1
|
Wyler E, Lauber C, Manukyan A, Deter A, Quedenau C, Teixeira Alves LG, Wylezich C, Borodina T, Seitz S, Altmüller J, Landthaler M. Pathogen dynamics and discovery of novel viruses and enzymes by deep nucleic acid sequencing of wastewater. ENVIRONMENT INTERNATIONAL 2024; 190:108875. [PMID: 39002331 DOI: 10.1016/j.envint.2024.108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Wastewater contains an extensive reservoir of genetic information, yet largely unexplored. Here, we analyzed by high-throughput sequencing total nucleic acids extracted from wastewater samples collected during a 17 month-period in Berlin, Germany. By integrating global wastewater datasets and applying a novel computational approach to accurately identify viral strains within sewage RNA-sequencing data, we demonstrated the emergence and global dissemination of a specific astrovirus strain. Astrovirus abundance and sequence variation mirrored temporal and spatial patterns of infection, potentially serving as footprints of specific timeframes and geographical locations. Additionally, we revealed more than 100,000 sequence contigs likely originating from novel viral species, exhibiting distinct profiles in total RNA and DNA datasets and including undescribed bunyaviruses and parvoviruses. Finally, we identified thousands of new CRISPR-associated protein sequences, including Transposase B (TnpB), a class of compact, RNA-guided DNA editing enzymes. Collectively, our findings underscore the potential of high-throughput sequencing of total nucleic acids derived from wastewater for a broad range of applications.
Collapse
Affiliation(s)
- Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Artür Manukyan
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Aylina Deter
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Claudia Quedenau
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Tatiana Borodina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Stefan Seitz
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Janine Altmüller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Berlin Institute of Health at Charité, Berlin, Germany
| | - Markus Landthaler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Yang S, Mao Q, Wang Y, He J, Yang J, Chen X, Xiao Y, He Y, Zhao M, Lu J, Yang Z, Dai Z, Liu Q, Yao Y, Lu X, Li H, Zhou R, Zeng J, Li W, Zhou C, Wang X, Shen Q, Xu H, Deng X, Delwart E, Shan T, Zhang W. Expanding known viral diversity in plants: virome of 161 species alongside an ancient canal. ENVIRONMENTAL MICROBIOME 2022; 17:58. [PMID: 36437477 PMCID: PMC9703751 DOI: 10.1186/s40793-022-00453-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Since viral metagenomic approach was applied to discover plant viruses for the first time in 2006, many plant viruses had been identified from cultivated and non-cultivated plants. These previous researches exposed that the viral communities (virome) of plants have still largely uncharacterized. Here, we investigated the virome in 161 species belonging to 38 plant orders found in a riverside ecosystem. RESULTS We identified 245 distinct plant-associated virus genomes (88 DNA and 157 RNA viruses) belonging to 27 known viral families, orders, or unclassified virus groups. Some viral genomes were sufficiently divergent to comprise new species, genera, families, or even orders. Some groups of viruses were detected that currently are only known to infect organisms other than plants. It indicates a wider host range for members of these clades than previously recognized theoretically. We cannot rule out that some viruses could be from plant contaminating organisms, although some methods were taken to get rid of them as much as possible. The same viral species could be found in different plants and co-infections were common. CONCLUSIONS Our data describe a complex viral community within a single plant ecosystem and expand our understanding of plant-associated viral diversity and their possible host ranges.
Collapse
Affiliation(s)
- Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- International Genome Center, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qingqing Mao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yan Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jingxian He
- Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xu Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuqing Xiao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yumin He
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Min Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zijun Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyuan Dai
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qi Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuxin Yao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiang Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hong Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rui Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jian Zeng
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Li
- Department of Laboratory Medicine, Jiangsu Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China
| | - Chenglin Zhou
- Department of Laboratory Medicine, Jiangsu Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Xu
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, 94118, USA
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94118, USA
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- International Genome Center, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
3
|
Jurasz H, Pawłowski T, Perlejewski K. Contamination Issue in Viral Metagenomics: Problems, Solutions, and Clinical Perspectives. Front Microbiol 2021; 12:745076. [PMID: 34745046 PMCID: PMC8564396 DOI: 10.3389/fmicb.2021.745076] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
We describe the most common internal and external sources and types of contamination encountered in viral metagenomic studies and discuss their negative impact on sequencing results, particularly for low-biomass samples and clinical applications. We also propose some basic recommendations for reducing the background noise in viral shotgun metagenomic (SM) studies, which would limit the bias introduced by various classes of contaminants. Regardless of the specific viral SM protocol, contamination cannot be totally avoided; in particular, the issue of reagent contamination should always be addressed with high priority. There is an urgent need for the development and validation of standards for viral metagenomic studies especially if viral SM protocols will be more widely applied in diagnostics.
Collapse
Affiliation(s)
- Henryk Jurasz
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Pawłowski
- Division of Psychotherapy and Psychosomatic Medicine, Department of Psychiatry, Wrocław Medical University, Wrocław, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Tokarz R, Lipkin WI. Discovery and Surveillance of Tick-Borne Pathogens. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1525-1535. [PMID: 33313662 PMCID: PMC8285023 DOI: 10.1093/jme/tjaa269] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 05/06/2023]
Abstract
Within the past 30 yr molecular assays have largely supplanted classical methods for detection of tick-borne agents. Enhancements provided by molecular assays, including speed, throughput, sensitivity, and specificity, have resulted in a rapid increase in the number of newly characterized tick-borne agents. The use of unbiased high throughput sequencing has enabled the prompt identification of new pathogens and the examination of tick microbiomes. These efforts have led to the identification of hundreds of new tick-borne agents in the last decade alone. However, little is currently known about the majority of these agents beyond their phylogenetic classification. Our article outlines the primary methods involved in tick-borne agent discovery and the current status of our understanding of tick-borne agent diversity.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
- Corresponding author, e-mail:
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
5
|
Chen X, Li D. Sequencing facility and DNA source associated patterns of virus-mappable reads in whole-genome sequencing data. Genomics 2021; 113:1189-1198. [PMID: 33301893 PMCID: PMC7856238 DOI: 10.1016/j.ygeno.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Numerous viral sequences have been reported in the whole-genome sequencing (WGS) data of human blood. However, it is not clear to what degree the virus-mappable reads represent true viral sequences rather than random-mapping or noise originating from sample preparation, sequencing processes, or other sources. Identification of patterns of virus-mappable reads may generate novel indicators for evaluating the origins of these viral sequences. We characterized paired-end unmapped reads and reads aligned to viral references in human WGS datasets, then compared patterns of the virus-mappable reads among DNA sources and sequencing facilities which produced these datasets. We then examined potential origins of the source- and facility-associated viral reads. The proportions of clean unmapped reads among the seven sequencing facilities were significantly different (P < 2 × 10-16). We identified 260,339 reads that were mappable to a total of 99 viral references in 2535 samples. The majority (86.7%) of these virus-mappable reads (corresponding to 47 viral references), which can be classified into four groups based on their distinct patterns, were strongly associated with sequencing facility or DNA source (adjusted P value <0.01). Possible origins of these reads include artificial sequences in library preparation, recombinant vectors in cell culture, and phages co-contaminated with their host bacteria. The sequencing facility-associated virus-mappable reads and patterns were repeatedly observed in other datasets produced in the same facilities. We have constructed an analytic framework and profiled the unmapped reads mappable to viral references. The results provide a new understanding of sequencing facility- and DNA source-associated batch effects in deep sequencing data and may facilitate improved bioinformatics filtering of reads.
