1
|
Kalinová K, Gottschalk B, Hirtl M, Ostaku J, Gabrijelčič S, Sokolowski A, Malle E, Graier WF, Madreiter-Sokolowski CT. Targeting enhanced mitochondrial respiration chain activity as a potential therapeutic approach for endometriosis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167885. [PMID: 40320187 DOI: 10.1016/j.bbadis.2025.167885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/07/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
Endometriosis is a chronic condition defined by the presence of endometrial-like tissue outside the uterus. Since endometriotic cells share similarities with cancer cells, including uncontrolled cell growth and invasion, we investigated whether cancer cell-specific rewiring of mitochondrial signaling is also present in endometriotic cells. We utilized the endometriotic cell line 12Z and investigated its mitochondrial function in comparison with the uterine cancer cell line SK-UT-1 and the mammary epithelial cell line hTERT-HME1. We could show that the endometriotic 12Z cells share structural similarities with cancerous SK-UT-1 cells with enhanced colocalization between the endoplasmic reticulum and mitochondria and increased cristae width and density associated with facilitated mitochondrial Ca2+ uptake. However, an increase in the reduction equivalent yield and oxygen consumption rate was exclusively found in 12Z cells, whereas the reduced ΔΨm and the reverse mode of FOF1-ATP synthase were also detected in SK-UT-1 cells. These features rendered both cell types susceptible to quercetin and oligomycin A treatment. We assume that the complexes of the electron transport chain and the FOF1-ATP synthase in reverse mode have a crucial role in maintaining mitochondrial membrane potential and, thereby, mitochondrial integrity of endometriotic 12Z cells. Therefore, targeting the electron transport chain or the reverse mode of FOF1-ATP synthase may represent a promising new treatment strategy for endometriosis.
Collapse
Affiliation(s)
- Katarína Kalinová
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Martin Hirtl
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Julian Ostaku
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Sonja Gabrijelčič
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Alwin Sokolowski
- Division of Restorative Dentistry, Periodontology and Prosthodontics, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Wolfgang F Graier
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
2
|
Pita-Juarez Y, Karagkouni D, Kalavros N, Melms JC, Niezen S, Delorey TM, Essene AL, Brook OR, Pant D, Skelton-Badlani D, Naderi P, Huang P, Pan L, Hether T, Andrews TS, Ziegler CGK, Reeves J, Myloserdnyy A, Chen R, Nam A, Phelan S, Liang Y, Gregory M, He S, Patrick M, Rane T, Wardhani A, Amin AD, Biermann J, Hibshoosh H, Veregge M, Kramer Z, Jacobs C, Yalcin Y, Phillips D, Slyper M, Subramanian A, Ashenberg O, Bloom-Ackermann Z, Tran VM, Gomez J, Sturm A, Zhang S, Fleming SJ, Warren S, Beechem J, Hung D, Babadi M, Padera RF, MacParland SA, Bader GD, Imad N, Solomon IH, Miller E, Riedel S, Porter CBM, Villani AC, Tsai LTY, Hide W, Szabo G, Hecht J, Rozenblatt-Rosen O, Shalek AK, Izar B, Regev A, Popov YV, Jiang ZG, Vlachos IS. A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients. Genome Biol 2025; 26:56. [PMID: 40087773 PMCID: PMC11907808 DOI: 10.1186/s13059-025-03499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/07/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND The molecular underpinnings of organ dysfunction in severe COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we perform single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. RESULTS We identify hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells, and a central role in a pro-fibrotic TGFβ signaling cell-cell communications network. Integrated analysis and comparisons with healthy controls reveal extensive changes in the cellular composition and expression states in COVID-19 liver, providing the underpinning of hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis characteristic of COVID-19 cholangiopathy. We also observe Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition is dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. CONCLUSIONS Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.
Collapse
Affiliation(s)
- Yered Pita-Juarez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dimitra Karagkouni
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikolaos Kalavros
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, HMS Initiative for RNA Medicine / Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Johannes C Melms
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Sebastian Niezen
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Toni M Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam L Essene
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Olga R Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Deepti Pant
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Disha Skelton-Badlani
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Pourya Naderi
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Pinzhu Huang
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Liuliu Pan
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Tallulah S Andrews
- Ajmera Transplant Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Carly G K Ziegler
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Andriy Myloserdnyy
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachel Chen
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Andy Nam
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Yan Liang
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Shanshan He
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Tushar Rane
- NanoString Technologies, Inc., Seattle, WA, USA
| | | | - Amit Dipak Amin
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Jana Biermann
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Molly Veregge
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Zachary Kramer
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christopher Jacobs
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Yusuf Yalcin
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Devan Phillips
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Michal Slyper
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | | | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zohar Bloom-Ackermann
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Victoria M Tran
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Gomez
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Sturm
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shuting Zhang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen J Fleming
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Deborah Hung
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Mehrtash Babadi
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sonya A MacParland
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, Toronto, ON, Canada
| | - Nasser Imad
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric Miller
- NanoString Technologies, Inc., Seattle, WA, USA
| | - Stefan Riedel
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Caroline B M Porter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Linus T-Y Tsai
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Boston Nutrition and Obesity Research Center Functional Genomics and Bioinformatics Core, Boston, MA, USA
| | - Winston Hide
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gyongyi Szabo
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jonathan Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, USA
| | - Alex K Shalek
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA, USA.
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Immunology, Harvard Medical School, Boston, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA.
