1
|
Clerici S, Boletta A. Metabolic reprogramming in polycystic kidney disease and other renal ciliopathies. EMBO Mol Med 2025:10.1038/s44321-025-00239-x. [PMID: 40263625 DOI: 10.1038/s44321-025-00239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
Primary cilia are solitary organelles formed by a microtubule-based skeleton protruding in a single copy on the surface of most cells. Alterations in their function cause a plethora of human conditions collectively called the ciliopathies. The kidney is frequently and severely affected in the ciliopathies, presenting with a spectrum of phenotypes. Cyst formation is a common trait of all renal ciliopathies. Besides this common manifestation, however, the renal ciliopathies present with profoundly different phenotypes, resulting in either polycystic kidney disease (PKD) or nephronophthisis (NPH) phenotypes. The past decade has seen a surge of studies highlighting metabolic reprogramming as a major feature of PKD, with a distinct involvement of mitochondrial dysfunction. This discovery has brought forward the development of novel therapeutic approaches. More recent evidence suggests that primary cilia modulate the mitochondrial production of energy in response to environmental cues. Here, we summarize the evidence available to date and propose a more general involvement of metabolic and mitochondrial alterations in the renal ciliopathies that might in principle help defining the profoundly different, and potentially opposite, manifestations observed.
Collapse
Affiliation(s)
- Sara Clerici
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Tran U, Streets AJ, Smith D, Decker E, Kirschfink A, Izem L, Hassey JM, Rutland B, Valluru MK, Bräsen JH, Ott E, Epting D, Eisenberger T, Ong AC, Bergmann C, Wessely O. BICC1 Interacts with PKD1 and PKD2 to Drive Cystogenesis in ADPKD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.27.608867. [PMID: 39253489 PMCID: PMC11383298 DOI: 10.1101/2024.08.27.608867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is primarily of adult-onset and caused by pathogenic variants in PKD1 or PKD2 . Yet, disease expression is highly variable and includes very early-onset PKD presentations in utero or infancy. In animal models, the RNA-binding molecule Bicc1 has been shown to play a crucial role in the pathogenesis of PKD. To study the interaction between BICC1, PKD1 and PKD2 we combined biochemical approaches, knockout studies in mice and Xenopus, genetic engineered human kidney cells as well as genetic association studies in a large ADPKD cohort. We first demonstrated that BICC1 physically binds to the proteins Polycystin-1 and -2 encoded by PKD1 and PKD2 via distinct protein domains. Furthermore, PKD was aggravated in loss-of-function studies in Xenopus and mouse models resulting in more severe disease when Bicc1 was depleted in conjunction with Pkd1 or Pkd2 . Finally, in a large human patient cohort, we identified a sibling pair with a homozygous BICC1 variant and patients with very early onset PKD (VEO-PKD) that exhibited compound heterozygosity of BICC1 in conjunction with PKD1 and PKD2 variants. Genome editing demonstrated that these BICC1 variants were hypomorphic in nature and impacted disease-relevant signaling pathways. These findings support the hypothesis that BICC1 cooperates functionally with PKD1 and PKD2 , and that BICC1 variants may aggravate PKD severity highlighting RNA metabolism as an important new concept for disease modification in ADPKD.
Collapse
|
3
|
Vitulano C, Forcina G, Colosimo S, Frattolillo V, Villani AV, Marzuillo P, Miraglia Del Giudice E, Di Sessa A. A miRNA-Based Approach in Autosomal Dominant Polycystic Kidney Disease: Challenges and Insights from Adult to Pediatric Evidence. Mol Diagn Ther 2025; 29:183-193. [PMID: 39820940 DOI: 10.1007/s40291-024-00761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 01/19/2025]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) represents the most common inherited kidney disorder leading to kidney failure in a significant percentage of patients over time. Although previously considered as an adult disease, robust evidence demonstrated that clinical manifestations might occur during childhood and adolescence. Therefore, early identification and treatment of the disease are of cardinal importance for pediatricians to ensure the best long-term outcomes. To date, licensed treatment options are limited but promising potential therapeutic targets are emerging. Among these, an intriguing pathophysiological role for microRNAs as small molecules with a critical role in regulating gene expression has been considered possible in ADPKD. Indeed, numerous circulating microRNAs have been found to be dysregulated in ADPKD, suggesting their potential role as biomarkers and therapeutic targets. Based on this background, further detailed insights into the mechanisms of miRNAs contributing to ADPKD development might pave the way for their effective application as a targeted treatment in young patients with ADPKD. We aimed to summarize the most recent evidence in this fascinating research area, providing a comprehensive overview of the current landscape of specific microRNAs in ADPKD as a potential innovative therapeutic strategy for these young patients.
Collapse
Affiliation(s)
- Caterina Vitulano
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Gianmario Forcina
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Simone Colosimo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Vittoria Frattolillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Annalisa Valentina Villani
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy
| | - Anna Di Sessa
- Department of Woman, Child, and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 4, 80138, Naples, Italy.
| |
Collapse
|
4
|
Yan Z, Cao F, Shao T, Liao B, Wang G, Tang X, Luo H, Zhu F, Liao Y, Zhang F, Li X, Wang J, Liu Z, Zhuang S. Epigenetics in autosomal dominant polycystic kidney disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167652. [PMID: 39753194 DOI: 10.1016/j.bbadis.2024.167652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression. Consequently, exploring epigenetic regulatory mechanisms presents a valuable pathway for developing novel therapeutic strategies and diagnostic biomarkers aimed at slowing or preventing ADPKD progression. This review systematically examines existing studies on epigenetic alterations-including DNA methylation, histone modification, and non-coding RNA regulation-in ADPKD patients, providing insights into gene expression changes and functions, and identifying potential drug targets for ADPKD treatment. CLINICAL SIGNIFICANCE: Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, causing significant morbidity, increasing patient mortality, and weakening the healthcare system. Further study on ADPKD has revealed that epigenetics plays an important role in the pathophysiological process of ADPKD. Epigenetics has a significant impact on the formation and progression of ADPKD through a variety of processes including DNA methylation, histone modification, and non-coding RNA. In addition to boosting cyst formation and proliferation, it induces cystic fibrosis and inflammatory cell infiltration, ultimately leading to a poor prognosis. This review summarizes the current understanding of the associated alterations in gene expression and function produced by epigenetic regulation in ADPKD, as well as potential treatment targets.
Collapse
Affiliation(s)
- Zhipeng Yan
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Feng Cao
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Tingting Shao
- Department of Emergency, the Second Affiliated Hospital of Nanchang University, China
| | - Bingqing Liao
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Guoping Wang
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Xianhu Tang
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Hongwen Luo
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Fengjuan Zhu
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Yunqiang Liao
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Fengxia Zhang
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Xiaosheng Li
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Jian Wang
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Zhenzhen Liu
- Department of Nephrology, the First Affiliated Hospital of Gannan Medical University, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Zhang L, Yang C, Liu X, He D, Lin T, Zhang Y, Wei G, Zhang D. Renal dysplasia development and chronic kidney disease. Pediatr Res 2025:10.1038/s41390-025-03950-0. [PMID: 40000855 DOI: 10.1038/s41390-025-03950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/27/2025]
Abstract
Renal dysplasia is a common congenital birth defect in childhood, caused by fetal genetic defects, epigenetic modification disorders, or environmental factors. Maternal malnutrition, placental insufficiency, and exposure to harmful substances such as alcohol, angiotensin-converting enzyme inhibitors, and cocaine during pregnancy increase the risk of fetal renal dysplasia. The pathogenesis of this disease involves abnormal formation of renal units, leading to structural and functional abnormalities of the kidney. If left untreated, renal dysplasia can progress to chronic kidney disease (CKD) in children. This review explores the etiology and pathogenesis of renal dysplasia, emphasizing the intrinsic link between renal dysplasia and CKD through various pathological pathways. Additionally, we propose potential therapeutic agents targeting these mechanisms. We also highlight future research directions to further understand and address this issue. We hope this review will deepen clinicians' understanding of renal dysplasia and promote further laboratory research in this area. IMPACT: 1. This review comprehensively summarizes and elucidates the complex relationship between renal dysplasia and chronic kidney disease (CKD) based on previous research, offering new directions for related studies. 2. It expands upon conservative treatment approaches for renal dysplasia, providing more clinical options for therapeutic intervention.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pediatric Surgery, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Chunjiang Yang
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Xing Liu
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
- Department of Urology Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei He
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
- Department of Urology Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Lin
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
- Department of Urology Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Guanghui Wei
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
- Department of Urology Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Deying Zhang
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China.
- Department of Urology Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Fei X, Lei C, Ren W, Liu C. 'Splice-at-will' Cas12a crRNA engineering enabled direct quantification of ultrashort RNAs. Nucleic Acids Res 2025; 53:gkaf002. [PMID: 39831307 PMCID: PMC11744192 DOI: 10.1093/nar/gkaf002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
We present a robust 'splice-at-will' CRISPR RNA (crRNA) engineering mechanism that overcomes the limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system in directly detecting ultrashort RNAs. In this strategy, an intact Cas12a crRNA can be split from almost any site of the spacer region to obtain a truncated crRNA (tcrRNA) that cannot activate Cas12a even after binding an auxiliary DNA activator. While splicing tcrRNAs with a moiety of ultrashort RNA, the formed combination can work together to activate Cas12a efficiently, enabling 'splice-at-will' crRNA engineering. Importantly, the 'splice-at-will' crRNA exhibits almost the same trans-cleavage activation efficiency as that of a conventional intact crRNA. Therefore, by rationally designing a DNA auxiliary activator with a conserved tcrRNA-complementary sequence and an arbitrary short RNA-of-interest recognition domain, a general sensing system is established that directly utilizes traditional DNA-activated Cas12a to detect ultrashort RNAs. This 'splice-at-will' crRNA engineering strategy could faithfully detect ultrashort RNA sequences as short as 6-8 nt, which cannot be achieved by conventional Cas12a and Cas13a systems. Additionally, through flexible splicing site design, our method can precisely distinguish single-base differences in microRNA and other short RNA sequences. This work has significantly expanded the Cas12a-based diagnostic toolbox and opened new avenues for ultrashort RNA detection.
