1
|
Kodikara IK, Pflum MKH. Scaffolding Activities of Pseudodeacetylase HDAC7. ACS Chem Biol 2025; 20:248-258. [PMID: 39908122 PMCID: PMC12051139 DOI: 10.1021/acschembio.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Histone deacetylase (HDAC) enzymes remove acetyl groups from acetyllysine-containing proteins, including nucleosomal histones to control gene expression. Beyond fundamental cell biology, HDAC activity is linked to various cancers, with many HDAC inhibitors developed as anticancer therapeutics. Among the 11 metal-dependent HDAC proteins, the four class IIa isoforms (HDAC4, 5, 7, and 9) are "pseudodeacetylases" without measurable enzymatic activity due to mutation of a catalytic tyrosine. Deacetylase-related activities of class IIa HDAC proteins are attributed to scaffolding functions, where recruitment of an active HDAC isoform leads to bound substrate deacetylation. Scaffolding of class IIa proteins beyond simple recruitment of an active HDAC is only starting to emerge. This review explores the various scaffolding roles of HDAC7, including recently reported acetylation-mediated reversible scaffolding, which is a form of acetyllysine-binding reader function. Studying the functional roles of HDAC7 will provide molecular insight into normal and pathological conditions, which could facilitate drug design.
Collapse
Affiliation(s)
- Ishadi K.M. Kodikara
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| | - Mary Kay H. Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| |
Collapse
|
2
|
Chen X, Li Y, Xu J, Cui Y, Wu Q, Yin H, Li Y, Gao C, Jiang L, Wang H, Wen Z, Yao Z, Wu Z. Styxl2 regulates de novo sarcomere assembly by binding to non-muscle myosin IIs and promoting their degradation. eLife 2024; 12:RP87434. [PMID: 38829202 PMCID: PMC11147509 DOI: 10.7554/elife.87434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Styxl2, a poorly characterized pseudophosphatase, was identified as a transcriptional target of the Jak1-Stat1 pathway during myoblast differentiation in culture. Styxl2 is specifically expressed in vertebrate striated muscles. By gene knockdown in zebrafish or genetic knockout in mice, we found that Styxl2 plays an essential role in maintaining sarcomere integrity in developing muscles. To further reveal the functions of Styxl2 in adult muscles, we generated two inducible knockout mouse models: one with Styxl2 being deleted in mature myofibers to assess its role in sarcomere maintenance, and the other in adult muscle satellite cells (MuSCs) to assess its role in de novo sarcomere assembly. We find that Styxl2 is not required for sarcomere maintenance but functions in de novo sarcomere assembly during injury-induced muscle regeneration. Mechanistically, Styxl2 interacts with non-muscle myosin IIs, enhances their ubiquitination, and targets them for autophagy-dependent degradation. Without Styxl2, the degradation of non-muscle myosin IIs is delayed, which leads to defective sarcomere assembly and force generation. Thus, Styxl2 promotes de novo sarcomere assembly by interacting with non-muscle myosin IIs and facilitating their autophagic degradation.
Collapse
Affiliation(s)
- Xianwei Chen
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Yanfeng Li
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Jin Xu
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Yong Cui
- School of Life Sciences, Chinese University of Hong KongHong KongChina
| | - Qian Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Haidi Yin
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Yuying Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong KongHong KongChina
| | - Chuan Gao
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Liwen Jiang
- School of Life Sciences, Chinese University of Hong KongHong KongChina
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong KongHong KongChina
| | - Zilong Wen
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Zhongping Yao
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Zhenguo Wu
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| |
Collapse
|
3
|
Hinton SD. Understanding Pseudophosphatase Function Through Biochemical Interactions. Methods Mol Biol 2024; 2743:21-41. [PMID: 38147206 DOI: 10.1007/978-1-0716-3569-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Pseudophosphatases have been solidified as important signaling molecules that regulate signal transduction cascades. However, their mechanisms of action remain enigmatic. Reflecting this mystery, the prototypical pseudophosphatase STYX (phospho-serine-threonine/tyrosine-binding protein) was named with allusion to the river of the dead in Greek mythology to emphasize that these molecules are "dead" phosphatases. Although proteins with STYX domains do not catalyze dephosphorylation, this does not preclude their having other functions, including as integral elements of signaling networks. Thus, understanding their roles may mark them as potential novel drug targets. This chapter outlines common strategies used to characterize the functions of pseudophosphatases, using as an example MK-STYX [MAPK (mitogen-activated protein kinase) phospho-serine-threonine/tyrosine-binding], which has been linked to tumorigenesis, hepatocellular carcinoma, glioblastoma, apoptosis, and neuronal differentiation. We start with the importance of "restoring" (when possible) phosphatase activity in a pseudophosphatase, so the active mutant may be used as a comparison control throughout immunoprecipitation and mass spectrometry analyses. To this end, we provide protocols for site-directed mutagenesis, mammalian cell transfection, co-immunoprecipitation, phosphatase activity assays, and immunoblotting that we have used to investigate MK-STYX and the active mutant MK-STYXactive. We also highlight the importance of utilizing RNA interference (RNAi) "knockdown" technology to determine a cellular phenotype in various cell lines. Therefore, we outline our protocols for introducing short hairpin RNA (shRNA) expression plasmids into mammalian cells and quantifying knockdown of gene expression with real-time quantitative PCR (qPCR). We also provide a bioinformatic approach to investigating MK-STYX and MK-STYX(active mutant). These bioinformatic approaches can stand alone experimentally but also complement and enhance "wet" bench approaches such as binding assays and/or activity assays. A combination of cellular, molecular, biochemical, proteomic, and bioinformatic techniques has been a powerful tool in identifying novel functions of MK-STYX. Likewise, the information provided here should be a helpful guide to elucidating the functions of other pseudophosphatases.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, College of William and Mary, Williamsburg, VA, USA.
| |
Collapse
|
4
|
Smailys J, Jiang F, Prioleau T, Kelley K, Mitchell O, Nour S, Ali L, Buchser W, Zavada L, Hinton SD. The DUSP domain of pseudophosphatase MK-STYX interacts with G3BP1 to decrease stress granules. Arch Biochem Biophys 2023; 744:109702. [PMID: 37516290 PMCID: PMC10500436 DOI: 10.1016/j.abb.2023.109702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Mitogen activated protein kinase phosphoserine/threonine/tyrosine-binding protein (MK-STYX) is a dual specificity (DUSP) member of the protein tyrosine phosphatase family. It is a pseudophosphatase, which lacks the essential amino acids histidine and cysteine in the catalytic active signature motif (HCX5R). We previously reported that MK-STYX interacts with G3BP1 [Ras-GAP (GTPase-activating protein) SH3 (Src homology 3) domain-binding-1] and reduces stress granules, stalled mRNA. To determine how MK-STYX reduces stress granules, truncated domains, CH2 (cell division cycle 25 phosphatase homology 2) and DUSP, of MK-STYX were used. Wild-type MK-STYX and the DUSP domain significantly decreased stressed granules that were induced by sodium arsenite, in which G3BP1 (a stress granule nucleator) was used as the marker. In addition, HEK/293 and HeLa cells co-expressing G3BP1-GFP and mCherry-MK-STYX, mCherry-MK-STYX-CH2, mCherry-MK-STYX-DUSP or mCherry showed that stress granules were significantly decreased in the presence of wild-type MK-STYX and the DUSP domain of MK-STYX. Further characterization of these dynamics in HeLa cells showed that the CH2 domain increased the number of stress granules within a cell, relative to wild-type and DUSP domain of MK-STYX. To further analyze the interaction of G3BP1 and the domains of MK-STYX, coimmunoprecipitation experiments were performed. Cells co-expressing G3BP1-GFP and mCherry, mCherry-MK-STYX, mCherry-MK-STYX-CH2, or mCherry-MK-STYX-DUSP demonstrated that the DUSP domain of MK-STYX interacts with both G3BP1-GFP and endogenous G3BP1, whereas the CH2 domain of MK-STYX did not coimmunoprecipitate with G3BP1. In addition, G3BP1 tyrosine phosphorylation, which is required for stress granule formation, was decreased in the presence of wild-type MK-STYX or the DUSP domain but increased in the presence of CH2. These data highlight a model for how MK-STYX decreases G3BP1-induced stress granules. The DUSP domain of MK-STYX interacts with G3BP1 and negatively alters its tyrosine phosphorylation- decreasing stress granule formation.
