1
|
Shen W, Li Z, Tao Y, Zhou H, Wu H, Shi H, Huang F, Wu X. Tauroursodeoxycholic acid mitigates depression-like behavior and hippocampal neuronal damage in a corticosterone model of female mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5785-5796. [PMID: 39611999 DOI: 10.1007/s00210-024-03637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Depression, a complex mental disorder influenced by both psychological and physiological factors, predominantly affects females. Studies have indicated that elevated levels of cortisol/corticosterone (CORT) under stress conditions can lead to hippocampal neuronal damage, thereby contributing to depression. Tauroursodeoxycholic acid (TUDCA), a bile acid, possesses anti-apoptotic, antioxidant, and anti-inflammatory properties. This study aimed to investigate the protective mechanism of TUDCA against CORT-induced neuromolecular and behavioral phenotypes of depression in female mice, providing theoretical support for its use in treating female depression. The antidepressant effects of TUDCA were evaluated through a series of behavioral tests, measurement of serum neurotransmitter levels, Nissl staining of the hippocampal CA3 region, and assessment of hippocampal proteins. Behavioral results demonstrated that TUDCA exhibited antidepressant effects, as evidenced by increased sucrose preference and locomotor activity, as well as reduced immobility time in depressed mice. Furthermore, TUDCA ameliorated neurotransmitter imbalances. Nissl staining revealed that TUDCA reduced neuronal damage in depressed mice, while Western blotting results indicated that TUDCA activated the hippocampal BDNF/TrkB/CREB pathway and regulated the expression of GR-related proteins. These findings suggested that TUDCA exerted neuroprotective effects in CORT-induced neuronal damage in female depressed mice. The mechanism appeared to be related to the activation of the BDNF/TrkB/CREB signaling pathway and the modulation of GR-related protein expression.
Collapse
Affiliation(s)
- Wei Shen
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research On Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Wu KY, Tsao CH, Su NC, Deng SM, Huang GJ. Stk24 deficiency causes disrupted hippocampal neurogenesis and anxiety-like behavior in mice. Commun Biol 2025; 8:663. [PMID: 40281197 PMCID: PMC12032016 DOI: 10.1038/s42003-025-08035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Protein kinases regulate protein activity through phosphorylation, and many have been reported to participate in brain development. Among them, serine/threonine-protein kinase 24 (STK24) is believed to influence apoptosis, spinal synaptogenesis, and neuronal migration. Despite its recognized roles, the functions of STK24 in the brain remains insufficiently explored. Here, we present an in vivo study of brain-specific Stk24 conditional knockout mice. We investigate the impact of Stk24 deletion through histological analysis, behavior assays, and the molecular changes. In our results, Stk24 deletion disrupts the hippocampal formation during development and decreased subsequent adult hippocampal neurogenesis whilst neuronal morphology is relatively unaffected. Additionally, Stk24-deficient mice exhibit anxiety-like behavior and altered stress responses, featuring increased hippocampal neuronal activity, dysregulated HPA axis reactivity, and modified expression patterns of glucocorticoid receptor signaling-related genes. In conclusion, our findings highlight the involvement of Stk24 in brain development, adult hippocampal neurogenesis, as well as anxiety and stress responses.
Collapse
Affiliation(s)
- Kuan-Yu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chi-Hui Tsao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Nicole Ching Su
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Shin-Meng Deng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Guo-Jen Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.
| |
Collapse
|
3
|
Kirkpatrick M, Mandal G, Elhadidy I, Mariani N, Priestley K, Pariante CM, Borsini A. From placenta to the foetus: a systematic review of in vitro models of stress- and inflammation-induced depression in pregnancy. Mol Psychiatry 2025; 30:1689-1707. [PMID: 39639175 PMCID: PMC11919713 DOI: 10.1038/s41380-024-02866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Depression in pregnancy can increase vulnerability for psychiatric disorders in the offspring, likely via the transfer of heightened maternal cortisol and cytokines to the in-utero environment. However, the precise cellular and molecular mechanisms, are largely unclear. Animal studies can represent this complex pathophysiology at a systemic level but are expensive and ethically challenging. While simpler, in vitro models offer high-throughput opportunities. Therefore, this systematic review integrates findings of in vitro models relevant to depression in pregnancy, to generate novel hypotheses and targets for intervention. METHODS The systematic analysis covered studies investigating glucocorticoid or cytokine challenges on placental or foetal neural progenitor cells (NPCs), with or without co-treatment with sex hormones. RESULTS Of the 50 included studies, 11 used placental cells and 39 NPCs; surprisingly, only one used a combination of oestrogen and cortisol, and no study combined placental cells and NPCs. In placental cells, cortisol or cytokines decreased nutrient transporter expression and steroidogenic enzyme activity, and increased cytokine production. NPCs exhibited decreases in proliferation and differentiation, via specific molecular pathways, namely, inhibition of hedgehog signalling and activation of kynurenine pathway. In these cells, studies also highlighted epigenetic priming of stress and inflammatory pathways. CONCLUSIONS Overall, results suggest that stress and inflammation not only detrimentally impact placental regulation of nutrients and hormones to the foetus, but also activate downstream pathways through increased inflammation in the placenta, ultimately eliciting adverse effects on foetal neurogenesis. Future research should investigate how sex hormones regulate these mechanisms, with the aim of developing targeted therapeutic approaches for depression in pregnancy.
Collapse
Affiliation(s)
- Madeline Kirkpatrick
- Department of Psychological Medicine, Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Gargi Mandal
- Department of Psychological Medicine, Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Ismail Elhadidy
- Department of Psychological Medicine, Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Nicole Mariani
- Department of Psychological Medicine, Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Kristi Priestley
- Department of Psychological Medicine, Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Alessandra Borsini
- Department of Psychological Medicine, Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
| |
Collapse
|
4
|
Kuga N, Sasaki T. Memory-related neurophysiological mechanisms in the hippocampus underlying stress susceptibility. Neurosci Res 2025; 211:3-9. [PMID: 35931215 DOI: 10.1016/j.neures.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 07/20/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022]
Abstract
Stress-induced psychiatric symptoms, such as increased anxiety, decreased sociality, and depression, differ considerably across individuals. The cognitive model of depression proposes that biased negative memory is a crucial determinant in the development of mental stress-induced disorders. Accumulating evidence from both clinical and animal studies has demonstrated that such biased memory processing could be triggered by the hippocampus, a region well known to be involved in declarative memories. This review mainly describes how memory-related neurophysiological mechanisms in the hippocampus and their interactions with other related brain regions are involved in the regulation of stress susceptibility and discusses potential interventions to prevent and treat stress-related psychiatric symptoms. Further neurophysiological insights based on memory mechanisms are expected to devise personalized prevention and therapy to confer stress resilience.
Collapse
Affiliation(s)
- Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan.
| |
Collapse
|
5
|
Dixon R, Malave L, Thompson R, Wu S, Li Y, Sadik N, Anacker C. Sex-specific and developmental effects of early life adversity on stress reactivity are rescued by postnatal knockdown of 5-HT 1A autoreceptors. Neuropsychopharmacology 2025; 50:507-518. [PMID: 39396089 PMCID: PMC11736140 DOI: 10.1038/s41386-024-01999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 10/14/2024]
Abstract
Early Life Adversity (ELA) predisposes to stress hypersensitivity in adulthood, but neurobiological mechanisms that protect from the enduring effects of ELA are poorly understood. Serotonin 1A (5HT1A) autoreceptors in the raphé nuclei regulate adult stress vulnerability, but whether 5HT1A could be targeted to prevent ELA effects on susceptibility to future stressors is unknown. Here, we exposed mice with postnatal knockdown of 5HT1A autoreceptors to the limited bedding and nesting model of ELA from postnatal day (P)3-10 and tested behavioral, neuroendocrine, neurogenic, and neuroinflammatory responses to an acute swim stress in male and female mice in adolescence (P35) and in adulthood (P56). In females, ELA decreased raphé 5HT neuron activity in adulthood and increased passive coping with the acute swim stress, corticosterone levels, neuronal activity, and corticotropin-releasing factor (CRF) levels in the paraventricular nucleus (PVN) of the hypothalamus. ELA also reduced neurogenesis in the ventral dentate gyrus (vDG) of the hippocampus, an important mediator of individual differences in stress susceptibility, and increased microglia activation in the PVN and vDG. These effects of ELA were specific to females and manifested predominantly in adulthood, but not earlier on in adolescence. Postnatal knockdown of 5HT1A autoreceptors prevented these effects of ELA on 5HT neuron activity, stress reactivity, neurogenesis, and neuroinflammation in adult female mice. Our findings demonstrate that ELA induces long-lasting and sex-specific impairments in the serotonin system, stress reactivity, and vDG function, and identify 5HT1A autoreceptors as potential targets to prevent these enduring effects of ELA.
Collapse
Affiliation(s)
- Rushell Dixon
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Lauren Malave
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Rory Thompson
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Serena Wu
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Yifei Li
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Noah Sadik
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Christoph Anacker
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University, and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA.
- Columbia University Institute for Developmental Sciences, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, 10032, USA.
- Columbia University Stem Cell Initiative (CSCI), Columbia University Irving Medical Center (CUIMC), New York, NY, 10032, USA.
| |
Collapse
|
6
|
Wang C, Tang Y, Tang J, Zhang J, Wang S, Wu F, Wang S. Long-term effects of linear versus macrocyclic GBCAs on gene expression in the central nervous system of mice. Eur Radiol Exp 2025; 9:3. [PMID: 39792203 PMCID: PMC11723877 DOI: 10.1186/s41747-024-00546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND We examined chronic gadolinium retention impact on gene expression in the mouse central nervous system (CNS) after injection of linear or macrocyclic gadolinium-based contrast agents (GBCAs). METHODS From 05/2022 to 07/2023, 36 female mice underwent weekly intraperitoneal injections of gadodiamide (2.5 mmol/kg, linear), gadobutrol (2.5 mmol/kg, macrocyclic), or saline. Mice were sacrificed on day 29 or 391 after a 1-year washout. Assessments included magnetic resonance imaging (MRI), mechanical hyperalgesia tests, and inductively coupled plasma mass spectrometry to measure gadolinium levels. Ribonucleic acid (RNA) sequencing and bioinformatic analyses identified differentially expressed genes (DEGs), with validation by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot (WB). RESULTS Post-gadodiamide, MRI showed increased signal intensity in the deep cerebellar nuclei (pre, 0.997 ± 0.006 versus post, 1.086 ± 0.013, p < 0.001). Mechanical hyperalgesia tests indicated transient sensory changes. After 1-year, gadolinium retention was noted in the brain (5.92 ± 0.32 nmol/kg) and spinal cord (1.23 ± 0.66 nmol/kg) with gadodiamide, compared to saline controls (0.06 ± 0.02 nmol/kg in brains and 0.28 ± 0.06 nmol/kg in spinal cords). RNA sequencing identified 17 shared DEGs between brain and spinal cord in the gadodiamide group on day 391, with altered Hmgb2 and Sgk1 expression confirmed by qRT-PCR and WB. Reactome pathway analysis showed enrichment in neuroinflammation pathways. No DEGs were detected in brains on day 29. CONCLUSION Chronic gadolinium deposition from repeated linear GBCA but not macrocyclic administration causes significant gene expression alterations in the mouse CNS, particularly affecting neuroinflammation pathways. RELEVANCE STATEMENT This study examined the long-term impact of chronic gadolinium retention on gene expression in the mouse CNS, uncovering significant changes associated with neuroinflammation pathways after repeated administration of linear GBCA, but not with macrocyclic GBCA. These findings highlight the importance of further research on the long-term safety of linear GBCA in medical imaging. KEY POINTS Chronic gadolinium retention alters gene expression in the mouse central nervous system. Significant neuroinflammatory pathway changes were observed after linear gadodiamide exposure. MRI showed increased signal intensity in deep cerebellar nuclei after gadodiamide injection.