Collapse
Affiliation(s)
- Xinrui Fei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 620 West Chang’an Avenue, Chang’an District, Xi’an, Shaanxi 710119, P.R. China
| | - Chao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 620 West Chang’an Avenue, Chang’an District, Xi’an, Shaanxi 710119, P.R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 620 West Chang’an Avenue, Chang’an District, Xi’an, Shaanxi 710119, P.R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 620 West Chang’an Avenue, Chang’an District, Xi’an, Shaanxi 710119, P.R. China
| |
Collapse
|
7
|
Ullah A, Khan M, Zhang Y, Shafiq M, Ullah M, Abbas A, Xianxiang X, Chen G, Diao Y. Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment. Int J Nanomedicine 2025; 20:25-52. [PMID: 39802382 PMCID: PMC11717654 DOI: 10.2147/ijn.s429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment. This comprehensive review explores the clinical translation of nucleic acid therapeutics, focusing on polymeric drug conjugates. It investigates how these conjugates address delivery obstacles, enhance systemic circulation, reduce immunogenicity, and provide controlled release, improving safety profiles. The review delves into the conjugation strategies, preparation methods, and various classes of PDCs, as well as strategic design, highlighting their role in nucleic acid delivery. Applications of PDCs in treating diseases such as cancer, immune disorders, and fibrosis are also discussed. Despite significant advancements, challenges in clinical adoption persist. The review concludes with insights into future directions for this transformative technology, underscoring the potential of PDCs to advance nucleic acid-based therapies and combat infectious diseases significantly.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Mohsan Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Xu Xianxiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People’s Republic of China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao central Medical Group), Qingdao, Shandong, People’s Republic of China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| |
Collapse
|
8
|
Kumar V, Wahane A, Tham MS, Somlo S, Gupta A, Bahal R. Efficient and selective kidney targeting by chemically modified carbohydrate conjugates. Mol Ther 2024; 32:4383-4400. [PMID: 39532098 PMCID: PMC11638880 DOI: 10.1016/j.ymthe.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
We investigated a renal tubule-targeting carbohydrate (RENTAC) that can selectively deliver small-molecule and nucleic acid analogs to the proximal convoluted tubules of the kidney following systemic delivery in mice. We comprehensively evaluated anti-miR-21-peptide nucleic acid-RENTAC, and fluorophore-RENTAC conjugates in cell culture and in vivo. We established that RENTAC conjugates showed megalin- and cubilin-dependent endocytic uptake in the immortalized kidney cell line. In vivo biodistribution studies confirmed the retention of RENTAC conjugates in the kidneys for several days compared with other organs. Immunofluorescence staining confirmed the selective distribution of the RENTAC conjugates in proximal convoluted tubules. We further demonstrated proximal convoluted tubule targeting features of RENTAC conjugates in a folic acid-induced kidney fibrosis mouse model. As a biological readout, we targeted miR-33 using antisense peptide nucleic acid (PNA) 33-RENTAC conjugates in the fibrotic kidney disease model. The targeted delivery of PNA 33-RENTAC resulted in slower fibrosis progression and decreased collagen deposition. We also confirmed that the RENTAC ligand did not exert any adverse reactions. Thus, we established that the RENTAC ligand can be used for broad clinical applications targeting the kidneys selectively.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Aniket Wahane
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ming Shen Tham
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stefan Somlo
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Anisha Gupta
- School of Pharmacy, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
9
|
Smith AO, Frantz WT, Preval KM, Edwards YJK, Ceol CJ, Jonassen JA, Pazour GJ. The Tumor-Associated Calcium Signal Transducer 2 (TACSTD2) oncogene is upregulated in cystic epithelial cells revealing a potential new target for polycystic kidney disease. PLoS Genet 2024; 20:e1011510. [PMID: 39666736 DOI: 10.1371/journal.pgen.1011510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/26/2024] [Accepted: 11/23/2024] [Indexed: 12/14/2024] Open
Abstract
Polycystic kidney disease (PKD) is an important cause of kidney failure, but treatment options are limited. While later stages of the disease have been extensively studied, mechanisms driving the initial conversion of kidney tubules into cysts are not understood. To identify genes with the potential to promote cyst initiation, we deleted polycystin-2 (Pkd2) in mice and surveyed transcriptional changes before and immediately after cysts developed. We identified 74 genes which we term cyst initiation candidates (CICs). To identify conserved changes with relevance to human disease we compared these murine CICs to single cell transcriptomic data derived from patients with PKD and from healthy controls. Tumor-associated calcium signal transducer 2 (Tacstd2) stood out as an epithelial-expressed gene with elevated levels early in cystic transformation that further increased with disease progression. Human tissue biopsies and organoids show that TACSTD2 protein is low in normal kidney cells but is elevated in cyst lining cells, making it an excellent candidate for mechanistic exploration of its role in cyst initiation. While TACSTD2 has not been studied in PKD, it has been studied in cancer where it is highly expressed in solid tumors while showing minimal expression in normal tissue. This property is being exploited by antibody drug conjugates that target TACSTD2 for the delivery of cytotoxic drugs. Our finding that Tacstd2/TACSTD2 is prevalent in cysts, but not normal tissue, suggests that it should be explored as a candidate for drug development in PKD. More immediately, our work suggests that PKD patients undergoing TACSTD2-directed treatment for breast and urothelial cancer should be monitored for kidney effects.
Collapse
Affiliation(s)
- Abigail O Smith
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Morningside Graduate School of Biological Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - William Tyler Frantz
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Morningside Graduate School of Biological Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Kenley M Preval
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
- Morningside Graduate School of Biological Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Yvonne J K Edwards
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Craig J Ceol
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Julie A Jonassen
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
10
|
Liu Z, Fu Y, Yan M, Zhang S, Cai J, Chen G, Dong Z. microRNAs in kidney diseases: Regulation, therapeutics, and biomarker potential. Pharmacol Ther 2024; 262:108709. [PMID: 39181246 DOI: 10.1016/j.pharmthera.2024.108709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a crucial role in regulating gene expression by inhibiting the translation of their specific target messenger RNAs. To date, numerous studies have demonstrated changes in the expression of miRNAs in the kidneys throughout the progression of both acute kidney injury (AKI) and chronic kidney disease (CKD) in both human patients and experimental models. The role of specific microRNAs in the pathogenesis of kidney diseases has also been demonstrated. Further studies have elucidated the regulation of these microRNAs in diseased kidneys. Besides, certain miRNAs are detected in plasma and/or urine in kidney diseases and are potential diagnostic biomarkers. In this review, we provide an overview of recent developments in our understanding of how miRNAs contribute to kidney diseases. We also explore the potential of miRNAs as both biomarkers and therapeutic targets for these conditions, and highlight future research directions.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Ying Fu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Mingjuan Yan
- Changde Hospital, Xiangya School of Medicine, Central South University, China
| | - Subing Zhang
- Youxian People's Hospital, Youxian, Hunan 412300, China
| | - Juan Cai
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA.
| |
Collapse
|
11
|
Ghanem A, Borghol AH, Munairdjy Debeh FG, Paul S, AlKhatib B, Harris PC, Garimella PS, Hanna C, Kline TL, Dahl NK, Chebib FT. Biomarkers of Kidney Disease Progression in ADPKD. Kidney Int Rep 2024; 9:2860-2882. [PMID: 39435347 PMCID: PMC11492289 DOI: 10.1016/j.ekir.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 10/23/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disorder and the fourth leading cause of kidney failure (KF) in adults. Characterized by a reduction in glomerular filtration rate (GFR) and increased kidney size, ADPKD exhibits significant variability in progression, highlighting the urgent need for reliable and predictive biomarkers to optimize management and treatment approaches. This review explores the roles of diverse biomarkers-including clinical, genetic, molecular, and imaging biomarkers-in evaluating disease progression and customizing treatments for ADPKD. Clinical biomarkers such as biological sex, the predicting renal outcome in polycystic kidney disease (PROPKD) score, and body mass index are shown to correlate with disease severity and progression. Genetic profiling, particularly distinguishing between truncating and non-truncating pathogenic variants in the PKD1 gene, refines risk assessment and prognostic precision. Advancements in imaging significantly enhance our ability to assess disease severity. Height-adjusted total kidney volume (htTKV) and the Mayo imaging classification (MIC) are foundational, whereas newer imaging biomarkers, including texture analysis, total cyst number (TCN), cyst-parenchyma surface area (CPSA), total cyst volume (TCV), and cystic index, focus on detailed cyst characteristics to offer deeper insights. Molecular biomarkers (including serum and urinary markers) shed light on potential therapeutic targets that could predict disease trajectory. Despite these advancements, there is a pressing need for the development of response biomarkers in both the adult and pediatric populations, which can evaluate the biological efficacy of treatments. The holistic evaluation of these biomarkers not only deepens our understanding of kidney disease progression in ADPKD, but it also paves the way for personalized treatment strategies aiming to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Ahmad Ghanem
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Abdul Hamid Borghol
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Stefan Paul
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Bassel AlKhatib
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Pranav S. Garimella
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California, USA
| | - Christian Hanna
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy L. Kline
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Neera K. Dahl
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
12
|
Alanazi A, Barui AK, Mohieldin AM, Gupta A, Ramchandran R, Nauli SM. Identifying the roles of miR-17 in ciliogenesis and cell cycle. Front Cell Dev Biol 2024; 12:1397931. [PMID: 39268086 PMCID: PMC11390542 DOI: 10.3389/fcell.2024.1397931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Emerging evidence suggests a significant contribution of primary cilia to cell division and proliferation. MicroRNAs, especially miR-17, contribute to cell cycle regulation and proliferation. Recent investigations have highlighted the dysregulated expression of miR-17 in various malignancies, underlining its potential role in cancer. However, the correlation between primary cilia and miR-17 has yet to be fully elucidated. The present study examines the presence of miR-17 in primary cilia. The miR-17 expression is studied in selected ciliary protein knockdown cells. Using in situ hybridization (ISH), we identified the subcellular localization of miR-17 in both cilium and cell body. We confirmed the importance of miR-17, progesterone receptor membrane component-2 (PGRMC2), and monosialodihexosylganglioside (GM3S) in cilia formation, as shown by the significant reduction in cilia and cilia length in knockdown cells compared to control. We also demonstrated the involvement of PGRMC2, GM3S, polycystin-2 (PKD2), and miR-17 in cellular proliferation and cell growth. Our studies revealed a hyperproliferative effect in the knockdown cells compared to control cells, suggesting the regulatory roles of PGRMC2/GM3S/PKD2/miR-17 in promoting cell proliferation. Overall, our studies conclude that ciliary proteins are involved in cell division and proliferation. We further hypothesize that primary cilia can serve as compartments to store and control genetic materials, further implicating their complex involvement in cellular processes.
Collapse
Affiliation(s)
- Ashwaq Alanazi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
- Department of Pharmacology and Toxicology, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ayan K Barui
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| | - Ashraf M Mohieldin
- Department of Pharmaceutical Sciences, California Northstate University, Elk Grove, CA, United States
| | - Ankan Gupta
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, United States
| |
Collapse
|
13
|
Gargalionis AN, Adamopoulos C, Vottis CT, Papavassiliou AG, Basdra EK. Runx2 and Polycystins in Bone Mechanotransduction: Challenges for Therapeutic Opportunities. Int J Mol Sci 2024; 25:5291. [PMID: 38791330 PMCID: PMC11121608 DOI: 10.3390/ijms25105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Bone mechanotransduction is a critical process during skeletal development in embryogenesis and organogenesis. At the same time, the type and level of mechanical loading regulates bone remodeling throughout the adult life. The aberrant mechanosensing of bone cells has been implicated in the development and progression of bone loss disorders, but also in the bone-specific aspect of other clinical entities, such as the tumorigenesis of solid organs. Novel treatment options have come into sight that exploit the mechanosensitivity of osteoblasts, osteocytes, and chondrocytes to achieve efficient bone regeneration. In this regard, runt-related transcription factor 2 (Runx2) has emerged as a chief skeletal-specific molecule of differentiation, which is prominent to induction by mechanical stimuli. Polycystins represent a family of mechanosensitive proteins that interact with Runx2 in mechano-induced signaling cascades and foster the regulation of alternative effectors of mechanotransuction. In the present narrative review, we employed a PubMed search to extract the literature concerning Runx2, polycystins, and their association from 2000 to March 2024. The keywords stated below were used for the article search. We discuss recent advances regarding the implication of Runx2 and polycystins in bone remodeling and regeneration and elaborate on the targeting strategies that may potentially be applied for the treatment of patients with bone loss diseases.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, 12462 Athens, Greece;
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christos T. Vottis
- First Department of Orthopedics, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, 12462 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| |
Collapse
|
14
|
Cao Y, Zheng M, Sewani MA, Wang J. The miR-17-92 cluster in cardiac health and disease. Birth Defects Res 2024; 116:e2273. [PMID: 37984445 PMCID: PMC11418803 DOI: 10.1002/bdr2.2273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
MicroRNAs (miRs) are small noncoding RNAs that play important roles in both physiological and pathological processes through post-transcriptional regulation. The miR-17-92 cluster includes six individual members: miR-17, miR-18a, miR-19a, miR-19b-1, miR-20a, and miR-92a-1. The miR-17-92 cluster has been extensively studied and reported to broadly function in cancer biology, immunology, neurology, pulmonology, and cardiology. This review focuses on its roles in heart development and cardiac diseases. We briefly introduce the nature of the miR-17-92 cluster and its crucial roles in both normal development and the pathogenesis of various diseases. We summarize the recent progress in understanding the versatile roles of miR-17-92 during cardiac development, regeneration, and aging. Additionally, we highlight the indispensable roles of the miR-17-92 cluster in pathogenesis and therapeutic potential in cardiac birth defects and adult cardiac diseases.