Collapse
Affiliation(s)
- Jonathan Smailys
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Fei Jiang
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Tatiana Prioleau
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Kylan Kelley
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA; Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - Olivia Mitchell
- Department of Biology, Hampton University, Hampton, VA, 23666, USA
| | - Samah Nour
- Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - Lina Ali
- Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - William Buchser
- Department of Genetics, Washington University, St. Louis, MO, 63110, USA
| | - Lynn Zavada
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA
| | - Shantá D Hinton
- Department of Biology, Integrated Science Center, William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
5
|
Morano AA, Rudlaff RM, Dvorin JD. A PPP-type pseudophosphatase is required for the maintenance of basal complex integrity in Plasmodium falciparum. Nat Commun 2023; 14:3916. [PMID: 37400439 DOI: 10.1038/s41467-023-39435-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
During its asexual blood stage, P. falciparum replicates via schizogony, wherein dozens of daughter cells are formed within a single parent. The basal complex, a contractile ring that separates daughter cells, is critical for schizogony. In this study, we identify a Plasmodium basal complex protein essential for basal complex maintenance. Using multiple microscopy techniques, we demonstrate that PfPPP8 is required for uniform basal complex expansion and maintenance of its integrity. We characterize PfPPP8 as the founding member of a novel family of pseudophosphatases with homologs in other Apicomplexan parasites. By co-immunoprecipitation, we identify two additional new basal complex proteins. We characterize the unique temporal localizations of these new basal complex proteins (late-arriving) and of PfPPP8 (early-departing). In this work, we identify a novel basal complex protein, determine its specific role in segmentation, identify a new pseudophosphatase family, and establish that the P. falciparum basal complex is a dynamic structure.
Collapse
Affiliation(s)
- Alexander A Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Rachel M Rudlaff
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Patel S, Bhatt AM, Bhansali P, Setty SRG. Pseudophosphatase STYXL1 depletion enhances glucocerebrosidase trafficking to lysosomes via ER stress. Traffic 2023; 24:254-269. [PMID: 37198709 DOI: 10.1111/tra.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of β-glucocerebrosidase (β-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated β-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the β-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.
Collapse
Affiliation(s)
- Saloni Patel
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anshul Milap Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Almowallad S, Alqahtani LS, Mobashir M. NF-kB in Signaling Patterns and Its Temporal Dynamics Encode/Decode Human Diseases. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122012. [PMID: 36556376 PMCID: PMC9788026 DOI: 10.3390/life12122012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Defects in signaling pathways are the root cause of many disorders. These malformations come in a wide variety of types, and their causes are also very diverse. Some of these flaws can be brought on by pathogenic organisms and viruses, many of which can obstruct signaling processes. Other illnesses are linked to malfunctions in the way that cell signaling pathways work. When thinking about how errors in signaling pathways might cause disease, the idea of signalosome remodeling is helpful. The signalosome may be conveniently divided into two types of defects: phenotypic remodeling and genotypic remodeling. The majority of significant illnesses that affect people, including high blood pressure, heart disease, diabetes, and many types of mental illness, appear to be caused by minute phenotypic changes in signaling pathways. Such phenotypic remodeling modifies cell behavior and subverts normal cellular processes, resulting in illness. There has not been much progress in creating efficient therapies since it has been challenging to definitively confirm this connection between signalosome remodeling and illness. The considerable redundancy included into cell signaling systems presents several potential for developing novel treatments for various disease conditions. One of the most important pathways, NF-κB, controls several aspects of innate and adaptive immune responses, is a key modulator of inflammatory reactions, and has been widely studied both from experimental and theoretical perspectives. NF-κB contributes to the control of inflammasomes and stimulates the expression of a number of pro-inflammatory genes, including those that produce cytokines and chemokines. Additionally, NF-κB is essential for controlling innate immune cells and inflammatory T cells' survival, activation, and differentiation. As a result, aberrant NF-κB activation plays a role in the pathogenesis of several inflammatory illnesses. The activation and function of NF-κB in relation to inflammatory illnesses was covered here, and the advancement of treatment approaches based on NF-κB inhibition will be highlighted. This review presents the temporal behavior of NF-κB and its potential relevance in different human diseases which will be helpful not only for theoretical but also for experimental perspectives.
Collapse
Affiliation(s)
- Sanaa Almowallad
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
- Correspondence: (L.S.A.); (M.M.)
| | - Mohammad Mobashir
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, P.O. Box 1031, S-17121 Stockholm, Sweden
- Department of Biosciences, Faculty of Natural Science, Jamia Millia Islamia, New Delhi 110025, India
- Special Infectious Agents Unit—BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Correspondence: (L.S.A.); (M.M.)
| |
Collapse
|
8
|
Liu D, Zhang Y, Fang H, Yuan J, Ji L. The progress of research into pseudophosphatases. Front Public Health 2022; 10:965631. [PMID: 36106167 PMCID: PMC9464862 DOI: 10.3389/fpubh.2022.965631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023] Open
Abstract
Pseudophosphatases are a class of phosphatases that mutate at the catalytically active site. They play important parts in many life processes and disorders, e.g., cell apoptosis, stress reaction, tumorigenesis, axon differentiation, Charcot-Marie-Tooth, and metabolic dysfunction. The present review considers the structures and action types of pseudophosphatases in four families, protein tyrosine phosphatases (PTPs), myotube protein phosphatases (MTMs), phosphatases and tensin homologues (PTENs) and dual specificity phosphatases (DUSPs), as well as their mechanisms in signaling and disease. We aimed to provide reference material for the research and treatment of related diseases.
Collapse
Affiliation(s)
- Deqiang Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yiming Zhang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Fang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jinxiang Yuan
- College of Life Sciences, Shandong Normal University, Jinan, China,The Collaborative Innovation Center, Jining Medical University, Jining, China,*Correspondence: Jinxiang Yuan
| | - Lizhen Ji
- College of Life Sciences, Shandong Normal University, Jinan, China,Lizhen Ji
| |
Collapse
|
9
|
Evolutionary genomic relationships and coupling in MK-STYX and STYX pseudophosphatases. Sci Rep 2022; 12:4139. [PMID: 35264672 PMCID: PMC8907265 DOI: 10.1038/s41598-022-07943-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
The dual specificity phosphatase (DUSP) family has catalytically inactive members, called pseudophosphatases. They have mutations in their catalytic motifs that render them enzymatically inactive. This study analyzes the significance of two pseudophosphatases, MK-STYX [MAPK (mitogen-activated protein kinase phosphoserine/threonine/tyrosine-binding protein]) and STYX (serine/threonine/tyrosine-interacting protein), throughout their evolution and provides measurements and comparison of their evolutionary conservation. Phylogenetic trees were constructed to show any deviation from various species evolutionary paths. Data was collected on a large set of proteins that have either one of the two domains of MK-STYX, the DUSP domain or the cdc-25 homology (CH2) /rhodanese-like domain. The distance between species pairs for MK-STYX or STYX and Ka/Ks ratio were calculated. In addition, both pseudophosphatases were ranked among a large set of related proteins, including the active homologs of MK-STYX, MKP (MAPK phosphatase)-1 and MKP-3. MK-STYX had one of the highest species-species protein distances and was under weaker purifying selection pressure than most proteins with its domains. In contrast, the protein distances of STYX were lower than 82% of the DUSP-containing proteins and was under one of the strongest purifying selection pressures. However, there was similar selection pressure on the N-terminal sequences of MK-STYX, STYX, MKP-1, and MKP-3. We next perform statistical coupling analysis, a process that reveals interconnected regions within the proteins. We find that while MKP-1,-3, and STYX all have 2 functional units (sectors), MK-STYX only has one, and that MK-STYX is similar to MKP-3 in the evolutionary coupling of the active site and KIM domain. Within those two domains, the mean coupling is also most similar for MK-STYX and MKP-3. This study reveals striking distinctions between the evolutionary patterns of MK-STYX and STYX, suggesting a very specific role for each pseudophosphatase, further highlighting the relevance of these atypical members of DUSP as signaling regulators. Therefore, our study provides computational evidence and evolutionary reasons to further explore the properties of pseudophosphatases, in particular MK-STYX and STYX.