- Columbia Center for Translational Immunology, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, USA.
| | - Yury V Popov
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Z Gordon Jiang
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Spatial Technologies Unit, HMS Initiative for RNA Medicine / Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Verhoeven N, Oshima Y, Cartier E, Bippes CC, Neutzner A, Boyman L, Karbowski M. Outer mitochondrial membrane E3 Ub ligase MARCH5 controls de novo peroxisome biogenesis. Dev Cell 2025; 60:40-50.e5. [PMID: 39423819 PMCID: PMC11706706 DOI: 10.1016/j.devcel.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/03/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
We report that the outer mitochondrial membrane (OMM)-associated E3 Ub ligase MARCH5 is vital for generating mitochondria-derived pre-peroxisomes. In human immortalized cells, MARCH5 knockout leads to the accumulation of immature peroxisomes, reduced fatty-acid-induced peroxisomal biogenesis, and abnormal peroxisome biogenesis in MARCH5/Pex14 and MARCH5/Pex3 dko cells. Upon fatty-acid-induced peroxisomal biogenesis, MARCH5 redistributes to peroxisomes, and ubiquitination activity-deficient mutants of MARCH5 accumulate on peroxisomes containing high levels of the OMM protein Tom20 (mitochondria-derived pre-peroxisomes). Similarly, depletion of peroxisome biogenesis factor Pex14 leads to the accumulation of MARCH5- and Tom20-positive pre-peroxisomes, whereas no peroxisomes are detected in MARCH5/Pex14 dko cells. Inconsistent with MARCH5 merely acting as a quality factor, mitochondrial decline is not evident in tested models. Furthermore, reduced expression of peroxisomal proteins is detected in MARCH5-/- cells, whereas some of these proteins are stabilized in peroxisome biogenesis deficiency models lacking MARCH5 expression. Thus, MARCH5 is central for mitochondria-dependent peroxisome biogenesis.
Collapse
Affiliation(s)
- Nicolas Verhoeven
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yumiko Oshima
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Etienne Cartier
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
4
|
Uttekar B, Verma RK, Tomer D, Rikhy R. Mitochondrial morphology dynamics and ROS regulate apical polarity and differentiation in Drosophila follicle cells. Development 2024; 151:dev201732. [PMID: 38345270 PMCID: PMC7616099 DOI: 10.1242/dev.201732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
Mitochondrial morphology dynamics regulate signaling pathways during epithelial cell formation and differentiation. The mitochondrial fission protein Drp1 affects the appropriate activation of EGFR and Notch signaling-driven differentiation of posterior follicle cells in Drosophila oogenesis. The mechanisms by which Drp1 regulates epithelial polarity during differentiation are not known. In this study, we show that Drp1-depleted follicle cells are constricted in early stages and present in multiple layers at later stages with decreased levels of apical polarity protein aPKC. These defects are suppressed by additional depletion of mitochondrial fusion protein Opa1. Opa1 depletion leads to mitochondrial fragmentation and increased reactive oxygen species (ROS) in follicle cells. We find that increasing ROS by depleting the ROS scavengers, mitochondrial SOD2 and catalase also leads to mitochondrial fragmentation. Further, the loss of Opa1, SOD2 and catalase partially restores the defects in epithelial polarity and aPKC, along with EGFR and Notch signaling in Drp1-depleted follicle cells. Our results show a crucial interaction between mitochondrial morphology, ROS generation and epithelial cell polarity formation during the differentiation of follicle epithelial cells in Drosophila oogenesis.
Collapse
Affiliation(s)
- Bhavin Uttekar
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Rahul Kumar Verma
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Darshika Tomer
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
5
|
Tatsumi K, Wada H, Hasegawa S, Asukai K, Nagata S, Ekawa T, Akazawa T, Mizote Y, Okumura S, Okamura R, Ohue M, Obama K, Tahara H. Prediction for oxaliplatin-induced liver injury using patient-derived liver organoids. Cancer Med 2024; 13:e7042. [PMID: 38400666 PMCID: PMC10891453 DOI: 10.1002/cam4.7042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Liver injury associated with oxaliplatin (L-OHP)-based chemotherapy can significantly impact the treatment outcomes of patients with colorectal cancer liver metastases, especially when combined with surgery. To date, no definitive biomarker that can predict the risk of liver injury has been identified. This study aimed to investigate whether organoids can be used as tools to predict the risk of liver injury. METHODS We examined the relationship between the clinical signs of L-OHP-induced liver injury and the responses of patient-derived liver organoids in vitro. Organoids were established from noncancerous liver tissues obtained from 10 patients who underwent L-OHP-based chemotherapy and hepatectomy for colorectal cancer. RESULTS Organoids cultured in a galactose differentiation medium, which can activate the mitochondria of organoids, showed sensitivity to L-OHP cytotoxicity, which was significantly related to clinical liver toxicity induced by L-OHP treatment. Organoids from patients who presented with a high-grade liver injury to the L-OHP regimen showed an obvious increase in mitochondrial superoxide levels and a significant decrease in mitochondrial membrane potential with L-OHP exposure. L-OHP-induced mitochondrial oxidative stress was not observed in the organoids from patients with low-grade liver injury. CONCLUSIONS These results suggested that L-OHP-induced liver injury may be caused by mitochondrial oxidative damage. Furthermore, patient-derived liver organoids may be used to assess susceptibility to L-OHP-induced liver injury in individual patients.
Collapse
Affiliation(s)
- Kumiko Tatsumi
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiroshi Wada
- Department of Gastroenterological SurgeryOsaka International Cancer InstituteOsakaJapan
| | - Shinichiro Hasegawa
- Department of Gastroenterological SurgeryOsaka International Cancer InstituteOsakaJapan
| | - Kei Asukai
- Department of Gastroenterological SurgeryOsaka International Cancer InstituteOsakaJapan
| | - Shigenori Nagata
- Department of Diagnostic Pathology and CytologyOsaka International Cancer InstituteOsakaJapan
| | - Tomoya Ekawa
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Yu Mizote
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
| | - Shintaro Okumura
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ryosuke Okamura
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masayuki Ohue
- Department of Gastroenterological SurgeryOsaka International Cancer InstituteOsakaJapan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hideaki Tahara
- Department of Cancer Drug Discovery and Development, Research CenterOsaka International Cancer InstituteOsakaJapan
- Project Division of Cancer Biomolecular TherapyThe Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
6
|
Tsopela V, Korakidis E, Lagou D, Kalliampakou KI, Milona RS, Kyriakopoulou E, Mpekoulis G, Gemenetzi I, Stylianaki EA, Sideris CD, Sioli A, Kefallinos D, Sideris DC, Aidinis V, Eliopoulos AG, Kambas K, Vassilacopoulou D, Vassilaki N. L-Dopa decarboxylase modulates autophagy in hepatocytes and is implicated in dengue virus-caused inhibition of autophagy completion. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119602. [PMID: 37778471 DOI: 10.1016/j.bbamcr.2023.119602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
The enzyme L-Dopa Decarboxylase (DDC) synthesizes the catecholamine dopamine and the indolamine serotonin. Apart from its role in the brain as a neurotransmitter biosynthetic enzyme, DDC has been detected also in the liver and other peripheral organs, where it is implicated in cell proliferation, apoptosis, and host-virus interactions. Dengue virus (DENV) suppresses DDC expression at the later stages of infection, during which DENV also inhibits autophagosome-lysosome fusion. As dopamine affects autophagy in neuronal cells, we investigated the possible association of DDC with autophagy in human hepatocytes and examined whether DDC mediates the relationship between DENV infection and autophagy. We performed DDC silencing/overexpression and evaluated autophagic markers upon induction of autophagy, or suppression of autophagosome-lysosome fusion. Our results showed that DDC favored the autophagic process, at least in part, through its biosynthetic function, while knockdown of DDC or inhibition of DDC enzymatic activity prevented autophagy completion. In turn, autophagy induction upregulated DDC, while autophagy reduction by chemical or genetic (ATG14L knockout) ways caused the opposite effect. This study also implicated DDC with the cellular energetic status, as DDC silencing reduced the oxidative phosphorylation activity of the cell. We also report that upon DDC silencing, the repressive effect of DENV on the completion of autophagy was enhanced, and the inhibition of autolysosome formation did not exert an additive effect on viral proliferation. These data unravel a novel role of DDC in the autophagic process and suggest that DENV downregulates DDC expression to inhibit the completion of autophagy, reinforcing the importance of this protein in viral infections.