Collapse
Affiliation(s)
- Yuhan Cao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Maham A Sewani
- Department of BioSciences, Wiess School of Natural Sciences, Rice University, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| |
Collapse
|
15
|
Sun P, Wang J, Ilyasova T, Shumadalova A, Agaverdiev M, Wang C. The function of miRNAs in the process of kidney development. Noncoding RNA Res 2023; 8:593-601. [PMID: 37680850 PMCID: PMC10480480 DOI: 10.1016/j.ncrna.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) that typically consist of 19-25 nucleotides in length. These molecules function as essential regulators of gene expression by selectively binding to complementary target sequences within messenger RNA (mRNA) molecules, consequently exerting a negative impact on gene expression at the post-transcriptional level. By modulating the stability and translation efficiency of target mRNAs, miRNAs play pivotal roles in diverse biological processes, including the intricate orchestration of organ development. Among these processes, the development of the kidney has emerged as a key area of interest regarding miRNA function. Intriguingly, recent investigations have uncovered a subset of miRNAs that exhibit remarkably high expression levels in the kidney, signifying their close association with kidney development and diseases affecting this vital organ. This growing body of evidence strongly suggests that miRNAs serve as crucial regulators, actively shaping both the physiological processes governing kidney function and the pathological events leading to renal disorders. This comprehensive review aims to provide an up-to-date overview of the latest research progress regarding miRNAs and their involvement in kidney development. By examining the intricate interplay between miRNAs and the molecular pathways driving kidney development, this review seeks to elucidate the underlying mechanisms through which miRNAs exert their regulatory functions. Furthermore, an in-depth exploration of the role played by miRNAs in the occurrence and progression of renal dysplasia will be presented. Renal dysplasia represents a significant developmental anomaly characterized by abnormal kidney tissue formation, and miRNAs have emerged as key players in this pathological process. By shedding light on the intricate network of miRNA-mediated regulatory mechanisms involved in kidney dysplasia, this review aims to provide valuable insights for the diagnosis and research of diseases associated with aberrant kidney development.
Collapse
Affiliation(s)
- Pengfei Sun
- Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin, 301800, China
| | - Jiaqi Wang
- Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, 3 Lenin Street, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Murad Agaverdiev
- Department of Urology, Bashkir State Medical University, 450008, Ufa, Russian Federation
| | - Chunlei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
16
|
Kamel A, Owen T, Cole I, Valencia T, Lee EC. Pharmacokinetics and Absorption, Distribution, Metabolism and Excretion of RGLS4326 in Mouse and Monkey, an Anti-miR-17 Oligonucleotide for the Treatment of Polycystic Kidney Disease. Drug Metab Dispos 2023; 51:1536-1546. [PMID: 37643880 DOI: 10.1124/dmd.123.001446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
RGLS4326 is a short oligonucleotide inhibitor of microRNA-17 (miR-17) that preferentially distributes to the kidney and displaces miR-17 from translationally active polysomes. Here, we present pharmacokinetics and absorption, distribution, metabolism, and excretion properties of RGLS4326 from mice and monkeys. RGLS4326 was absorbed rapidly after subcutaneous administration, distributed extensively to the kidney and liver, with preferential distribution to the kidney, and cleared rapidly from plasma by tissue uptake and renal excretion. Plasma exposure increased in a dose-proportional manner with no notable accumulation after repeat doses. Plasma protein binding of RGLS4326 across all species tested was between 79% and 96%. RGLS4326 predominantly distributed to the kidney with a long half-life (t1/2; t1/2 ranged from 8-11 days) and no marked (≤twofold) accumulation in kidney and liver after repeat doses. RGLS4326 was minimally metabolized by nucleases, not cytochrome P450 (P450) isozymes, across species and underwent sequential hydrolysis from both 3' and 5' ends to produce chain-shortened metabolites. There were no human unique metabolites observed. Renal excretion was the major route of elimination of RGLS4326, and a significant fraction (50%-79%) of the dose was recovered intact in the urine of mice and monkeys across all dose levels. RGLS4326 is not a substrate, inhibitor, or inducer of P450 isozymes, and it is not a substrate or inhibitor of uptake and most efflux transporters. Thus, RGLS4326 exhibits low potential of mediating drug-drug interactions involving P450 isozymes and drug transporters. SIGNIFICANCE STATEMENT: Pharmacokinetics (PK) and absorption, distribution, metabolism, and excretion (ADME) properties of RGLS4326 were characterized in vivo and in vitro. RGLS4326 shows similar PK and ADME properties across mice and monkeys in vivo and across human and animal matrices in vitro. Subcutaneous administration results in preferential exposure of RGLS4326 to the intended target organ (kidney) to drive maximum target engagement. These studies support the interpretation of toxicology and efficacy studies and help characterize the disposition of RGLS4326 in humans.
Collapse
Affiliation(s)
- Amin Kamel
- Drug Metabolism and Pharmacokinetics, Regulus Therapeutics., San Diego, California
| | - Tate Owen
- Drug Metabolism and Pharmacokinetics, Regulus Therapeutics., San Diego, California
| | - Izaiah Cole
- Drug Metabolism and Pharmacokinetics, Regulus Therapeutics., San Diego, California
| | - Tania Valencia
- Drug Metabolism and Pharmacokinetics, Regulus Therapeutics., San Diego, California
| | - Edmund C Lee
- Drug Metabolism and Pharmacokinetics, Regulus Therapeutics., San Diego, California
| |
Collapse
|
17
|
Sun J, Xu M, Ru J, James-Bott A, Xiong D, Wang X, Cribbs AP. Small molecule-mediated targeting of microRNAs for drug discovery: Experiments, computational techniques, and disease implications. Eur J Med Chem 2023; 257:115500. [PMID: 37262996 PMCID: PMC11554572 DOI: 10.1016/j.ejmech.2023.115500] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Small molecules have been providing medical breakthroughs for human diseases for more than a century. Recently, identifying small molecule inhibitors that target microRNAs (miRNAs) has gained importance, despite the challenges posed by labour-intensive screening experiments and the significant efforts required for medicinal chemistry optimization. Numerous experimentally-verified cases have demonstrated the potential of miRNA-targeted small molecule inhibitors for disease treatment. This new approach is grounded in their posttranscriptional regulation of the expression of disease-associated genes. Reversing dysregulated gene expression using this mechanism may help control dysfunctional pathways. Furthermore, the ongoing improvement of algorithms has allowed for the integration of computational strategies built on top of laboratory-based data, facilitating a more precise and rational design and discovery of lead compounds. To complement the use of extensive pharmacogenomics data in prioritising potential drugs, our previous work introduced a computational approach based on only molecular sequences. Moreover, various computational tools for predicting molecular interactions in biological networks using similarity-based inference techniques have been accumulated in established studies. However, there are a limited number of comprehensive reviews covering both computational and experimental drug discovery processes. In this review, we outline a cohesive overview of both biological and computational applications in miRNA-targeted drug discovery, along with their disease implications and clinical significance. Finally, utilizing drug-target interaction (DTIs) data from DrugBank, we showcase the effectiveness of deep learning for obtaining the physicochemical characterization of DTIs.
Collapse
Affiliation(s)
- Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | - Miaoer Xu
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Jinlong Ru
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| | - Anna James-Bott
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
18
|
Zhu J, Xiang X, Hu X, Li C, Song Z, Dong Z. miR-147 Represses NDUFA4, Inducing Mitochondrial Dysfunction and Tubular Damage in Cold Storage Kidney Transplantation. J Am Soc Nephrol 2023; 34:1381-1397. [PMID: 37211637 PMCID: PMC10400108 DOI: 10.1681/asn.0000000000000154] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
SIGNIFICANCE STATEMENT Cold storage-associated transplantation (CST) injury occurs in renal transplant from deceased donors, the main organ source. The pathogenesis of CST injury remains poorly understood, and effective therapies are not available. This study has demonstrated an important role of microRNAs in CST injury and revealed the changes in microRNA expression profiles. Specifically, microRNA-147 (miR-147) is consistently elevated during CST injury in mice and in dysfunctional renal grafts in humans. Mechanistically, NDUFA4 (a key component of mitochondrial respiration complex) is identified as a direct target of miR-147. By repressing NDUFA4, miR-147 induces mitochondrial damage and renal tubular cell death. Blockade of miR-147 and overexpression of NDUFA4 reduce CST injury and improve graft function, unveiling miR-147 and NDUFA4 as new therapeutic targets in kidney transplantation. BACKGROUND Kidney injury due to cold storage-associated transplantation (CST) is a major factor determining the outcome of renal transplant, for which the role and regulation of microRNAs remain largely unclear. METHODS The kidneys of proximal tubule Dicer (an enzyme for microRNA biogenesis) knockout mice and their wild-type littermates were subjected to CST to determine the function of microRNAs. Small RNA sequencing then profiled microRNA expression in mouse kidneys after CST. Anti-microRNA-147 (miR-147) and miR-147 mimic were used to examine the role of miR-147 in CST injury in mouse and renal tubular cell models. RESULTS Knockout of Dicer from proximal tubules attenuated CST kidney injury in mice. RNA sequencing identified multiple microRNAs with differential expression in CST kidneys, among which miR-147 was induced consistently in mouse kidney transplants and in dysfunctional human kidney grafts. Anti-miR-147 protected against CST injury in mice and ameliorated mitochondrial dysfunction after ATP depletion injury in renal tubular cells in intro . Mechanistically, miR-147 was shown to target NDUFA4, a key component of the mitochondrial respiration complex. Silencing NDUFA4 aggravated renal tubular cell death, whereas overexpression of NDUFA4 prevented miR-147-induced cell death and mitochondrial dysfunction. Moreover, overexpression of NDUFA4 alleviated CST injury in mice. CONCLUSIONS microRNAs, as a class of molecules, are pathogenic in CST injury and graft dysfunction. Specifically, miR-147 induced during CST represses NDUFA4, leading to mitochondrial damage and renal tubular cell death. These results unveil miR-147 and NDUFA4 as new therapeutic targets in kidney transplantation.