Collapse
Affiliation(s)
- Chuanbing Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxia Tang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiajia Tang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Zhang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siqi Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feiyun Wu
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shouju Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Wei B, Shi Y, Yu X, Cai Y, Zhao Y, Song Y, Zhao Z, Huo M, Li L, Gao Q, Yu D, Wang B, Sun M. GR/P300 Regulates MKP1 Signaling Pathway and Mediates Depression-like Behavior in Prenatally Stressed Offspring. Mol Neurobiol 2024; 61:10613-10628. [PMID: 38769227 DOI: 10.1007/s12035-024-04244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Accumulating evidence suggests that prenatal stress (PNS) increases offspring susceptibility to depression, but the underlying mechanisms remain unclear. We constructed a mouse model of prenatal stress by spatially restraining pregnant mice from 09:00-11:00 daily on Days 5-20 of gestation. In this study, western blot analysis, quantitative real-time PCR (qRT‒PCR), immunofluorescence, immunoprecipitation, chromatin immunoprecipitation (ChIP), and mifepristone rescue assays were used to investigate alterations in the GR/P300-MKP1 and downstream ERK/CREB/TRKB pathways in the brains of prenatally stressed offspring to determine the pathogenesis of the reduced neurogenesis and depression-like behaviors in offspring induced by PNS. We found that prenatal stress leads to reduced hippocampal neurogenesis and depression-like behavior in offspring. Prenatal stress causes high levels of glucocorticoids to enter the fetus and activate the hypothalamic‒pituitary‒adrenal (HPA) axis, resulting in decreased hippocampal glucocorticoid receptor (GR) levels in offspring. Furthermore, the nuclear translocation of GR and P300 (an acetylation modifying enzyme) complex in the hippocampus of PNS offspring increased significantly. This GR/P300 complex upregulates MKP1, which is a negative regulator of the ERK/CREB/TRKB signaling pathway associated with depression. Interestingly, treatment with a GR antagonist (mifepristone, RU486) increased hippocampal GR levels and decreased MKP1 expression, thereby ameliorating abnormal neurogenesis and depression-like behavior in PNS offspring. In conclusion, our study suggested that the regulation of the MKP1 signaling pathway by GR/P300 is involved in depression-like behavior in prenatal stress-exposed offspring and provides new insights and ideas for the fetal hypothesis of mental health.
Collapse
Affiliation(s)
- Bin Wei
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250000, Shandong, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yajun Shi
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Xi Yu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yongle Cai
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yan Zhao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yueyang Song
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Zejun Zhao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Ming Huo
- Reproductive Medicine Center, The First Hospital of Lanzhou University, LanzhouGansu, 730000, China
| | - Lingjun Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Qinqin Gao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250000, Shandong, China
| | - Bin Wang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China.
| |
Collapse
|
8
|
Howard PG, Zou P, Zhang Y, Huang F, Tesic V, Wu CYC, Lee RHC. Serum/glucocorticoid regulated kinase 1 (SGK1) in neurological disorders: pain or gain. Exp Neurol 2024; 382:114973. [PMID: 39326820 PMCID: PMC11536509 DOI: 10.1016/j.expneurol.2024.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Serum/Glucocorticoid Regulated Kinase 1 (SGK1), a serine/threonine kinase, is ubiquitous across a wide range of tissues, orchestrating numerous signaling pathways and associated with various human diseases. SGK1 has been extensively explored in diverse types of immune and inflammatory diseases, cardiovascular disorders, as well as cancer metastasis. These studies link SGK1 to cellular proliferation, survival, metabolism, membrane transport, and drug resistance. Recently, increasing research has focused on SGK1's role in neurological disorders, including a variety of neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease), brain injuries (e.g., cerebral ischemia and traumatic brain injury), psychiatric conditions (e.g., depression and drug addiction). SGK1 is emerging as an increasingly compelling therapeutic target across the spectrum of neurological disorders, supported by the availability of several effective agents. However, the conclusions of many studies observing the prevalence and function of SGK1 in neurological disorders are contradictory, necessitating a review of the SGK1 research within neurological disorders. Herein, we review recent literature on SGK1's primary functions within the nervous system and its impacts within different neurological disorders. We summarize significant findings, identify research gaps, and outline possible future research directions based on the current understanding of SGK1 to help further progress the understanding and treatment of neurological disorders.
Collapse
Affiliation(s)
- Peyton Grace Howard
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Peibin Zou
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Yulan Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Fang Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA.
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA; Department of Department of Cell Biology & Anatomy, Louisiana State University Health, Shreveport, LA, USA.
| |
Collapse
|
9
|
Chen X, Kang H, Xiao Y. The role of SGK1 in neurologic diseases: A friend or foe? IBRO Neurosci Rep 2024; 17:503-512. [PMID: 39737082 PMCID: PMC11683284 DOI: 10.1016/j.ibneur.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1), a member of the AGC family of serine/threonine protein kinases, is one of the most conserved protein kinases in eukaryotic evolution. SGK1 is expressed to varying degrees in various types of cells throughout the body, and plays an important role in hypertension, ion channels, oxidative stress, neurological disorders, and cardiovascular regulation. In recent years, a number of scholars have devoted themselves to the study of the role and function of SGK1 in neurological diseases. Therefore, this article reviews the role of SGK1 in Alzheimer's disease, Parkinson's disease, epilepsy, stroke and other neurological diseases in recent years, and puts forward some insights on the role of SGK1 in neurological diseases and its relationship with disease activities.
Collapse
Affiliation(s)
- Xiuze Chen
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
| | - Haixian Kang
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
| | - Yechen Xiao
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
- Shunde Women and Children's Hospital of Guangdong Medical University, Foshan 528300, China
| |
Collapse
|
10
|
Xie Y, Su J, Yang M, Liu Z, Chen T, Qian J, Yu B, Zhang X. Prenatal dexamethasone exposure reduces osteoprogenitor proliferation in mice via histone modifications at the Mkp-1 gene locus. Commun Biol 2024; 7:1589. [PMID: 39609620 PMCID: PMC11604782 DOI: 10.1038/s42003-024-07288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Prenatal dexamethasone exposure (PDE) has long-term consequences in bone development, though the underlying mechanisms remain unclear. Our results show that PDE offspring exhibit reduced bone mass, fewer osteoblasts and diminished osteoprogenitors proliferation. Further analyses show that PDE increases MKP-1 expression, while decreasing H3 lysine 9 dimethylation (H3K9me2) and H3 lysine 27 trimethylation (H3K27me3) at the Mkp-1 gene locus. Mechanistically, dexamethasone suppresses osteoprogenitors proliferation by upregulating MKP-1 expression, notably through the inhibition of H3K9me2 and H3K27me3 modifications, which promote demethylation and transcriptional activation of the Mkp-1 gene. Importantly, restoring histone methylation balance with PFI-90 or GSK-J4 treatment blocks the inhibitory effects of PDE on MAPK signaling in osteoprogenitors, and mitigates the detrimental impact of PDE on osteoprogenitor proliferation and bone development in the offspring. This study provides new insights into the epigenetic mechanism by which PDE disrupts long-term programming of fetal osteoprogenitor proliferation, ultimately impairing long bone growth in offspring.
Collapse
Affiliation(s)
- Yongheng Xie
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Division of Spine, Department of Orthopedic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Jianwen Su
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mankai Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zixian Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Te Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jikun Qian
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xianrong Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, No.1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Sang X, Han J, Wang Z, Cai W, Liao X, Kong Z, Yu Z, Cheng H, Liu P. SGK1 suppresses ferroptosis in ovarian cancer via NRF2-dependent and -independent pathways. Oncogene 2024; 43:3335-3347. [PMID: 39306614 DOI: 10.1038/s41388-024-03173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is a highly aggressive disease often developing resistance to current therapies, necessitating new treatment strategies. Our study identifies SGK1, a key effector in the PI3K pathway, as a promising therapeutic target to exploit ferroptosis, a distinct form of cell death induced by iron overload and lipid peroxidation. Importantly, SGK1 activation, whether through high expression or the constitutively active SGK1-S422D mutation, confers resistance to ferroptosis in HGSOC. Conversely, SGK1 inhibition significantly enhances sensitivity to ferroptosis, as shown by increased PTGS2 expression (a ferroptosis marker), lipid peroxidation, and toxic-free iron levels. Remarkably, this enhanced cytotoxicity is reversed by ferrostatin-1 and the iron chelator deferoxamine, highlighting the pivotal roles of lipid peroxidation and iron dysregulation in the process. Mechanistically, SGK1 protects HGSOC cells from ferroptosis via NRF2-dependent pathways, promoting glutathione synthesis and iron homeostasis, and NRF2-independent pathways via mTOR/SREBP1/SCD1-mediated lipogenesis. Notably, pharmacological SGK1 inhibition sensitizes HGSOC xenograft models to ferroptosis induction, highlighting its therapeutic potential. These findings establish SGK1 as a critical regulator of ferroptosis and suggest targeting SGK1 alongside ferroptosis pathways as a potential therapeutic strategy for HGSOC patients.
Collapse
Affiliation(s)
- Xiaolin Sang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaxin Han
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Zhaojing Wang
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Weiji Cai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingming Liao
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Zhuolin Kong
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Zhijie Yu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hailing Cheng
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| | - Pixu Liu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
12
|
Wang H, Wang X, Wang H, Shao S, Zhu J. Chronic Corticosterone Administration-Induced Mood Disorders in Laboratory Rodents: Features, Mechanisms, and Research Perspectives. Int J Mol Sci 2024; 25:11245. [PMID: 39457027 PMCID: PMC11508944 DOI: 10.3390/ijms252011245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Mood disorders mainly affect the patient's daily life, lead to suffering and disability, increase the incidence rate of many medical illnesses, and even cause a trend of suicide. The glucocorticoid (GC)-mediated hypothalamus-pituitary-adrenal (HPA) negative feedback regulation plays a key role in neuropsychiatric disorders. The balance of the mineralocorticoid receptor (MR)/glucocorticoid receptor (GR) level contributes to maintaining the homeostasis of the neuroendocrine system. Consistently, a chronic excess of GC can also lead to HPA axis dysfunction, triggering anxiety, depression, memory loss, and cognitive impairment. The animal model induced by chronic corticosterone (CORT) administration has been widely adopted because of its simple replication and strong stability. This review summarizes the behavioral changes and underlying mechanisms of chronic CORT administration-induced animal models, including neuroinflammatory response, pyroptosis, oxidative stress, neuroplasticity, and apoptosis. Notably, CORT administration at different doses and cycles can destroy the balance of the MR/GR ratio to make dose-dependent effects of CORT on the central nervous system (CNS). This work aims to offer an overview of the topic and recommendations for future cognitive function research.
Collapse
Affiliation(s)
- Hao Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Xingxing Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Huan Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Shuijin Shao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
| | - Jing Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (H.W.); (X.W.); (H.W.); (S.S.)