Collapse
Affiliation(s)
- Xun Chen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Dawei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; Department of Computer Science, University of Vermont, Burlington, VT 05405, USA; Neuroscience, Behavior, Health Initiative, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
6
|
Johansson Ö, Ullman K, Lkhagvajav P, Wiseman M, Malmsten J, Leijon M. Detection and Genetic Characterization of Viruses Present in Free-Ranging Snow Leopards Using Next-Generation Sequencing. Front Vet Sci 2020; 7:645. [PMID: 33195503 PMCID: PMC7536260 DOI: 10.3389/fvets.2020.00645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Snow leopards inhabit the cold, arid environments of the high mountains of South and Central Asia. These living conditions likely affect the abundance and composition of microbes with the capacity to infect these animals. It is important to investigate the microbes that snow leopards are exposed to detect infectious disease threats and define a baseline for future changes that may impact the health of this endangered felid. In this work, next-generation sequencing is used to investigate the fecal (and in a few cases serum) virome of seven snow leopards from the Tost Mountains of Mongolia. The viral species to which the greatest number of sequences reads showed high similarity was rotavirus. Excluding one animal with overall very few sequence reads, four of six animals (67%) displayed evidence of rotavirus infection. A serum sample of a male and a rectal swab of a female snow leopard produced sequence reads identical or closely similar to felid herpesvirus 1, providing the first evidence that this virus infects snow leopards. In addition, the rectal swab from the same female also displayed sequence reads most similar to feline papillomavirus 2, which is the first evidence for this virus infecting snow leopards. The rectal swabs from all animals also showed evidence for the presence of small circular DNA viruses, predominantly Circular Rep-Encoding Single-Stranded (CRESS) DNA viruses and in one case feline anellovirus. Several of the viruses implicated in the present study could affect the health of snow leopards. In animals which are under environmental stress, for example, young dispersing individuals and lactating females, health issues may be exacerbated by latent virus infections.
Collapse
Affiliation(s)
- Örjan Johansson
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden.,Snow Leopard Trust, Seattle, WA, United States
| | - Karin Ullman
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | | | - Marc Wiseman
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, United States
| | - Jonas Malmsten
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mikael Leijon
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
7
|
Hong NTT, Anh NT, Mai NTH, Nghia HDT, Nhu LNT, Thanh TT, Phu NH, Deng X, van Doorn HR, Chau NVV, Delwart E, Thwaites G, Tan LV. Performance of Metagenomic Next-Generation Sequencing for the Diagnosis of Viral Meningoencephalitis in a Resource-Limited Setting. Open Forum Infect Dis 2020; 7:ofaa046. [PMID: 32158774 PMCID: PMC7051036 DOI: 10.1093/ofid/ofaa046] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background Meningoencephalitis is a devastating disease worldwide. Current diagnosis fails to establish the cause in ≥50% of patients. Metagenomic next-generation sequencing (mNGS) has emerged as pan-pathogen assays for infectious diseases diagnosis, but few studies have been conducted in resource-limited settings. Methods We assessed the performance of mNGS in the cerebrospinal fluid (CSF) of 66 consecutively treated adults with meningoencephalitis in a tertiary referral hospital for infectious diseases in Vietnam, a resource-limited setting. All mNGS results were confirmed by viral-specific polymerase chain reaction (PCR). As a complementary analysis, 6 viral PCR-positive samples were analyzed using MinION-based metagenomics. Results Routine diagnosis could identify a virus in 15 (22.7%) patients, including herpes simplex virus (HSV; n = 7) and varicella zoster virus (VZV; n = 1) by PCR, and mumps virus (n = 4), dengue virus (DENV; n = 2), and Japanese encephalitis virus (JEV; n = 1) by serological diagnosis. mNGS detected HSV, VZV, and mumps virus in 5/7, 1/1, and 1/4 of the CSF positive by routine assays, respectively, but it detected DENV and JEV in none of the positive CSF. Additionally, mNGS detected enteroviruses in 7 patients of unknown cause. Metagenomic MinION-Nanopore sequencing could detect a virus in 5/6 PCR-positive CSF samples, including HSV in 1 CSF sample that was negative by mNGS, suggesting that the sensitivity of MinION is comparable with that of mNGS/PCR. Conclusions In a single assay, metagenomics could accurately detect a wide spectrum of neurotropic viruses in the CSF of meningoencephalitis patients. Further studies are needed to determine the value that real-time sequencing may contribute to the diagnosis and management of meningoencephalitis patients, especially in resource-limited settings where pathogen-specific assays are limited in number.
Collapse
Affiliation(s)
| | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Ho Dang Trung Nghia
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | | | - Tran Tan Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Hoan Phu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Department of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Eric Delwart
- Vitalant Research Institute, San Francisco, California, USA.,Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Ji P, Aw TG, Van Bonn W, Rose JB. Evaluation of a portable nanopore-based sequencer for detection of viruses in water. J Virol Methods 2019; 278:113805. [PMID: 31891731 DOI: 10.1016/j.jviromet.2019.113805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
The newly emerged nanopore sequencing technology such as MinION™ allows for real-time detection of long DNA/RNA fragments on a portable device, yet few have examined its performance for environmental viromes. Here we seeded one RNA virus bacteriophage MS2 and one DNA virus bacteriophage PhiX174 into 10 L well water at three levels ranging from 1 to 21,100 plaque-forming units (PFU)/mL. Two workflows were established to maximize the number of sequencing reads of RNA and DNA viruses using MinION™. With dead-end ultrafiltration, PEG precipitation, and random amplification, MinION™ was capable of detecting MS2 at 155 PFU/mL and PhiX174 at 1-2 PFU/mL. While the DNA workflow only detected PhiX174, the RNA workflow detected both MS2 and PhiX174. The virus concentration, or relative abundance of viral nucleic acids in total nucleic acids, is critical to the proportion of viral reads in sequencing results. Our findings also highlight the importance of including control samples in sequencing runs for environmental water samples with low virus abundance.
Collapse
Affiliation(s)
- Pan Ji
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - William Van Bonn
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA; A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, Chicago, IL 60605, USA
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Li G, Zhou Z, Yao L, Xu Y, Wang L, Fan X. Full annotation of serum virome in Chinese blood donors with elevated alanine aminotransferase levels. Transfusion 2019; 59:3177-3185. [PMID: 31393615 DOI: 10.1111/trf.15476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/14/2019] [Accepted: 07/20/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND A serum alanine aminotransferase (ALT) test is currently demanded for blood donation in China. One of the major reasons to include such a test is possible etiology of known or unknown hepatotropic viruses. However, this hypothesis has never been examined convincingly. STUDY DESIGN AND METHODS The study recruited 90 Chinese blood donors that were divided into three groups based on their ALT values. Serum virome from these donors was explored using a metagenomics approach with enhanced sensitivity resolved at single sequencing reads. RESULTS Anellovirus and pegivirus C (GBV-C) were detected among these donors. None of them were found solely in donors with abnormal liver enzyme. Anellovirus was highly prevalent (93.3%) and the co-infection with multiple genera (alpha, beta, and gammatorquevirus) were more common in the donors with normal ALT values in comparison to those with elevated ALT (single/double/triple Anellovirus genera, 1/3/24 vs. 7/7/14 or 6/7/13, p = 0.009). For unmapped reads that accounted for 15 ± 14.9% of the data, similarity-based (BLASTN, BLASTP, and HMMER3) and similarity-independent (k-mer frequency) analysis identified several circular rep encoding ssDNA (CRESS-DNA) genomes. Direct PCR testing indicated these genomes were likely reagent contaminants. CONCLUSION Viral etiology is not responsible for elevated ALT levels in Chinese blood donors. The ALT test, if not abandoned, should be adjusted for its cutoff in response to donor shortage in China.