Collapse
Affiliation(s)
- Jiefu Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Xiaohong Xiang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
- Department of Critical Care Medicine, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Xiaoru Hu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Zhixia Song
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
- Department of Nephrology, Yichang Central People's Hospital, The First Clinical Medical College of Three Gorges University, Yichang, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
19
|
Kim T, Croce CM. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med 2023; 55:1314-1321. [PMID: 37430087 PMCID: PMC10394030 DOI: 10.1038/s12276-023-01050-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
As a type of short noncoding RNAs, microRNA (miRNA) undoubtedly plays a crucial role in cancer development. Since the discovery of the identity and clinical functions of miRNAs, over the past few decades, the roles of miRNAs in cancer have been actively investigated. Numerous pieces of evidence indicate that miRNAs are pivotal factors in most types of cancer. Recent cancer research focused on miRNAs has identified and characterized a large cohort of miRNAs commonly dysregulated in cancer or exclusively dysregulated in specific types of cancer. These studies have suggested the potential of miRNAs as biomarkers in the diagnosis and prognostication of cancer. Moreover, many of these miRNAs have oncogenic or tumor-suppressive functions. MiRNAs have been the focus of research given their potential clinical applications as therapeutic targets. Currently, various oncology clinical trials using miRNAs in screening, diagnosis, and drug testing are underway. Although clinical trials studying miRNAs in various diseases have been reviewed before, there have been fewer clinical trials related to miRNAs in cancer. Furthermore, updated results of recent preclinical studies and clinical trials of miRNA biomarkers and drugs in cancer are needed. Therefore, this review aims to provide up-to-date information on miRNAs as biomarkers and cancer drugs in clinical trials.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, China.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
20
|
Pana C, Stanigut AM, Cimpineanu B, Alexandru A, Salim C, Nicoara AD, Resit P, Tuta LA. Urinary Biomarkers in Monitoring the Progression and Treatment of Autosomal Dominant Polycystic Kidney Disease-The Promised Land? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050915. [PMID: 37241147 DOI: 10.3390/medicina59050915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease, and it leads to end-stage renal disease (ESRD). The clinical manifestations of ADPKD are variable, with extreme differences observable in its progression, even among members of the same family with the same genetic mutation. In an age of new therapeutic options, it is important to identify patients with rapidly progressive evolution and the risk factors involved in the disease's poor prognosis. As the pathophysiological mechanisms of the formation and growth of renal cysts have been clarified, new treatment options have been proposed to slow the progression to end-stage renal disease. Furthermore, in addition to the conventional factors (PKD1 mutation, hypertension, proteinuria, total kidney volume), increasing numbers of studies have recently identified new serum and urinary biomarkers of the disease's progression, which are cheaper and more easily to dosing from the early stages of the disease. The present review discusses the utility of new biomarkers in the monitoring of the progress of ADPKD and their roles in new therapeutic approaches.
Collapse
Affiliation(s)
- Camelia Pana
- Nephrology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Alina Mihaela Stanigut
- Nephrology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Bogdan Cimpineanu
- Medical Semiology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Andreea Alexandru
- Nephrology Department, Constanta County Emergency Hospital, 900601 Constanta, Romania
| | - Camer Salim
- Emergency Department, Constanta County Emergency Hospital, 900601 Constanta, Romania
| | - Alina Doina Nicoara
- Medical Semiology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Periha Resit
- Faculty of Medicine, "Ovidius" University of Constanta, 900601 Constanta, Romania
| | - Liliana Ana Tuta
- Nephrology Department, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| |
Collapse
|
21
|
Zheng Q, Reid G, Eccles MR, Stayner C. Non-coding RNAs as potential biomarkers and therapeutic targets in polycystic kidney disease. Front Physiol 2022; 13:1006427. [PMID: 36203940 PMCID: PMC9531119 DOI: 10.3389/fphys.2022.1006427] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic kidney disease (PKD) is a significant cause of end-stage kidney failure and there are few effective drugs for treating this inherited condition. Numerous aberrantly expressed non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), may contribute to PKD pathogenesis by participating in multiple intracellular and intercellular functions through post-transcriptional regulation of protein-encoding genes. Insights into the mechanisms of miRNAs and other ncRNAs in the development of PKD may provide novel therapeutic strategies. In this review, we discuss the current knowledge about the roles of dysregulated miRNAs and other ncRNAs in PKD. These roles involve multiple aspects of cellular function including mitochondrial metabolism, proliferation, cell death, fibrosis and cell-to-cell communication. We also summarize the potential application of miRNAs as biomarkers or therapeutic targets in PKD, and briefly describe strategies to overcome the challenges of delivering RNA to the kidney, providing a better understanding of the fundamental advances in utilizing miRNAs and other non-coding RNAs to treat PKD.
Collapse
Affiliation(s)
| | | | | | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Zhou X, Torres VE. Emerging therapies for autosomal dominant polycystic kidney disease with a focus on cAMP signaling. Front Mol Biosci 2022; 9:981963. [PMID: 36120538 PMCID: PMC9478168 DOI: 10.3389/fmolb.2022.981963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), with an estimated genetic prevalence between 1:400 and 1:1,000 individuals, is the third most common cause of end stage kidney disease after diabetes mellitus and hypertension. Over the last 3 decades there has been great progress in understanding its pathogenesis. This allows the stratification of therapeutic targets into four levels, gene mutation and polycystin disruption, proximal mechanisms directly caused by disruption of polycystin function, downstream regulatory and signaling pathways, and non-specific pathophysiologic processes shared by many other diseases. Dysfunction of the polycystins, encoded by the PKD genes, is closely associated with disruption of calcium and upregulation of cyclic AMP and protein kinase A (PKA) signaling, affecting most downstream regulatory, signaling, and pathophysiologic pathways altered in this disease. Interventions acting on G protein coupled receptors to inhibit of 3',5'-cyclic adenosine monophosphate (cAMP) production have been effective in preclinical trials and have led to the first approved treatment for ADPKD. However, completely blocking cAMP mediated PKA activation is not feasible and PKA activation independently from cAMP can also occur in ADPKD. Therefore, targeting the cAMP/PKA/CREB pathway beyond cAMP production makes sense. Redundancy of mechanisms, numerous positive and negative feedback loops, and possibly counteracting effects may limit the effectiveness of targeting downstream pathways. Nevertheless, interventions targeting important regulatory, signaling and pathophysiologic pathways downstream from cAMP/PKA activation may provide additive or synergistic value and build on a strategy that has already had success. The purpose of this manuscript is to review the role of cAMP and PKA signaling and their multiple downstream pathways as potential targets for emergent therapies for ADPKD.
Collapse
Affiliation(s)
- Xia Zhou
- Mayo Clinic, Department of Nephrology, Rochester, MN, United States
| | | |
Collapse
|
23
|
Lakhia R, Ramalingam H, Chang CM, Cobo-Stark P, Biggers L, Flaten A, Alvarez J, Valencia T, Wallace DP, Lee EC, Patel V. PKD1 and PKD2 mRNA cis-inhibition drives polycystic kidney disease progression. Nat Commun 2022; 13:4765. [PMID: 35965273 PMCID: PMC9376183 DOI: 10.1038/s41467-022-32543-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/04/2022] [Indexed: 12/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), among the most common human genetic conditions and a frequent etiology of kidney failure, is primarily caused by heterozygous PKD1 mutations. Kidney cyst formation occurs when PKD1 dosage falls below a critical threshold. However, no framework exists to harness the remaining allele or reverse PKD1 decline. Here, we show that mRNAs produced by the noninactivated PKD1 allele are repressed via their 3'-UTR miR-17 binding element. Eliminating this motif (Pkd1∆17) improves mRNA stability, raises Polycystin-1 levels, and alleviates cyst growth in cellular, ex vivo, and mouse PKD models. Remarkably, Pkd2 is also inhibited via its 3'-UTR miR-17 motif, and Pkd2∆17-induced Polycystin-2 derepression retards cyst growth in Pkd1-mutant models. Moreover, acutely blocking Pkd1/2 cis-inhibition, including after cyst onset, attenuates murine PKD. Finally, modeling PKD1∆17 or PKD2∆17 alleles in patient-derived primary ADPKD cultures leads to smaller cysts, reduced proliferation, lower pCreb1 expression, and improved mitochondrial membrane potential. Thus, evading 3'-UTR cis-interference and enhancing PKD1/2 mRNA translation is a potentially mutation-agnostic ADPKD-arresting approach.
Collapse
Affiliation(s)
- Ronak Lakhia
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Harini Ramalingam
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chun-Mien Chang
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Patricia Cobo-Stark
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laurence Biggers
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrea Flaten
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jesus Alvarez
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Darren P Wallace
- Department of Internal Medicine and the Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Edmund C Lee
- Regulus Therapeutics Inc., San Diego, CA, 92121, USA
| | - Vishal Patel
- Department of Internal Medicine, Nephrology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
24
|
Bais T, Gansevoort RT, Meijer E. Drugs in Clinical Development to Treat Autosomal Dominant Polycystic Kidney Disease. Drugs 2022; 82:1095-1115. [PMID: 35852784 PMCID: PMC9329410 DOI: 10.1007/s40265-022-01745-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 12/16/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive cyst formation that ultimately leads to kidney failure in most patients. Approximately 10% of patients who receive kidney replacement therapy suffer from ADPKD. To date, a vasopressin V2 receptor antagonist (V2RA) is the only drug that has been proven to attenuate disease progression. However, aquaresis-related adverse events limit its widespread use. Data on the renoprotective effects of somatostatin analogues differ largely between studies and medications. This review discusses new drugs that are investigated in clinical trials to treat ADPKD, such as cystic fibrosis transmembrane conductance regulator (CFTR) modulators and micro RNA inhibitors, and drugs already marketed for other indications that are being investigated for off-label use in ADPKD, such as metformin. In addition, potential methods to improve the tolerability of V2RAs are discussed, as well as methods to select patients with (likely) rapid disease progression and issues regarding the translation of preclinical data into clinical practice. Since ADPKD is a complex disease with a high degree of interindividual heterogeneity, and the mechanisms involved in cyst growth also have important functions in various physiological processes, it may prove difficult to develop drugs that target cyst growth without causing major adverse events. This is especially important since long-standing treatment is necessary in this chronic disease. This review therefore also discusses approaches to targeted therapy to minimize systemic side effects. Hopefully, these developments will advance the treatment of ADPKD.
Collapse
|
25
|
Askari H, Raeis-Abdollahi E, Abazari MF, Akrami H, Vakili S, Savardashtaki A, Tajbakhsh A, Sanadgol N, Azarnezhad A, Rahmati L, Abdullahi PR, Zare Karizi S, Safarpour AR. Recent findings on the role of microRNAs in genetic kidney diseases. Mol Biol Rep 2022; 49:7039-7056. [PMID: 35717474 DOI: 10.1007/s11033-022-07620-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding, endogenous, single-stranded, small (21-25 nucleotides) RNAs. Various target genes at the post-transcriptional stage are modulated by miRNAs that are involved in the regulation of a variety of biological processes such as embryonic development, differentiation, proliferation, apoptosis, inflammation, and metabolic homeostasis. Abnormal miRNA expression is strongly associated with the pathogenesis of multiple common human diseases including cardiovascular diseases, cancer, hepatitis, and metabolic diseases. METHODS AND RESULTS Various signaling pathways including transforming growth factor-β, apoptosis, and Wnt signaling pathways have also been characterized to play an essential role in kidney diseases. Most importantly, miRNA-targeted pharmaceutical manipulation has represented a promising new therapeutic approach against kidney diseases. Furthermore, miRNAs such as miR-30e-5p, miR-98-5p, miR-30d-5p, miR-30a-5p, miR-194-5p, and miR-192-5p may be potentially employed as biomarkers for various human kidney diseases. CONCLUSIONS A significant correlation has also been found between some miRNAs and the clinical markers of renal function like baseline estimated glomerular filtration rate (eGFR). Classification of miRNAs in different genetic renal disorders may promote discoveries in developing innovative therapeutic interventions and treatment tools. Herein, the recent advances in miRNAs associated with renal pathogenesis, emphasizing genetic kidney diseases and development, have been summarized.