Collapse
|
10
|
Pseudophosphatase STYX is induced by Helicobacter pylori and promotes gastric cancer progression by inhibiting FBXO31 function. Cell Death Dis 2022; 13:268. [PMID: 35338113 PMCID: PMC8956710 DOI: 10.1038/s41419-022-04696-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/09/2022]
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world and ranks third in terms of cancer-related deaths. The catalytically inactive pseudophosphatase STYX (serine/threonine/tyrosine interacting protein) is a member of the protein tyrosine phosphatase family. It has been recently reported that STYX functions as a potential oncogene in different types of cancers. However, the potential role and regulatory mechanism of STYX in GC remains unknown. In this study, we find that STYX is highly expressed in GC tissues compared with adjacent noncancerous tissues and closely correlates with the prognosis of GC patients. STYX overexpression facilitates the proliferation and migration in GC cells, whereas STYX knockdown has the opposite effects. Nude mice experiments indicate that STYX knockdown in GC cells dramatically suppresses the tumor growth and lung metastasis in vivo. Mechanically, our results suggest that STYX interacts with the F-box protein FBXO31 and disrupts the degradation function of FBXO31 to its target proteins CyclinD1 and Snail1, thereby increasing the level of CyclinD1 and Snail1 in GC. STYX-mediated biological changes can be reversed by the co-expression of STYX and FBXO31 in GC cells. In addition, transcription factor c-Jun can enhance the expression of STYX in GC. The expression of STYX can also be induced by Helicobacter pylori (H. pylori) infection in c-Jun-dependent manner. Together, our present study suggests that STYX plays an oncogenic role in GC by inhibiting FBXO31 function and represents a potential therapeutic target and prognostic biomarker in GC.
Collapse
|
11
|
Relationship Between Dimensionality and Convergence of Optimization Algorithms: A Comparison Between Data-Driven Normalization and Scaling Factor-Based Methods Using PEPSSBI. Methods Mol Biol 2022; 2385:91-115. [PMID: 34888717 PMCID: PMC9446379 DOI: 10.1007/978-1-0716-1767-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ordinary differential equation models are used to represent intracellular signaling pathways in silico, aiding and guiding biological experiments to elucidate intracellular regulation. To construct such quantitative and predictive models of intracellular interactions, unknown parameters need to be estimated. Most of biological data are expressed in relative or arbitrary units, raising the question of how to compare model simulations with data. It has recently been shown that for models with large number of unknown parameters, fitting algorithms using a data-driven normalization of the simulations (DNS) performs best in terms of the convergence time and parameter identifiability. DNS approach compares model simulations and corresponding data both normalized by the same normalization procedure, without requiring additional parameters to be estimated, as necessary for widely used scaling factor-based methods. However, currently there is no parameter estimation software that directly supports DNS. In this chapter, we show how to apply DNS to dynamic models of systems and synthetic biology using PEPSSBI (Parameter Estimation Pipeline for Systems and Synthetic Biology). PEPSSBI is the first software that supports DNS, through algorithmically supported data normalization and objective function construction. PEPSSBI also supports model import using SBML and repeated parameter estimation runs executed in parallel either on a personal computer or a multi-CPU cluster.
Collapse
|
12
|
Pseudophosphatases as Regulators of MAPK Signaling. Int J Mol Sci 2021; 22:ijms222212595. [PMID: 34830476 PMCID: PMC8622459 DOI: 10.3390/ijms222212595] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are highly conserved regulators of eukaryotic cell function. These enzymes regulate many biological processes, including the cell cycle, apoptosis, differentiation, protein biosynthesis, and oncogenesis; therefore, tight control of the activity of MAPK is critical. Kinases and phosphatases are well established as MAPK activators and inhibitors, respectively. Kinases phosphorylate MAPKs, initiating and controlling the amplitude of the activation. In contrast, MAPK phosphatases (MKPs) dephosphorylate MAPKs, downregulating and controlling the duration of the signal. In addition, within the past decade, pseudoenzymes of these two families, pseudokinases and pseudophosphatases, have emerged as bona fide signaling regulators. This review discusses the role of pseudophosphatases in MAPK signaling, highlighting the function of phosphoserine/threonine/tyrosine-interacting protein (STYX) and TAK1-binding protein (TAB 1) in regulating MAPKs. Finally, a new paradigm is considered for this well-studied cellular pathway, and signal transduction pathways in general.
Collapse
|
13
|
Rao S, Hoskins I, Tonn T, Garcia PD, Ozadam H, Sarinay Cenik E, Cenik C. Genes with 5' terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein. RNA (NEW YORK, N.Y.) 2021; 27:1025-1045. [PMID: 34127534 PMCID: PMC8370740 DOI: 10.1261/rna.078661.120] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/08/2021] [Indexed: 05/05/2023]
Abstract
Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a nonstructural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation levels. We discover that a functionally coherent subset of human genes is preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5' terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes. Using reporter assays, we validated that 5' UTRs from TOP transcripts can drive preferential expression in the presence of Nsp1. Finally, we found that LARP1, a key effector protein in the mTOR pathway, may contribute to preferential translation of TOP transcripts in response to Nsp1 expression. Collectively, our study suggests fine-tuning of host gene expression and translation by Nsp1 despite its global repressive effect on host protein synthesis.
Collapse
Affiliation(s)
- Shilpa Rao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Ian Hoskins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Tori Tonn
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - P Daniela Garcia
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
14
|
Mattei AM, Smailys JD, Hepworth EMW, Hinton SD. The Roles of Pseudophosphatases in Disease. Int J Mol Sci 2021; 22:ijms22136924. [PMID: 34203203 PMCID: PMC8269279 DOI: 10.3390/ijms22136924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
The pseudophosphatases, atypical members of the protein tyrosine phosphatase family, have emerged as bona fide signaling regulators within the past two decades. Their roles as regulators have led to a renaissance of the pseudophosphatase and pseudoenyme fields, catapulting interest from a mere curiosity to intriguing and relevant proteins to investigate. Pseudophosphatases make up approximately fourteen percent of the phosphatase family, and are conserved throughout evolution. Pseudophosphatases, along with pseudokinases, are important players in physiology and pathophysiology. These atypical members of the protein tyrosine phosphatase and protein tyrosine kinase superfamily, respectively, are rendered catalytically inactive through mutations within their catalytic active signature motif and/or other important domains required for catalysis. This new interest in the pursuit of the relevant functions of these proteins has resulted in an elucidation of their roles in signaling cascades and diseases. There is a rapid accumulation of knowledge of diseases linked to their dysregulation, such as neuropathies and various cancers. This review analyzes the involvement of pseudophosphatases in diseases, highlighting the function of various role(s) of pseudophosphatases involvement in pathologies, and thus providing a platform to strongly consider them as key therapeutic drug targets.
Collapse
|
15
|
Rao S, Hoskins I, Tonn T, Garcia PD, Ozadam H, Cenik ES, Cenik C. Genes with 5' terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.09.13.295493. [PMID: 32995776 PMCID: PMC7523102 DOI: 10.1101/2020.09.13.295493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a non-structural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-Seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation level. We discover a functionally-coherent subset of human genes are preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5' terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes. Using reporter assays, we validated that 5' UTRs from TOP transcripts can drive preferential expression in the presence of NSP1. Finally, we found that LARP1, a key effector protein in the mTOR pathway may contribute to preferential translation of TOP transcripts in response to Nsp1 expression. Collectively, our study suggests fine tuning of host gene expression and translation by Nsp1 despite its global repressive effect on host protein synthesis.
Collapse
Affiliation(s)
- Shilpa Rao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Ian Hoskins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Tori Tonn
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - P. Daniela Garcia
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Elif Sarinay Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
16
|
Bhattacharyya T, Sowdhamini R. Genome-wide survey of tyrosine phosphatases in thirty mammalian genomes. Cell Signal 2021; 84:110009. [PMID: 33848580 DOI: 10.1016/j.cellsig.2021.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022]
Abstract
The age of genomics has given us a wealth of information and the tools to study whole genomes. This, in turn, has facilitated genome-wide studies among organisms that were relatively less studied in the pre-genomic era or are non-model organisms. This paves the way to the discovery of interesting evolutionary patterns, which are brought to light by genome-wide surveys of protein superfamilies. Phosphorylation is a post-translational modification that is utilised across all clades of life, and acts as an important signalling switch, regulating several cellular processes. Tyrosine phosphatases, which are found predominantly in eukaryotes, act on phosphorylated tyrosine residues and sometimes on other substrates. Extending on our previous effort to look for tyrosine phosphatases in the human genome, we have looked for sequences of the cysteine-based tyrosine phosphatase superfamily in thirty mammalian genomes from all across Mammalia and validated the sequences with the presence of the signature catalytic motif. Domain architecture annotation, followed by in-depth analysis, revealed interesting taxon-specific patterns such as subtle differences between the protein families in marsupials and early mammals versus placental mammals. Finally, we discuss an interesting case of loss of the tyrosine phosphatase domain from a gene product in the course of eutherian evolution.