Collapse
Affiliation(s)
- Gang Li
- Wuhan Blood Center, Wuhan, China
| | | | - Li Yao
- Wuhan Blood Center, Wuhan, China
| | - Yanjuan Xu
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Lan Wang
- Wuhan Blood Center, Wuhan, China
| | - Xiaofeng Fan
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri.,Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
10
|
Asplund M, Kjartansdóttir KR, Mollerup S, Vinner L, Fridholm H, Herrera JAR, Friis-Nielsen J, Hansen TA, Jensen RH, Nielsen IB, Richter SR, Rey-Iglesia A, Matey-Hernandez ML, Alquezar-Planas DE, Olsen PVS, Sicheritz-Pontén T, Willerslev E, Lund O, Brunak S, Mourier T, Nielsen LP, Izarzugaza JMG, Hansen AJ. Contaminating viral sequences in high-throughput sequencing viromics: a linkage study of 700 sequencing libraries. Clin Microbiol Infect 2019; 25:1277-1285. [PMID: 31059795 DOI: 10.1016/j.cmi.2019.04.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Sample preparation for high-throughput sequencing (HTS) includes treatment with various laboratory components, potentially carrying viral nucleic acids, the extent of which has not been thoroughly investigated. Our aim was to systematically examine a diverse repertoire of laboratory components used to prepare samples for HTS in order to identify contaminating viral sequences. METHODS A total of 322 samples of mainly human origin were analysed using eight protocols, applying a wide variety of laboratory components. Several samples (60% of human specimens) were processed using different protocols. In total, 712 sequencing libraries were investigated for viral sequence contamination. RESULTS Among sequences showing similarity to viruses, 493 were significantly associated with the use of laboratory components. Each of these viral sequences had sporadic appearance, only being identified in a subset of the samples treated with the linked laboratory component, and some were not identified in the non-template control samples. Remarkably, more than 65% of all viral sequences identified were within viral clusters linked to the use of laboratory components. CONCLUSIONS We show that high prevalence of contaminating viral sequences can be expected in HTS-based virome data and provide an extensive list of novel contaminating viral sequences that can be used for evaluation of viral findings in future virome and metagenome studies. Moreover, we show that detection can be problematic due to stochastic appearance and limited non-template controls. Although the exact origin of these viral sequences requires further research, our results support laboratory-component-linked viral sequence contamination of both biological and synthetic origin.
Collapse
Affiliation(s)
- M Asplund
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| | - K R Kjartansdóttir
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - S Mollerup
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - L Vinner
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - H Fridholm
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - J A R Herrera
- Disease Systems Biology Programme, Panum Instituttet, Copenhagen, Denmark; Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - J Friis-Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - T A Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - R H Jensen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - I B Nielsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - S R Richter
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - A Rey-Iglesia
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - M L Matey-Hernandez
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - D E Alquezar-Planas
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - P V S Olsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - T Sicheritz-Pontén
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark; Centre of Excellence for Omics-Driven Computational Biodiscovery, AIMST University, Kedah, Malaysia
| | - E Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - O Lund
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - S Brunak
- Disease Systems Biology Programme, Panum Instituttet, Copenhagen, Denmark; Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - T Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - L P Nielsen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Copenhagen, Denmark
| | - J M G Izarzugaza
- Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - A J Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Adriaenssens EM, Farkas K, Harrison C, Jones DL, Allison HE, McCarthy AJ. Viromic Analysis of Wastewater Input to a River Catchment Reveals a Diverse Assemblage of RNA Viruses. mSystems 2018; 3:e00025-18. [PMID: 29795788 PMCID: PMC5964442 DOI: 10.1128/msystems.00025-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/01/2018] [Indexed: 02/05/2023] Open
Abstract
Detection of viruses in the environment is heavily dependent on PCR-based approaches that require reference sequences for primer design. While this strategy can accurately detect known viruses, it will not find novel genotypes or emerging and invasive viral species. In this study, we investigated the use of viromics, i.e., high-throughput sequencing of the biosphere's viral fraction, to detect human-/animal-pathogenic RNA viruses in the Conwy river catchment area in Wales, United Kingdom. Using a combination of filtering and nuclease treatment, we extracted the viral fraction from wastewater and estuarine river water and sediment, followed by high-throughput RNA sequencing (RNA-Seq) analysis on the Illumina HiSeq platform, for the discovery of RNA virus genomes. We found a higher richness of RNA viruses in wastewater samples than in river water and sediment, and we assembled a complete norovirus genotype GI.2 genome from wastewater effluent, which was not contemporaneously detected by conventional reverse transcription-quantitative PCR (qRT-PCR). The simultaneous presence of diverse rotavirus signatures in wastewater indicated the potential for zoonotic infections in the area and suggested runoff from pig farms as a possible origin of these viruses. Our results show that viromics can be an important tool in the discovery of pathogenic viruses in the environment and can be used to inform and optimize reference-based detection methods provided appropriate and rigorous controls are included. IMPORTANCE Enteric viruses cause gastrointestinal illness and are commonly transmitted through the fecal-oral route. When wastewater is released into river systems, these viruses can contaminate the environment. Our results show that we can use viromics to find the range of potentially pathogenic viruses that are present in the environment and identify prevalent genotypes. The ultimate goal is to trace the fate of these pathogenic viruses from origin to the point where they are a threat to human health, informing reference-based detection methods and water quality management.