Collapse
Affiliation(s)
- Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran.,Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Rahmati
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payman Raise Abdullahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva Branch, Islamic Azad University, Pishva, Varamin, Iran.
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
26
|
Reiterová J, Tesař V. Autosomal Dominant Polycystic Kidney Disease: From Pathophysiology of Cystogenesis to Advances in the Treatment. Int J Mol Sci 2022; 23:ijms23063317. [PMID: 35328738 PMCID: PMC8949594 DOI: 10.3390/ijms23063317] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic renal disease, with an estimated prevalence between 1:1000 and 1:2500. It is mostly caused by mutations of the PKD1 and PKD2 genes encoding polycystin 1 (PC1) and polycystin 2 (PC2) that regulate cellular processes such as fluid transport, differentiation, proliferation, apoptosis and cell adhesion. Reduction of calcium ions and induction of cyclic adenosine monophosphate (sAMP) promote cyst enlargement by transepithelial fluid secretion and cell proliferation. Abnormal activation of MAPK/ERK pathway, dysregulated signaling of heterotrimeric G proteins, mTOR, phosphoinositide 3-kinase, AMPK, JAK/STAT activator of transcription and nuclear factor kB (NF-kB) are involved in cystogenesis. Another feature of cystic tissue is increased extracellular production and recruitment of inflammatory cells and abnormal connections among cells. Moreover, metabolic alterations in cystic cells including defective glucose metabolism, impaired beta-oxidation and abnormal mitochondrial activity were shown to be associated with cyst expansion. Although tolvaptan has been recently approved as a drug that slows ADPKD progression, some patients do not tolerate tolvaptan because of frequent aquaretic. The advances in the knowledge of multiple molecular pathways involved in cystogenesis led to the development of animal and cellular studies, followed by the development of several ongoing randomized controlled trials with promising drugs. Our review is aimed at pathophysiological mechanisms in cystogenesis in connection with the most promising drugs in animal and clinical studies.
Collapse
Affiliation(s)
- Jana Reiterová
- Department of Nephrology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic;
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Vladimír Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic;
- Correspondence:
| |
Collapse
|
27
|
Wonnacott A, Denby L, Coward RJM, Fraser DJ, Bowen T. MicroRNAs and their delivery in diabetic fibrosis. Adv Drug Deliv Rev 2022; 182:114045. [PMID: 34767865 DOI: 10.1016/j.addr.2021.114045] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/21/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
The global prevalence of diabetes mellitus was estimated to be 463 million people in 2019 and is predicted to rise to 700 million by 2045. The associated financial and societal costs of this burgeoning epidemic demand an understanding of the pathology of this disease, and its complications, that will inform treatment to enable improved patient outcomes. Nearly two decades after the sequencing of the human genome, the significance of noncoding RNA expression is still being assessed. The family of functional noncoding RNAs known as microRNAs regulates the expression of most genes encoded by the human genome. Altered microRNA expression profiles have been observed both in diabetes and in diabetic complications. These transcripts therefore have significant potential and novelty as targets for therapy, therapeutic agents and biomarkers.
Collapse
Affiliation(s)
- Alexa Wonnacott
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Laura Denby
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard J M Coward
- Bristol Renal, Dorothy Hodgkin Building, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Donald J Fraser
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
28
|
Fragiadaki M. Lessons from microRNA biology: Top key cellular drivers of Autosomal Dominant Polycystic Kidney Disease. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166358. [PMID: 35150832 DOI: 10.1016/j.bbadis.2022.166358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Numerous microRNAs (miRs), small RNAs that target several pathways, have been implicated in the development of Autosomal Dominant Polycystic Kidney Disease (ADPKD), which is the most common genetic cause of kidney failure. The hallmark of ADPKD is tissue overgrowth and hyperproliferation, eventually leading to kidney failure. SCOPE OF THE REVIEW Many miRs are dysregulated in disease, yet the intracellular pathways regulated by miRs are less well described in ADPKD. Here, I summarise all the differentially expressed miRs in ADPKD and highlight the top miR-regulated cellular driver of disease. MAJOR CONCLUSIONS Literature review has identified 53 abnormally expressed miRs in ADPKD. By performing bioinformatics analysis of their target genes I present 10 key intracellular pathways that drive ADPKD progression. The top key drivers are divided into three main areas: (i) hyperproliferation and the role of JAK/STAT and PI3K pathways (ii) DNA damage and (iii) inflammation and NFκB. GENERAL SIGNIFICANCE The description of the 10 top cellular drivers of ADPKD, derived by analysis of miR signatures, is of paramount importance in better understanding the key processes resulting in pathophysiological changes that underlie disease.
Collapse
Affiliation(s)
- Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, S10 2RX, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
29
|
Ruiz-Manriquez LM, Ledesma Pacheco SJ, Medina-Gomez D, Uriostegui-Pena AG, Estrada-Meza C, Bandyopadhyay A, Pathak S, Banerjee A, Chakraborty S, Srivastava A, Paul S. A Brief Review on the Regulatory Roles of MicroRNAs in Cystic Diseases and Their Use as Potential Biomarkers. Genes (Basel) 2022; 13:genes13020191. [PMID: 35205236 PMCID: PMC8872411 DOI: 10.3390/genes13020191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
miRNAs are small endogenous conserved non-coding RNA molecules that regulate post-transcriptional gene expression through mRNA degradation or translational inhibition, modulating nearly 60% of human genes. Cystic diseases are characterized by the presence of abnormal fluid-filled sacs in the body, and though most cysts are benign, they can grow inside tumors and turn malignant. Recent evidence has revealed that the aberrant expression of a number of miRNAs present in extracellular fluids, including plasma or serum, urine, saliva, follicular fluid, and semen, contribute to different cystic pathologies. This review aims to describe the role of different miRNAs in three worldwide relevant cystic diseases: polycystic ovarian syndrome (PCOS), polycystic kidney disease (PKD), and pancreatic cyst tumors (PCTs), as well as their potential use as novel biomarkers.
Collapse
Affiliation(s)
- Luis M. Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico; (L.M.R.-M.); (S.J.L.P.); (D.M.-G.); (A.G.U.-P.); (C.E.-M.)
| | - Schoenstatt Janin Ledesma Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico; (L.M.R.-M.); (S.J.L.P.); (D.M.-G.); (A.G.U.-P.); (C.E.-M.)
| | - Daniel Medina-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico; (L.M.R.-M.); (S.J.L.P.); (D.M.-G.); (A.G.U.-P.); (C.E.-M.)
| | - Andrea G. Uriostegui-Pena
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico; (L.M.R.-M.); (S.J.L.P.); (D.M.-G.); (A.G.U.-P.); (C.E.-M.)
| | - Carolina Estrada-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico; (L.M.R.-M.); (S.J.L.P.); (D.M.-G.); (A.G.U.-P.); (C.E.-M.)
| | - Anindya Bandyopadhyay
- C4 Rice Center, International Rice Research Institute, Manila 4031, Philippines;
- Synthetic Biology, Biofuel and Genome Editing R&D, Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Faculty of Allied Health Sciences, Chennai 603103, India; (S.P.); (A.B.)
| | - Antara Banerjee
- Department of Medical Biotechnology, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Faculty of Allied Health Sciences, Chennai 603103, India; (S.P.); (A.B.)
| | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Aashish Srivastava
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway;
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Queretaro 76130, Mexico; (L.M.R.-M.); (S.J.L.P.); (D.M.-G.); (A.G.U.-P.); (C.E.-M.)
- Correspondence:
| |
Collapse
|
30
|
A Brief Review on the Regulatory Roles of MicroRNAs in Cystic Diseases and Their Use as Potential Biomarkers. Genes (Basel) 2022; 13:191. [PMID: 35205236 PMCID: PMC8872411 DOI: 10.3390/genes13020191&set/a 867452130+949943291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
miRNAs are small endogenous conserved non-coding RNA molecules that regulate post-transcriptional gene expression through mRNA degradation or translational inhibition, modulating nearly 60% of human genes. Cystic diseases are characterized by the presence of abnormal fluid-filled sacs in the body, and though most cysts are benign, they can grow inside tumors and turn malignant. Recent evidence has revealed that the aberrant expression of a number of miRNAs present in extracellular fluids, including plasma or serum, urine, saliva, follicular fluid, and semen, contribute to different cystic pathologies. This review aims to describe the role of different miRNAs in three worldwide relevant cystic diseases: polycystic ovarian syndrome (PCOS), polycystic kidney disease (PKD), and pancreatic cyst tumors (PCTs), as well as their potential use as novel biomarkers.
Collapse
|
31
|
A Brief Review on the Regulatory Roles of MicroRNAs in Cystic Diseases and Their Use as Potential Biomarkers. Genes (Basel) 2022. [DOI: 10.3390/genes13020191
expr 889616206 + 938882164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
miRNAs are small endogenous conserved non-coding RNA molecules that regulate post-transcriptional gene expression through mRNA degradation or translational inhibition, modulating nearly 60% of human genes. Cystic diseases are characterized by the presence of abnormal fluid-filled sacs in the body, and though most cysts are benign, they can grow inside tumors and turn malignant. Recent evidence has revealed that the aberrant expression of a number of miRNAs present in extracellular fluids, including plasma or serum, urine, saliva, follicular fluid, and semen, contribute to different cystic pathologies. This review aims to describe the role of different miRNAs in three worldwide relevant cystic diseases: polycystic ovarian syndrome (PCOS), polycystic kidney disease (PKD), and pancreatic cyst tumors (PCTs), as well as their potential use as novel biomarkers.
Collapse
|
32
|
Pagliarini R, Podrini C. Metabolic Reprogramming and Reconstruction: Integration of Experimental and Computational Studies to Set the Path Forward in ADPKD. Front Med (Lausanne) 2021; 8:740087. [PMID: 34901057 PMCID: PMC8652061 DOI: 10.3389/fmed.2021.740087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic reprogramming is a key feature of Autosomal Dominant Polycystic Kidney Disease (ADPKD) characterized by changes in cellular pathways occurring in response to the pathological cell conditions. In ADPKD, a broad range of dysregulated pathways have been found. The studies supporting alterations in cell metabolism have shown that the metabolic preference for abnormal cystic growth is to utilize aerobic glycolysis, increasing glutamine uptake and reducing oxidative phosphorylation, consequently resulting in ADPKD cells shifting their energy to alternative energetic pathways. The mechanism behind the role of the polycystin proteins and how it leads to disease remains unclear, despite the identification of numerous signaling pathways. The integration of computational data analysis that accompanies experimental findings was pivotal in the identification of metabolic reprogramming in ADPKD. Here, we summarize the important results and argue that their exploitation may give further insights into the regulative mechanisms driving metabolic reprogramming in ADPKD. The aim of this review is to provide a comprehensive overview on metabolic focused studies and potential targets for treatment, and to propose that computational approaches could be instrumental in advancing this field of research.