- Shanghai Institute of Traditional Chinese Medicine for Mental Health, Shanghai 201108, China
| |
Collapse
|
13
|
Mandal G, Kirkpatrick M, Alboni S, Mariani N, Pariante CM, Borsini A. Ketamine Prevents Inflammation-Induced Reduction of Human Hippocampal Neurogenesis via Inhibiting the Production of Neurotoxic Metabolites of the Kynurenine Pathway. Int J Neuropsychopharmacol 2024; 27:pyae041. [PMID: 39297528 PMCID: PMC11450635 DOI: 10.1093/ijnp/pyae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Understanding the precise mechanisms of ketamine is crucial for replicating its rapid antidepressant effects without inducing psychomimetic changes. Here, we explore whether the antidepressant-like effects of ketamine enantiomers are underscored by protection against cytokine-induced reductions in hippocampal neurogenesis and activation of the neurotoxic kynurenine pathway in our well-established in vitro model of depression in a dish. METHODS We used the fetal hippocampal progenitor cell line (HPC0A07/03C) to investigate ketamine's impact on cytokine-induced reductions in neurogenesis in vitro. Cells were treated with interleukin- 1beta (IL-1b) (10 ng/mL) or IL-6 (50 pg/mL), alone or in combination with ketamine enantiomers arketamine (R-ketamine, 400 nM) or esketamine (S-ketamine, 400 nM) or antidepressants sertraline (1 mM) or venlafaxine (1 mM). RESULTS Resembling the effect of antidepressants, both ketamine enantiomers prevented IL-1b- and IL-6-induced reduction in neurogenesis and increase in apoptosis. This was mediated by inhibition of IL-1b-induced production of IL-2 and IL-13 by R-ketamine and of IL-1b-induced tumor necrosis factor-alpha by S-ketamine. Likewise, R-ketamine inhibited IL-6-induced production of IL-13, whereas S-ketamine inhibited IL-6-induced IL-1b and IL-8. Moreover, both R- and S-ketamine prevented IL-1b-induced increases in indoleamine 2,3-dioxygenase expression as well as kynurenine production, which in turn was shown to mediate the detrimental effects of IL-1b on neurogenesis and apoptosis. In contrast, neither R- nor S-ketamine prevented IL-6-induced kynurenine pathway activation. CONCLUSIONS Results suggest that R- and S-ketamine have pro-neurogenic and anti-inflammatory properties; however, this is mediated by inhibition of the kynurenine pathway only in the context of IL-1b. Overall, this study enhances our understanding of the mechanisms underlying ketamine's antidepressant effects in the context of different inflammatory phenotypes, ultimately leading to the development of more effective, personalized therapeutic approaches for patients suffering from depression.
Collapse
Affiliation(s)
- Gargi Mandal
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King’s College London, UK
| | - Madeline Kirkpatrick
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King’s College London, UK
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicole Mariani
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King’s College London, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King’s College London, UK
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King’s College London, UK
| |
Collapse
|
14
|
Dixon R, Malave L, Thompson R, Wu S, Li Y, Sadik N, Anacker C. Sex-specific and Developmental Effects of Early Life Adversity on Stress Reactivity are Rescued by Postnatal Knockdown of 5-HT 1A Autoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576344. [PMID: 38328253 PMCID: PMC10849559 DOI: 10.1101/2024.01.22.576344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Early Life Adversity (ELA) predisposes to stress hypersensitivity in adulthood, but neurobiological mechanisms that protect from the enduring effects of ELA are poorly understood. Serotonin 1A (5HT 1A ) autoreceptors in the raphé nuclei regulate adult stress vulnerability, but whether 5HT 1A could be targeted to prevent ELA effects on susceptibility to future stressors is unknown. Here, we exposed mice with postnatal knockdown of 5HT 1A autoreceptors to the limited bedding and nesting model of ELA from postnatal day (P)3-10 and tested behavioral, neuroendocrine, neurogenic, and neuroinflammatory responses to an acute swim stress in male and female mice in adolescence (P35) and in adulthood (P56). In females, ELA decreased raphé 5HT neuron activity in adulthood and increased passive coping with the acute swim stress, corticosterone levels, neuronal activity, and corticotropin-releasing factor (CRF) levels in the paraventricular nucleus (PVN) of the hypothalamus. ELA also reduced neurogenesis in the ventral dentate gyrus (vDG) of the hippocampus, an important mediator of individual differences in stress susceptibility, and increased microglia activation in the PVN and vDG. These effects of ELA were specific to females and manifested predominantly in adulthood, but not earlier on in adolescence. Postnatal knockdown of 5HT 1A autoreceptors prevented these effects of ELA on 5HT neuron activity, stress reactivity, neurogenesis, and neuroinflammation in adult female mice. Our findings demonstrate that ELA induces long-lasting and sex-specific impairments in the serotonin system, stress reactivity, and vDG function, and identify 5HT 1A autoreceptors as potential targets to prevent these enduring effects of ELA.
Collapse
|
15
|
Lei Z, Pan C, Li F, Wei D, Ma Y. SGK1 promotes the lipid accumulation via regulating the transcriptional activity of FOXO1 in bovine. BMC Genomics 2024; 25:737. [PMID: 39080526 PMCID: PMC11290151 DOI: 10.1186/s12864-024-10644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
OBJECTIVES Serum/glucocorticoid-inducible kinase 1 (SGK1) gene encodes a serine/threonine protein kinase that plays an essential role in cellular stress response and regulation of multiple metabolic processes. However, its role in bovine adipogenesis remains unknown. In this study, we aimed to clarify the role of SGK1 in bovine lipid accumulation and improvement of meat quality. METHODS Preadipocytes were induced to differentiation to detect the temporal expression pattern of SGK1. Heart, liver, lung, spleen, kidney, muscle and fat tissues were collected to detect its tissue expression profile. Recombinant adenovirus and the lentivirus were packaged for overexpression and knockdown. Oil Red O staining, quantitative real-time PCR, Western blot analysis, Yeast two-hybrid assay, luciferase assay and RNA-seq were performed to study the regulatory mechanism of SGK1. RESULTS SGK1 showed significantly higher expression in adipose and significantly induced expression in differentiated adipocytes. Furthermore, overexpression of SGK1 greatly promoted adipogenesis and inhibited proliferation, which could be shown by the remarkable increasement of lipid droplet, and the expression levels of adipogenic marker genes and cell cycle-related genes. Inversely, its knockdown inhibited adipogenesis and facilitated proliferation. Mechanistically, SGK1 regulates the phosphorylation and expression of two critical proteins of FoxO family, FOXO1/FOXO3. Importantly, SGK1 attenuates the transcriptional repression role of FOXO1 for PPARγ via phosphorylating the site S256, then promoting the bovine fat deposition. CONCLUSIONS SGK1 is a required epigenetic regulatory factor for bovine preadipocyte proliferation and differentiation, which contributes to a better understanding of fat deposition and meat quality improvement in cattle.
Collapse
Affiliation(s)
- Zhaoxiong Lei
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Cuili Pan
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Fen Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
16
|
Głowacka P, Oszajca K, Pudlarz A, Szemraj J, Witusik-Perkowska M. Postbiotics as Molecules Targeting Cellular Events of Aging Brain-The Role in Pathogenesis, Prophylaxis and Treatment of Neurodegenerative Diseases. Nutrients 2024; 16:2244. [PMID: 39064687 PMCID: PMC11279795 DOI: 10.3390/nu16142244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is the most prominent risk factor for neurodegeneration occurrence. The most common neurodegenerative diseases (NDs), Alzheimer's (AD) and Parkinson's (PD) diseases, are characterized by the incidence of proteinopathy, abnormal activation of glial cells, oxidative stress, neuroinflammation, impaired autophagy and cellular senescence excessive for the patient's age. Moreover, mitochondrial disfunction, epigenetic alterations and neurogenesis inhibition, together with increased blood-brain barrier permeability and gut dysbiosis, have been linked to ND pathogenesis. Since NDs still lack curative treatment, recent research has sought therapeutic options in restoring gut microbiota and supplementing probiotic bacteria-derived metabolites with beneficial action to the host-so called postbiotics. The current review focuses on literature explaining cellular mechanisms involved in ND pathogenesis and research addressing the impact that postbiotics as a whole mixture and particular metabolites, such as short-chain fatty acids (SCFAs), lactate, polyamines, polyphenols, tryptophan metabolites, exopolysaccharides and bacterial extracellular vesicles, have on the ageing-associated processes underlying ND occurrence. The review also discusses the issue of implementing postbiotics into ND prophylaxis and therapy, depicting them as compounds addressing senescence-triggered dysfunctions that are worth translating from bench to pharmaceutical market in response to "silver consumers" demands.
Collapse
Affiliation(s)
- Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
- International Doctoral School, Medical University of Lodz, 90-419 Lodz, Poland
| | - Katarzyna Oszajca
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Agnieszka Pudlarz
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| | - Monika Witusik-Perkowska
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland; (P.G.); (K.O.); (A.P.); (J.S.)
| |
Collapse
|
17
|
Hudock A, Leal ZP, Sharma A, Mei A, Santos R, Marchetto MC. Exploring mood disorders and treatment options using human stem cells. Genet Mol Biol 2024; 47Suppl 1:e20230305. [PMID: 38954533 PMCID: PMC11223183 DOI: 10.1590/1678-4685-gmb-2023-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/16/2024] [Indexed: 07/04/2024] Open
Abstract
Despite their global prevalence, the mechanisms for mood disorders like bipolar disorder and major depressive disorder remain largely misunderstood. Mood stabilizers and antidepressants, although useful and effective for some, do not have a high responsiveness rate across those with these conditions. One reason for low responsiveness to these drugs is patient heterogeneity, meaning there is diversity in patient characteristics relating to genetics, etiology, and environment affecting treatment. In the past two decades, novel induced pluripotent stem cell (iPSC) research and technology have enabled the use of human-derived brain cells as a new model to study human disease that can help account for patient variance. Human iPSC technology is an emerging tool to better understand the molecular mechanisms of these disorders as well as a platform to test novel treatments and existing pharmaceuticals. This literature review describes the use of iPSC technology to model bipolar and major depressive disorder, common medications used to treat these disorders, and novel patient-derived alternative treatment methods for non-responders stemming from past publications, as well as presenting new data derived from these models.
Collapse
Affiliation(s)
- Autumn Hudock
- University of California San Diego, Department of Anthropology, La
Jolla, CA, USA
| | - Zaira Paulina Leal
- University of California San Diego, Department of Anthropology, La
Jolla, CA, USA
| | - Amandeep Sharma
- The Salk Institute for Biological Studies, Laboratory of Genetics,
La Jolla, CA, USA
| | - Arianna Mei
- The Salk Institute for Biological Studies, Laboratory of Genetics,
La Jolla, CA, USA
| | - Renata Santos
- The Salk Institute for Biological Studies, Laboratory of Genetics,
La Jolla, CA, USA
- Université Paris Cité, Institute of Psychiatry and Neuroscience of
Paris (IPNP), INSERM U1266, Signaling Mechanisms in Neurological Disorders, Paris,
France
- Institut des Sciences Biologiques, Centre National de la Recherche
Scientifique (CNRS), Paris, France
| | | |
Collapse
|
18
|
Zheng B, Zheng Y, Hu W, Chen Z. Dissecting the networks underlying diverse brain disorders after prenatal glucocorticoid overexposure. Arch Toxicol 2024; 98:1975-1990. [PMID: 38581585 DOI: 10.1007/s00204-024-03733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
New human life begins in the uterus in a period of both extreme plasticity and sensitivity to environmental disturbances. The fetal stage is also a vital period for central nervous system development, with experiences at this point profoundly and permanently shaping brain structure and function. As such, some brain disorders may originate in utero. Glucocorticoids, a class of essential stress hormones, play indispensable roles in fetal development, but overexposure may have lasting impacts on the brain. In this review, we summarize data from recent clinical and non-clinical studies regarding alterations in fetal brains due to prenatal glucocorticoid overexposure that are associated with nervous system disorders. We discuss relevant changes to brain structure and cellular functions and explore the underlying molecular mechanisms. In addition, we summarize factors that may cause differential outcomes between varying brain regions, and outline clinically feasible intervention strategies that are expected to minimize negative consequences arising from fetal glucocorticoid overexposure. Finally, we highlight the need for experimental evidence aided by new technologies to clearly determine the effects of excessive prenatal glucocorticoid exposure. This review consolidates diverse findings to help researchers better understand the relationship between the prenatal glucocorticoid overexposure and the effects it has on various fetal brain regions, promoting further development of critical intervention strategies.