Collapse
Affiliation(s)
- Teerna Bhattacharyya
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, Karnataka, 560 065, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, Karnataka, 560 065, India.
| |
Collapse
|
17
|
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H. The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS J 2020; 287:4198-4220. [PMID: 32484316 DOI: 10.1111/febs.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.
Collapse
Affiliation(s)
| | | | - Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | | | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
18
|
Liu L, Jiang H, Wang X, Wang X, Zou L. STYX/FBXW7 axis participates in the development of endometrial cancer cell via Notch-mTOR signaling pathway. Biosci Rep 2020; 40:BSR20200057. [PMID: 32239181 PMCID: PMC7167255 DOI: 10.1042/bsr20200057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in world. It has been reported that the mutation rate of FBXW7 is frequent in EC, but the specific functions of FBXW7 remain unknown in EC. In the present study, we revealed the role and mechanism of FBXW7 in EC cells. Compared with adjacent nontumor tissues, the FBXW7 expression level was lower in EC tissues. However, the level of STYX was in contrast with the expression of FBXW7 in EC tissues. And STYX interacted with FBXW7 and then down-regulated its expression level in EC. Over-expression of FBXW7 inhibited cell proliferation and facilitated apoptosis in EC cells, whereas silencing FBXW7 acted an opposite effect on EC cells. And the process of FBXW7 participated the proliferation and apoptosis in EC was regulated by STYX. FBXW7 suppressed the expression of Notch pathway related protein, and further inhibited the phosphorylation of mTOR. In addition, we also found that mTOR activitor (MHY1485) and Notch activator (Jagged-1) reversed the effect of over-expressing FBXW7 on cell proliferation and cell apoptosis. And Notch inhibitor (DAPT) counteracted the impact of over-expressing STYX on cell proliferation and cell apoptosis. Collectively, the present study verified that STYX inhibited the expression level of FBXW7 in EC, and then promoted cell proliferation but suppressed apoptosis through Notch-mTOR signaling pathway, which promoted carcinogenesis and progression of EC.
Collapse
Affiliation(s)
- Liheng Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Haili Jiang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Xiaoxin Wang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Xin Wang
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Liying Zou
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| |
Collapse
|
19
|
Zaru R, Magrane M, Orchard S. Challenges in the annotation of pseudoenzymes in databases: the UniProtKB approach. FEBS J 2019; 287:4114-4127. [PMID: 31618524 DOI: 10.1111/febs.15100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
The universal protein knowledgebase (UniProtKB) collects and centralises functional information on proteins across a wide range of species. In addition to the functional information added to all protein entries, for enzymes, which represent 20-40% of most proteomes, UniProtKB provides additional information about Enzyme Commission classification, catalytic activity, cofactors, enzyme regulation, kinetics and pathways, all based on critical assessment of published experimental data. Computer-based analysis and structural data are used to enrich the annotation of the sequence through the identification of active sites and binding sites. While the annotation of enzymes is well-defined, the curation of pseudoenzymes in UniProtKB has highlighted some challenges: how to identify them, how to assess their lack of catalytic activity, how to annotate their lack of catalytic activity in a consistent way and how much can be inferred and propagated from experimental data obtained from other species. Through various examples, we illustrate some of these issues and discuss some of the changes we propose to enhance the annotation and discovery of pseudoenzymes. Ultimately, improving the curation of pseudoenzymes will provide the scientific community with a comprehensive resource for pseudoenzymes, which in turn will lead to a better understanding of the evolution of these molecules, the aetiology of related diseases and the development of drugs.
Collapse
Affiliation(s)
- Rossana Zaru
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| | - Michele Magrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| | -
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK.,SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Geneva, Switzerland.,Protein Information Resource, Georgetown University Medical Center, Washington, DC, USA.,Protein Information Resource, University of Delaware, Newark, DE, USA
| |
Collapse
|
20
|
Ribeiro AJM, Das S, Dawson N, Zaru R, Orchard S, Thornton JM, Orengo C, Zeqiraj E, Murphy JM, Eyers PA. Emerging concepts in pseudoenzyme classification, evolution, and signaling. Sci Signal 2019; 12:eaat9797. [PMID: 31409758 DOI: 10.1126/scisignal.aat9797] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 21st century is witnessing an explosive surge in our understanding of pseudoenzyme-driven regulatory mechanisms in biology. Pseudoenzymes are proteins that have sequence homology with enzyme families but that are proven or predicted to lack enzyme activity due to mutations in otherwise conserved catalytic amino acids. The best-studied pseudoenzymes are pseudokinases, although examples from other families are emerging at a rapid rate as experimental approaches catch up with an avalanche of freely available informatics data. Kingdom-wide analysis in prokaryotes, archaea and eukaryotes reveals that between 5 and 10% of proteins that make up enzyme families are pseudoenzymes, with notable expansions and contractions seemingly associated with specific signaling niches. Pseudoenzymes can allosterically activate canonical enzymes, act as scaffolds to control assembly of signaling complexes and their localization, serve as molecular switches, or regulate signaling networks through substrate or enzyme sequestration. Molecular analysis of pseudoenzymes is rapidly advancing knowledge of how they perform noncatalytic functions and is enabling the discovery of unexpected, and previously unappreciated, functions of their intensively studied enzyme counterparts. Notably, upon further examination, some pseudoenzymes have previously unknown enzymatic activities that could not have been predicted a priori. Pseudoenzymes can be targeted and manipulated by small molecules and therefore represent new therapeutic targets (or anti-targets, where intervention should be avoided) in various diseases. In this review, which brings together broad bioinformatics and cell signaling approaches in the field, we highlight a selection of findings relevant to a contemporary understanding of pseudoenzyme-based biology.
Collapse
Affiliation(s)
- António J M Ribeiro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sayoni Das
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Natalie Dawson
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rossana Zaru
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Christine Orengo
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, Molecular and Cellular Biology, Faculty of Biological Sciences, Astbury Building, Room 8.109, University of Leeds, Leeds LS2 9JT, UK
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
21
|
He D, Ma Z, Fang C, Ding J, Yang W, Chen P, Huang L, Wang C, Yu Y, Yang L, Li Y, Zhou Z. Pseudophosphatase STYX promotes tumor growth and metastasis by inhibiting FBXW7 function in colorectal cancer. Cancer Lett 2019; 454:53-65. [PMID: 30981757 DOI: 10.1016/j.canlet.2019.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 02/05/2023]
Abstract
Serine/threonine/tyrosine interacting protein (STYX), a member of protein tyrosine phosphatases, has recently been reported as a potential oncogene. However, the role of STYX in colorectal cancer (CRC) remains unknown. In this study, we found that STYX was highly expressed in CRC tissues and closely correlated with tumor development and survival of CRC patients. In vitro studies showed that overexpression of STYX promoted proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) and inhibited apoptosis in CRC cells, while STYX knockdown had the opposite effects. Consistently, in vivo experiments showed that overexpression of STYX promoted tumor growth and lung metastasis. Mechanically, STYX bound to the F-box and WD repeat domain-containing7 (FBXW7) protein and inhibited its function. Co-regulation of STYX and FBXW7 expression reversed the biological changes mediated by regulation of STYX expression alone in CRC cells. Additionally, FBXW7 expression was negatively associated with STYX expression in CRC tissues, and low STYX levels accompanying high FBXW7 levels predicted favorable prognosis of CRC patients. In conclusion, our results suggest that STYX plays an oncogenic role by inhibiting FBXW7 and represents a potential therapeutic target and prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Diao He
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zida Ma
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jingjing Ding
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenming Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peng Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Libin Huang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Cun Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yongyang Yu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lie Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yuan Li
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
22
|
Hinton SD. The role of pseudophosphatases as signaling regulators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:167-174. [PMID: 30077638 DOI: 10.1016/j.bbamcr.2018.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
Pseudophosphatases are atypical members of the protein tyrosine phosphatase superfamily. Mutations within their catalytic signature motif render them catalytically inactive. Despite this lack of catalytic function, pseudophosphatases have been implicated in various diseases such as Charcot Marie-Tooth disorder, cancer, metabolic disorder, and obesity. Moreover, they have roles in various signaling networks such as spermatogenesis, apoptosis, stress response, tumorigenesis, and neurite differentiation. This review highlights the roles of pseudophosphatases as essential regulators in signaling cascades, providing insight into the function of these catalytically inactive enzymes.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, USA.