Collapse
Affiliation(s)
- Roberto Pagliarini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| | - Christine Podrini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS-San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
33
|
Bowden SA, Rodger EJ, Chatterjee A, Eccles MR, Stayner C. Recent Discoveries in Epigenetic Modifications of Polycystic Kidney Disease. Int J Mol Sci 2021; 22:ijms222413327. [PMID: 34948126 PMCID: PMC8708269 DOI: 10.3390/ijms222413327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 01/01/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a heritable renal disease that results in end-stage kidney disease, due to the uncontrolled bilateral growth of cysts throughout the kidneys. While it is known that a mutation within a PKD-causing gene is required for the development of ADPKD, the underlying mechanism(s) causing cystogenesis and progression of the disease are not well understood. Limited therapeutic options are currently available to slow the rate of cystic growth. Epigenetic modifications, including DNA methylation, are known to be altered in neoplasia, and several FDA-approved therapeutics target these disease-specific changes. As there are many similarities between ADPKD and neoplasia, we (and others) have postulated that ADPKD kidneys contain alterations to their epigenetic landscape that could be exploited for future therapeutic discovery. Here we summarise the current understanding of epigenetic changes that are associated with ADPKD, with a particular focus on the burgeoning field of ADPKD-specific alterations in DNA methylation.
Collapse
Affiliation(s)
- Sarah A. Bowden
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
| | - Euan J. Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, 270 Great King Street, Dunedin 9054, New Zealand; (S.A.B.); (E.J.R.); (A.C.); (M.R.E.)
- Correspondence: ; Tel.: +64-3-479-5060; Fax: +64-3-479-7136
| |
Collapse
|
34
|
Ma M, Fu L, Jia Z, Zhong Q, Huang Z, Wang X, Fan Y, Lin T, Song T. miR-17-5p attenuates kidney ischemia-reperfusion injury by inhibiting the PTEN and BIM pathways. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1545. [PMID: 34790751 PMCID: PMC8576735 DOI: 10.21037/atm-21-4678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 02/05/2023]
Abstract
Background Kidney ischemia-reperfusion (I/R) injury is an independent risk factor for delayed graft function after kidney transplantation with long-term graft survival deterioration. Previously, we found that the upregulated expression of miR-17-5p exerts a protective effect in kidney I/R injury, but the mechanism has not been clearly studied. Methods A kidney I/R injury model was induced in adult C57BL/6 male mice (20–22 g) by clamping both kidney pedicles for 30 min. The miR-17-5p agomir complex was injected into mice 24 h before surgery via the tail vein at a total injection volume of 10 µL/g body weight. The mice were euthanized on post-I/R injury day 2, and kidney function, apoptosis, autophagy, and related molecules were then detected. Human kidney-2 (HK-2) cells, which underwent hypoxia/reoxygenation, were treated with the miR-17-5p agomir, miR-17-5p antagomir, and small interfering ribonucleic acids (siRNAs). Cell viability, apoptosis, autophagy, and molecules were also examined. Results Autophagy, miR-17-5p expression, and kidney function damage were significantly more increased in the I/R group than in the sham group. In the cultured HK-2 cells underwent hypoxia/reoxygenation, the miR-17-5p agomir directly inhibited the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and Bcl-2 like protein 11 (BIM), and attenuated apoptosis and autophagy. Further, miR-17-5p inhibited autophagy by activating the protein kinase B (Akt)/Beclin1 pathway, which was suppressed by siRNAs. Additionally, the administration of miR-17-5p agomir greatly improved kidney function in the I/R mice group by inhibiting autophagy and apoptosis. Conclusions These findings suggest a new possible therapeutic strategy for the prevention and treatment of kidney I/R injury. The upregulation of miR-17-5p expression appears to inhibit apoptosis and autophagy by suppressing PTEN and BIM expression, which in turn upregulates downstream Akt/Beclin1 expression.
Collapse
Affiliation(s)
- Ming Ma
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Fu
- Urology Department, The Third People's Hospital of Chengdu, Chengdu, China
| | - Zihao Jia
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Zhong
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongli Huang
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianding Wang
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Fan
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Lin
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Turun Song
- Urology Department, West China Hospital, Sichuan University, Chengdu, China.,Organ Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Yildirim D, Bender O, Karagoz ZF, Helvacioglu F, Bilgic MA, Akcay A, Ruzgaresen NB. Role of autophagy and evaluation the effects of microRNAs 214, 132, 34c and prorenin receptor in a rat model of focal segmental glomerulosclerosis. Life Sci 2021; 280:119671. [PMID: 34087284 DOI: 10.1016/j.lfs.2021.119671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
AIMS Focal segmental glomerulosclerosis (FSGS) is the common cause of chronic renal disease worldwide. Although there are many etiologic factors which have common theme of podocyte injury conclusive etiology is not clearly understood. In this study, we aimed to explore the role of autophagy in the pathogenesis of podocyte injury, which is the key point in disease progression, and the roles of intrarenal microRNAs and the prorenin receptor (PRR) in the 5/6 nephrectomy and adriamycin nephropathy models of FSGS. MAIN METHODS For experimental FSGS model, 5/6 nephrectomy and adriamycin nephropathy models were created and characterized in adult Sprague Dawley rats. Microarray analysis was performed on FSGS and control groups that was confirmed by q-RT-PCR. Beclin1, LC3B, PRR, ATG7 and ATG5 expression were evaluated by western blotting and immunohistochemistry. Also, Beclin1 and PRR expression were measured by ELISA. Glomerular podocyte isolation was performed and autophagic activity was evaluated in podocytes before and after transfection with miRNA mimic and antagonists. KEY FINDINGS Glomerular expression of Beclin1, LC3B, PRR, ATG7 and ATG5 were significantly lower in the 5/6 nephrectomy than adriamycin nephropathy group and in both groups lower when compared to control groups. Western blot results were consistent with immunohistochemical data. Electron microscopy revealed signs of impaired autophagy in FSGS. Autophagic activity decreased significantly after miR-214, miR-132 and miR-34c mimics and increased after transfection with antagonists. SIGNIFICANCE These results showed that the role of autophagic activity and decreased expression of PRR in FSGS pathogenesis and miR-34c, miR-132 and miR-214 could be a potential treatment strategy by regulating autophagy.
Collapse
Affiliation(s)
- Derya Yildirim
- Department of Internal Medicine, Ankara Education and Research Hospital, Ankara, Turkey.
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Zehra Firat Karagoz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Fatma Helvacioglu
- Department of Histology and Embryology, Faculty of Medicine, Baskent University, Ankara, Turkey
| | | | - Ali Akcay
- Department of Nephrology, Koru Hospital, Ankara, Turkey
| | | |
Collapse
|
36
|
Yang K, Zhang Y, Mai X, Hu L, Ma C, Wei J. MIR17HG genetic variations affect the susceptibility of IgA nephropathy in Chinese Han people. Gene 2021; 800:145838. [PMID: 34274472 DOI: 10.1016/j.gene.2021.145838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease worldwide. It accounts for approximately 30 ~ 40% of glomerular diseases in China. However, the exact pathogenesis of IgAN is not well established. This study aimed to explore the association between MIR17HG polymorphisms and IgAN susceptibility. METHODS Six single nucleotide polymorphisms (SNPs) of MIR17HG were genotyped in 417 patients with IgAN and 424 healthy controls. The association analysis was conducted by logistic regression adjusted for age and gender in multiple genetic models and different subgroups. RESULTS Our results revealed that rs72640334 and rs1428 increased the susceptibility to IgAN in total populations (p < 0.05). The stratification analysis by age indicated that rs72640334 enhanced the risk of IgAN people older than 35 years, while rs7318578 played a protective role in the development of IgAN patients aged >35 years (p < 0.05). In addition, MIR17HG-rs72640334 could facilitate the occurrence of IgAN in females (p < 0.05). In Lee's grade III-Vsubgroup, rs72640334 and rs7336610 have an increasing effect on IgAN risk, while rs7318578 has a decreasing effect on IgAN susceptibility (p < 0.05). CONCLUSIONS Our findings suggested that MIR17HG genetic polymorphisms were correlated with IgAN susceptibility. It provided new evidence for the potential molecular mechanism of IgAN and may serve as a new biomarker for the treatment and early diagnosis of IgAN.
Collapse
Affiliation(s)
- Kai Yang
- Department of Nephrology, Hainan General Hospital, Haikou, Hainan 570311, China; Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570311, China
| | - Ying Zhang
- Department of Nephrology, Hainan General Hospital, Haikou, Hainan 570311, China; Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570311, China
| | - Xing Mai
- Department of Nephrology, Hainan General Hospital, Haikou, Hainan 570311, China; Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570311, China
| | - Langtao Hu
- Department of Nephrology, Hainan General Hospital, Haikou, Hainan 570311, China; Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570311, China
| | - Chunyang Ma
- Department of Nephrology, Hainan General Hospital, Haikou, Hainan 570311, China; Department of Nephrology, Hainan Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570311, China.
| | - Jiali Wei
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570311, China.
| |
Collapse
|
37
|
Fu H, Chu D, Geng X. Downregulation of miR-17 suppresses TGF-β1-mediated renal fibrosis through targeting Smad7. Mol Cell Biochem 2021; 476:3051-3064. [PMID: 33797702 DOI: 10.1007/s11010-021-04140-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
MiR-17 is found upregulated in diabetic mice; however, its effect(s) on renal fibrosis of diabetic nephropathy remain(s) unknown. This study aimed to explore the mechanism underlying the downregulation of miR-17 in renal fibrosis of diabetic nephropathy (DN). Patients with diabetes mellitus (DM) and DN and normal healthy individual controls, mice (db/db, db/m), and human mesangial cells (HMCs) and human proximal tubule epithelial cells (HK-2) were used as research subjects in the study. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure the expression of miR-17 in the serum samples, renal tissues and cells. Acid-Schiff (PAS) and Masson staining experiments were performed to detect glomerular mesangial matrix and collagen deposition. Levels of fibrosis-related proteins (E-Cadherin (E-cad), vimentin, fibronectin and collagen I) were measured by Western blot (WB). The target gene of miR-17 was predicted by TargetScan 7.2 and confirmed by dual-luciferase reporter analysis. The study found that miR-17 expression was elevated in the serums of DN patients as well as in the serums and kidney tissues of db/db mice. db/db mice showed a severe renal fibrosis condition. The levels of E-cad in db/db mice, HMC and HK-2 cells were increased by downregulating miR-17 expression, while expressions of vimentin, fibronectin and collagen I were reduced. Smad7 was predicted to be the target gene of miR-17, and its expression was promoted by downregulation of miR-17. Moreover, the reduced Smad7 expression could inhibit the expressions of fibrosis-related proteins, which, however, can be ameliorated by the downregulation of miR-17. In addition, downregulation of miR-17 could suppress renal fibrosis mediated by TGF-β1 through targeting Smad7, which might be a clinical therapeutic target for patients with DN.