Collapse
Affiliation(s)
- Baixiu Zheng
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weiwei Hu
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
19
|
Zhang J, Gao L, Yang GL, Kong DZ. The effect of single nucleotide polymorphisms on depression in combination with coronary diseases: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1369676. [PMID: 38745947 PMCID: PMC11091366 DOI: 10.3389/fendo.2024.1369676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Background Depression and coronary heart disease (CHD) have common risk mechanisms. Common single nucleotide polymorphisms (SNPs) may be associated with the risk of depression combined with coronary heart disease. Methods This study was designed according to the PRISMA-P guidelines. We will include case-control studies and cohort studies investigating the relationship between gene SNPs and depression and coronary heart disease comorbidities. The Newcastle-Ottawa Scale (NOS) will be used to assess the risk of bias. When measuring dichotomous outcomes, we will use the odds ratio (OR) and 95% confidence interval (95%CIs) in a case-control study. Five genetic models (allele model, homozygous model, co-dominant model, dominant model, and recessive model) will be evaluated for each included study. Subgroup analysis by ethnicity will be performed. If necessary, post hoc analysis will be made according to different types. Results A total of 13 studies were included in this study, and the types of genes included are FKBP5 and SGK1 genes that act on glucocorticoid; miR-146a, IL-4-589, IL-6-174, TNF-α-308, CRP-717 genes that act on inflammatory mechanisms; eNOS genes from endothelial cells; HSP70 genes that act on the autoimmune response; ACE2 and MAS1 genes that act to mediate Ang(1-7) in the RAS system; 5-HTTLPR gene responsible for the transport of serotonin 5-HT and neurotrophic factor BDNF gene. There were three studies on 5-HTTLPR and BDNF genes, respectively, while there was only one study targeting FKBP5, SGK1, miR-146a, IL-4-589, IL-6-174, TNF-alpha-308, CRP-717, eNOS, HSP70, ACE2, and MAS1 genes. We did not perform a meta-analysis for genes reported in a single study, and meta-analysis was performed separately for studies exploring the 5-HTTLPR and BDNF genes. The results showed that for the 5-HTTLPR gene, there was a statistically significant association between 5-HTTLPR gene polymorphisms and depression in combination with coronary diseases (CHD-D) under the co-dominant model (LS vs LL: OR 1.76, 95%CI 1.20-2.59; SS vs LL: OR 2.80, 95%CI 1.45 to 5.41), the dominant model (LS+SS vs LL: OR 2.06, 95%CI 1.44 to 2.96), and the homozygous model (SS vs LL: OR 2.80 95%CI 1.45 to 5.5.41) were statistically significant for CHD-D, demonstrating that polymorphisms in the 5-HTTLPR gene are associated with the development of CHD-D and that the S allele in the 5-HTTLPR gene is likely to be a risk factor for CHD-D. For the BDNF gene, there were no significant differences between one of the co-dominant gene models (AA vs GG: OR 6.63, 95%CI 1.44 to 30.64), the homozygous gene model (AA vs GG: OR 6.63,95% CI 1.44 to 30.64), the dominant gene model (GA+AA vs GG: OR4.29, 95%CI 1.05 to 17.45), recessive gene model (AA vs GG+GA: OR 2.71, 95%CI 1.16 to 6.31), and allele model (A vs G: OR 2.59, 95%CI 1.18 to 5.67) were statistically significant for CHD-D, demonstrating that BDNFrs6265 gene polymorphisms are associated with the CHD-D development and that the A allele in the BDNFrs6265 gene is likely to be a risk factor for CHD-D. We analyzed the allele frequencies of SNPs reported in a single study and found that the SNPs in the microRNA146a gene rs2910164, the SNPs in the ACE2 gene rs2285666 and the SNPs in the SGK1 gene rs1743963 and rs1763509 were risk factors for the development of CHD-D. We performed a subgroup analysis of three studies involving the BDNFrs6265 gene. The results showed that European populations were more at risk of developing CHD-D than Asian populations in both dominant model (GA+AA vs GG: OR 10.47, 95%CI 3.53 to 31.08) and co-dominant model (GA vs GG: OR 6.40, 95%CI 1.98 to 20.73), with statistically significant differences. In contrast, the studies involving the 5-HTTLPR gene were all Asian populations, so subgroup analyses were not performed. We performed sensitivity analyses of studies exploring the 5-HTTLPR and BDNF rs6265 genes. The results showed that the results of the allele model, the dominant model, the recessive model, the homozygous model and the co-dominant model for both 5-HTTLPR and BDNF rs6265 genes were stable. Due to the limited number of studies of the 5-HTTLPR and BDNF genes, it was not possible to determine the symmetry of the funnel plot using Begg's funnel plot and Egger's test. Therefore, we did not assess publication bias. Discussion SNPs of the microRNA146a gene at rs2910164, the ACE2 gene at the rs2285666 and the SGK1 gene at rs1743963 and rs1763509, and the SNPs at the 5-HTTLPR and BDNF gene loci are associated with the onset of comorbid depression in coronary heart disease. We recommend that future research focus on studying SNPs' impact on comorbid depression in coronary heart disease, specifically targeting the 5-HTTLPR and BDNF gene at rs6265. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021229371.
Collapse
Affiliation(s)
| | | | | | - De Zhao Kong
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Cattane N, Di Benedetto MG, D'Aprile I, Riva MA, Cattaneo A. Dissecting the Long-Term Effect of Stress Early in Life on FKBP5: The Role of miR-20b-5p and miR-29c-3p. Biomolecules 2024; 14:371. [PMID: 38540789 PMCID: PMC10967956 DOI: 10.3390/biom14030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Exposure to early-life stress (ELS) has been related to an increased susceptibility to psychiatric disorders later in life. Although the molecular mechanisms underlying this association are still under investigation, glucocorticoid signaling has been proposed to be a key mediator. Here, we used two preclinical models, the prenatal stress (PNS) animal model and an in vitro model of hippocampal progenitor cells, to assess the long-term effect of ELS on FKBP5, NR3C1, NR3C2, and FoxO1, four stress-responsive genes involved in the effects of glucocorticoids. In the hippocampus of male PNS rats sacrificed at different time points during neurodevelopment (PND 21, 40, 62), we found a statistically significant up-regulation of FKBP5 at PND 40 and PND 62 and a significant increase in FoxO1 at PND 62. Interestingly, all four genes were significantly up-regulated in differentiated cells treated with cortisol during cell proliferation. As FKBP5 was consistently modulated by PNS at adolescence (PND 40) and adulthood (PND 62) and by cortisol treatment after cell differentiation, we measured a panel of miRNAs targeting FKBP5 in the same samples where FKBP5 expression levels were available. Interestingly, both miR-20b-5p and miR-29c-3p were significantly reduced in PNS-exposed animals (both at PND40 and 62) and also in the in vitro model after cortisol exposure. Our results highlight the key role of miR-20b-5p and miR-29c-3p in sustaining the long-term effects of ELS on the stress response system, representing a mechanistic link possibly contributing to the enhanced stress-related vulnerability to mental disorders.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Maria Grazia Di Benedetto
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Ilari D'Aprile
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
21
|
Xiao HH, Zhang FR, Li S, Guo FF, Hou JL, Wang SC, Yu J, Li XY, Yang HJ. Xinshubao tablet rescues cognitive dysfunction in a mouse model of vascular dementia: Involvement of neurogenesis and neuroinflammation. Biomed Pharmacother 2024; 172:116219. [PMID: 38310654 DOI: 10.1016/j.biopha.2024.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024] Open
Abstract
Vascular dementia (VaD) represents a severe cognitive dysfunction syndrome closed linked to cardiovascular function. In the present study, we assessed the potential of Xinshubao tablet (XSB), a traditional Chinese prescription widely used for cardiovascular diseases, to mitigate neuropathological damage in a mouse model of VaD and elucidated the underlying mechanisms. Our findings revealed that oral administration of XSB rescued the cardiac dysfunction resulting from bilateral common carotid artery stenosis (BCAS), improved the cerebral blood flow (CBF) and cognitive function, reduced white matter injury, inhibited excessive microglial and astrocytic activation, stimulated hippocampal neurogenesis, and reduced neural apoptosis in the brains of BCAS mice. Mechanistically, RNA-seq analysis indicated that XSB treatment was significantly associated with neuroinflammation, vasculature development, and synaptic transmission, which were further confirmed by q-PCR assays. Western blot results revealed that XSB treatment hindered the nuclear translocation of nuclear factor-κB (NF-κB), thereby suppressing the NF-κB signaling pathway. These results collectively demonstrated that XSB could ameliorate cognitive dysfunction caused by BCAS through regulating CBF, reducing white matter lesions, suppressing glial activation, promoting neurogenesis, and mitigating neuroinflammation. Notably, the NF-κB signaling pathway emerged as a pivotal player in this mechanism.
Collapse
Affiliation(s)
- Hong-He Xiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China; Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province 363099, China
| | - Feng-Rong Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sen Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei-Fei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jin-Li Hou
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shi-Cong Wang
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province 363099, China
| | - Juan Yu
- Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian Province 363099, China.
| | - Xian-Yu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
22
|
Kong H, Xu T, Wang S, Zhang Z, Li M, Qu S, Li Q, Gao P, Cong Z. The molecular mechanism of polysaccharides in combating major depressive disorder: A comprehensive review. Int J Biol Macromol 2024; 259:129067. [PMID: 38163510 DOI: 10.1016/j.ijbiomac.2023.129067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.
Collapse
Affiliation(s)
- Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Min Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Suyan Qu
- Tai 'an Taishan District People's Hospital, China
| | - Qinqing Li
- Shanxi University of Chinese Medicine, China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Cancer Hospital of Shandong First Medical University, China.
| |
Collapse
|
23
|
Miyako K, Kajitani N, Koga Y, Takizawa H, Boku S, Takebayashi M. Identification of the antidepressant effect of electroconvulsive stimulation-related genes in hippocampal astrocyte. J Psychiatr Res 2024; 170:318-327. [PMID: 38194849 DOI: 10.1016/j.jpsychires.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Major depressive disorder (MDD) remains a significant global health concern, with limited and slow efficacy of existing antidepressants. Electroconvulsive therapy (ECT) has superior and immediate efficacy for MDD, but its action mechanism remains elusive. Therefore, the elucidation of the action mechanism of ECT is expected to lead to the development of novel antidepressants with superior and immediate efficacy. Recent studies suggest a potential role of hippocampal astrocyte in MDD and ECT. Hence, we investigated antidepressant effect of electroconvulsive stimulation (ECS), an animal model of ECT, -related genes in hippocampal astrocyte with a mouse model of MDD, in which corticosterone (CORT)-induced depression-like behaviors were recovered by ECS. In this model, both of CORT-induced depression-like behaviors and the reduction of hippocampal astrocyte were recovered by ECS. Following it, astrocytes were isolated from the hippocampus of this model and RNA-seq was performed with these isolated astrocytes. Interestingly, gene expression patterns altered by CORT were reversed by ECS. Additionally, cell proliferation-related signaling pathways were inhibited by CORT and recovered by ECS. Finally, serum and glucocorticoid kinase-1 (SGK1), a multi-functional protein kinase, was identified as a candidate gene reciprocally regulated by CORT and ECS in hippocampal astrocyte. Our findings suggest a potential role of SGK1 in the antidepressant effect of ECS via the regulation of the proliferation of astrocyte and provide new insights into the involvement of hippocampal astrocyte in MDD and ECT. Targeting SGK1 may offer a novel approach to the development of new antidepressants which can replicate superior and immediate efficacy of ECT.
Collapse
Affiliation(s)
- Kotaro Miyako
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoto Kajitani
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusaku Koga
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
24
|
Gulzar M, Noor S, Hasan GM, Hassan MI. The role of serum and glucocorticoid-regulated kinase 1 in cellular signaling: Implications for drug development. Int J Biol Macromol 2024; 258:128725. [PMID: 38092114 DOI: 10.1016/j.ijbiomac.2023.128725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a ubiquitously expressed protein belonging to the Ser/Thr kinase family. It regulates diverse physiological processes, including epithelial sodium channel activity, hypertension, cell proliferation, and insulin sensitivity. Due to its significant role in the pathogenesis of numerous diseases, SGK1 can be exploited as a potential therapeutic target to address challenging health problems. SGK1 is associated with the development of obesity, and its overexpression enhances the sodium-glucose co-transporter 1 activity, which absorbs intestinal glucose. This review highlighted the detailed functional significance of SGK1 signaling and role in different diseases and subsequent therapeutic targeting. We aim to provide deeper mechanistic insights into understanding the pathogenesis and recent advancements in the SGK1 targeted drug development process. Small-molecule inhibitors are being developed with excellent binding affinity and improved SGK1 inhibition with desired selectivity. We have discussed small molecule inhibitors designed explicitly as potent SGK1 inhibitors and their therapeutic implications in various diseases. We further addressed the therapeutic potential and mechanism of action of these SGK1 inhibitors and provided a strong scientific foundation for developing effective therapeutics.