| |
Collapse
|
23
|
Ryu H, Chung M, Song J, Lee SS, Pertz O, Jeon NL. Integrated Platform for Monitoring Single-cell MAPK Kinetics in Computer-controlled Temporal Stimulations. Sci Rep 2018; 8:11126. [PMID: 30042437 PMCID: PMC6057930 DOI: 10.1038/s41598-018-28873-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular response kinase (ERK) is one of the key regulator of cell fate, such as proliferation, differentiation and cell migration. Here, we propose a novel experimental pipeline to learn ERK kinetics by temporal growth factor (GF) stimulation. High signal-to-noise ratio of genetically encoded Fluorescence resonance energy transfer (FRET) biosensor enables to get a large number of single-cell ERK activity at each time point, while computer-controlled microfluidics fine-tune the temporal stimulation. Using this platform, we observed that static Epidermal growth factor (EGF) stimulation led to transient ERK activation with a significant cell-to-cell variation, while dynamic stimulation of 3′ EGF pulse led to faster adaptation kinetics with no discrepancy. Multiple EGF pulses retriggered ERK activity with respect to frequency of stimulation. We also observed oscillation of ERK activity of each cell at basal state. Introducing of Mitogen-activated protein kinase kinase (MEK) inhibitor, U0126, was not only dropping the average of basal activity for 7.5%, but also diminishing oscillatory behavior. Activity level raised up when inhibitor was removed, followed by transient peak of ERK kinetics. We expect this platform to probe Mitogen-associated protein kinase (MAPK) signaling network for systems biology research at single cellular level.
Collapse
Affiliation(s)
- Hyunryul Ryu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Minhwan Chung
- Department of Mechanical Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Jiyoung Song
- Department of Mechanical Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Sung Sik Lee
- ScopeM (Scientific Center of Optical and Eletron Microscopy), ETH Zurich, Otto-Stern-Weg 3, CH-8093, Zurich, Switzerland
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Noo Li Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul, 151-742, Republic of Korea. .,Institute of Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea.
| |
Collapse
|
24
|
PTP4A1 promotes TGFβ signaling and fibrosis in systemic sclerosis. Nat Commun 2017; 8:1060. [PMID: 29057934 PMCID: PMC5651906 DOI: 10.1038/s41467-017-01168-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2017] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of skin and internal organs. Protein tyrosine phosphatases have received little attention in the study of SSc or fibrosis. Here, we show that the tyrosine phosphatase PTP4A1 is highly expressed in fibroblasts from patients with SSc. PTP4A1 and its close homolog PTP4A2 are critical promoters of TGFβ signaling in primary dermal fibroblasts and of bleomycin-induced fibrosis in vivo. PTP4A1 promotes TGFβ signaling in human fibroblasts through enhancement of ERK activity, which stimulates SMAD3 expression and nuclear translocation. Upstream from ERK, we show that PTP4A1 directly interacts with SRC and inhibits SRC basal activation independently of its phosphatase activity. Unexpectedly, PTP4A2 minimally interacts with SRC and does not promote the SRC–ERK–SMAD3 pathway. Thus, in addition to defining PTP4A1 as a molecule of interest for TGFβ-dependent fibrosis, our study provides information regarding the functional specificity of different members of the PTP4A subclass of phosphatases. Although protein tyrosine kinases are being explored as antifibrotic agents for the treatment of systemic sclerosis, little is known about the function of counteractive protein tyrosine phosphatases in this context. Here, the authors show that PTP4A1 is highly expressed by fibroblasts from patients with systemic sclerosis and promotes TGFβ activity via SRC–ERK–SMAD3 signaling.
Collapse
|
25
|
Performance of objective functions and optimisation procedures for parameter estimation in system biology models. NPJ Syst Biol Appl 2017; 3:20. [PMID: 28804640 PMCID: PMC5548920 DOI: 10.1038/s41540-017-0023-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022] Open
Abstract
Mathematical modelling of signalling pathways aids experimental investigation in system and synthetic biology. Ever increasing data availability prompts the development of large dynamic models with numerous parameters. In this paper, we investigate how the number of unknown parameters affects the convergence of three frequently used optimisation algorithms and four objective functions. We compare objective functions that use data-driven normalisation of the simulations with those that use scaling factors. The data-driven normalisation of the simulation approach implies that simulations are normalised in the same way as the data, making both directly comparable. The scaling factor approach, which is commonly used for parameter estimation in dynamic systems, introduces scaling factors that multiply the simulations to convert them to the scale of the data. Here we show that the scaling factor approach increases, compared to data-driven normalisation of the simulations, the degree of practical non-identifiability, defined as the number of directions in the parameter space, along which parameters are not identifiable. Further, the results indicate that data-driven normalisation of the simulations greatly improve the speed of convergence of all tested algorithms when the overall number of unknown parameters is relatively large (74 parameters in our test problems). Data-driven normalisation of the simulations also markedly improve the performance of the non-gradient-based algorithm tested even when the number of unknown parameters is relatively small (10 parameters in our test problems). As the models and the unknown parameters increase in size, the data-driven normalisation of the simulation approach can be the preferred option, because it does not aggravate non-identifiability and allows for obtaining parameter estimates in a reasonable amount of time. A systematic comparison of critical choices for faithful parameter-estimation identifies a combination of a hybrid optimisation algorithm (GLSDC) with data-driven normalisation of simulations (DNS) as the generally best option. Experimental data are often provided in relative, arbitrary units. To match simulations to data, two approaches are common: i) using scaling-factors that have to be estimated (SF); or ii) normalising the simulations in the same way as the data (DNS). Using three test-models of increasing complexity, we explored how this choice affects parameter identifiability and estimation performance. We show that in contrast to SF, DNS does not aggravate non-identifiability and a global-hybrid method combined with DNS outperformed local-multi-start methods. The advantage of DNS in terms of estimation speed was particularly pronounced for the most complex test-problem.
Collapse
|
26
|
Learning to read and write in evolution: from static pseudoenzymes and pseudosignalers to dynamic gear shifters. Biochem Soc Trans 2017; 45:635-652. [PMID: 28620026 DOI: 10.1042/bst20160281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 11/17/2022]
Abstract
We present a systems biology view on pseudoenzymes that acknowledges that genes are not selfish: the genome is. With network function as the selectable unit, there has been an evolutionary bonus for recombination of functions of and within proteins. Many proteins house a functionality by which they 'read' the cell's state, and one by which they 'write' and thereby change that state. Should the writer domain lose its cognate function, a 'pseudoenzyme' or 'pseudosignaler' arises. GlnK involved in Escherichia coli ammonia assimilation may well be a pseudosignaler, associating 'reading' the nitrogen state of the cell to 'writing' the ammonium uptake activity. We identify functional pseudosignalers in the cyclin-dependent kinase complexes regulating cell-cycle progression. For the mitogen-activated protein kinase pathway, we illustrate how a 'dead' pseudosignaler could produce potentially selectable functionalities. Four billion years ago, bioenergetics may have shuffled 'electron-writers', producing various networks that all served the same function of anaerobic ATP synthesis and carbon assimilation from hydrogen and carbon dioxide, but at different ATP/acetate ratios. This would have enabled organisms to deal with variable challenges of energy need and substrate supply. The same principle might enable 'gear-shifting' in real time, by dynamically generating different pseudo-redox enzymes, reshuffling their coenzymes, and rerouting network fluxes. Non-stationary pH gradients in thermal vents together with similar such shuffling mechanisms may have produced a first selectable proton-motivated pyrophosphate synthase and subsequent ATP synthase. A combination of functionalities into enzymes, signalers, and the pseudo-versions thereof may offer fitness in terms of plasticity, both in real time and in evolution.