Collapse
Affiliation(s)
- Haixia Fu
- Department of Nephrology, Qingdao Municipal Hospital, No.5, Middle Donghai Road, Qingdao, 266071, Shandong, China
| | - Debo Chu
- Department of Nephrology, Qingdao Haici Med Ctr, Qingdao, China
| | - Xiuli Geng
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, China.
| |
Collapse
|
38
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
39
|
Non-Coding RNAs in Hereditary Kidney Disorders. Int J Mol Sci 2021; 22:ijms22063014. [PMID: 33809516 PMCID: PMC7998154 DOI: 10.3390/ijms22063014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Single-gene defects have been revealed to be the etiologies of many kidney diseases with the recent advances in molecular genetics. Autosomal dominant polycystic kidney disease (ADPKD), as one of the most common inherited kidney diseases, is caused by mutations of PKD1 or PKD2 gene. Due to the complexity of pathophysiology of cyst formation and progression, limited therapeutic options are available. The roles of noncoding RNAs in development and disease have gained widespread attention in recent years. In particular, microRNAs in promoting PKD progression have been highlighted. The dysregulated microRNAs modulate cyst growth through suppressing the expression of PKD genes and regulating cystic renal epithelial cell proliferation, mitochondrial metabolism, apoptosis and autophagy. The antagonists of microRNAs have emerged as potential therapeutic drugs for the treatment of ADPKD. In addition, studies have also focused on microRNAs as potential biomarkers for ADPKD and other common hereditary kidney diseases, including HNF1β-associated kidney disease, Alport syndrome, congenital abnormalities of the kidney and urinary tract (CAKUT), von Hippel-Lindau (VHL) disease, and Fabry disease. This review assembles the current understanding of the non-coding RNAs, including microRNAs and long noncoding RNAs, in polycystic kidney disease and these common monogenic kidney diseases.
Collapse
|
40
|
Chiba T, Cerqueira DM, Li Y, Bodnar AJ, Mukherjee E, Pfister K, Phua YL, Shaikh K, Sanders BT, Hemker SL, Pagano PJ, Wu YL, Ho J, Sims-Lucas S. Endothelial-Derived miR-17∼92 Promotes Angiogenesis to Protect against Renal Ischemia-Reperfusion Injury. J Am Soc Nephrol 2021; 32:553-562. [PMID: 33514560 PMCID: PMC7920169 DOI: 10.1681/asn.2020050717] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/21/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Damage to the renal microvasculature is a hallmark of renal ischemia-reperfusion injury (IRI)-mediated AKI. The miR-17∼92 miRNA cluster (encoding miR-17, -18a, -19a, -20a, -19b-1, and -92a-1) regulates angiogenesis in multiple settings, but no definitive role in renal endothelium during AKI pathogenesis has been established. METHODS Antibodies bound to magnetic beads were utilized to selectively enrich for renal endothelial cells from mice. Endothelial-specific miR-17∼92 knockout (miR-17∼92endo-/- ) mice were generated and given renal IRI. Mice were monitored for the development of AKI using serum chemistries and histology and for renal blood flow using magnetic resonance imaging (MRI) and laser Doppler imaging. Mice were treated with miRNA mimics during renal IRI, and therapeutic efficacies were evaluated. RESULTS miR-17, -18a, -20a, -19b, and pri-miR-17∼92 are dynamically regulated in renal endothelial cells after renal IRI. miR-17∼92endo-/- exacerbates renal IRI in male and female mice. Specifically, miR-17∼92endo-/- promotes renal tubular injury, reduces renal blood flow, promotes microvascular rarefaction, increases renal oxidative stress, and promotes macrophage infiltration to injured kidneys. The potent antiangiogenic factor thrombospondin 1 (TSP1) is highly expressed in renal endothelium in miR-17∼92endo-/- after renal IRI and is a target of miR-18a and miR-19a/b. miR-17∼92 is critical in the angiogenic response after renal IRI, which treatment with miR-18a and miR-19b mimics can mitigate. CONCLUSIONS These data suggest that endothelial-derived miR-17∼92 stimulates a reparative response in damaged renal vasculature during renal IRI by regulating angiogenic pathways.
Collapse
Affiliation(s)
- Takuto Chiba
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Débora M. Cerqueira
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yao Li
- Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew J. Bodnar
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Elina Mukherjee
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Katherine Pfister
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yu Leng Phua
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kai Shaikh
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brandon T. Sanders
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shelby L. Hemker
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick J. Pagano
- Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yijen L. Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sunder Sims-Lucas
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Heart, Lung, Blood and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
41
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. Therapeutic advances of miRNAs: A preclinical and clinical update. J Adv Res 2021; 28:127-138. [PMID: 33364050 PMCID: PMC7753224 DOI: 10.1016/j.jare.2020.08.012] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
miRNAs, a class of small endogenous RNAs, are one of the essential biopharmaceuticals which are in commercial spans as next-generation medicine in recent times. A snapshot of the current scenario regarding the miRNAs as biopharmaceuticals have been discussed. In this work, biopharmaceutical companies working with miRNAs and the current status of preclinical/clinical trials about miRNA therapeutics have been reviewed. Finally, recent updates on the absorption, distribution, metabolism, and excretion (ADME), as well as a delivery system of miRNAs, have been illustrated.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| |
Collapse
|
42
|
Liu G, Kang X, Guo P, Shang Y, Du R, Wang X, Chen L, Yue R, Kong F. miR-25-3p promotes proliferation and inhibits autophagy of renal cells in polycystic kidney mice by regulating ATG14-Beclin 1. Ren Fail 2021; 42:333-342. [PMID: 32340512 PMCID: PMC7241494 DOI: 10.1080/0886022x.2020.1745236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are involved in the regulation of the autophagy and proliferation in several diseases. This study aims to verify the role of miR-25-3p in the proliferation and autophagy of renal cells in polycystic kidney disease (PKD). We found that kidney to body weight and blood urea content were increased in PKD mice. Cystic dilations were increased in kidney tissue from PKD mice, and autophagy-related protein ULK1 and the ratio of LC3-II/LC3-I were decreased, indicating autophagy was inhibited in PKD mice. In addition, miR-25-3p was upregulated in PKD mice, and inhibition of miR-25-3p decreased cystic dilations in kidney tissues, increased ULK1 expression and the ratio of LC3-II/LC3-I, indicating inhibition of miR-25-3p enhanced the autophagy in PKD. Besides, inhibition of miR-25-3p suppressed the proliferation of renal cells and downregulated E2F-1 and PCNA expressions. Importantly, miR-25-3p targetedly suppressed ATG14 expression in PKD cells. Finally, silencing ATG14 abolished the inhibition effect of miR-25-3p inhibitor on renal cell proliferation, and reversed the inhibition effect of miR-25-3p inhibitor on E2F-1 and PCNA expressions in in vitro and in vivo experiments, which suggested that ATG14 was involved in the regulation of miR-25-3p-mediated kidney cell proliferation. Therefore, inhibition of miR-25-3p promoted cell autophagy and suppressed cell proliferation in PKD mice through regulating ATG14.
Collapse
Affiliation(s)
- Guojian Liu
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xiaowen Kang
- Department of Respiration, The Second Affiliated Hospital of Harbin Medical, University, Harbin, Heilongjiang, People's Republic of China
| | - Ping Guo
- Laboratory Department, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang, People's Republic of China
| | - Yu Shang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Ruomei Du
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xiyue Wang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Liting Chen
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Rui Yue
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Fanwu Kong
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
43
|
Zhang Y, Zhang GX, Che LS, Shi SH, Li YT. miR‑212 promotes renal interstitial fibrosis by inhibiting hypoxia‑inducible factor 1‑α inhibitor. Mol Med Rep 2021; 23:189. [PMID: 33495813 PMCID: PMC7809912 DOI: 10.3892/mmr.2021.11828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Renal interstitial fibrosis is one of the common causes, and a major pathological basis for the development of various types of chronic progressive renal to end-stage renal diseases. Therefore, it is important to clarify the underlying mechanisms of disease progression in order to develop effective strategies for the treatment and prevention of these pathologies. The aim of the present study was to investigate the association between microRNA (miR)-212 expression and the development of renal interstitial fibrosis, as well as analyzing the role of miR-212 in the disease. The expression of miR-212 was significantly increased in the peripheral blood of patients with renal interstitial fibrosis and in the kidney tissues of unilateral ureteral obstruction (UUO) mice. Angiotensin (Ang) II, TGF-β1 and hypoxia were found to increase the expression of miR-212 and α smooth muscle actin (α-SMA) in NRK49F cells. Ang II stimulation induced the expression of miR-212 and α-SMA in NRK49F cells, while transfection of miR-212 mimics further upregulated the expression of α-SMA. miR-212 was also revealed to target hypoxia-inducible factor 1α inhibitor (HIF1AN) and to upregulate the expression of hypoxia-inducible factor 1α, α-SMA, connective tissue growth factor, collagen α-1(I) chain and collagen α-1(III) chain, whereas HIF1AN overexpression reversed the regulatory effects of miR-212. In UUO mice, miR-212 overexpression promoted the progression of renal interstitial fibrosis, whereas inhibiting miR-212 resulted in the opposite effect. These results indicated that high expression of miR-212 was closely associated with the occurrence of renal interstitial fibrosis, and that miR-212 may promote its development by targeting HIF1AN.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Guo-Xin Zhang
- Department of Geriatrics, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Li-Shuang Che
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Shu-Han Shi
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yue-Ting Li
- Department of Renal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
44
|
Luan J, Fu J, Wang D, Jiao C, Cui X, Chen C, Liu D, Zhang Y, Wang Y, Yuen PS, Kopp JB, Pi J, Zhou H. miR-150-Based RNA Interference Attenuates Tubulointerstitial Fibrosis through the SOCS1/JAK/STAT Pathway In Vivo and In Vitro. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:871-884. [PMID: 33230482 PMCID: PMC7658580 DOI: 10.1016/j.omtn.2020.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022]
Abstract
We investigated whether microRNA-150 (miR-150)-based RNA interference (RNAi) ameliorates tubular injury and tubulointerstitial fibrosis. Mice injected with folic acid developed tubulointerstitial fibrosis at day 30. miR-150 levels were increased at day 7 and peaked at day 30. At day 30, protein levels of α-smooth muscle actin, fibronectin (FN), and collagen 1 (COL-1) were increased, while suppressor of cytokine signal 1 (SOCS1) was decreased. Kidneys manifested increased macrophage numbers and increased expression of potential mediators: interferon-γ, interleukin-6, and tumor necrosis factor-α. Locked nucleic acid-anti-miR-150, started prior to or after tubular injury and administered twice weekly for 4 weeks, reversed renal inflammation and fibrosis. In HK-2 cells, co-culture with macrophages increased miR-150 expression and decreased SOCS1. Janus kinase (JAK) and signal transducer and activators of transcription (STAT) pathway-related proteins p-JAK1, p-JAK2, p-STAT1, p-STAT3, and pro-fibrotic genes encoding α-smooth muscle actin, FN, and COL-1 were all upregulated. The miR-150 antagonist reversed these transcriptional changes. Lastly, in renal biopsies from patients with chronic interstitial fibrosis, renal miR-150, and pro-fibrotic gene expression and macrophage numbers were increased, while SOCS1 expression was decreased. In conclusion, miR-150-based RNAi is as a potential novel therapeutic agent for tubulointerstitial fibrosis, suppressing the SOCS1/JAK/STAT pathway and reducing macrophage influx.