Collapse
Affiliation(s)
- Mehak Gulzar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
25
|
Tao Y, Shen W, Zhou H, Li Z, Pi T, Wu H, Shi H, Huang F, Wu X. Sex differences in a corticosterone-induced depression model in mice: Behavioral, neurochemical, and molecular insights. Brain Res 2024; 1823:148678. [PMID: 37979605 DOI: 10.1016/j.brainres.2023.148678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Depression is characterized by a significant sex disparity, with higher rates observed in women compared to men. This study aimed to investigate the impact of sex on depressive behaviors and explore the underlying mechanisms using a corticosterone (CORT)-induced depression model in mice. Behavioral tests, Nissl staining, UPLC-MS/MS, and Western blot analysis were performed to assess behavioral changes, as well as neuronal alterations, neurotransmitter levels, and protein expressions in the hippocampus. The mice in the model group exhibited sex-specific anxiety- and depression-like behaviors. Nissl staining revealed structural abnormalities in the CA3 region of the hippocampus in females. Neurotransmitter analysis indicated decreased serotonin and norepinephrine levels in both sexes, while glutamate levels were elevated in females. Furthermore, female mice demonstrated elevated serum CORT levels. Western blot analysis revealed sex-specific alterations in specific protein expression. Female mice exhibited downregulated glucocorticoid receptor and brain-derived neurotrophic factor expression, whereas male mice showed minimal changes. Additionally, female mice displayed reduced phosphorylated AKT, phosphorylated PI3K, and phosphorylated mTOR levels. These findings enhance our understanding of sex-specific differences in the CORT-induced depression model and provide insights into the underlying mechanisms of depression. This research emphasizes sex in depression studies and supports tailored interventions.
Collapse
Affiliation(s)
- Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Wei Shen
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Houyuan Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zikang Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Ting Pi
- Kunming Yan'an Hospital Chenggong Hospital, PR China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
26
|
Wang C, Gao MQ. Research Progress on the Antidepressant Effects of Baicalin and Its Aglycone Baicalein: A Systematic Review of the Biological Mechanisms. Neurochem Res 2024; 49:14-28. [PMID: 37715823 DOI: 10.1007/s11064-023-04026-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Depression is the most prevalent mental disorder, affecting more than 300 million adults worldwide each year, which can lead to serious economic and social problems. Antidepressants are usually the first-line treatment for depression, however, traditional antidepressants on the market have the disadvantage of low remission rates and may cause side effects to patients, therefore, the current focus in the field of depression is to develop novel therapeutic agents with high remission rates and few side effects. In this context, the antidepressant effects of natural compounds have received attention. Baicalin (baicalein-7-O-glucuronide) and its aglycone baicalein (5,6,7-trihydroxyflavone) are flavonoid compounds extracted from the root of Scutellaria baicalensis. Although lacking the support of clinical data, they have been shown to have significantly promising antidepressant activity in many preclinical studies through various rodent models of depression. This paper reviews the antidepressant effects of baicalin and baicalein in experimental animal models, with emphasis on summarizing the molecular mechanisms of their antidepressant effects including regulation of the HPA axis, inhibition of inflammation and oxidative stress, reduction of neuronal apoptosis and promotion of neurogenesis, as well as amelioration of mitochondrial dysfunction. Controlled clinical trials should be conducted in the future to examine the effects of baicalin and baicalein on depression in humans.
Collapse
Affiliation(s)
- Chen Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Ming-Qi Gao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
27
|
Rowson S, Bekhbat M, Kelly S, Hyer MM, Dyer S, Weinshenker D, Neigh G. Chronic adolescent stress alters GR-FKBP5 interactions in the hippocampus of adult female rats. Stress 2024; 27:2312467. [PMID: 38557197 PMCID: PMC11067065 DOI: 10.1080/10253890.2024.2312467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/25/2024] [Indexed: 04/04/2024] Open
Abstract
Chronic stress exposure during development can have lasting behavioral consequences that differ in males and females. More specifically, increased depressive behaviors in females, but not males, are observed in both humans and rodent models of chronic stress. Despite these known stress-induced outcomes, the molecular consequences of chronic adolescent stress in the adult brain are less clear. The stress hormone corticosterone activates the glucocorticoid receptor, and activity of the receptor is regulated through interactions with co-chaperones-such as the immunophilin FK506 binding proteins 5 (FKBP5). Previously, it has been reported that the adult stress response is modified by a history of chronic stress; therefore, the current study assessed the impact of chronic adolescent stress on the interactions of the glucocorticoid receptor (GR) with its regulatory co-chaperone FKBP5 in response to acute stress in adulthood. Although protein presence for FKBP5 did not differ by group, assessment of GR-FKBP5 interactions demonstrated that adult females with a history of chronic adolescent stress had elevated GR-FKBP5 interactions in the hippocampus following an acute stress challenge which could potentially contribute to a reduced translocation pattern given previous literature describing the impact of FKBP5 on GR activity. Interestingly, the altered co-chaperone interactions of the GR in the stressed female hippocampus were not coupled to an observable difference in transcription of GR-regulated genes. Together, these studies show that chronic adolescent stress causes lasting changes to co-chaperone interactions with the glucocorticoid receptor following stress exposure in adulthood and highlight the potential role that FKBP5 plays in these modifications. Understanding the long-term implications of adolescent stress exposure will provide a mechanistic framework to guide the development of interventions for adult disorders related to early life stress exposures.
Collapse
Affiliation(s)
- Sydney Rowson
- Molecular and Systems Pharmacology Graduate Program, Emory University, Atlanta, GA, USA
| | - Mandakh Bekhbat
- Neuroscience Graduate Program, Emory University, Atlanta, GA, USA
| | - Sean Kelly
- Department of Physiology, Emory University, Atlanta, GA, USA
| | - Molly M. Hyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Samya Dyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gretchen Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
28
|
Dutton M, Boyes A, Can AT, Mohamed AZ, Hajishafiee M, Shan ZY, Lagopoulos J, Hermens DF. Hippocampal subfield volumes predict treatment response to oral ketamine in people with suicidality. J Psychiatr Res 2024; 169:192-200. [PMID: 38042058 DOI: 10.1016/j.jpsychires.2023.11.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Ongoing stress results in hippocampal neuro-structural alterations which produce pathological consequences, including depression and suicidality. Ketamine may ameliorate stress related illnesses, including suicidality, via neuroplasticity processes. This novel study sought to determine whether oral ketamine treatment specifically affects hippocampal (whole and subfield) volumes in patients with chronic suicidality and MDD. It was hypothesised that oral ketamine treatment would differentially alter hippocampal volumes in trial participants categorised as ketamine responders, versus those who were non-responders. Twenty-eight participants received 6 single, weekly doses of oral ketamine (0.5-3 mg/kg) and underwent MRI scans at pre-ketamine (week 0), post-ketamine (week 6), and follow up (week 10). Hippocampal subfield volumes were extracted using the longitudinal pipeline in FreeSurfer. Participants were grouped according to ketamine response status and then compared in terms of grey matter volume (GMV) changes, among 10 hippocampal regions, over 6 and 10 weeks. Mixed ANOVAs were used to analyse interactions between time and group. Post treatment analysis revealed a significant main effect of group for three left hippocampal GMVs as well in the left and right whole hippocampus. Ketamine acute responders (Week 6) showed increased GMVs in both left and right whole hippocampus and in three subfields compared to acute non-responders, across all three timepoints, suggesting that pre-treatment increased hippocampal GMVs (particularly left hemisphere) may be predictive biomarkers of acute treatment response. Future studies should further investigate the potential of hippocampal volumes as a biomarker of ketamine treatment response.
Collapse
Affiliation(s)
- Megan Dutton
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia.
| | - Amanda Boyes
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Adem T Can
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Abdalla Z Mohamed
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Maryam Hajishafiee
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Zack Y Shan
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
29
|
Mazurka R, Cunningham S, Hassel S, Foster JA, Nogovitsyn N, Fiori LM, Strother SC, Arnott SR, Frey BN, Lam RW, MacQueen GM, Milev RV, Rotzinger S, Turecki G, Kennedy SH, Harkness KL. Relation of hippocampal volume and SGK1 gene expression to treatment remission in major depression is moderated by childhood maltreatment: A CAN-BIND-1 report. Eur Neuropsychopharmacol 2024; 78:71-80. [PMID: 38128154 DOI: 10.1016/j.euroneuro.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Preclinical research implicates stress-induced upregulation of the enzyme, serum- and glucocorticoid-regulated kinase 1 (SGK1), in reduced hippocampal volume. In the current study, we tested the hypothesis that greater SGK1 mRNA expression in humans would be associated with lower hippocampal volume, but only among those with a history of prolonged stress exposure, operationalized as childhood maltreatment (physical, sexual, and/or emotional abuse). Further, we examined whether baseline levels of SGK1 and hippocampal volume, or changes in these markers over the course of antidepressant treatment, would predict treatment outcomes in adults with major depression [MDD]. We assessed SGK1 mRNA expression from peripheral blood, and left and right hippocampal volume at baseline, as well as change in these markers over the first 8 weeks of a 16-week open-label trial of escitalopram as part of the Canadian Biomarker Integration Network in Depression program (MDD [n = 161] and healthy comparison participants [n = 91]). Childhood maltreatment was assessed via contextual interview with standardized ratings. In the full sample at baseline, greater SGK1 expression was associated with lower hippocampal volume, but only among those with more severe childhood maltreatment. In individuals with MDD, decreases in SGK1 expression predicted lower remission rates at week 16, again only among those with more severe maltreatment. Decreases in hippocampal volume predicted lower week 16 remission for those with low childhood maltreatment. These results suggest that both glucocorticoid-related neurobiological mechanisms of the stress response and history of childhood stress exposure may be critical to understanding differential treatment outcomes in MDD. ClinicalTrials.gov: NCT01655706 Canadian Biomarker Integration Network for Depression Study.
Collapse
Affiliation(s)
- Raegan Mazurka
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
| | | | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Nikita Nogovitsyn
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
| | - Laura M Fiori
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | | | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Program, St. Joseph's Healthcare Hamilton, ON, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Glenda M MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Roumen V Milev
- Departments of Psychiatry and Psychology, And Providence Care Hospital, Queen's University, Kingston, ON, Canada
| | - Susan Rotzinger
- Department of Psychiatry, University of Toronto, Canada; Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
| | - Gustavo Turecki
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University of Toronto, Canada; Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
| | - Kate L Harkness
- Department of Psychology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
30
|
Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol (Lausanne) 2023; 14:1202349. [PMID: 38084331 PMCID: PMC10710532 DOI: 10.3389/fendo.2023.1202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Over the last decade, a considerable amount of new data have revealed the beneficial effects of exercise on hippocampal neurogenesis and the maintenance or improvement of cognitive function. Investigations with animal models, as well as human studies, have yielded novel understanding of the mechanisms through which endocrine signaling can stimulate neurogenesis, as well as the effects of exercise on acute and/or chronic levels of these circulating hormones. Considering the effects of aging on the decline of specific endocrine factors that affect brain health, insights in this area of research are particularly important. In this review, we discuss how different forms of exercise influence the peripheral production of specific endocrine factors, with particular emphasis on brain-derived neurotrophic factor, growth hormone, insulin-like growth factor-1, ghrelin, estrogen, testosterone, irisin, vascular endothelial growth factor, erythropoietin, and cortisol. We also describe mechanisms through which these endocrine responses to exercise induce cellular changes that increase hippocampal neurogenesis and improve cognitive function.