Collapse
|
27
|
Murphy JM, Mace PD, Eyers PA. Live and let die: insights into pseudoenzyme mechanisms from structure. Curr Opin Struct Biol 2017; 47:95-104. [PMID: 28787627 DOI: 10.1016/j.sbi.2017.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 12/22/2022]
Abstract
Pseudoenzymes were first described more than 50 years ago, when it was recognised that a subset of proteins that are structurally homologous to active enzymes lack amino acids necessary for catalytic activity. Recently, interest in pseudoenzymes has surged as it has become apparent that they constitute ∼10% of proteomes and perform essential metabolic and signalling functions that can be experimentally distinguished from catalytic outputs of enzymes. Here, we highlight recent structural studies of pseudoenzymes, which have revealed the molecular basis for roles as allosteric regulators of conventional enzymes, as molecular switches and integrators, as hubs for assembling protein complexes, and as competitors of substrate availability and holoenzyme assembly. As structural studies continue to illuminate pseudoenzyme molecular mechanisms, we anticipate that our knowledge of the breadth of their biological functions will expand in parallel.
Collapse
Affiliation(s)
- James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
28
|
STYX: a versatile pseudophosphatase. Biochem Soc Trans 2017; 45:449-456. [PMID: 28408485 DOI: 10.1042/bst20160279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 01/12/2023]
Abstract
The pseudophosphatase STYX (serine/threonine/tyrosine interacting protein) is a catalytically inactive member of the protein tyrosine phosphatase family. We perform a phylogenetic analysis of STYX and ask how far does the pseudoenzyme status of STYX reaches in evolution. Based on our previous work, we use STYX as a showcase to discuss four basic modes of action that any given pseudoenzyme may exert. Our previous work on the effect of STYX on mitogen-activated protein kinase (MAPK) signaling led us to identify two complementary modes of action. On the one hand, STYX competes with active phosphatases for binding to MAPKs. On the other hand, STYX acts as a nuclear anchor for MAPKs, affecting their nucleo-cytoplasmic shuttling. Finally, we discuss our recent work on the regulation of FBXW7 by this pseudophosphatase and how it affects the ubiquitylation and degradation of its substrates. We discuss the biological significance of this regulatory mechanism and use it as an example for the versatility of pseudoenzymes that may divert away from merely regulating their active homologs.
Collapse
|
29
|
Antagonistic roles for STYX pseudophosphatases in neurite outgrowth. Biochem Soc Trans 2017; 45:381-387. [PMID: 28408478 DOI: 10.1042/bst20160273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 12/14/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are essential players in important neuronal signaling pathways including neuronal development, plasticity, survival, learning, and memory. The inactivation of MAPKs is tightly controlled by MAPK phosphatases (MKPs), which also are important regulators of these neuronal processes. Considering that MAPKs and MKPs are major players in neuronal signaling, it follows that their misregulation is pivotal in neurodegenerative diseases such as Alzheimer's, Huntington's, Parkinson's, and amyotrophic lateral sclerosis. In contrast, the actions of their noncatalytic homologs, or pseudoenzymes, have received minimal attention as important regulators in neuronal signaling pathways and relevant diseases. There is compelling evidence, however, that pseudophosphatases, such as STYX (phospho-serine-threonine/tyrosine-binding protein) and MAPK-STYX (MK-STYX), are integral signaling molecules in regulating pathways involved in neuronal developmental processes such as neurite outgrowth. Here, we discuss how the dynamics of MK-STYX in the stress response pathway imply that this unique member of the MKP subfamily has the potential to have a major role in neuronal signaling. We further compare the actions of STYX in preventing neurite-like outgrowths and MK-STYX in inducing neurite outgrowths. The roles of these pseudophosphatases in neurite outgrowth highlight their emergence as important candidates to investigate in neurodegenerative disorders and diseases.
Collapse
|
30
|
Murphy JM, Farhan H, Eyers PA. Bio-Zombie: the rise of pseudoenzymes in biology. Biochem Soc Trans 2017; 45:537-544. [PMID: 28408493 DOI: 10.1042/bst20160400] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 11/17/2022]
Abstract
Pseudoenzymes are catalytically dead counterparts of enzymes. Despite their first description some 50 years ago, the importance and functional diversity of these 'fit-for-purpose' polypeptides is only now being appreciated. Pseudoenzymes have been identified throughout all the kingdoms of life and, owing to predicted deficits in enzyme activity due to the absence of catalytic residues, have been variously referred to as pseudoenzymes, non-enzymes, dead enzymes, prozymes or 'zombie' proteins. An important goal of the recent Biochemical Society Pseudoenzymes-focused meeting was to explore the functional and evolutionary diversity of pseudoenzymes and to begin to evaluate their functions in biology, including cell signalling and metabolism. Here, we summarise the impressive breadth of enzyme classes that are known to have pseudoenzyme counterparts and present examples of known cellular functions. We predict that the next decades will represent golden years for the analysis of pseudoenzymes.
Collapse
Affiliation(s)
- James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
31
|
Abstract
Cells respond to changes in their environment, to developmental cues, and to pathogen aggression through the action of a complex network of proteins. These networks can be decomposed into a multitude of signaling pathways that relay signals from the microenvironment to the cellular components involved in eliciting a specific response. Perturbations in these signaling processes are at the root of multiple pathologies, the most notable of these being cancer. The study of receptor tyrosine kinase (RTK) signaling led to the first description of a mechanism whereby an extracellular signal is transmitted to the nucleus to induce a transcriptional response. Genetic studies conducted in drosophila and nematodes have provided key elements to this puzzle. Here, we briefly discuss the somewhat lesser known contribution of these multicellular organisms to our understanding of what has come to be known as the prototype of signaling pathways. We also discuss the ostensibly much larger network of regulators that has emerged from recent functional genomic investigations of RTK/RAS/ERK signaling.
Collapse
Affiliation(s)
- Dariel Ashton-Beaucage
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7.
- Département de Pathologie et de Biologie Cellulaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC, Canada, H3C 3J7.
| |
Collapse
|
32
|
Reiterer V, Figueras-Puig C, Le Guerroue F, Confalonieri S, Vecchi M, Jalapothu D, Kanse SM, Deshaies RJ, Di Fiore PP, Behrends C, Farhan H. The pseudophosphatase STYX targets the F-box of FBXW7 and inhibits SCFFBXW7 function. EMBO J 2016; 36:260-273. [PMID: 28007894 DOI: 10.15252/embj.201694795] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 11/09/2022] Open
Abstract
The F-box protein FBXW7 is the substrate-recruiting subunit of an SCF ubiquitin ligase and a major tumor-suppressor protein that is altered in several human malignancies. Loss of function of FBXW7 results in the stabilization of numerous proteins that orchestrate cell proliferation and survival. Little is known about proteins that directly regulate the function of this protein. In the current work, we have mapped the interactome of the enigmatic pseudophosphatase STYX We reasoned that a catalytically inactive phosphatase might have adopted novel mechanisms of action. The STYX interactome contained several F-box proteins, including FBXW7. We show that STYX binds to the F-box domain of FBXW7 and disables its recruitment into the SCF complex. Therefore, STYX acts as a direct inhibitor of FBXW7, affecting the cellular levels of its substrates. Furthermore, we find that levels of STYX and FBXW7 are anti-correlated in breast cancer patients, which affects disease prognosis. We propose the STYX-FBXW7 interaction as a promising drug target for future investigations.
Collapse
Affiliation(s)
- Veronika Reiterer
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Biotechnology Institute Thurgau, Kreuzlingen, Switzerland
| | | | - Francois Le Guerroue
- Institute of Biochemistry II, Medical School Goethe University, Frankfurt, Germany
| | - Stefano Confalonieri
- The FIRC Institute for Molecular Oncology, IFOM, Milan, Italy.,Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| | - Manuela Vecchi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | | | - Sandip M Kanse
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Pier Paolo Di Fiore
- The FIRC Institute for Molecular Oncology, IFOM, Milan, Italy.,Molecular Medicine Program, European Institute of Oncology, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Christian Behrends
- Institute of Biochemistry II, Medical School Goethe University, Frankfurt, Germany .,Munich Cluster for Systems Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway .,Biotechnology Institute Thurgau, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
33
|
Fey D, Matallanas D, Rauch J, Rukhlenko OS, Kholodenko BN. The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells. Semin Cell Dev Biol 2016; 58:96-107. [PMID: 27350026 DOI: 10.1016/j.semcdb.2016.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/18/2016] [Indexed: 12/19/2022]
Abstract
The intricate dynamic control and plasticity of RAS to ERK mitogenic, survival and apoptotic signalling has mystified researches for more than 30 years. Therapeutics targeting the oncogenic aberrations within this pathway often yield unsatisfactory, even undesired results, as in the case of paradoxical ERK activation in response to RAF inhibition. A direct approach of inhibiting single oncogenic proteins misses the dynamic network context governing the network signal processing. In this review, we discuss the signalling behaviour of RAS and RAF proteins in normal and in cancer cells, and the emerging systems-level properties of the RAS-to-ERK signalling network. We argue that to understand the dynamic complexities of this control system, mathematical models including mechanistic detail are required. Looking into the future, these dynamic models will build the foundation upon which more effective, rational approaches to cancer therapy will be developed.