Collapse
Affiliation(s)
- Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Evangelos Korakidis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Despoina Lagou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | | | - Raphaela S Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Eirini Kyriakopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Ioanna Gemenetzi
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Elli-Anna Stylianaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | | | - Aggelina Sioli
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Dionysis Kefallinos
- School of Electrical Engineering and Computer Science, National Technical University of Athens, 157 73 Athens, Greece
| | - Diamantis C Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 01 Athens, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Aristides G Eliopoulos
- Department of Biology, School of Medicine, NKUA, 115 27 Athens, Greece; Center of Basic Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 01 Athens, Greece
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece.
| |
Collapse
|
7
|
Moreddu R. Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304110. [PMID: 37984883 PMCID: PMC10767462 DOI: 10.1002/advs.202304110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Bioelectricity is the electrical activity that occurs within living cells and tissues. This activity is critical for regulating homeostatic cellular function and communication, and disruptions of the same can lead to a variety of conditions, including cancer. Cancer cells are known to exhibit abnormal electrical properties compared to their healthy counterparts, and this has driven researchers to investigate the potential of harnessing bioelectricity as a tool in cancer diagnosis, prognosis, and treatment. In parallel, bioelectricity represents one of the means to gain fundamental insights on how electrical signals and charges play a role in cancer insurgence, growth, and progression. This review provides a comprehensive analysis of the literature in this field, addressing the fundamentals of bioelectricity in single cancer cells, cancer cell cohorts, and cancerous tissues. The emerging role of bioelectricity in cancer proliferation and metastasis is introduced. Based on the acknowledgement that this biological information is still hard to access due to the existing gap between biological findings and translational medicine, the latest advancements in the field of nanotechnologies for cellular electrophysiology are examined, as well as the most recent developments in micro- and nano-devices for cancer diagnostics and therapy targeting bioelectricity.
Collapse
|
8
|
Ma X, Manley S, Qian H, Li Y, Zhang C, Li K, Ding B, Guo F, Chen A, Zhang X, Liu M, Hao M, Kugler B, Morris EM, Thyfault J, Yang L, Sesaki H, Ni HM, McBride H, Ding WX. Mitochondria-lysosome-related organelles mediate mitochondrial clearance during cellular dedifferentiation. Cell Rep 2023; 42:113291. [PMID: 37862166 PMCID: PMC10842364 DOI: 10.1016/j.celrep.2023.113291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/01/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Dysfunctional mitochondria are removed via multiple pathways, such as mitophagy, a selective autophagy process. Here, we identify an intracellular hybrid mitochondria-lysosome organelle (termed the mitochondria-lysosome-related organelle [MLRO]), which regulates mitochondrial homeostasis independent of canonical mitophagy during hepatocyte dedifferentiation. The MLRO is an electron-dense organelle that has either a single or double membrane with both mitochondria and lysosome markers. Mechanistically, the MLRO is likely formed from the fusion of mitochondria-derived vesicles (MDVs) with lysosomes through a PARKIN-, ATG5-, and DRP1-independent process, which is negatively regulated by transcription factor EB (TFEB) and associated with mitochondrial protein degradation and hepatocyte dedifferentiation. The MLRO, which is galectin-3 positive, is reminiscent of damaged lysosome and could be cleared by overexpression of TFEB, resulting in attenuation of hepatocyte dedifferentiation. Together, results from this study suggest that the MLRO may act as an alternative mechanism for mitochondrial quality control independent of canonical autophagy/mitophagy involved in cell dedifferentiation.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sharon Manley
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hui Qian
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuan Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Chen Zhang
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kevin Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Benjamin Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Allen Chen
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Meihua Hao
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Benjamin Kugler
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - E Matthew Morris
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Heidi McBride
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
9
|
Ge XL, Zhang X, Li CH, Pan K, He L, Ren WZ. Bile Acid Overload Induced by Bile Duct and Portal Vein Ligation Improves Survival after Staged Hepatectomy in Rats. Curr Med Sci 2023; 43:1013-1022. [PMID: 37837571 DOI: 10.1007/s11596-023-2779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 06/26/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVE Compared to portal vein ligation (PVL), simultaneous bile duct and portal vein ligation (BPL) can significantly enhance hypertrophy of the intact liver. This study aimed to investigate whether BPL could improve survival after extended hepatectomy independently of an increased remnant liver. METHODS We adopted rat models of 90% BPL or 90% PVL. To investigate the role of bile acids (BAs) the BA pools in the PVL and BPL groups were altered by the diet. Staged resection preserving 10% of the estimated liver weight was performed 3 days after BPL; PVL; or sham operation. Histology, canalicular network (CN) continuity; and hepatocyte polarity were evaluated. RESULTS At 3 days after BPL; PVL; or sham operation when the volumetric difference of the intended liver remained insignificant, the survival rates after extended hepatectomy were 86.7%, 47%, and 23.3%, respectively (P<0.01). BPL induced faster restoration of canalicular integrity along with an intensive but transient BA overload. Staged hepatectomy after BPL shortened the duration of the bile CN disturbance and limited BA retention. Decreasing the BA pools in the rats that underwent BPL could compromise these effects, whereas increasing the BA pools of rats that underwent PVL could induce similar effects. The changes in CN restoration were associated with activation of LKB1. CONCLUSION In addition to increasing the future remnant liver, BPL shortened the duration of the spatial disturbance of the CN and could significantly improve the tolerance of the hypertrophied liver to staged resection. BPL may be a safe and efficient future option for patients with an insufficient remnant liver.