Collapse
Affiliation(s)
- Evelien M. Adriaenssens
- Microbiology Research Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kata Farkas
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, United Kingdom
| | - Christian Harrison
- Microbiology Research Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - David L. Jones
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, United Kingdom
| | - Heather E. Allison
- Microbiology Research Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Alan J. McCarthy
- Microbiology Research Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
Tang KW, Larsson E. Tumour virology in the era of high-throughput genomics. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0265. [PMID: 28893932 PMCID: PMC5597732 DOI: 10.1098/rstb.2016.0265] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/12/2022] Open
Abstract
With the advent of massively parallel sequencing, oncogenic viruses in tumours can now be detected in an unbiased and comprehensive manner. Additionally, new viruses or strains can be discovered based on sequence similarity with known viruses. Using this approach, the causative agent for Merkel cell carcinoma was identified. Subsequent studies using data from large collections of tumours have confirmed models built during decades of hypothesis-driven and low-throughput research, and a more detailed and comprehensive description of virus-tumour associations have emerged. Notably, large cohorts and high sequencing depth, in combination with newly developed bioinformatical techniques, have made it possible to rule out several suggested virus-tumour associations with a high degree of confidence. In this review we discuss possibilities, limitations and insights gained from using massively parallel sequencing to characterize tumours with viral content, with emphasis on detection of viral sequences and genomic integration events.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Ka-Wei Tang
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| |
Collapse
|
13
|
Boddu RS, Divakar K. Metagenomic Insights into Environmental Microbiome and Their Application in Food/Pharmaceutical Industry. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Chang Y, Moore PS, Weiss RA. Human oncogenic viruses: nature and discovery. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160264. [PMID: 28893931 PMCID: PMC5597731 DOI: 10.1098/rstb.2016.0264] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Seven kinds of virus collectively comprise an important cause of cancer, particularly in less developed countries and for people with damaged immune systems. Discovered over the past 54 years, most of these viruses are common infections of humankind for which malignancy is a rare consequence. Various cofactors affect the complex interaction between virus and host and the likelihood of cancer emerging. Although individual human tumour viruses exert their malignant effects in different ways, there are common features that illuminate mechanisms of oncogenesis more generally, whether or not there is a viral aetiology.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Yuan Chang
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Res Pav 1.8, Pittsburgh, PA 15213, USA
| | - Patrick S Moore
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Res Pav 1.8, Pittsburgh, PA 15213, USA
| | - Robin A Weiss
- Division of Infection and Immunity, University College London, Cruciform Bldg 1.3, Gower Street, London WC1 6BT, UK
| |
Collapse
|
15
|
Sauvage V, Gomez J, Boizeau L, Laperche S. The potential of viral metagenomics in blood transfusion safety. Transfus Clin Biol 2017; 24:218-222. [PMID: 28694025 DOI: 10.1016/j.tracli.2017.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023]
Abstract
Thanks to the significant advent of high throughput sequencing in the last ten years, it is now possible via metagenomics to define the spectrum of the microbial sequences present in human blood samples. Therefore, metagenomics sequencing appears as a promising approach for the identification and global surveillance of new, emerging and/or unexpected viruses that could impair blood transfusion safety. However, despite considerable advantages compared to the traditional methods of pathogen identification, this non-targeted approach presents several drawbacks including a lack of sensitivity and sequence contaminant issues. With further improvements, especially to increase sensitivity, metagenomics sequencing should become in a near future an additional diagnostic tool in infectious disease field and especially in blood transfusion safety.
Collapse
Affiliation(s)
- V Sauvage
- Département d'études des agents transmissibles par le sang, Institut national de la transfusion sanguine (INTS), Centre national de référence risques infectieux transfusionnels, 75015 Paris, France.
| | - J Gomez
- Département d'études des agents transmissibles par le sang, Institut national de la transfusion sanguine (INTS), Centre national de référence risques infectieux transfusionnels, 75015 Paris, France
| | - L Boizeau
- Département d'études des agents transmissibles par le sang, Institut national de la transfusion sanguine (INTS), Centre national de référence risques infectieux transfusionnels, 75015 Paris, France
| | - S Laperche
- Département d'études des agents transmissibles par le sang, Institut national de la transfusion sanguine (INTS), Centre national de référence risques infectieux transfusionnels, 75015 Paris, France
| |
Collapse
|
16
|
Tijssen P, Pénzes JJ, Yu Q, Pham HT, Bergoin M. Reprint of: Diversity of small, single-stranded DNA viruses of invertebrates and their chaotic evolutionary past. J Invertebr Pathol 2017; 147:23-36. [PMID: 32781498 DOI: 10.1016/j.jip.2017.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022]
Abstract
A wide spectrum of invertebrates is susceptible to various single-stranded DNA viruses. Their relative simplicity of replication and dependence on actively dividing cells makes them highly pathogenic for many invertebrates (Hexapoda, Decapoda, etc.). We present their taxonomical classification and describe the evolutionary relationships between various groups of invertebrate-infecting viruses, their high degree of recombination, and their relationship to viruses infecting mammals or other vertebrates. They share characteristics of the viruses within the various families, including structure of the virus particle, genome properties, and gene expression strategy.
Collapse
Affiliation(s)
- Peter Tijssen
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Judit J Pénzes
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Qian Yu
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Hanh T Pham
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Max Bergoin
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada; Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
17
|
Tijssen P, Pénzes JJ, Yu Q, Pham HT, Bergoin M. Diversity of small, single-stranded DNA viruses of invertebrates and their chaotic evolutionary past. J Invertebr Pathol 2016; 140:83-96. [PMID: 27663091 DOI: 10.1016/j.jip.2016.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022]
Abstract
A wide spectrum of invertebrates is susceptible to various single-stranded DNA viruses. Their relative simplicity of replication and dependence on actively dividing cells makes them highly pathogenic for many invertebrates (Hexapoda, Decapoda, etc.). We present their taxonomical classification and describe the evolutionary relationships between various groups of invertebrate-infecting viruses, their high degree of recombination, and their relationship to viruses infecting mammals or other vertebrates. They share characteristics of the viruses within the various families, including structure of the virus particle, genome properties, and gene expression strategy.
Collapse
Affiliation(s)
- Peter Tijssen
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Judit J Pénzes
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Qian Yu
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Hanh T Pham
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Max Bergoin
- Laboratoire de Virologie (Bldg 18), Institut National de Recherche Scientifique-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada; Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
18
|
Kim J, Maeng JH, Lim JS, Son H, Lee J, Lee JH, Kim S. Vecuum: identification and filtration of false somatic variants caused by recombinant vector contamination. Bioinformatics 2016; 32:3072-3080. [PMID: 27334474 DOI: 10.1093/bioinformatics/btw383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/14/2016] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Advances in sequencing technologies have remarkably lowered the detection limit of somatic variants to a low frequency. However, calling mutations at this range is still confounded by many factors including environmental contamination. Vector contamination is a continuously occurring issue and is especially problematic since vector inserts are hardly distinguishable from the sample sequences. Such inserts, which may harbor polymorphisms and engineered functional mutations, can result in calling false variants at corresponding sites. Numerous vector-screening methods have been developed, but none could handle contamination from inserts because they are focusing on vector backbone sequences alone. RESULTS We developed a novel method-Vecuum-that identifies vector-originated reads and resultant false variants. Since vector inserts are generally constructed from intron-less cDNAs, Vecuum identifies vector-originated reads by inspecting the clipping patterns at exon junctions. False variant calls are further detected based on the biased distribution of mutant alleles to vector-originated reads. Tests on simulated and spike-in experimental data validated that Vecuum could detect 93% of vector contaminants and could remove up to 87% of variant-like false calls with 100% precision. Application to public sequence datasets demonstrated the utility of Vecuum in detecting false variants resulting from various types of external contamination. AVAILABILITY AND IMPLEMENTATION Java-based implementation of the method is available at http://vecuum.sourceforge.net/ CONTACT: swkim@yuhs.acSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Junho Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Ju Heon Maeng
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jae Seok Lim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, South Korea
| | - Hyeonju Son
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Junehawk Lee
- Department of Convergence Technology Research, Korea Institute of Science and Technology Information, Daejeon 34141, South Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, South Korea
| | - Sangwoo Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, South Korea
| |
Collapse
|
19
|
Viral metagenomics applied to blood donors and recipients at high risk for blood-borne infections. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 14:400-7. [PMID: 27136432 DOI: 10.2450/2016.0160-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/18/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Characterisation of human-associated viral communities is essential for epidemiological surveillance and to be able to anticipate new potential threats for blood transfusion safety. In high-resource countries, the risk of blood-borne agent transmission of well-known viruses (HBV, HCV, HIV and HTLV) is currently considered to be under control. However, other unknown or unsuspected viruses may be transmitted to recipients by blood-derived products. To investigate this, the virome of plasma from individuals at high risk for parenterally and sexually transmitted infections was analysed by high throughput sequencing (HTS). MATERIALS AND METHODS Purified nucleic acids from two pools of 50 samples from recipients of multiple transfusions, and three pools containing seven plasma samples from either HBV-, HCV- or HIV-infected blood donors, were submitted to HTS. RESULTS Sequences from resident anelloviruses and HPgV were evidenced in all pools. HBV and HCV sequences were detected in pools containing 3.8×10(3) IU/mL of HBV-DNA and 1.7×10(5) IU/mL of HCV-RNA, respectively, whereas no HIV sequence was found in a pool of 150 copies/mL of HIV-RNA. This suggests a lack of sensitivity in HTS performance in detecting low levels of virus. In addition, this study identified other issues, including laboratory contaminants and the uncertainty of taxonomic assignment of short sequence. No sequence suggestive of a new viral species was identified. DISCUSSION This study did not identify any new blood-borne virus in high-risk individuals. However, rare and/or viruses present at very low titre could have escaped our protocol. Our results demonstrate the positive contribution of HTS in the detection of viral sequences in blood donations.