Collapse
Affiliation(s)
- Dirk Fey
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jens Rauch
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
34
|
Abstract
The role of polarity in cancer is an emerging research area and loss of polarity is widely considered an important event in cancer. Among the polarity regulating molecules, the small GTPase Cdc42 was extensively studied. Most attention was given to Cdc42 signaling at the plasma membrane, but whether and how Cdc42 is regulated at endomembranes remained poorly understood. Moreover, whether the endomembrane pool of Cdc42 is of any relevance to cell polarity was unknown. In our recent work, we identified a complex between the Golgi matrix protein GM130 and RasGRF and showed that it is responsible for regulating the Golgi pool of Cdc42, but had no effect on the plasma membrane pool of Cdc42. Depletion of GM130 disrupted apico-basal polarity as well as front-rear polarity, indicating that the spatial pool of Cdc42 is functionally relevant. The biomedical relevance of this finding was supported by the observation than GM130 is progressively lost in colorectal cancer. These findings support a role of the endomembrane pool of Cdc42 in cell polarity and point to a potential role of alterations of this pool in cancer.
Collapse
|
35
|
Abstract
Pseudophosphatases regulate signal transduction cascades, but their mechanisms of action remain enigmatic. Reflecting this mystery, the prototypical pseudophosphatase STYX (phospho-serine-threonine/tyrosine-binding protein) was named with allusion to the river of the dead in Greek mythology to emphasize that these molecules are "dead" phosphatases. Although proteins with STYX domains do not catalyze dephosphorylation, this in no way precludes their having other functions as integral elements of signaling networks. Thus, understanding their roles in signaling pathways may mark them as potential novel drug targets. This chapter outlines common strategies used to characterize the functions of pseudophosphatases, using as an example MK-STYX [mitogen-activated protein kinase (MAPK) phospho-serine-threonine/tyrosine binding], which has been linked to tumorigenesis, apoptosis, and neuronal differentiation. We start with the importance of "restoring" (when possible) phosphatase activity in a pseudophosphatase so that the active mutant may be used as a comparison control throughout immunoprecipitation and mass spectrometry analyses. To this end, we provide protocols for site-directed mutagenesis, mammalian cell transfection, co-immunoprecipitation, phosphatase activity assays, and immunoblotting that we have used to investigate MK-STYX and the active mutant MK-STYXactive. We also highlight the importance of utilizing RNA interference (RNAi) "knockdown" technology to determine a cellular phenotype in various cell lines. Therefore, we outline our protocols for introducing short hairpin RNA (shRNA) expression plasmids into mammalians cells and quantifying knockdown of gene expression with real-time quantitative PCR (qPCR). A combination of cellular, molecular, biochemical, and proteomic techniques has served as powerful tools in identifying novel functions of the pseudophosphatase MK-STYX. Likewise, the information provided here should be a helpful guide to elucidating the function of other pseudophosphatases.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, 3045 Integrated Science Center, College of William and Mary, 540 Landrum Dr., Williamsburg, VA, 23187, USA.
| |
Collapse
|
36
|
Alonso A, Pulido R. The extended human PTPome: a growing tyrosine phosphatase family. FEBS J 2015; 283:1404-29. [PMID: 26573778 DOI: 10.1111/febs.13600] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/13/2022]
Abstract
Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease.
Collapse
Affiliation(s)
- Andrés Alonso
- Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Valladolid, Spain
| | - Rafael Pulido
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
37
|
The MAP3K ZAK, a novel modulator of ERK-dependent migration, is upregulated in colorectal cancer. Oncogene 2015; 35:3190-200. [PMID: 26522728 DOI: 10.1038/onc.2015.379] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/30/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022]
Abstract
Often described as a mediator of cell cycle arrest or as a pro-apoptotic factor in stressful conditions, the MAP3K ZAK (Sterile alpha motif and leucine zipper-containing kinase) has also been proven to positively regulate epidermal growth factor receptor (EGFR) and WNT signaling pathways, cancer cell proliferation and cellular neoplastic transformation. Here, we show that both isoforms of ZAK, ZAK-α and ZAK-β are key factors in cancer cell migration. While ZAK depletion reduced cell motility of HeLa and HCT116 cells, its overexpression triggered the activation of all three mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK), c-JUN N-terminal kinase (JNK) and p38, as well as an increase in cell motion. On the contrary, the kinase-dead mutants, ZAK-α K45M and ZAK-β K45M, were not able to provoke such events, and instead exerted a dominant-negative effect on MAPK activation and cell migration. Pharmacological inhibition of ZAK by nilotinib, preventing ZAK-autophosphorylation and thereby auto-activation, led to the same results. Activated by epidermal growth factor (EGF), we further showed that ZAK constitutes an essential element of the EGF/ERK-dependent cell migration pathway. Using public transcriptomic databases and tissue microarrays, we finally established that, as strong factors of the EGFR signaling pathway, ZAK-α and/or ZAK-β transcripts and protein(s) are frequently upregulated in colorectal adenoma and carcinoma patients. Notably, gene set enrichment analysis disclosed a significant correlation between ZAK+ colorectal premalignant lesions and gene sets belonging to the MAPK/ERK and motility-related signaling pathways of the reactome database, strongly suggesting that ZAK induces such pro-tumoral reaction cascades in human cancers.
Collapse
|
38
|
Farhan H. Systems biology of the secretory pathway: what have we learned so far? Biol Cell 2015; 107:205-17. [PMID: 25756903 DOI: 10.1111/boc.201400065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/04/2015] [Indexed: 12/26/2022]
Abstract
Several RNAi screens were performed in search for regulators of the secretory pathway. These screens were performed in different organisms and cell lines and relied on different readouts. Therefore, they have only little overlap among their hits, leading to the question of what we have learned from this approach so far and how these screens contributed towards an integrative understanding of the endomembrane system. The aim of this review is to revisit these screens and discuss their strengths and weaknesses as well as potential reasons for their failure to overlap with each other. As with secretory trafficking, RNAi screens were also performed on other cellular processes such as cell migration and autophagy, both of which were shown to be intimately linked to secretion. Another aim of this review is to compare the outcome of the RNAi screens on secretion, autophagy and cell migration and ask whether the functional genomic approaches have uncovered potential mechanistic insights into the links between these processes.
Collapse
Affiliation(s)
- Hesso Farhan
- Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau, Kreuzlingen, Switzerland
| |
Collapse
|
39
|
Millarte V, Boncompain G, Tillmann K, Perez F, Sztul E, Farhan H. Phospholipase C γ1 regulates early secretory trafficking and cell migration via interaction with p115. Mol Biol Cell 2015; 26:2263-78. [PMID: 25904324 PMCID: PMC4462944 DOI: 10.1091/mbc.e15-03-0178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
The role of early secretory trafficking in the regulation of cell motility remains incompletely understood. Here we used a small interfering RNA screen to monitor the effects on structure of the Golgi apparatus and cell migration. Two major Golgi phenotypes were observed-fragmented and small Golgi. The latter exhibited a stronger correlation with a defect in cell migration. Among the small Golgi hits, we focused on phospholipase C γ1 (PLCγ1). We show that PLCγ1 regulates Golgi structure and cell migration independently of its catalytic activity but in a manner that depends on interaction with the tethering protein p115. PLCγ1 regulates the dynamics of p115 in the early secretory pathway, thereby controlling trafficking from the endoplasmic reticulum to the Golgi. Our results uncover a new function of PLCγ1 that is independent of its catalytic function and link early secretory trafficking to the regulation of cell migration.