Collapse
Affiliation(s)
- Xin-Lan Ge
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Xuan Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Chong-Hui Li
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Ke Pan
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China
| | - Lei He
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China.
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China.
| | - Wei-Zheng Ren
- Faculty of Hepato-Pancreato-Biliary Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100853, China.
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, 100853, China.
| |
Collapse
|
10
|
Verhoeven N, Oshima Y, Cartier E, Neutzner A, Boyman L, Karbowski M. Outer mitochondrial membrane E3 Ub ligase MARCH5 controls mitochondrial steps in peroxisome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555756. [PMID: 37693581 PMCID: PMC10491203 DOI: 10.1101/2023.08.31.555756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Peroxisome de novo biogenesis requires yet unidentified mitochondrial proteins. We report that the outer mitochondrial membrane (OMM)-associated E3 Ub ligase MARCH5 is vital for generating mitochondria-derived pre-peroxisomes. MARCH5 knockout results in accumulation of immature peroxisomes and lower expression of various peroxisomal proteins. Upon fatty acid-induced peroxisomal biogenesis, MARCH5 redistributes to newly formed peroxisomes; the peroxisomal biogenesis under these conditions is inhibited in MARCH5 knockout cells. MARCH5 activity-deficient mutants are stalled on peroxisomes and induce accumulation of peroxisomes containing high levels of the OMM protein Tom20 (mitochondria-derived pre-peroxisomes). Furthermore, depletion of peroxisome biogenesis factor Pex14 leads to the formation of MARCH5- and Tom20-positive peroxisomes, while no peroxisomes are detected in Pex14/MARCH5 dko cells. Reexpression of WT, but not MARCH5 mutants, restores Tom20-positive pre-peroxisomes in Pex14/MARCH5 dko cells. Thus, MARCH5 acts upstream of Pex14 in mitochondrial steps of peroxisome biogenesis. Our data validate the hybrid, mitochondria-dependent model of peroxisome biogenesis and reveal that MARCH5 is an essential mitochondrial protein in this process. Summary The authors found that mitochondrial E3 Ub ligase MARCH5 controls the formation of mitochondria-derived pre-peroxisomes. The data support the hybrid, mitochondria-dependent model of peroxisome biogenesis and reveal that MARCH5 is an essential mitochondrial protein in this process.
Collapse
|
11
|
Combination Therapy of Polydeoxyribonucleotide and Microcurrent in Muscle Regeneration on Cast-Induced Muscle Atrophy in Rabbit. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7469452. [DOI: 10.1155/2022/7469452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022]
Abstract
Background. The aim of this study was to evaluate how polydeoxyribonucleotide (PDRN) and microcurrent therapy (MT) functioned synergistically in a cast-immobilized rabbit model with an atrophied calf muscle. Methods. At the age of 12 weeks, 32 male New Zealand rabbits were enrolled in four groups. After 2 weeks of cast-immobilization, 4 procedures were performed on atrophied calf muscle [weekly two injections normal saline 0.2 ml injection group 1 (G1-NS), weekly two injections 0.2 ml PDRN injection group 2 (G2-PDRN), MT group 3 (G3-MT), and 0.2 ml PDRN injection with MT group 4 (G4-PDRN+MT)]. For 2 weeks, MT was used for 60 minutes each day. The calf circumference (CC), the thickness of gastrocnemius muscle (TGCM), and the tibial nerve compound muscle action potential (CMAP) were evaluated using ultrasound before and after 2 weeks of treatment. Proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor, and platelet endothelial cell adhesion molecule-1 (PECAM-1) of GCM fibers (type I, type II, and total) were measured. Statistical analyses were performed using ANOVA. Results. The mean atrophic alterations of right CC, CMAP, and TGCM (medial/lateral) were substantially lower in G4-PDRN+MT than in the G1-NS, G2-PDRN, and G3-MT, respectively (
). Furthermore, mean CSAs (type I, type II, and total) of medial and lateral GCM muscle fibers in G4-PDRN+MT were significantly higher when compared to other three groups (
). In terms of the PCNA-, VEGF-, and PECAM-1-positive cell ratio of medial and lateral GCM muscle fibers, G4-PDRN+MT was considerably higher than G1-NS, G2-PDRN, and G3-MT (
). Conclusions. On the atrophied calf muscle of the rabbit model, PDRN injection combined with MT was more effective than PDRN injection alone, MT alone, and normal saline injection separately.
Collapse
|
12
|
Simple to Complex: The Role of Actin and Microtubules in Mitochondrial Dynamics in Amoeba, Yeast, and Mammalian Cells. Int J Mol Sci 2022; 23:ijms23169402. [PMID: 36012665 PMCID: PMC9409391 DOI: 10.3390/ijms23169402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are complex organelles that provide energy for the cell in the form of adenosine triphosphate (ATP) and have very specific structures. For most organisms, this is a reticular or tubular mitochondrial network, while others have singular oval-shaped organelles. Nonetheless, maintenance of this structure is dependent on the mitochondrial dynamics, fission, fusion, and motility. Recently, studies have shown that the cytoskeleton has a significant role in the regulation of mitochondrial dynamics. In this review, we focus on microtubules and actin filaments and look at what is currently known about the cytoskeleton’s role in mitochondrial dynamics in complex models like mammals and yeast, as well as what is known in the simple model system, Dictyostelium discoideum. Understanding how the cytoskeleton is involved in mitochondrial dynamics increases our understanding of mitochondrial disease, especially neurodegenerative diseases. Increases in fission, loss of fusion, and fragmented mitochondria are seen in several neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s disease. There is no known cure for these diseases, but new therapeutic strategies using drugs to alter mitochondrial fusion and fission activity are being considered. The future of these therapeutic studies is dependent on an in-depth understanding of the mechanisms of mitochondrial dynamics. Understanding the cytoskeleton’s role in dynamics in multiple model organisms will further our understanding of these mechanisms and could potentially uncover new therapeutic targets for these neurodegenerative diseases.