Collapse
Affiliation(s)
- Robert R. Kraemer
- Department of Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA, United States
| | - Bradley R. Kraemer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
31
|
Chalermwongkul C, Khamphukdee C, Maneenet J, Daodee S, Monthakantirat O, Boonyarat C, Chotritthirong Y, Awale S, Kijjoa A, Chulikhit Y. Antidepressant-like Effect of Oroxylum indicum Seed Extract in Mice Model of Unpredictable Chronic Mild Stress. Nutrients 2023; 15:4742. [PMID: 38004136 PMCID: PMC10675042 DOI: 10.3390/nu15224742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Major depressive disorder (MDD) is one life-threatening disorder that is prevalent worldwide. The evident etiology of this disease is still poorly understood. Currently, herbal medicine is gaining more interest as an alternative antidepressant. Oroxylum indicum, which is used in traditional medicine and contains a potential antidepressive compound, baicalein, could have an antidepressive property. An in vitro monoamine oxidase-A (MAO-A) inhibitory assay was used to preliminarily screening for the antidepressant effect of O. indicum seed (OIS) extract. Mice were subjected to unpredictable chronic mild stress (UCMS) for 6 weeks, and the daily administration of OIS extract started from week 4. The mechanisms involved in the antidepressive activity were investigated. The OIS extract significantly alleviated anhedonia and despair behaviors in the UCMS-induced mouse model via two possible pathways: (i) it normalized the HPA axis function via the restoration of negative feedback (decreased FKBP5 and increased GR expressions) and the reduction in the glucocorticoid-related negative gene (SGK-1), and (ii) it improved neurogenesis via the escalation of BDNF and CREB expressions in the hippocampus and the frontal cortex. In addition, an HPLC analysis of the OIS extract showed the presence of baicalin, baicalein, and chrysin as major constituents. All of the results obtained from this study emphasize the potential of OIS extract containing baicalin and baicalein as an effective and novel alternative treatment for MDD.
Collapse
Affiliation(s)
- Chorpeth Chalermwongkul
- Graduated School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.C.); (Y.C.)
| | - Charinya Khamphukdee
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.K.); (A.K.)
| | - Juthamart Maneenet
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| | - Supawadee Daodee
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| | - Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| | - Chantana Boonyarat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| | - Yutthana Chotritthirong
- Graduated School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.C.); (Y.C.)
| | - Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0154, Japan;
| | - Anake Kijjoa
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.K.); (A.K.)
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| |
Collapse
|
32
|
Meng F, Wang L. Bidirectional mechanism of comorbidity of depression and insomnia based on synaptic plasticity. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1518-1528. [PMID: 38432881 PMCID: PMC10929903 DOI: 10.11817/j.issn.1672-7347.2023.230082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 03/05/2024]
Abstract
Insomnia is one of the most common accompanying symptoms of depression, with both sharing highly overlapping molecular pathways. The same pathological changes can trigger comorbidity of insomnia and depression, which further forms a vicious cycle with the involvement of more mechanisms and disease progression. Thus, understanding the potential interaction mechanisms between insomnia and depression is critical for clinical diagnosis and treatment. Comorbidity genetic factors, the hypothalamic-pituitary-adrenal axis, along with circadian rhythms of cortisol and the brain reward mechanism, are important ways in contributing to the comorbidity occurrence and development. However, owing to lack of pertinent investigational data, intricate molecular mechanisms necessitate further elaboration. Synaptic plasticity is a solid foundation for neural homeostasis. Pathological alterations of depression and insomnia may perturb the production and release of neurotransmitter, dendritic spine remodeling and elimination, which converges and reflects in aberrant synaptic dynamics. Hence, the introduction of synaptic plasticity research route and the construction of a comprehensive model of depression and insomnia comorbidity can provide new ideas for clinical depression insomnia comorbidity treatment plans.
Collapse
Affiliation(s)
- Fanhao Meng
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040.
| | - Long Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
33
|
Zhang X, Eladawi MA, Ryan WG, Fan X, Prevoznik S, Devale T, Ramnani B, Malathi K, Sibille E, Mccullumsmith R, Tomoda T, Shukla R. Ribosomal dysregulation: A conserved pathophysiological mechanism in human depression and mouse chronic stress. PNAS NEXUS 2023; 2:pgad299. [PMID: 37822767 PMCID: PMC10563789 DOI: 10.1093/pnasnexus/pgad299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
The underlying biological mechanisms that contribute to the heterogeneity of major depressive disorder (MDD) presentation remain poorly understood, highlighting the need for a conceptual framework that can explain this variability and bridge the gap between animal models and clinical endpoints. Here, we hypothesize that comparative analysis of molecular data from different experimental systems of chronic stress, and MDD has the potential to provide insight into these mechanisms and address this gap. Thus, we compared transcriptomic profiles of brain tissue from postmortem MDD subjects and from mice exposed to chronic variable stress (CVS) to identify orthologous genes. Ribosomal protein genes (RPGs) were down-regulated, and associated ribosomal protein (RP) pseudogenes were up-regulated in both conditions. A seeded gene co-expression analysis using altered RPGs common between the MDD and CVS groups revealed that down-regulated RPGs homeostatically regulated the synaptic changes in both groups through a RP-pseudogene-driven mechanism. In vitro analysis demonstrated that the RPG dysregulation was a glucocorticoid-driven endocrine response to stress. In silico analysis further demonstrated that the dysregulation was reversed during remission from MDD and selectively responded to ketamine but not to imipramine. This study provides the first evidence that ribosomal dysregulation during stress is a conserved phenotype in human MDD and chronic stress-exposed mouse. Our results establish a foundation for the hypothesis that stress-induced alterations in RPGs and, consequently, ribosomes contribute to the synaptic dysregulation underlying MDD and chronic stress-related mood disorders. We discuss the role of ribosomal heterogeneity in the variable presentations of depression and other mood disorders.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Centre, Shreveport, LA 71105, USA
| | - Mahmoud Ali Eladawi
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - William George Ryan
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaoming Fan
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Stephen Prevoznik
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Trupti Devale
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43614, USA
| | - Barkha Ramnani
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43614, USA
| | - Krishnamurthy Malathi
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43614, USA
| | - Etienne Sibille
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Robert Mccullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43614, USA
| | - Toshifumi Tomoda
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada
| | - Rammohan Shukla
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
34
|
Borsini A, Giacobbe J, Mandal G, Boldrini M. Acute and long-term effects of adolescence stress exposure on rodent adult hippocampal neurogenesis, cognition, and behaviour. Mol Psychiatry 2023; 28:4124-4137. [PMID: 37612364 PMCID: PMC10827658 DOI: 10.1038/s41380-023-02229-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Adolescence represents a critical period for brain and behavioural health and characterised by the onset of mood, psychotic and anxiety disorders. In rodents, neurogenesis is very active during adolescence, when is particularly vulnerable to stress. Whether stress-related neurogenesis changes influence adolescence onset of psychiatric symptoms remains largely unknown. A systematic review was conducted on studies investigating changes in hippocampal neurogenesis and neuroplasticity, hippocampal-dependent cognitive functions, and behaviour, occurring after adolescence stress exposure in mice both acutely (at post-natal days 21-65) and in adulthood. A total of 37 studies were identified in the literature. Seven studies showed reduced hippocampal cell proliferation, and out of those two reported increased depressive-like behaviours, in adolescent rodents exposed to stress. Three studies reported a reduction in the number of new-born neurons, which however were not associated with changes in cognition or behaviour. Sixteen studies showed acutely reduced hippocampal neuroplasticity, including pre- and post-synaptic plasticity markers, dendritic spine length and density, and long-term potentiation after stress exposure. Cognitive impairments and depressive-like behaviours were reported by 11 of the 16 studies. Among studies who looked at adolescence stress exposure effects into adulthood, seven showed that the negative effects of stress observed during adolescence on either cell proliferation or hippocampal neuroplasticity, cognitive deficits and depressive-like behaviour, had variable impact in adulthood. Treating adolescent mice with antidepressants, glutamate receptor inhibitors, glucocorticoid antagonists, or healthy diet enriched in omega-3 fatty acids and vitamin A, prevented or reversed those detrimental changes. Future research should investigate the translational value of these preclinical findings. Developing novel tools for measuring hippocampal neurogenesis in live humans, would allow assessing neurogenic changes following stress exposure, investigating relationships with psychiatric symptom onset, and identifying effects of therapeutic interventions.
Collapse
Affiliation(s)
- Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK.
| | - Juliette Giacobbe
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Gargi Mandal
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Maura Boldrini
- Department of Psychiatry, Columbia University, Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
35
|
Shapira G, Israel-Elgali I, Grad M, Avnat E, Rachmany L, Sarne Y, Shomron N. Hippocampal differential expression underlying the neuroprotective effect of delta-9-tetrahydrocannabinol microdose on old mice. Front Neurosci 2023; 17:1182932. [PMID: 37534036 PMCID: PMC10393280 DOI: 10.3389/fnins.2023.1182932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
Delta-9-tetrahydrocannabinol (THC) is the primary psychoactive compound of the cannabis plant and an exogenous ligand of the endocannabinoid system. In previous studies, we demonstrated that a single microdose of THC (0.002 mg/kg, 3-4 orders of magnitude lower than the standard dose for rodents) exerts distinct, long-term neuroprotection in model mice subjected to acute neurological insults. When administered to old, healthy mice, the THC microdose induced remarkable long-lasting (weeks) improvement in a wide range of cognitive functions, including significant morphological and biochemical brain alterations. To elucidate the mechanisms underlying these effects, we analyzed the gene expression of hippocampal samples from the model mice. Samples taken 5 days after THC treatment showed significant differential expression of genes associated with neurogenesis and brain development. In samples taken 5 weeks after treatment, the transcriptional signature was shifted to that of neuronal differentiation and survival. This study demonstrated the use of hippocampal transcriptome profiling in uncovering the molecular basis of the atypical, anti-aging effects of THC microdose treatment in old mice.
Collapse
Affiliation(s)
- Guy Shapira
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Ifat Israel-Elgali
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Meitar Grad
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eden Avnat
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lital Rachmany
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Sarne
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
36
|
Li YH, Sun CC, Chen PM, Chen HH. SGK1 Target Genes Involved in Heart and Blood Vessel Functions in PC12 Cells. Cells 2023; 12:1641. [PMID: 37371111 DOI: 10.3390/cells12121641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is expressed in neuronal cells and involved in the pathogenesis of hypertension and metabolic syndrome, regulation of neuronal function, and depression in the brain. This study aims to identify the cellular mechanisms and signaling pathways of SGK1 in neuronal cells. In this study, the SGK1 inhibitor GSK650394 is used to suppress SGK1 expression in PC12 cells using an in vitro neuroscience research platform. Comparative transcriptomic analysis was performed to investigate the effects of SGK1 inhibition in nervous cells using mRNA sequencing (RNA-seq), differentially expressed genes (DEGs), and gene enrichment analysis. In total, 12,627 genes were identified, including 675 and 2152 DEGs at 48 and 72 h after treatment with GSK650394 in PC12 cells, respectively. Gene enrichment analysis data indicated that SGK1 inhibition-induced DEGs were enriched in 94 and 173 genes associated with vascular development and functional regulation and were validated using real-time PCR, Western blotting, and GEPIA2. Therefore, this study uses RNA-seq, DEG analysis, and GEPIA2 correlation analysis to identify positive candidate genes and signaling pathways regulated by SGK1 in rat nervous cells, which will enable further exploration of the underlying molecular signaling mechanisms of SGK1 and provide new insights into neuromodulation in cardiovascular diseases.