Collapse
|
20
|
Oude Munnink BB, Cotten M, Canuti M, Deijs M, Jebbink MF, van Hemert FJ, Phan MVT, Bakker M, Jazaeri Farsani SM, Kellam P, van der Hoek L. A Novel Astrovirus-Like RNA Virus Detected in Human Stool. Virus Evol 2016; 2:vew005. [PMID: 27774298 PMCID: PMC4989881 DOI: 10.1093/ve/vew005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Several novel clades of astroviruses have recently been identified in human faecal samples. Here, we describe a novel astrovirus-like RNA virus detected in human stools, which we have tentatively named bastrovirus. The genome of this novel virus consists of 6,300 nucleotides organized in three open reading frames. Several sequence divergent strains were detected sharing 67–93 per cent nucleotide identity. Bastrovirus encodes a putative structural protein that is homologous to the capsid protein found in members of the Astroviridae family (45% amino acid identity). The virus also encodes a putative non-structural protein that is genetically distant from astroviruses but shares some homology to the non-structural protein encoded by members of the Hepeviridae family (28% amino acid identity). This novel bastrovirus is present in 8.7 per cent (35/400) of faecal samples collected from 300 HIV-1-positive and 100 HIV-1-negative individuals suggesting common occurrence of the virus. However, whether the source of the virus is infected human cells or other, for example, dietary, remains to be determined.
Collapse
Affiliation(s)
- Bas B. Oude Munnink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Matthew Cotten
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK and
| | - Marta Canuti
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Maarten F. Jebbink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Formijn J. van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - My V. T. Phan
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK and
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Seyed Mohammad Jazaeri Farsani
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Paul Kellam
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK and
- Division of Infection and Immunity, University College London, WC1E 6BT London, UK
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
- *Corresponding author: E-mail:
| |
Collapse
|
21
|
Walsh GM, Shih AW, Solh Z, Golder M, Schubert P, Fearon M, Sheffield WP. Blood-Borne Pathogens: A Canadian Blood Services Centre for Innovation Symposium. Transfus Med Rev 2016; 30:53-68. [PMID: 26962008 PMCID: PMC7126603 DOI: 10.1016/j.tmrv.2016.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/18/2016] [Indexed: 12/19/2022]
Abstract
Testing donations for pathogens and deferring selected blood donors have reduced the risk of transmission of known pathogens by transfusion to extremely low levels in most developed countries. Protecting the blood supply from emerging infectious threats remains a serious concern in the transfusion medicine community. Transfusion services can employ indirect measures such as surveillance, hemovigilance, and donor questioning (defense), protein-, or nucleic acid based direct testing (detection), or pathogen inactivation of blood products (destruction) as strategies to mitigate the risk of transmission-transmitted infection. In the North American context, emerging threats currently include dengue, chikungunya, and hepatitis E viruses, and Babesia protozoan parasites. The 2003 SARS and 2014 Ebola outbreaks illustrate the potential of epidemics unlikely to be transmitted by blood transfusion but disruptive to blood systems. Donor-free blood products such as ex vivo generated red blood cells offer a theoretical way to avoid transmission-transmitted infection risk, although biological, engineering, and manufacturing challenges must be overcome before this approach becomes practical. Similarly, next generation sequencing of all nucleic acid in a blood sample is currently possible but impractical for generalized screening. Pathogen inactivation systems are in use in different jurisdictions around the world, and are starting to gain regulatory approval in North America. Cost concerns make it likely that pathogen inactivation will be contemplated by blood operators through the lens of health economics and risk-based decision making, rather than in zero-risk paradigms previously embraced for transfusable products. Defense of the blood supply from infectious disease risk will continue to require innovative combinations of surveillance, detection, and pathogen avoidance or inactivation. A symposium on blood-borne pathogens was held September 26, 2015, in Toronto, Canada. Transmission-transmitted infections remain a threat to the blood supply. The residual risk from established pathogens is small; emerging agents are a concern. Next generation sequencing and donor-free blood are not yet practical approaches. Pathogen inactivation technology is being increasingly used around the world. Health economic concerns will likely guide future advances in this area.
Collapse
Affiliation(s)
- Geraldine M Walsh
- Centre for Innovation, Canadian Blood Services, Hamilton, Ottawa, and Vancouver, Canada
| | - Andrew W Shih
- Medical Services and Innovation, Canadian Blood Services, McMaster University, Hamilton, Canada; Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Ziad Solh
- Medical Services and Innovation, Canadian Blood Services, McMaster University, Hamilton, Canada; Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Mia Golder
- Centre for Innovation, Canadian Blood Services, Hamilton, Ottawa, and Vancouver, Canada
| | - Peter Schubert
- Centre for Innovation, Canadian Blood Services, Hamilton, Ottawa, and Vancouver, Canada; Centre for Blood Research, University of British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Canada
| | - Margaret Fearon
- Medical Services and Innovation, Canadian Blood Services, McMaster University, Hamilton, Canada; Pathology and Laboratory Medicine, University of Toronto, Canada
| | - William P Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, Ottawa, and Vancouver, Canada; Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.
| |
Collapse
|
22
|
Mikheikin A, Olsen A, Picco L, Payton O, Mishra B, Gimzewski JK, Reed J. High-Speed Atomic Force Microscopy Revealing Contamination in DNA Purification Systems. Anal Chem 2016; 88:2527-32. [PMID: 26878668 DOI: 10.1021/acs.analchem.5b04023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Andrey Mikheikin
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Anita Olsen
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Loren Picco
- Interface
Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - Oliver Payton
- Interface
Analysis Centre, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - Bud Mishra
- Departments
of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
| | - James K. Gimzewski
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI) at the University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Jason Reed
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- VCU Massey Cancer Center, Richmond, Virginia 23298, United States
| |
Collapse
|
23
|
Friis-Nielsen J, Kjartansdóttir KR, Mollerup S, Asplund M, Mourier T, Jensen RH, Hansen TA, Rey-Iglesia A, Richter SR, Nielsen IB, Alquezar-Planas DE, Olsen PVS, Vinner L, Fridholm H, Nielsen LP, Willerslev E, Sicheritz-Pontén T, Lund O, Hansen AJ, Izarzugaza JMG, Brunak S. Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers. Viruses 2016; 8:E53. [PMID: 26907326 PMCID: PMC4776208 DOI: 10.3390/v8020053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 12/17/2022] Open
Abstract
Virus discovery from high throughput sequencing data often follows a bottom-up approach where taxonomic annotation takes place prior to association to disease. Albeit effective in some cases, the approach fails to detect novel pathogens and remote variants not present in reference databases. We have developed a species independent pipeline that utilises sequence clustering for the identification of nucleotide sequences that co-occur across multiple sequencing data instances. We applied the workflow to 686 sequencing libraries from 252 cancer samples of different cancer and tissue types, 32 non-template controls, and 24 test samples. Recurrent sequences were statistically associated to biological, methodological or technical features with the aim to identify novel pathogens or plausible contaminants that may associate to a particular kit or method. We provide examples of identified inhabitants of the healthy tissue flora as well as experimental contaminants. Unmapped sequences that co-occur with high statistical significance potentially represent the unknown sequence space where novel pathogens can be identified.