Collapse
|
13
|
Daradics N, Horvath G, Tretter L, Paal A, Fulop A, Budai A, Szijarto A. The effect of Cyclophilin D depletion on liver regeneration following associating liver partition and portal vein ligation for staged hepatectomy. PLoS One 2022; 17:e0271606. [PMID: 35834573 PMCID: PMC9282546 DOI: 10.1371/journal.pone.0271606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
AIM Associating Liver Partition and Portal vein ligation for Staged hepatectomy (ALPPS) is a modification of two-stage hepatectomy profitable for patients with inoperable hepatic tumors by standard techniques. Unfortunately, initially poor postoperative outcome was associated with ALPPS, in which mitochondrial dysfunction played an essential role. Inhibition of cyclophilins has been already proposed to be efficient as a mitochondrial therapy in liver diseases. To investigate the effect of Cyclophilin D (CypD) depletion on mitochondrial function, biogenesis and liver regeneration following ALPPS a CypD knockout (KO) mice model was created. METHODS Male wild type (WT) (n = 30) and CypD KO (n = 30) mice underwent ALPPS procedure. Animals were terminated pre-operatively and 24, 48, 72 or 168 h after the operation. Mitochondrial functional studies and proteomic analysis were performed. Regeneration rate and mitotic activity were assessed. RESULTS The CypD KO group displayed improved mitochondrial function, as both ATP production (P < 0.001) and oxygen consumption (P < 0.05) were increased compared to the WT group. The level of mitochondrial biogenesis coordinator peroxisome proliferator-activated receptor γ co-activator 1-α (PGC1-α) was also elevated in the CypD KO group (P < 0.001), which resulted in the induction of the mitochondrial oxidative phosphorylation system. Liver growth increased in the CypD KO group compared to the WT group (P < 0.001). CONCLUSIONS Our study demonstrates the beneficial effect of CypD depletion on the mitochondrial vulnerability following ALPPS. Based on our results we propose that CypD inhibition should be further investigated as a possible mitochondrial therapy following ALPPS.
Collapse
Affiliation(s)
- Noemi Daradics
- Department of Surgery, Transplantation and Interventional Gastroenterology, Semmelweis University, Hepato-Pancreatico-Biliary (HPB) Surgical Research Center Hungary, Budapest, Hungary
| | - Gergo Horvath
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Tretter
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Agnes Paal
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Andras Fulop
- Department of Surgery, Transplantation and Interventional Gastroenterology, Semmelweis University, Hepato-Pancreatico-Biliary (HPB) Surgical Research Center Hungary, Budapest, Hungary
| | - Andras Budai
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Attila Szijarto
- Department of Surgery, Transplantation and Interventional Gastroenterology, Semmelweis University, Hepato-Pancreatico-Biliary (HPB) Surgical Research Center Hungary, Budapest, Hungary
| |
Collapse
|
14
|
Elnaggar M, Abomhya A, Elkhattib I, Dawoud N, Doshi R. COVID-19 and liver diseases, what we know so far. World J Clin Cases 2022; 10:3969-3980. [PMID: 35665122 PMCID: PMC9131221 DOI: 10.12998/wjcc.v10.i13.3969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/15/2021] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) pneumonia outbreak started in December 2019. On March 12, 2020, the World Health Organization (WHO) declared that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitutes a pandemic, and as of May 2021, SARS-CoV-2 has infected over 167.3 million patients, including 3.4 million deaths, reported to WHO. In this review, we will focus on the relationship between SARS-CoV-2 infection and the liver. We will discuss how chronic liver diseases affect the COVID-19 disease course and outcomes. We will also discuss the SARS-CoV-2 effects on the liver, mechanisms of acute liver injury, and potential management plans.
Collapse
Affiliation(s)
- Mohamed Elnaggar
- Department of Internal Medicine, University of Nevada Reno School of Medicine, Reno, NV 89052, United States
| | - Ahmed Abomhya
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11200, United States
| | - Ismail Elkhattib
- Department of Internal Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Nabila Dawoud
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40508, United States
| | - Rajkumar Doshi
- Department of Cardiology, St Joseph's University Medical Center, Paterson, NJ 07503, United States
| |
Collapse
|
15
|
Obesity Affects the Proliferative Potential of Equine Endometrial Progenitor Cells and Modulates Their Molecular Phenotype Associated with Mitochondrial Metabolism. Cells 2022; 11:cells11091437. [PMID: 35563743 PMCID: PMC9100746 DOI: 10.3390/cells11091437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
The study aimed to investigate the influence of obesity on cellular features of equine endometrial progenitor cells (Eca EPCs), including viability, proliferation capacity, mitochondrial metabolism, and oxidative homeostasis. Eca EPCs derived from non-obese (non-OB) and obese (OB) mares were characterized by cellular phenotype and multipotency. Obesity-induced changes in the activity of Eca EPCs include the decline of their proliferative activity, clonogenic potential, mitochondrial metabolism, and enhanced oxidative stress. Eca EPCs isolated from obese mares were characterized by an increased occurrence of early apoptosis, loss of mitochondrial dynamics, and senescence-associated phenotype. Attenuated metabolism of Eca EPCs OB was related to increased expression of pro-apoptotic markers (CASP9, BAX, P53, P21), enhanced expression of OPN, PI3K, and AKT, simultaneously with decreased signaling stabilizing cellular homeostasis (including mitofusin, SIRT1, FOXP3). Obesity alters functional features and the self-renewal potential of endometrial progenitor cells. The impaired cytophysiology of progenitor cells from obese endometrium predicts lower regenerative capacity if used as autologous transplants.