Collapse
Affiliation(s)
- Yu-He Li
- Department of Laboratory Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Chia-Cheng Sun
- Physical Examination Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Po-Ming Chen
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| |
Collapse
|
37
|
Sforzini L, Cattaneo A, Ferrari C, Turner L, Mariani N, Enache D, Hastings C, Lombardo G, Nettis MA, Nikkheslat N, Worrell C, Zajkowska Z, Kose M, Cattane N, Lopizzo N, Mazzelli M, Pointon L, Cowen PJ, Cavanagh J, Harrison NA, Jones D, Drevets WC, Mondelli V, Bullmore ET, Pariante CM. Higher immune-related gene expression in major depression is independent of CRP levels: results from the BIODEP study. Transl Psychiatry 2023; 13:185. [PMID: 37264010 PMCID: PMC10235092 DOI: 10.1038/s41398-023-02438-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023] Open
Abstract
Compelling evidence demonstrates that some individuals suffering from major depressive disorder (MDD) exhibit increased levels of inflammation. Most studies focus on inflammation-related proteins, such as serum or plasma C-reactive protein (CRP). However, the immune-related modifications associated with MDD may be not entirely captured by CRP alone. Analysing mRNA gene expression levels, we aimed to identify broader molecular immune-related phenotypes of MDD. We examined 168 individuals from the non-interventional, case-control, BIODEP study, 128 with a diagnosis of MDD and 40 healthy controls. Individuals with MDD were further divided according to serum high-sensitivity (hs)CRP levels (n = 59 with CRP <1, n = 33 with CRP 1-3 and n = 36 with CRP >3 mg/L). We isolated RNA from whole blood and performed gene expression analyses using RT-qPCR. We measured the expression of 16 immune-related candidate genes: A2M, AQP4, CCL2, CXCL12, CRP, FKBP5, IL-1-beta, IL-6, ISG15, MIF, GR, P2RX7, SGK1, STAT1, TNF-alpha and USP18. Nine of the 16 candidate genes were differentially expressed in MDD cases vs. controls, with no differences between CRP-based groups. Only CRP mRNA was clearly associated with serum CRP. In contrast, plasma (proteins) IL-6, IL-7, IL-8, IL-10, IL-12/IL-23p40, IL-16, IL-17A, IFN-gamma and TNF-alpha, and neutrophils counts, were all differentially regulated between CRP-based groups (higher in CRP >3 vs. CRP <1 and/or controls), reflecting the gradient of CRP values. Secondary analyses on MDD individuals and controls with CRP values <1 mg/L (usually interpreted as 'no inflammation') confirmed MDD cases still had significantly different mRNA expression of immune-related genes compared with controls. These findings corroborate an immune-related molecular activation in MDD, which appears to be independent of serum CRP levels. Additional biological mechanisms may then be required to translate this mRNA signature into inflammation at protein and cellular levels. Understanding these mechanisms will help to uncover the true immune abnormalities in depression, opening new paths for diagnosis and treatment.
Collapse
Affiliation(s)
- Luca Sforzini
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK.
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Clarissa Ferrari
- Research and Clinical Trials Service, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, 25124, Italy
| | - Lorinda Turner
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Nicole Mariani
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Daniela Enache
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Caitlin Hastings
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Giulia Lombardo
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Maria A Nettis
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Naghmeh Nikkheslat
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Courtney Worrell
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Zuzanna Zajkowska
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Melisa Kose
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Nadia Cattane
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Nicola Lopizzo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Mazzelli
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Linda Pointon
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Philip J Cowen
- University of Oxford Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Jonathan Cavanagh
- Centre for Immunobiology, School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, Scotland
| | - Neil A Harrison
- School of Medicine, School of Psychology, Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Declan Jones
- Neuroscience External Innovation, Janssen Pharmaceuticals, J&J Innovation Centre, London, W1G 0BG, UK
| | - Wayne C Drevets
- Janssen Research & Development, Neuroscience Therapeutic Area, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Valeria Mondelli
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Carmine M Pariante
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
38
|
Varricchio L, Geer EB, Martelli F, Mazzarini M, Funnell A, Bieker JJ, Papayannopoulou T, Migliaccio AR. Patients with hypercortisolemic Cushing disease possess a distinct class of hematopoietic progenitor cells leading to erythrocytosis. Haematologica 2023; 108:1053-1067. [PMID: 35861015 PMCID: PMC10071118 DOI: 10.3324/haematol.2021.280542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Although human cell cultures stimulated with dexamethasone suggest that the glucocorticoid receptor (GR) activates stress erythropoiesis, the effects of GR activation on erythropoiesis in vivo remain poorly understood. We characterized the phenotype of a large cohort of patients with Cushing disease, a rare condition associated with elevated cortisol levels. Results from hypercortisolemic patients with active Cushing disease were compared with those obtained from eucortisolemic patients after remission and from volunteers without the disease. Patients with active Cushing disease exhibited erythrocytosis associated with normal hemoglobin F levels. In addition, their blood contained elevated numbers of GR-induced CD163+ monocytes and a unique class of CD34+ cells expressing CD110, CD36, CD133 and the GR-target gene CXCR4. When cultured, these CD34+ cells generated similarly large numbers of immature erythroid cells in the presence and absence of dexamethasone, with raised expression of the GR-target gene GILZ. Of interest, blood from patients with Cushing disease in remission maintained high numbers of CD163+ monocytes and, although their CD34+ cells had a normal phenotype, these cells were unresponsive to added dexamethasone. Collectively, these results indicate that chronic exposure to excess glucocorticoids in vivo leads to erythrocytosis by generating erythroid progenitor cells with a constitutively active GR. Although remission rescues the erythrocytosis and the phenotype of the circulating CD34+ cells, a memory of other prior changes is maintained in remission.
Collapse
Affiliation(s)
- Lilian Varricchio
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eliza B Geer
- Multidisciplinary Pituitary and Skull Base Tumor Center, Departments of Medicine and Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome
| | - Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater Studiorum University, Bologna, Italy; Altius Institute for Biomedical Sciences, Seattle, WA
| | | | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA, USA; Center for Integrated Biomedical Research, Campus Bio-medico, Rome.
| |
Collapse
|
39
|
Plausible Role of Stem Cell Types for Treating and Understanding the Pathophysiology of Depression. Pharmaceutics 2023; 15:pharmaceutics15030814. [PMID: 36986674 PMCID: PMC10058940 DOI: 10.3390/pharmaceutics15030814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Major Depressive Disorder (MDD), colloquially known as depression, is a debilitating condition affecting an estimated 3.8% of the population globally, of which 5.0% are adults and 5.7% are above the age of 60. MDD is differentiated from common mood changes and short-lived emotional responses due to subtle alterations in gray and white matter, including the frontal lobe, hippocampus, temporal lobe, thalamus, striatum, and amygdala. It can be detrimental to a person’s overall health if it occurs with moderate or severe intensity. It can render a person suffering terribly to perform inadequately in their personal, professional, and social lives. Depression, at its peak, can lead to suicidal thoughts and ideation. Antidepressants manage clinical depression and function by modulating the serotonin, norepinephrine, and dopamine neurotransmitter levels in the brain. Patients with MDD positively respond to antidepressants, but 10–30% do not recuperate or have a partial response accompanied by poor life quality, suicidal ideation, self-injurious behavior, and an increased relapse rate. Recent research shows that mesenchymal stem cells and iPSCs may be responsible for lowering depression by producing more neurons with increased cortical connections. This narrative review discusses the plausible functions of various stem cell types in treating and understanding depression pathophysiology.
Collapse
|
40
|
Tang C, Wang Q, Shen J, Wang C, Ding H, Wen S, Yang F, Jiao R, Wu X, Li J, Kong L. Neuron stem cell NLRP6 sustains hippocampal neurogenesis to resist stress-induced depression. Acta Pharm Sin B 2023; 13:2017-2038. [DOI: 10.1016/j.apsb.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
|
41
|
Bassil K, Krontira AC, Leroy T, Escoto AIH, Snijders C, Pernia CD, Pasterkamp RJ, de Nijs L, van den Hove D, Kenis G, Boks MP, Vadodaria K, Daskalakis NP, Binder EB, Rutten BPF. In vitro modeling of the neurobiological effects of glucocorticoids: A review. Neurobiol Stress 2023; 23:100530. [PMID: 36891528 PMCID: PMC9986648 DOI: 10.1016/j.ynstr.2023.100530] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Hypothalamic-pituitary adrenal (HPA)axis dysregulation has long been implicated in stress-related disorders such as major depression and post-traumatic stress disorder. Glucocorticoids (GCs) are released from the adrenal glands as a result of HPA-axis activation. The release of GCs is implicated with several neurobiological changes that are associated with negative consequences of chronic stress and the onset and course of psychiatric disorders. Investigating the underlying neurobiological effects of GCs may help to better understand the pathophysiology of stress-related psychiatric disorders. GCs impact a plethora of neuronal processes at the genetic, epigenetic, cellular, and molecular levels. Given the scarcity and difficulty in accessing human brain samples, 2D and 3D in vitro neuronal cultures are becoming increasingly useful in studying GC effects. In this review, we provide an overview of in vitro studies investigating the effects of GCs on key neuronal processes such as proliferation and survival of progenitor cells, neurogenesis, synaptic plasticity, neuronal activity, inflammation, genetic vulnerability, and epigenetic alterations. Finally, we discuss the challenges in the field and offer suggestions for improving the use of in vitro models to investigate GC effects.
Collapse
Affiliation(s)
- Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Thomas Leroy
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alana I H Escoto
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Clara Snijders
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Cameron D Pernia
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Psychiatry, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Krishna Vadodaria
- Salk Institute for Biological Studies, La Jolla, San Diego, United States
| | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
42
|
Guo W, Yao X, Cui R, Yang W, Wang L. Mechanisms of paeoniaceae action as an antidepressant. Front Pharmacol 2023; 13:934199. [PMID: 36844911 PMCID: PMC9944447 DOI: 10.3389/fphar.2022.934199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/05/2022] [Indexed: 02/10/2023] Open
Abstract
Paeoniflorin (PF) has been widely used for the treatment of depression in mice models, some Chinese herbal compound containing PF on treating depression, such as Xiaoyao San, Chaihu-Shugan-San, Danggui Shaoyao San etc. Many experiments are also verifying whether PF in these powders can be used as an effective component in the treatment of depression. Therefore, in this review the antidepressant effect of PF and its mechanism of action are outlined with particular focus on the following aspects: increasing the levels of monoamine neurotransmitters, inhibiting the HPA axis, promoting neuroprotection, enhancing neurogenesis in the hippocampus, and elevating levels of brain-derived neurotrophic factor (BDNF). This review may be helpful for the application of PF in the treatment of depression.
Collapse
Affiliation(s)
- Wanxu Guo
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- *Correspondence: Wei Yang, ; Lei Wang,
| | - Lei Wang
- *Correspondence: Wei Yang, ; Lei Wang,
| |
Collapse
|
43
|
Overnight Corticosterone and Gene Expression in Mouse Hippocampus: Time Course during Resting Period. Int J Mol Sci 2023; 24:ijms24032828. [PMID: 36769150 PMCID: PMC9917930 DOI: 10.3390/ijms24032828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The aim of the experiment was to test the effect of an elevated level of glucocorticoids on the mouse hippocampal transcriptome after 12 h of treatment with corticosterone that was administered during an active phase of the circadian cycle. Additionally, we also tested the circadian changes in gene expression and the decay time of transcriptomic response to corticosterone. Gene expression was analyzed using microarrays. Obtained results show that transcriptomic responses to glucocorticoids are heterogeneous in terms of the decay time with some genes displaying persistent changes in expression during 9 h of rest. We have also found a considerable overlap between genes regulated by corticosterone and genes implicated previously in stress response. The examples of such genes are Acer2, Agt, Apod, Aqp4, Etnppl, Fabp7, Fam107a, Fjx1, Fmo2, Galnt15, Gjc2, Heph, Hes5, Htra1, Jdp2, Kif5a, Lfng, Lrg1, Mgp, Mt1, Pglyrp1, Pla2g3, Plin4, Pllp, Ptgds, Ptn, Slc2a1, Slco1c1, Sult1a1, Thbd and Txnip. This indicates that the applied model is a useful tool for the investigation of mechanisms underlying the stress response.