Collapse
Affiliation(s)
- Jens Friis-Nielsen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Kristín Rós Kjartansdóttir
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Sarah Mollerup
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Maria Asplund
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Tobias Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Randi Holm Jensen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Thomas Arn Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Alba Rey-Iglesia
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Stine Raith Richter
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Ida Broman Nielsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - David E Alquezar-Planas
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Pernille V S Olsen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Lasse Vinner
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Helena Fridholm
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Lars Peter Nielsen
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen S, Denmark.
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Thomas Sicheritz-Pontén
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Anders Johannes Hansen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
| | - Jose M G Izarzugaza
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Søren Brunak
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- NNF Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
24
|
Diverse circular replication-associated protein encoding viruses circulating in invertebrates within a lake ecosystem. INFECTION GENETICS AND EVOLUTION 2016; 39:304-316. [PMID: 26873065 DOI: 10.1016/j.meegid.2016.02.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/30/2016] [Accepted: 02/07/2016] [Indexed: 11/24/2022]
Abstract
Over the last five years next-generation sequencing has become a cost effective and efficient method for identifying known and unknown microorganisms. Access to this technique has dramatically changed the field of virology, enabling a wide range of environmental viral metagenome studies to be undertaken of organisms and environmental samples from polar to tropical regions. These studies have led to the discovery of hundreds of highly divergent single stranded DNA (ssDNA) virus-like sequences encoding replication-associated proteins. Yet, few studies have explored how viruses might be shared in an ecosystem through feeding relationships. Here we identify 169 circular molecules (160 CRESS DNA molecules, nine circular molecules) recovered from a New Zealand freshwater lake, that we have tentatively classified into 51 putatively novel species and five previously described species (DflaCV-3, -5, -6, -8, -10). The CRESS DNA viruses identified in this study were recovered from molluscs (Echyridella menzeisii, Musculium novaezelandiae, Potamopyrgus antipodarum and Physella acuta) and insect larvae (Procordulia grayi, Xanthocnemis zealandica, and Chironomus zealandicus) collected from Lake Sarah, as well as from the lake water and benthic sediments. Extensive diversity was observed across most CRESS DNA molecules recovered. The putative capsid protein of one viral species was found to be most similar to those of members of the Tombusviridae family, thus expanding the number of known RNA-DNA hybrid viruses in nature. We noted a strong association between the CRESS DNA viruses and circular molecules identified in the water and browser organisms (C. zealandicus, P. antipodarum and P. acuta), and between water sediments and undefended prey species (C. zealandicus). However, we were unable to find any significant correlation of viral assemblages to the potential feeding relationships of the host aquatic invertebrates.
Collapse
|
25
|
Abstract
The characterization of the human blood-associated viral community (also called blood virome) is essential for epidemiological surveillance and to anticipate new potential threats for blood transfusion safety. Currently, the risk of blood-borne agent transmission of well-known viruses (HBV, HCV, HIV and HTLV) can be considered as under control in high-resource countries. However, other viruses unknown or unsuspected may be transmitted to recipients by blood-derived products. This is particularly relevant considering that a significant proportion of transfused patients are immunocompromised and more frequently subjected to fatal outcomes. Several measures to prevent transfusion transmission of unknown viruses have been implemented including the exclusion of at-risk donors, leukocyte reduction of donor blood, and physicochemical treatment of the different blood components. However, up to now there is no universal method for pathogen inactivation, which would be applicable for all types of blood components and, equally effective for all viral families. In addition, among available inactivation procedures of viral genomes, some of them are recognized to be less effective on non-enveloped viruses, and inadequate to inactivate higher viral titers in plasma pools or derivatives. Given this, there is the need to implement new methodologies for the discovery of unknown viruses that may affect blood transfusion. Viral metagenomics combined with High Throughput Sequencing appears as a promising approach for the identification and global surveillance of new and/or unexpected viruses that could impair blood transfusion safety.
Collapse
Affiliation(s)
- V Sauvage
- Département d'études des agents transmissibles par le sang, Institut national de la transfusion sanguine (INTS), Centre national de référence des hépatites virales B et C et du VIH en transfusion, 75015 Paris, France.
| | - M Eloit
- PathoQuest, bâtiment François-Jacob, 25, rue du Dr-Roux, 75015 Paris, France; Inserm U1117, Biology of Infection Unit, Laboratory of Pathogen Discovery, Institut Pasteur, 28, rue du Docteur-Roux, 75724 Paris, France
| |
Collapse
|
26
|
Pathogen Discovery. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Krupovic M, Zhi N, Li J, Hu G, Koonin EV, Wong S, Shevchenko S, Zhao K, Young NS. Multiple layers of chimerism in a single-stranded DNA virus discovered by deep sequencing. Genome Biol Evol 2015; 7:993-1001. [PMID: 25840414 PMCID: PMC4419787 DOI: 10.1093/gbe/evv034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viruses with single-stranded (ss) DNA genomes infect hosts in all three domains of life and include many medically, ecologically, and economically important pathogens. Recently, a new group of ssDNA viruses with chimeric genomes has been discovered through viral metagenomics. These chimeric viruses combine capsid protein genes and replicative protein genes that, respectively, appear to have been inherited from viruses with positive-strand RNA genomes, such as tombusviruses, and ssDNA genomes, such as circoviruses, nanoviruses or geminiviruses. Here, we describe the genome sequence of a new representative of this virus group and reveal an additional layer of chimerism among ssDNA viruses. We show that not only do these viruses encompass genes for capsid proteins and replicative proteins that have distinct evolutionary histories, but also the replicative genes themselves are chimeras of functional domains inherited from viruses of different families. Our results underscore the importance of horizontal gene transfer in the evolution of ssDNA viruses and the role of genetic recombination in the emergence of novel virus groups.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Institut Pasteur, Paris, France
| | - Ning Zhi
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jungang Li
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gangqing Hu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Susan Wong
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sofiya Shevchenko
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
28
|
Houldcroft CJ, Breuer J. Tales from the crypt and coral reef: the successes and challenges of identifying new herpesviruses using metagenomics. Front Microbiol 2015; 6:188. [PMID: 25821447 PMCID: PMC4358218 DOI: 10.3389/fmicb.2015.00188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/20/2015] [Indexed: 12/14/2022] Open
Abstract