Collapse
|
16
|
Madan S, Uttekar B, Chowdhary S, Rikhy R. Mitochondria Lead the Way: Mitochondrial Dynamics and Function in Cellular Movements in Development and Disease. Front Cell Dev Biol 2022; 9:781933. [PMID: 35186947 PMCID: PMC8848284 DOI: 10.3389/fcell.2021.781933] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
The dynamics, distribution and activity of subcellular organelles are integral to regulating cell shape changes during various physiological processes such as epithelial cell formation, cell migration and morphogenesis. Mitochondria are famously known as the powerhouse of the cell and play an important role in buffering calcium, releasing reactive oxygen species and key metabolites for various activities in a eukaryotic cell. Mitochondrial dynamics and morphology changes regulate these functions and their regulation is, in turn, crucial for various morphogenetic processes. In this review, we evaluate recent literature which highlights the role of mitochondrial morphology and activity during cell shape changes in epithelial cell formation, cell division, cell migration and tissue morphogenesis during organism development and in disease. In general, we find that mitochondrial shape is regulated for their distribution or translocation to the sites of active cell shape dynamics or morphogenesis. Often, key metabolites released locally and molecules buffered by mitochondria play crucial roles in regulating signaling pathways that motivate changes in cell shape, mitochondrial shape and mitochondrial activity. We conclude that mechanistic analysis of interactions between mitochondrial morphology, activity, signaling pathways and cell shape changes across the various cell and animal-based model systems holds the key to deciphering the common principles for this interaction.
Collapse
|
17
|
Fu D. Collagen Sandwich Culture of Primary Hepatocytes for Image-Based Investigations. Methods Mol Biol 2022; 2544:159-169. [PMID: 36125717 DOI: 10.1007/978-1-0716-2557-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Collagen sandwich culture of hepatocytes retains many in vivo-like properties and is used for many investigations in liver cell biology, and hepatic pharmacology and toxicology. This chapter describes the method of establishing collagen sandwich culture of hepatocytes in a glass bottom dish for image-based studies.
Collapse
Affiliation(s)
- Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- In vivo Pharmacology and Toxicology, Frontera Therapeutics, Bedford, MA, USA.
| |
Collapse
|
18
|
Dadras MS, Caja L, Mezheyeuski A, Liu S, Gélabert C, Gomez-Puerto MC, Gallini R, Rubin CJ, Ten Dijke P, Heldin CH, Moustakas A. The polarity protein Par3 coordinates positively self-renewal and negatively invasiveness in glioblastoma. Cell Death Dis 2021; 12:932. [PMID: 34642295 PMCID: PMC8511086 DOI: 10.1038/s41419-021-04220-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is a brain malignancy characterized by invasiveness to the surrounding brain tissue and by stem-like cells, which propagate the tumor and may also regulate invasiveness. During brain development, polarity proteins, such as Par3, regulate asymmetric cell division of neuro-glial progenitors and neurite motility. We, therefore, studied the role of the Par3 protein (encoded by PARD3) in GBM. GBM patient transcriptomic data and patient-derived culture analysis indicated diverse levels of expression of PARD3 across and independent from subtypes. Multiplex immunolocalization in GBM tumors identified Par3 protein enrichment in SOX2-, CD133-, and NESTIN-positive (stem-like) cells. Analysis of GBM cultures of the three subtypes (proneural, classical, mesenchymal), revealed decreased gliomasphere forming capacity and enhanced invasiveness upon silencing Par3. GBM cultures with suppressed Par3 showed low expression of stemness (SOX2 and NESTIN) but higher expression of differentiation (GFAP) genes. Moreover, Par3 silencing reduced the expression of a set of genes encoding mitochondrial enzymes that generate ATP. Accordingly, silencing Par3 reduced ATP production and concomitantly increased reactive oxygen species. The latter was required for the enhanced migration observed upon silencing of Par3 as anti-oxidants blocked the enhanced migration. These findings support the notion that Par3 exerts homeostatic redox control, which could limit the tumor cell-derived pool of oxygen radicals, and thereby the tumorigenicity of GBM.
Collapse
Affiliation(s)
- Mahsa Shahidi Dadras
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, SE-75185, Uppsala, Sweden.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, SE-75185, Uppsala, Sweden
| | - Sijia Liu
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline Gélabert
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Maria Catalina Gomez-Puerto
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Radiosa Gallini
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Science for Life Laboratory, Uppsala University, SE-75185, Uppsala, Sweden
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Biomedical Center, Uppsala University, SE-75123, Uppsala, Sweden.
| |
Collapse
|
19
|
Analysing the mechanism of mitochondrial oxidation-induced cell death using a multifunctional iridium(III) photosensitiser. Nat Commun 2021; 12:26. [PMID: 33397915 PMCID: PMC7782791 DOI: 10.1038/s41467-020-20210-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial oxidation-induced cell death, a physiological process triggered by various cancer therapeutics to induce oxidative stress on tumours, has been challenging to investigate owing to the difficulties in generating mitochondria-specific oxidative stress and monitoring mitochondrial responses simultaneously. Accordingly, to the best of our knowledge, the relationship between mitochondrial protein oxidation via oxidative stress and the subsequent cell death-related biological phenomena has not been defined. Here, we developed a multifunctional iridium(III) photosensitiser, Ir-OA, capable of inducing substantial mitochondrial oxidative stress and monitoring the corresponding change in viscosity, polarity, and morphology. Photoactivation of Ir-OA triggers chemical modifications in mitochondrial protein-crosslinking and oxidation (i.e., oxidative phosphorylation complexes and channel and translocase proteins), leading to microenvironment changes, such as increased microviscosity and depolarisation. These changes are strongly related to cell death by inducing mitochondrial swelling with excessive fission and fusion. We suggest a potential mechanism from mitochondrial oxidative stress to cell death based on proteomic analyses and phenomenological observations.