Collapse
Affiliation(s)
- Valentina Millarte
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany Biotechnology Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | | | - Kerstin Tillmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany Biotechnology Institute Thurgau, 8280 Kreuzlingen, Switzerland
| | - Franck Perez
- Institut Curie, CNRS UMR 144, 75248 Paris, France
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hesso Farhan
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany Biotechnology Institute Thurgau, 8280 Kreuzlingen, Switzerland
| |
Collapse
|
40
|
Sobol A, Galluzzo P, Liang S, Rambo B, Skucha S, Weber MJ, Alani S, Bocchetta M. Amyloid precursor protein (APP) affects global protein synthesis in dividing human cells. J Cell Physiol 2015; 230:1064-74. [PMID: 25283437 PMCID: PMC4445069 DOI: 10.1002/jcp.24835] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/22/2014] [Indexed: 02/02/2023]
Abstract
Hypoxic non‐small cell lung cancer (NSCLC) is dependent on Notch‐1 signaling for survival. Targeting Notch‐1 by means of γ‐secretase inhibitors (GSI) proved effective in killing hypoxic NSCLC. Post‐mortem analysis of GSI‐treated, NSCLC‐burdened mice suggested enhanced phosphorylation of 4E‐BP1 at threonines 37/46 in hypoxic tumor tissues. In vitro dissection of this phenomenon revealed that Amyloid Precursor Protein (APP) inhibition was responsible for a non‐canonical 4E‐BP1 phosphorylation pattern rearrangement—a process, in part, mediated by APP regulation of the pseudophosphatase Styx. Upon APP depletion we observed modifications of eIF‐4F composition indicating increased recruitment of eIF‐4A to the mRNA cap. This phenomenon was supported by the observation that cells with depleted APP were partially resistant to silvestrol, an antibiotic that interferes with eIF‐4A assembly into eIF‐4F complexes. APP downregulation in dividing human cells increased the rate of global protein synthesis, both cap‐ and IRES‐dependent. Such an increase seemed independent of mTOR inhibition. After administration of Torin‐1, APP downregulation and Mechanistic Target of Rapamycin Complex 1 (mTORC‐1) inhibition affected 4E‐BP1 phosphorylation and global protein synthesis in opposite fashions. Additional investigations indicated that APP operates independently of mTORC‐1. Key phenomena described in this study were reversed by overexpression of the APP C‐terminal domain. The presented data suggest that APP may be a novel regulator of protein synthesis in dividing human cells, both cancerous and primary. Furthermore, APP appears to affect translation initiation using mechanisms seemingly dissimilar to mTORC‐1 regulation of cap‐dependent protein synthesis. J. Cell. Physiol. 230: 1064–1074, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Sobol
- Department of Pathology, Oncology Institute, Loyola University Chicago Medical Center, Maywood, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Cellular responses to environmental cues involve the mobilization of GTPases, protein kinases and phosphoprotein phosphatases. The spatial organization of these signalling enzymes by scaffold proteins helps to guide the flow of molecular information. Allosteric modulation of scaffolded enzymes can alter their catalytic activity or sensitivity to second messengers in a manner that augments, insulates or terminates local cellular events. This Review examines the features of scaffold proteins and highlights examples of locally organized groups of signalling enzymes that drive essential physiological processes, including hormone action, heart rate, cell division, organelle movement and synaptic transmission.
Collapse
|
42
|
Qian J, Kong X, Deng N, Tan P, Chen H, Wang J, Li Z, Hu Y, Zou W, Xu J, Fang JY. OCT1 is a determinant of synbindin-related ERK signalling with independent prognostic significance in gastric cancer. Gut 2015; 64:37-48. [PMID: 24717932 PMCID: PMC4283676 DOI: 10.1136/gutjnl-2013-306584] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Octamer transcription factor 1 (OCT1) was found to be expressed in intestinal metaplasia and gastric cancer (GC), but the exact roles of OCT1 in GC remain unclear. The objective of this study was to determine the functional and prognostic implications of OCT1 in GC. DESIGN Expression of OCT1 was examined in paired normal and cancerous gastric tissues and the prognostic significance of OCT1 was analysed by univariate and multivariate survival analyses. The functions of OCT1 on synbindin expression and extracellular signal-regulated kinase (ERK) phosphorylation were studied in vitro and in xenograft mouse models. RESULTS The OCT1 gene is recurrently amplified and upregulated in GC. OCT1 overexpression and amplification are associated with poor survival in patients with GC and the prognostic significance was confirmed by independent patient cohorts. Combining OCT1 overexpression with American Joint Committee on Cancer staging improved the prediction of survival in patients with GC. High expression of OCT1 associates with activation of the ERK mitogen-activated protein kinase signalling pathway in GC tissues. OCT1 functions by transactivating synbindin, which binds to ERK DEF domain and facilitates ERK phosphorylation by MEK. OCT1-synbindin signalling results in the activation of ERK substrates ELK1 and RSK, leading to increased cell proliferation and invasion. Immunofluorescent study of human GC tissue samples revealed strong association between OCT1 protein level and synbindin expression/ERK phosphorylation. Upregulation of OCT1 in mouse xenograft models induced synbindin expression and ERK activation, leading to accelerated tumour growth in vivo. CONCLUSIONS OCT1 is a driver of synbindin-mediated ERK signalling and a promising marker for the prognosis and molecular subtyping of GC.
Collapse
Affiliation(s)
- Jin Qian
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xuan Kong
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Niantao Deng
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Haoyan Chen
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jilin Wang
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhaoli Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ye Hu
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jie Xu
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
43
|
The pseudophosphatase MK-STYX induces neurite-like outgrowths in PC12 cells. PLoS One 2014; 9:e114535. [PMID: 25479605 PMCID: PMC4257672 DOI: 10.1371/journal.pone.0114535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/10/2014] [Indexed: 01/17/2023] Open
Abstract
The rat pheochromocytoma PC12 cell line is a widely used system to study neuronal differentiation for which sustained activation of the extracellular signaling related kinase (ERK) pathway is required. Here, we investigate the function of MK-STYX [MAPK (mitogen-activated protein kinase) phosphoserine/threonine/tyrosine-binding protein] in neuronal differentiation. MK-STYX is a member of the MAPK phosphatase (MKP) family, which is generally responsible for dephosphorylating the ERKs. However, MK-STYX lacks catalytic activity due to the absence of the nucleophilic cysteine in the active site signature motif HC(X5)R that is essential for phosphatase activity. Despite being catalytically inactive, MK-STYX has been shown to play a role in important cellular pathways, including stress responses. Here we show that PC12 cells endogenously express MK-STYX. In addition, MK-STYX, but not its catalytically active mutant, induced neurite-like outgrowths in PC12 cells. Furthermore, MK-STYX dramatically increased the number of cells with neurite extensions in response to nerve growth factor (NGF), whereas the catalytically active mutant did not. MK-STYX continued to induce neurites in the presence of a MEK (MAP kinase kinase) inhibitor suggesting that MK-STYX does not act through the Ras-ERK/MAPK pathway but is involved in another pathway whose inactivation leads to neuronal differentiation. RhoA activity assays indicated that MK-STYX induced extensions through the Rho signaling pathway. MK-STYX decreased RhoA activation, whereas RhoA activation increased when MK-STYX was down-regulated. Furthermore, MK-STYX affected downstream players of RhoA such as the actin binding protein cofilin. The presence of MK-STYX decreased the phosphorylation of cofilin in non NGF stimulated cells, but increased its phosphorylation in NGF stimulated cells, whereas knocking down MK-STYX caused an opposite effect. Taken together our data suggest that MK-STYX may be a regulator of RhoA signaling, and implicate this pseudophosphatase as a regulator of neuronal differentiation.
Collapse
|
44
|
Reiterer V, Eyers PA, Farhan H. Day of the dead: pseudokinases and pseudophosphatases in physiology and disease. Trends Cell Biol 2014; 24:489-505. [PMID: 24818526 DOI: 10.1016/j.tcb.2014.03.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/19/2022]
Abstract
Pseudophosphatases and pseudokinases are increasingly viewed as integral elements of signaling pathways, and there is mounting evidence that they have frequently retained the ability to interact with cellular 'substrates', and can exert important roles in different diseases. However, these pseudoenzymes have traditionally received scant attention compared to classical kinases and phosphatases. In this review we explore new findings in the emerging pseudokinase and pseudophosphatase fields, and discuss their different modes of action which include exciting new roles as scaffolds, anchors, spatial modulators, traps, and ligand-driven regulators of canonical kinases and phosphatases. Thus, it is now apparent that pseudokinases and pseudophosphatases both support and drive a panoply of signaling networks. Finally, we highlight recent evidence on their involvement in human pathologies, marking them as potential novel drug targets.
Collapse
Affiliation(s)
- Veronika Reiterer
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Hesso Farhan
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland; Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|