Herpesviruses are ubiquitous double-stranded DNA viruses infecting many animals, with the capacity to cause disease in both immunocompetent and immunocompromised hosts. Different herpesviruses have different cell tropisms, and have been detected in a diverse range of tissues and sample types. Metagenomics—encompassing viromics—analyses the nucleic acid of a tissue or other sample in an unbiased manner, making few or no prior assumptions about which viruses may be present in a sample. This approach has successfully discovered a number of novel herpesviruses. Furthermore, metagenomic analysis can identify herpesviruses with high degrees of sequence divergence from known herpesviruses and does not rely upon culturing large quantities of viral material. Metagenomics has had success in two areas of herpesvirus sequencing: firstly, the discovery of novel exogenous and endogenous herpesviruses in primates, bats and cnidarians; and secondly, in characterizing large areas of the genomes of herpesviruses previously only known from small fragments, revealing unexpected diversity. This review will discuss the successes and challenges of using metagenomics to identify novel herpesviruses, and future directions within the field.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- Infection, Inflammation and Rheumatology, Institute of Child Health, University College London , London, UK
| | - Judith Breuer
- Infection, Inflammation and Rheumatology, Institute of Child Health, University College London , London, UK ; Division of Infection and Immunity, University College London , London, UK
| |
Collapse
|
29
|
Sajantila A. Editors' Pick: Contamination has always been the issue! INVESTIGATIVE GENETICS 2014; 5:106. [PMID: 25551017 PMCID: PMC4279886 DOI: 10.1186/s13323-014-0017-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Antti Sajantila
- University of Helsinki, Department of Forensic Medicine, P.O.Box 40, 00014 Helsinki, Finland
| |
Collapse
|
30
|
McClenahan SD, Uhlenhaut C, Krause PR. Evaluation of cells and biological reagents for adventitious agents using degenerate primer PCR and massively parallel sequencing. Vaccine 2014; 32:7115-21. [DOI: 10.1016/j.vaccine.2014.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 12/22/2022]
|
31
|
Strong MJ, Xu G, Morici L, Splinter Bon-Durant S, Baddoo M, Lin Z, Fewell C, Taylor CM, Flemington EK. Microbial contamination in next generation sequencing: implications for sequence-based analysis of clinical samples. PLoS Pathog 2014; 10:e1004437. [PMID: 25412476 PMCID: PMC4239086 DOI: 10.1371/journal.ppat.1004437] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The high level of accuracy and sensitivity of next generation sequencing for quantifying genetic material across organismal boundaries gives it tremendous potential for pathogen discovery and diagnosis in human disease. Despite this promise, substantial bacterial contamination is routinely found in existing human-derived RNA-seq datasets that likely arises from environmental sources. This raises the need for stringent sequencing and analysis protocols for studies investigating sequence-based microbial signatures in clinical samples.
Collapse
Affiliation(s)
- Michael J. Strong
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, Tulane University, New Orleans, Louisiana, United States of America
| | - Guorong Xu
- Department of Genomic Medicine, University of California, San Diego, California, United States of America
| | - Lisa Morici
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana, United States of America
| | - Sandra Splinter Bon-Durant
- University of Wisconsin Biotechnology Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Melody Baddoo
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, Tulane University, New Orleans, Louisiana, United States of America
| | - Zhen Lin
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, Tulane University, New Orleans, Louisiana, United States of America
| | - Claire Fewell
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, Tulane University, New Orleans, Louisiana, United States of America
| | - Christopher M. Taylor
- Department of Microbiology, Immunology & Parasitology, Louisiana State University School of Medicine, New Orleans, Louisiana, United States of America
- Research Institute for Children, Children's Hospital of New Orleans, New Orleans, Louisiana, United States of America
| | - Erik K. Flemington
- Department of Pathology, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Cancer Center, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
32
|
Expanding the conversation on high-throughput virome sequencing standards to include consideration of microbial contamination sources. mBio 2014; 5:e01989. [PMID: 25352620 PMCID: PMC4217176 DOI: 10.1128/mbio.01989-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
33
|
Rosseel T, Pardon B, De Clercq K, Ozhelvaci O, Van Borm S. False-positive results in metagenomic virus discovery: a strong case for follow-up diagnosis. Transbound Emerg Dis 2014; 61:293-9. [PMID: 24912559 DOI: 10.1111/tbed.12251] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Indexed: 11/30/2022]
Abstract
A viral metagenomic approach using virion enrichment, random amplification and next-generation sequencing was used to investigate an undiagnosed cluster of dairy cattle presenting with high persistent fever, unresponsive to anti-microbial and anti-inflammatory treatment, diarrhoea and redness of nose and teat. Serum and whole blood samples were taken in the predicted hyperviraemic state of an animal that a few days later presented with these clinical signs. Bioinformatics analysis of the resulting data from the DNA virus identification workflow (a total of 32 757 sequences with average read length 335 bases) initially demonstrated the presence of parvovirus-like sequences in the tested blood sample. Thorough follow-up using specific real-time RT-PCR assays targeting the detected sequence fragments confirmed the presence of these sequences in the original sample as well as in a sample of an additional animal, but a contamination with an identical genetic signature in negative extraction controls was demonstrated. Further investigation using an alternative extraction method identified a contamination of the originally used Qiagen extraction columns with parvovirus-like nucleic acids or virus particles. Although we did not find any relevant virus that could be associated with the disease, these observations clearly illustrate the importance of using a proper control strategy and follow-up diagnostic tests in any viral metagenomic study.
Collapse
Affiliation(s)
- T Rosseel
- Veterinary and Agrochemical Research Centre, Department of Virology, Molecular Platform Unit, Ukkel, Belgium
| | | | | | | | | |
Collapse
|
34
|
Reply to Naccache et al: Viral sequences of NIH-CQV virus, a contamination of DNA extraction method. Proc Natl Acad Sci U S A 2014; 111:E977. [PMID: 24829942 DOI: 10.1073/pnas.1318965111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
35
|
The clinical and immune characteristics of patients with hepatitis-associated aplastic anemia in China. PLoS One 2014; 9:e98142. [PMID: 24845454 PMCID: PMC4028298 DOI: 10.1371/journal.pone.0098142] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/29/2014] [Indexed: 01/10/2023] Open
Abstract
Hepatitis-associated aplastic anemia (HAAA) is a variant of severe aplastic anemia (SAA) in which bone marrow failure follows an acute attack of hepatitis. Its pathogenesis is poorly understood. We investigated the prevalence of HAAA among cases of newly diagnosed SAA presenting to our hospital between January 1998 and February 2013, and analyzed the clinical and immune characteristics of HAAA and non-hepatitis-associated SAA (non-HASAA) patients. The prevalence of HAAA among cases of SAA was 3.8% (36/949), and the majority of patients (33/36) were seronegative for a known hepatitis virus. Compared with non-HASAA patients, HAAA patients had a larger proportion of CD8+ T cells, a lower ratio of CD4+/CD8+ T cells, and a smaller proportion of CD4+CD25+ regulatory T cells. There was no significant difference in peripheral blood count, bone marrow cellularity, or the number of blood transfusions received between HAAA and non-HASAA patients. HAAA patients had a higher early infection rate and more infection-related mortality in the first 2 years after diagnosis than non-HASAA patients, and their 2-year survival rate was lower. The results demonstrate that HAAA patients have a more severe T cell imbalance and a poorer prognosis than non-HASAA patients.