Collapse
|
20
|
Hunt NJ, Lockwood GP, Kang SWS, Pulpitel T, Clark X, Mao H, McCourt PAG, Cooney GJ, Wali JA, Le Couteur FH, Le Couteur DG, Cogger VC. The Effects of Metformin on Age-Related Changes in the Liver Sinusoidal Endothelial Cell. J Gerontol A Biol Sci Med Sci 2020; 75:278-285. [PMID: 31198956 DOI: 10.1093/gerona/glz153] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
Age-related changes in the liver sinusoidal endothelium, particularly the reduction in fenestrations, contribute to insulin resistance in old age. Metformin impacts on the aging process and improves insulin resistance. Therefore, the effects of metformin on the liver sinusoidal endothelium were studied. Metformin increased fenestrations in liver sinusoidal endothelial cells isolated from both young and old mice. Mice administered metformin in the diet for 12 months had increased fenestrations and this was associated with lower insulin levels. The effect of metformin on fenestrations was blocked by inhibitors of AMP-activated protein kinase (AMPK), endothelial nitric oxide synthase, and myosin light chain kinase phosphorylation. Metformin led to increased transgelin expression and structural changes in the actin cytoskeleton but had no effect on lactate production. Metformin also generated fenestration-like structures in SK-Hep1 cells, a liver endothelial cell line, and this was associated with increased ATP, cGMP, and mitochondrial activity. In conclusion, metformin ameliorates age-related changes in the liver sinusoidal endothelial cell via AMPK and endothelial nitric oxide pathways, which might promote insulin sensitivity in the liver, particularly in old age.
Collapse
Affiliation(s)
- Nicholas J Hunt
- ANZAC Research Institute, Biogerontology Laboratory, Concord Repatriation General Hospital, New South Wales, Australia.,Aging and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Repatriation General Hospital, New South Wales, Australia.,Concord Clinical School, Sydney Medical School, New South Wales, Australia.,Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Glen P Lockwood
- ANZAC Research Institute, Biogerontology Laboratory, Concord Repatriation General Hospital, New South Wales, Australia.,Aging and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Repatriation General Hospital, New South Wales, Australia.,Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Sun Woo Sophie Kang
- ANZAC Research Institute, Biogerontology Laboratory, Concord Repatriation General Hospital, New South Wales, Australia.,Aging and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Repatriation General Hospital, New South Wales, Australia.,Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Ximonie Clark
- Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Hong Mao
- Department of Medical Biology, University of Tromsø - The Arctic University of Norway
| | - Peter A G McCourt
- Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia.,Department of Medical Biology, University of Tromsø - The Arctic University of Norway
| | - Gregory J Cooney
- Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Jibran A Wali
- Aging and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Repatriation General Hospital, New South Wales, Australia.,Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| | - Frank H Le Couteur
- ANZAC Research Institute, Biogerontology Laboratory, Concord Repatriation General Hospital, New South Wales, Australia
| | - David G Le Couteur
- ANZAC Research Institute, Biogerontology Laboratory, Concord Repatriation General Hospital, New South Wales, Australia.,Aging and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Repatriation General Hospital, New South Wales, Australia.,Concord Clinical School, Sydney Medical School, New South Wales, Australia.,Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Victoria C Cogger
- ANZAC Research Institute, Biogerontology Laboratory, Concord Repatriation General Hospital, New South Wales, Australia.,Aging and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Repatriation General Hospital, New South Wales, Australia.,Concord Clinical School, Sydney Medical School, New South Wales, Australia.,Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Harvey AJ. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction 2020; 157:R159-R179. [PMID: 30870807 DOI: 10.1530/rep-18-0431] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria, originally of bacterial origin, are highly dynamic organelles that have evolved a symbiotic relationship within eukaryotic cells. Mitochondria undergo dynamic, stage-specific restructuring and redistribution during oocyte maturation and preimplantation embryo development, necessary to support key developmental events. Mitochondria also fulfil a wide range of functions beyond ATP synthesis, including the production of intracellular reactive oxygen species and calcium regulation, and are active participants in the regulation of signal transduction pathways. Communication between not only mitochondria and the nucleus, but also with other organelles, is emerging as a critical function which regulates preimplantation development. Significantly, perturbations and deficits in mitochondrial function manifest not only as reduced quality and/or poor oocyte and embryo development but contribute to post-implantation failure, long-term cell function and adult disease. A growing body of evidence indicates that altered availability of metabolic co-factors modulate the activity of epigenetic modifiers, such that oocyte and embryo mitochondrial activity and dynamics have the capacity to establish long-lasting alterations to the epigenetic landscape. It is proposed that preimplantation embryo development may represent a sensitive window during which epigenetic regulation by mitochondria is likely to have significant short- and long-term effects on embryo, and offspring, health. Hence, mitochondrial integrity, communication and metabolism are critical links between the environment, the epigenome and the regulation of embryo development.
Collapse
Affiliation(s)
- Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
22
|
Successful energy shift from glycolysis to mitochondrial oxidative phosphorylation in freshly isolated hepatocytes from humanized mice liver. Toxicol In Vitro 2020; 65:104785. [PMID: 31991145 DOI: 10.1016/j.tiv.2020.104785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/25/2020] [Accepted: 01/25/2020] [Indexed: 11/21/2022]
Abstract
Mitochondrial toxicity is a factor of drug-induced liver injury. Previously, we reported an in vitro rat hepatocyte assay where mitochondrial toxicity was more sensitively evaluated, using sugar resource substitution and increased oxygen supply. Although this method could be applicable to human cell-based assay, cryopreserved human hepatocyte (CHH) has some disadvantages/uncertainty, including unstable same donor supply and potential organelle damage due to cryopreservation. Herein, we compared the mitochondrial functions of freshly-isolated hepatocytes from humanized chimeric mice liver (PXB-cells) and three CHH lots to determine the better cell source for mitochondrial toxicity assay. Two CHH lots declined after replacing glucose with galactose. To confirm the shift in energy production from glycolysis to oxidative phosphorylation, lactate and oxygen consumption rate (indicators of glycolytic activity and mitochondrial oxidative phosphorylation, respectively) were measured. In PXB-cells, lactate amount decreased, while oxygen consumption in 100 min increased. These effects were less evident in CHH. The cytotoxicity of the select respiratory chain inhibitors was enhanced in PXB-cells upon sugar replacement, but no change occurred with negative control drugs (bicalutamide and metformin). Altogether, PXB-cells was less vulnerable to sugar resource substitution than CHH. The substitution activated mitochondrial function and enhanced cytotoxicity of respiratory chain inhibitors in PXB-cells.