Collapse
Affiliation(s)
- Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Dongdong Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Congcong Jiao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiangfei Cui
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengjie Chen
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Dan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peter S.T. Yuen
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, MD, USA
| | | | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
45
|
Sudharson S, Kokil P. An ensemble of deep neural networks for kidney ultrasound image classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 197:105709. [PMID: 32889406 DOI: 10.1016/j.cmpb.2020.105709] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic kidney disease is a worldwide health issue which includes not only kidney failure but also complications of reduced kidney functionality. Cyst formation, nephrolithiasis or kidney stone, and renal cell carcinoma or kidney tumor are the common kidney disorders which affects the functionality of kidneys. These disorders are typically asymptomatic, therefore early and automatic diagnosis of kidney disorders are required to avoid serious complications. METHODS This paper proposes an automatic classification of B-mode kidney ultrasound images based on the ensemble of deep neural networks (DNNs) using transfer learning. The ultrasound images are usually affected by speckle noise and quality selection in the ultrasound image is based on perception-based image quality evaluator score. Three variant datasets are given to the pre-trained DNN models for feature extraction followed by support vector machine for classification. The ensembling of different pre-trained DNNs like ResNet-101, ShuffleNet, and MobileNet-v2 are combined and final predictions are done by using the majority voting technique. By combining the predictions from multiple DNNs the ensemble model shows better classification performance than the individual models. The presented method proved its superiority when compared to the conventional and DNN based classification methods. The developed ensemble model classifies the kidney ultrasound images into four classes, namely, normal, cyst, stone, and tumor. RESULTS To highlight effectiveness of the proposed approach, the ensemble based approach is compared with the existing state-of-the-art methods and tested in the variants of ultrasound images like in quality and noisy conditions. The presented method resulted in maximum classification accuracy of 96.54% in testing with quality images and 95.58% in testing with noisy images. The performance of the presented approach is evaluated based on accuracy, sensitivity, and selectivity. CONCLUSIONS From the experimental analysis, it is clear that the ensemble of DNNs classifies the majority of images correctly and results in maximum classification accuracy as compared to the existing methods. This automatic classification approach is a supporting tool for the radiologists and nephrologists for precise diagnosis of kidney diseases.
Collapse
Affiliation(s)
- S Sudharson
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai 600127, India
| | - Priyanka Kokil
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai 600127, India.
| |
Collapse
|
46
|
Fragiadaki M, Macleod FM, Ong ACM. The Controversial Role of Fibrosis in Autosomal Dominant Polycystic Kidney Disease. Int J Mol Sci 2020; 21:ijms21238936. [PMID: 33255651 PMCID: PMC7728143 DOI: 10.3390/ijms21238936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is characterized by the progressive growth of cysts but it is also accompanied by diffuse tissue scarring or fibrosis. A number of recent studies have been published in this area, yet the role of fibrosis in ADPKD remains controversial. Here, we will discuss the stages of fibrosis progression in ADPKD, and how these compare with other common kidney diseases. We will also provide a detailed overview of some key mechanistic pathways to fibrosis in the polycystic kidney. Specifically, the role of the 'chronic hypoxia hypothesis', persistent inflammation, Transforming Growth Factor beta (TGFβ), Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) and microRNAs will be examined. Evidence for and against a pathogenic role of extracellular matrix during ADPKD disease progression will be provided.
Collapse
|
47
|
Cordido A, Cernadas E, Fernández-Delgado M, García-González MA. CystAnalyser: A new software tool for the automatic detection and quantification of cysts in Polycystic Kidney and Liver Disease, and other cystic disorders. PLoS Comput Biol 2020; 16:e1008337. [PMID: 33090995 PMCID: PMC7608985 DOI: 10.1371/journal.pcbi.1008337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/03/2020] [Accepted: 09/13/2020] [Indexed: 11/29/2022] Open
Abstract
The Polycystic Kidney Disease (PKD) is characterized by progressive renal cyst development and other extrarenal manifestation including Polycystic Liver Disease (PLD). Phenotypical characterization of animal models mimicking human diseases are commonly used, in order to, study new molecular mechanisms and identify new therapeutic approaches. The main biomarker of disease progression is total volume of kidney and liver in both human and mouse, which correlates with organ function. For this reason, the estimation of the number and area of the tissue occupied by cysts, is critical for the understanding of physiological mechanisms underlying the disease. In this regard, cystic index is a robust parameter commonly used to quantify the severity of the disease. To date, the vast majority of biomedical researchers use ImageJ as a software tool to estimate the cystic index by quantifying the cystic areas of histological images after thresholding. This tool has imitations of being inaccurate, largely due to incorrectly identifying non-cystic regions. We have developed a new software, named CystAnalyser (register by Universidade de Santiago de Compostela–USC, and Fundación Investigación Sanitaria de Santiago—FIDIS), that combines automatic image processing with a graphical user friendly interface that allows investigators to oversee and easily correct the image processing before quantification. CystAnalyser was able to generate a cystic profile including cystic index, number of cysts and cyst size. In order to test the CystAnalyser software, 795 cystic kidney, and liver histological images were analyzed. Using CystAnalyser there were no differences calculating cystic index automatically versus user input, except in specific circumstances where it was necessary for the user to distinguish between mildly cystic from non-cystic regions. The sensitivity and specificity of the number of cysts detected by the automatic quantification depends on the type of organ and cystic severity, with values 76.84–78.59% and 76.96–89.66% for the kidney and 87.29–93.80% and 63.42–86.07% for the liver. CystAnalyser, in addition, provides a new tool for estimating the number of cysts and a more specific measure of the cystic index than ImageJ. This study proposes CystAnalyser is a new robust and freely downloadable software tool for analyzing the severity of disease by quantifying histological images of cystic organs for routine biomedical research. CystAnalyser can be downloaded from https://citius.usc.es/transferencia/software/cystanalyser (for Windows and Linux) for research purposes. This work suggests CystAnalyser is the most reliable software tool currently available for the assessment of cystic pathologies including Polycystic Kidney Disease (PKD) and Polycystic Liver Disease (PLD). CystAnalyser combines automatic cyst recognition with a friendly graphical user interface, allowing user input prior to histological image quantification. CystAnalyser responds to the need to obtain reliable measurements of the universal biomarker for PKD and PLD disease progression, the Cystic index (area of cysts within the total area of tissue). This software tool is also able to calculate the number and size of cysts from the histological images. In summary, our results show that CystAnalyser overcomes the precision issues detected using the most commonly used software to date (ImageJ) for Cystic index quantification, offering users a reliable tool to easily characterize the phenotype and the pathophysiology of PKD and PLD in pre-clinical studies using animal models.
Collapse
Affiliation(s)
- Adrián Cordido
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain.,RedInRen RETIC, ISCIII, Spain
| | - Eva Cernadas
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS) Universidade de Santiago de Compostela, Rúa Xenaro de la Fuente Domínguez, Santiago de Compostela, Spain
| | - Manuel Fernández-Delgado
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS) Universidade de Santiago de Compostela, Rúa Xenaro de la Fuente Domínguez, Santiago de Compostela, Spain
| | - Miguel A García-González
- Grupo de Xenética e Bioloxía do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxía (No. 11), Instituto de Investigación Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain.,RedInRen RETIC, ISCIII, Spain.,Fundación Pública Galega de Medicina Xenómica-SERGAS, Complexo Hospitalario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
48
|
Abstract
Important advances have been made regarding the diagnosis and management of polycystic kidney diseases. Care of patients with polycystic kidney diseases has moved beyond supportive care for complications and chronic kidney disease to new potentially disease-modifying therapies. Recently, the role of noncoding RNAs, in particular microRNAs, has been described in polycystic kidney diseases. microRNAs are involved in the regulation of gene expression, in which PKD1, PKD2, and other genes that contribute to the pathogenesis of polycystic kidney diseases are considerable participants. Seminal studies have highlighted the potential importance of microRNAs as new therapeutic targets and innovative diagnostic and/or prognostic biomarkers. Furthermore, an anti-miR-17 drug has advanced through preclinical autosomal dominant polycystic disease studies, and an anti-miR-21 drug has already cleared a phase 1 clinical trial. Most probably, new drugs in the microRNA research field will be yielded as a result of ongoing and planned therapeutic trials. To provide a foundation for understanding microRNA functions as a disease-modifying therapeutic drug in novel targeted therapies, in this narrative review we present an overview of the current knowledge of microRNAs in the pathogenesis of polycystic kidney diseases.
Collapse
Affiliation(s)
| | - Liangzhong Sun
- Address for Correspondence: Liangzhong Sun, PhD, Department of Pediatrics, Nanfang Hospital, Southern Medical University, No. 1838, North Road, Guangzhou Avenue, Baiyun District, Guangzhou 510515, Guangdong Province, China.
| |
Collapse
|
49
|
Inhibition of miR-17~92 Cluster Ameliorates High Glucose-Induced Podocyte Damage. Mediators Inflamm 2020; 2020:6126490. [PMID: 32774146 PMCID: PMC7391105 DOI: 10.1155/2020/6126490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/13/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
The loss and damage of podocytes is an early feature of diabetic nephropathy (DN). The miR-17∼92 cluster was dysregulated in diabetic and polycystic kidney disease patients, but its role in DN is unclear. Hence, an in vitro study on the high glucose- (HG-) treated mouse podocytes (MPC5) was designed to elucidate the effect of miR-17∼92 cluster downregulation on cell viability, apoptosis, inflammation, fibrosis, and podocyte function. The results suggested that the miR-17∼92 cluster members miR-17-5p, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a were upregulated in the renal biopsy tissue of DN patients and HG-treated MPC5. The downregulation of the miR-17∼92 cluster effectively suppressed the cell apoptosis, inflammation, fibrosis, and podocyte dysfunction in HG-stimulated MPC5 cells. The bioinformatics analysis and rescue experiments showed that ABCA1 (ATP-binding cassette transporter A1) is an effector of the miR-17~92 cluster. Silence of ABCA1 inhibited the protective effect of the miR-17∼92 cluster downregulation on podocyte damage. In summary, this research indicated that the downregulation of the miR-17∼92 cluster ameliorates HG-induced podocyte damage via targeting ABCA1.
Collapse
|
50
|
Zhang J, Jiang Z, Hu X, Song B. A novel graph attention adversarial network for predicting disease-related associations. Methods 2020; 179:81-88. [PMID: 32446956 DOI: 10.1016/j.ymeth.2020.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022] Open
Abstract
Identifying complex human diseases at molecular level is very helpful, especially in diseases diagnosis, therapy, prognosis and monitoring. Accumulating evidences demonstrated that RNAs are playing important roles in identifying various complex human diseases. However, the amount of verified disease-related RNAs is still little while many of their biological experiments are very time-consuming and labor-intensive. Therefore, researchers have instead been seeking to develop effective computational algorithms to predict associations between diseases and RNAs. In this paper, we propose a novel model called Graph Attention Adversarial Network (GAAN) for the potential disease-RNA association prediction. To our best knowledge, we are among the pioneers to integrate successfully both the state-of-the-art graph convolutional networks (GCNs) and attention mechanism in our model for the prediction of disease-RNA associations. Comparing to other disease-RNA association prediction methods, GAAN is novel in conducting the computations from the aspect of global structure of disease-RNA network with graph embedding while integrating features of local neighborhoods with the attention mechanism. Moreover, GAAN uses adversarial regularization to further discover feature representation distribution of the latent nodes in disease-RNA networks. GAAN also benefits from the efficiency of deep model for the computation of big associations networks. To evaluate the performance of GAAN, we conduct experiments on networks of diseases associating with two different RNAs: MicroRNAs (miRNAs) and Long non-coding RNAs (lncRNAs). Comparisons of GAAN with several popular baseline methods on disease-RNA networks show that our novel model outperforms others by a wide margin in predicting potential disease-RNAs associations.
Collapse
Affiliation(s)
- Jinli Zhang
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.
| | - Zongli Jiang
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.
| | - Xiaohua Hu
- College of Computing and Informatics, Drexel University, Philadelphia, PA 19104, USA.
| | - Bo Song
- College of Computing and Informatics, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|