Collapse
|
36
|
Bodewes R, Ruiz-Gonzalez A, Schapendonk CME, van den Brand JMA, Osterhaus ADME, Smits SL. Viral metagenomic analysis of feces of wild small carnivores. Virol J 2014; 11:89. [PMID: 24886057 PMCID: PMC4030737 DOI: 10.1186/1743-422x-11-89] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/08/2014] [Indexed: 11/10/2022] Open
Abstract
Background Recent studies have clearly demonstrated the enormous virus diversity that exists among wild animals. This exemplifies the required expansion of our knowledge of the virus diversity present in wildlife, as well as the potential transmission of these viruses to domestic animals or humans. Methods In the present study we evaluated the viral diversity of fecal samples (n = 42) collected from 10 different species of wild small carnivores inhabiting the northern part of Spain using random PCR in combination with next-generation sequencing. Samples were collected from American mink (Neovison vison), European mink (Mustela lutreola), European polecat (Mustela putorius), European pine marten (Martes martes), stone marten (Martes foina), Eurasian otter (Lutra lutra) and Eurasian badger (Meles meles) of the family of Mustelidae; common genet (Genetta genetta) of the family of Viverridae; red fox (Vulpes vulpes) of the family of Canidae and European wild cat (Felis silvestris) of the family of Felidae. Results A number of sequences of possible novel viruses or virus variants were detected, including a theilovirus, phleboviruses, an amdovirus, a kobuvirus and picobirnaviruses. Conclusions Using random PCR in combination with next generation sequencing, sequences of various novel viruses or virus variants were detected in fecal samples collected from Spanish carnivores. Detected novel viruses highlight the viral diversity that is present in fecal material of wild carnivores.
Collapse
Affiliation(s)
- Rogier Bodewes
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Concerns over the origin of NIH-CQV, a novel virus discovered in Chinese patients with seronegative hepatitis. Proc Natl Acad Sci U S A 2014; 111:E976. [PMID: 24572576 DOI: 10.1073/pnas.1317064111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Novel hybrid parvovirus-like virus, NIH-CQV/PHV, contaminants in silica column-based nucleic acid extraction kits. J Virol 2013; 88:1398. [PMID: 24335290 DOI: 10.1128/jvi.03206-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Mulyanto, Wibawa IDN, Suparyatmo JB, Amirudin R, Ohnishi H, Takahashi M, Nishizawa T, Okamoto H. The complete genomes of subgenotype IA hepatitis A virus strains from four different islands in Indonesia form a phylogenetic cluster. Arch Virol 2013; 159:935-45. [PMID: 24212885 DOI: 10.1007/s00705-013-1874-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Despite the high endemicity of hepatitis A virus (HAV) in Indonesia, genetic information on those HAV strains is limited. Serum samples obtained from 76 individuals during outbreaks of hepatitis A in Jember (East Java) in 2006 and Tangerang (West Java) in 2007 and those from 82 patients with acute hepatitis in Solo (Central Java), Denpasar on Bali Island, Mataram on Lombok Island, and Makassar on Sulawesi Island in 2003 or 2007 were tested for the presence of HAV RNA by reverse transcription PCR with primers targeting the VP1-2B region (481 nucleotides, primer sequences at both ends excluded). Overall, 34 serum samples had detectable HAV RNA, including at least one viremic sample from each of the six regions. These 34 strains were 96.3-100 % identical to each other and formed a phylogenetic cluster within genotype IA. Six representative HAV isolates from each region shared 98.3-98.9 % identity over the entire genome and constituted a IA sublineage with a bootstrap value of 100 %, consisting of only Indonesian strains. HAV strains recovered from Japanese patients who were presumed to have contracted HAV infection while visiting Indonesia were closest to the Indonesian IA HAV strains obtained in the present study, with a high identity of 99.5-99.7 %, supporting the Indonesian origin of the imported strains. These results indicate that genetic analysis of HAV strains indigenous to HAV-endemic countries, including Indonesia, are useful for tracing infectious sources in imported cases of acute hepatitis A and for defining the epidemiological features of HAV infection in that country.
Collapse
Affiliation(s)
- Mulyanto
- Immunobiology Laboratory, Faculty of Medicine, University of Mataram, Mataram, Indonesia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Miller RR, Montoya V, Gardy JL, Patrick DM, Tang P. Metagenomics for pathogen detection in public health. Genome Med 2013; 5:81. [PMID: 24050114 PMCID: PMC3978900 DOI: 10.1186/gm485] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Traditional pathogen detection methods in public health infectious disease surveillance rely upon the identification of agents that are already known to be associated with a particular clinical syndrome. The emerging field of metagenomics has the potential to revolutionize pathogen detection in public health laboratories by allowing the simultaneous detection of all microorganisms in a clinical sample, without a priori knowledge of their identities, through the use of next-generation DNA sequencing. A single metagenomics analysis has the potential to detect rare and novel pathogens, and to uncover the role of dysbiotic microbiomes in infectious and chronic human disease. Making use of advances in sequencing platforms and bioinformatics tools, recent studies have shown that metagenomics can even determine the whole-genome sequences of pathogens, allowing inferences about antibiotic resistance, virulence, evolution and transmission to be made. We are entering an era in which more novel infectious diseases will be identified through metagenomics-based methods than through traditional laboratory methods. The impetus is now on public health laboratories to integrate metagenomics techniques into their diagnostic arsenals.
Collapse
Affiliation(s)
- Ruth R Miller
- UBC School of Population and Public Health, Faculty of Medicine, University of British Columbia, 2206 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Vincent Montoya
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Jennifer L Gardy
- UBC School of Population and Public Health, Faculty of Medicine, University of British Columbia, 2206 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - David M Patrick
- UBC School of Population and Public Health, Faculty of Medicine, University of British Columbia, 2206 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Patrick Tang
- Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada ; Public Health Microbiology and Reference Laboratory, British Columbia Centre for Disease Control, 655 West 12th Avenue, Vancouver, BC V5Z 2B4, Canada
| |
Collapse
|
41
|
The perils of pathogen discovery: origin of a novel parvovirus-like hybrid genome traced to nucleic acid extraction spin columns. J Virol 2013; 87:11966-77. [PMID: 24027301 DOI: 10.1128/jvi.02323-13] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Next-generation sequencing was used for discovery and de novo assembly of a novel, highly divergent DNA virus at the interface between the Parvoviridae and Circoviridae. The virus, provisionally named parvovirus-like hybrid virus (PHV), is nearly identical by sequence to another DNA virus, NIH-CQV, previously detected in Chinese patients with seronegative (non-A-E) hepatitis. Although we initially detected PHV in a wide range of clinical samples, with all strains sharing ∼99% nucleotide and amino acid identity with each other and with NIH-CQV, the exact origin of the virus was eventually traced to contaminated silica-binding spin columns used for nucleic acid extraction. Definitive confirmation of the origin of PHV, and presumably NIH-CQV, was obtained by in-depth analyses of water eluted through contaminated spin columns. Analysis of environmental metagenome libraries detected PHV sequences in coastal marine waters of North America, suggesting that a potential association between PHV and diatoms (algae) that generate the silica matrix used in the spin columns may have resulted in inadvertent viral contamination during manufacture. The confirmation of PHV/NIH-CQV as laboratory reagent contaminants and not bona fide infectious agents of humans underscores the rigorous approach needed to establish the validity of new viral genomes discovered by next-generation sequencing.
Collapse
|