affiliation(s)
- Christopher J. Millard
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
- Correspondence to:
| |
Collapse
|