Collapse
|
44
|
Regulatory mechanism of icariin in cardiovascular and neurological diseases. Biomed Pharmacother 2023; 158:114156. [PMID: 36584431 DOI: 10.1016/j.biopha.2022.114156] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) and neurological diseases are widespread diseases with substantial rates of morbidity and mortality around the world. For the past few years, the preventive effects of Chinese herbal medicine on CVDs and neurological diseases have attracted a great deal of attention. Icariin (ICA), the main constituent of Epimedii Herba, is a flavonoid. It has been shown to provide neuroprotection, anti-tumor, anti-osteoporosis, and cardiovascular protection. The endothelial protection, anti-inflammatory, hypolipidemic, antioxidative stress, and anti-apoptosis properties of ICA can help stop the progression of CVDs and neurological diseases. Therefore, our review summarized the known mechanisms and related studies of ICA in the prevention and treatment of cardio-cerebrovascular diseases (CCVDs), to better understand its therapeutic potential.
Collapse
|
45
|
Maruszak A, Silajdžić E, Lee H, Murphy T, Liu B, Shi L, de Lucia C, Douiri A, Salta E, Nevado AJ, Teunissen CE, Visser PJ, Price J, Zetterberg H, Lovestone S, Thuret S. Predicting progression to Alzheimer's disease with human hippocampal progenitors exposed to serum. Brain 2023; 146:2045-2058. [PMID: 36703180 PMCID: PMC10151193 DOI: 10.1093/brain/awac472] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Accepted: 11/10/2022] [Indexed: 01/28/2023] Open
Abstract
Adult hippocampal neurogenesis is important for learning and memory and is altered early in Alzheimer's disease. As hippocampal neurogenesis is modulated by the circulatory systemic environment, evaluating a proxy of how hippocampal neurogenesis is affected by the systemic milieu could serve as an early biomarker for Alzheimer's disease progression. Here, we used an in vitro assay to model the impact of systemic environment on hippocampal neurogenesis. A human hippocampal progenitor cell line was treated with longitudinal serum samples from individuals with mild cognitive impairment, who either progressed to Alzheimer's disease or remained cognitively stable. Mild cognitive impairment to Alzheimer's disease progression was characterized most prominently with decreased proliferation, increased cell death and increased neurogenesis. A subset of 'baseline' cellular readouts together with education level were able to predict Alzheimer's disease progression. The assay could provide a powerful platform for early prognosis, monitoring disease progression and further mechanistic studies.
Collapse
Affiliation(s)
- Aleksandra Maruszak
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Edina Silajdžić
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Hyunah Lee
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Tytus Murphy
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Benjamine Liu
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Chiara de Lucia
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Abdel Douiri
- Department of Population Health Sciences, King's College London, London, SE1 1UL, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands.,Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Alejo J Nevado
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Charlotte E Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Pieter J Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands.,Department of Neurology, Alzheimer Center, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.,Janssen Medical UK, B-2340 Beerse, Belgium
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| |
Collapse
|
46
|
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 2023; 28:284-297. [PMID: 36203007 PMCID: PMC9540059 DOI: 10.1038/s41380-022-01806-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) is a psychiatric disease of still poorly understood molecular etiology. Extensive studies at different molecular levels point to a high complexity of numerous interrelated pathways as the underpinnings of depression. Major systems under consideration include monoamines, stress, neurotrophins and neurogenesis, excitatory and inhibitory neurotransmission, mitochondrial dysfunction, (epi)genetics, inflammation, the opioid system, myelination, and the gut-brain axis, among others. This review aims at illustrating how these multiple signaling pathways and systems may interact to provide a more comprehensive view of MDD's neurobiology. In particular, considering the pattern of synaptic activity as the closest physical representation of mood, emotion, and conscience we can conceptualize, each pathway or molecular system will be scrutinized for links to synaptic neurotransmission. Models of the neurobiology of MDD will be discussed as well as future actions to improve the understanding of the disease and treatment options.
Collapse
Affiliation(s)
- Gabriel R. Fries
- grid.267308.80000 0000 9206 2401Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX 77054 USA ,grid.240145.60000 0001 2291 4776Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Valeria A. Saldana
- grid.262285.90000 0000 8800 2297Frank H. Netter MD School of Medicine at Quinnipiac University, 370 Bassett Road, North Haven, CT 06473 USA
| | - Johannes Finnstein
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804 Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804, Munich, Germany.
| |
Collapse
|
47
|
Chaudhary M, Sharma V, Bedi O, Kaur A, Singh TG. SGK-1 Signalling Pathway is a Key Factor in Cell Survival in Ischemic Injury. Curr Drug Targets 2023; 24:1117-1126. [PMID: 37904552 DOI: 10.2174/0113894501239948231013072901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/11/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023]
Abstract
Serum and glucocorticoid-regulated kinases (SGK) are serine/threonine kinases that belong to AGC. The SGK-1, which responds to stress, controls a range of ion channels, cell growth, transcription factors, membrane transporters, cellular enzymes, cell survival, proliferation and death. Its expression is highly controlled by various factors such as hyperosmotic or isotonic oxidative stress, cell shrinkage, radiation, high blood sugar, neuronal injury, DNA damage, mechanical stress, thermal shock, excitement, dehydration and ischemia. The structural and functional deterioration that arises after a period of ischemia when blood flow is restored is referred to as ischemia/ reperfusion injury (I/R). The current review discusses the structure, expression, function and degradation of SGK-1 with special emphasis on the various ischemic injuries in different organs such as renal, myocardial, cerebral, intestinal and lungs. Furthermore, this review highlights the various therapeutic agents that activate the SGK-1 pathway and slow down the progression of I/R injuries.
Collapse
Affiliation(s)
- Manisha Chaudhary
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | |
Collapse
|
48
|
Jaehne EJ, Kent JN, Lam N, Schonfeld L, Spiers JG, Begni V, De Rosa F, Riva MA, van den Buuse M. Chronic running-wheel exercise from adolescence leads to increased anxiety and depression-like phenotypes in adulthood in rats: Effects on stress markers and interaction with BDNF Val66Met genotype. Dev Psychobiol 2023; 65:e22347. [PMID: 36567651 DOI: 10.1002/dev.22347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 12/14/2022]
Abstract
Exercise has been shown to be beneficial in reducing symptoms of affective disorders and to increase the expression of brain-derived neurotrophic factor (BDNF). The BDNF Val66Met polymorphism is associated with reduced activity-dependent BDNF release and increased risk for anxiety and depression. Male and female Val66Met rats were given access to running wheels from 3 weeks of age and compared to sedentary controls. Anxiety- and depression-like behaviors were measured in adulthood using the elevated plus maze (EPM), open field (OF), and forced swim test (FST). Expression of BDNF and a number of stress-related genes, the glucocorticoid receptor (Nr3c1), serum/glucocorticoid-regulated kinase 1 (Sgk1), and FK506 binding protein 51 (Fkbp5) in the hippocampus were also measured. Rats given access to running wheels developed high levels of voluntary exercise, decreased open-arm time on the EPM and center-field time in the OF, reduced overall exploratory activity in the open field, and increased immobility time in the FST with no differences between genotypes. Chronic exercise induced a significant increase in Bdnf mRNA and BDNF protein levels in the hippocampus with some of these effects being genotype specific. Exercise decreased the expression of Nr3c1 and Sgk1, but increased the expression of Fkbp5. These results suggest that chronic running-wheel exercise from adolescence increased anxiety and depression-like phenotypes in adulthood, independent of BDNF Val66Met genotype. Further studies are required to confirm that increased indices of anxiety-like behavior are independent from reduced overall locomotor activity.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Jessica N Kent
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Nikki Lam
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Lina Schonfeld
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Federico De Rosa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.,Biological Psychiatry Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne, Australia.,Department of Pharmacology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
49
|
Suseelan S, Pinna G. Heterogeneity in major depressive disorder: The need for biomarker-based personalized treatments. Adv Clin Chem 2022; 112:1-67. [PMID: 36642481 DOI: 10.1016/bs.acc.2022.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Major Depressive Disorder (MDD) or depression is a pathological mental condition affecting millions of people worldwide. Identification of objective biological markers of depression can provide for a better diagnostic and intervention criteria; ultimately aiding to reduce its socioeconomic health burden. This review provides a comprehensive insight into the major biomarker candidates that have been implicated in depression neurobiology. The key biomarker categories are covered across all the "omics" levels. At the epigenomic level, DNA-methylation, non-coding RNA and histone-modifications have been discussed in relation to depression. The proteomics system shows great promise with inflammatory markers as well as growth factors and neurobiological alterations within the endocannabinoid system. Characteristic lipids implicated in depression together with the endocrine system are reviewed under the metabolomics section. The chapter also examines the novel biomarkers for depression that have been proposed by studies in the microbiome. Depression affects individuals differentially and explicit biomarkers identified by robust research criteria may pave the way for better diagnosis, intervention, treatment, and prediction of treatment response.
Collapse
Affiliation(s)
- Shayam Suseelan
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; UI Center on Depression and Resilience (UICDR), Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
50
|
Borsini A, Merrick B, Edgeworth J, Mandal G, Srivastava DP, Vernon AC, Nebbia G, Thuret S, Pariante CM. Neurogenesis is disrupted in human hippocampal progenitor cells upon exposure to serum samples from hospitalized COVID-19 patients with neurological symptoms. Mol Psychiatry 2022; 27:5049-5061. [PMID: 36195636 PMCID: PMC9763123 DOI: 10.1038/s41380-022-01741-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 01/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19), represents an enormous new threat to our healthcare system and particularly to the health of older adults. Although the respiratory symptoms of COVID-19 are well recognized, the neurological manifestations, and their underlying cellular and molecular mechanisms, have not been extensively studied yet. Our study is the first one to test the direct effect of serum from hospitalised COVID-19 patients on human hippocampal neurogenesis using a unique in vitro experimental assay with human hippocampal progenitor cells (HPC0A07/03 C). We identify the different molecular pathways activated by serum from COVID-19 patients with and without neurological symptoms (i.e., delirium), and their effects on neuronal proliferation, neurogenesis, and apoptosis. We collected serum sample twice, at time of hospital admission and approximately 5 days after hospitalization. We found that treatment with serum samples from COVID-19 patients with delirium (n = 18) decreased cell proliferation and neurogenesis, and increases apoptosis, when compared with serum samples of sex- and age-matched COVID-19 patients without delirium (n = 18). This effect was due to a higher concentration of interleukin 6 (IL6) in serum samples of patients with delirium (mean ± SD: 229.9 ± 79.1 pg/ml, vs. 32.5 ± 9.5 pg/ml in patients without delirium). Indeed, treatment of cells with an antibody against IL6 prevented the decreased cell proliferation and neurogenesis and the increased apoptosis. Moreover, increased concentration of IL6 in serum samples from delirium patients stimulated the hippocampal cells to produce IL12 and IL13, and treatment with an antibody against IL12 or IL13 also prevented the decreased cell proliferation and neurogenesis, and the increased apoptosis. Interestingly, treatment with the compounds commonly administered to acute COVID-19 patients (the Janus kinase inhibitors, baricitinib, ruxolitinib and tofacitinib) were able to restore normal cell viability, proliferation and neurogenesis by targeting the effects of IL12 and IL13. Overall, our results show that serum from COVID-19 patients with delirium can negatively affect hippocampal-dependent neurogenic processes, and that this effect is mediated by IL6-induced production of the downstream inflammatory cytokines IL12 and IL13, which are ultimately responsible for the detrimental cellular outcomes.
Collapse
Affiliation(s)
- Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK.
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jonathan Edgeworth
- School of Immunology and Microbial Sciences, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Gargi Mandal
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Gaia Nebbia
- School of Immunology and Microbial Sciences, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| |
Collapse
|