Collapse
|
23
|
Kumar S, Nandi A, Mahesh A, Sinha S, Flores E, Chakrabarti R. Inducible knockout of ∆Np63 alters cell polarity and metabolism during pubertal mammary gland development. FEBS Lett 2019; 594:973-985. [PMID: 31794060 DOI: 10.1002/1873-3468.13703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
The ∆Np63 isoform of the p53-family transcription factor Trp63 is a key regulator of mammary epithelial stem cells that is involved in breast cancer development. To investigate the role of ∆Np63 at different stages of normal mammary gland development, we generated a ∆Np63-inducible conditional knockout (cKO) mouse model. We demonstrate that the deletion of ∆Np63 at puberty results in depletion of mammary stem cell-enriched basal cells, reduces expression of E-cadherin and β-catenin, and leads to a closed ductal lumen. RNA-sequencing analysis reveals reduced expression of oxidative phosphorylation (OXPHOS)-associated proteins and desmosomal polarity proteins. Functional assays show reduced numbers of mitochondria in the mammary epithelial cells of ΔNp63 cKO compared to wild-type, supporting the reduced OXPHOS phenotype. These findings identify a novel role for ∆Np63 in cellular metabolism and mammary epithelial cell polarity.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ajeya Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aakash Mahesh
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York, Buffalo, NY, USA
| | - Elsa Flores
- Department of Molecular and Cellular Oncology, Division of Basic Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular Oncology, Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Kang SWS, Cogger VC, Le Couteur DG, Fu D. Multiple cellular pathways regulate lipid droplet homeostasis for the establishment of polarity in collagen sandwich-cultured hepatocytes. Am J Physiol Cell Physiol 2019; 317:C942-C952. [DOI: 10.1152/ajpcell.00051.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatocyte polarization is energy dependent. The establishment of polarization in collagen sandwich culture of hepatocytes requires utilization of lipid droplets and mitochondrial β-oxidation to supply ATP. Multiple cellular pathways are involved in lipid droplet homeostasis; however, mechanistic insights of how hepatocytes utilize lipid droplets during polarization remain elusive. The current study investigated the effects of various pathways involved in lipid droplet homeostasis on bioenergetics during hepatocyte polarization. The results showed that hepatocytes were dependent on lipolysis of lipid droplets to release fatty acids for β-oxidation. Inhibition of lipolysis significantly decreased cellular fatty acid and ATP levels and inhibited hepatocyte polarization, revealing that lipolysis was an important mechanism for providing energy for hepatocyte polarization. The results also demonstrated that autophagic degradation of lipid droplets (lipophagy) was not essential for breaking down lipid droplets. Conversely, autophagy contributed to lipid droplet formation and played a key role in sustaining lipid droplet stores for energy production. In addition, cholesterol biosynthesis/cholesterol esterification and de novo fatty acid synthesis also contributed to maintaining lipid droplet stores for bioenergetics during hepatocyte polarization. In summary, multiple cellular pathways are coordinated to maintain lipid droplet homeostasis and sustain fatty acid β-oxidation during hepatocyte polarization.
Collapse
Affiliation(s)
- Sun Woo Sophie Kang
- Ageing and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, New South Wales, Australia
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Victoria C. Cogger
- Ageing and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - David G. Le Couteur
- Ageing and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Dong Fu
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
25
|
Synergic regenerative effects of polydeoxyribonucleotide and microcurrent on full-thickness rotator cuff healing in a rabbit model. Ann Phys Rehabil Med 2019; 63:474-482. [PMID: 31669161 DOI: 10.1016/j.rehab.2019.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Rotator cuff tendon tears (RCTTs) are common adult injuries. We hypothesized that a local injection of polydeoxyribonucleotide (PDRN) and microcurrent therapy (MIC) would be more effective in regenerating a tendon tear than PDRN administration alone. OBJECTIVES To evaluate the effect of PDRN combined with MIC on the regeneration of RCTTs in a rabbit subscapularis tendon chronic RCTT model. METHODS Rabbits (n=24) were allocated to 3 groups at 6 weeks after full-thickness RCTT (FTRCTT): 0.2mL normal saline (G1-SAL); 0.2mL PDRN with Sham MIC (G2-PDRN+Sham MIC); and 0.2mL PDRN with MIC (G3-PDRN+MIC). All treatments were performed under ultrasound guidance. PDRN was injected weekly for 4 weeks and sham MIC or MIC was applied daily for 4 weeks after the first PDRN injection. RESULTS In the G3-PDRN+MIC group, the mean (SD) subscapularis tendon tear size was continuously reduced from 1 week post-treatment to 4 weeks and was significantly decreased as compared with the other 2 groups [6.0 (1.5) vs. G1: 11.5 (1.8) and G2: 9.1 (1.6) mm2; G3 vs. G1, P<0.001; G3 vs. G2, P=0.018]. The gross morphologic mean tendon tear size was significantly smaller in the G3-PDRN+MIC group than G1-SAL and G2-PDRN+ Sham MIC groups [8.8 (3.5) vs. 15.9 (2.3) and 12.4 (1.6) mm2; G3 vs. G1, P<0.001; G3 vs. G2, P=0.03]. Mean values for regenerated collagen type 1 fibers, angiogenesis, and walking parameters were all greater for the G3-PDRN+MIC group than the other 2 groups based on histological examination and motion analysis [collagen type 1, G3: 1.60 (0.80) vs. G1: 0.45 (0.60), G2: 1.10 (0.74), G3 vs. G1, P<0.001; G3 vs. G2, P=0.002] [angiogenesis, G3: 2.44 (0.73) vs. G1: 0.80 (0.82) and G2: 2.06 (0.81), G3 vs. G1, P<0.001; G3 vs. G2, P=0.006] [walking distance, G3: 6391.4 (196.9) vs. G1: 4852.8 (137.3) and G2: 5514.4 (257.3) cm; G3 vs. G1, P<0.001; G3 vs. G2, P<0.001]. CONCLUSIONS On gross morphologic, histological, and motion analysis, combined PDRN with MIC therapy was more effective than PDRN alone treating a rabbit model of chronic traumatic FTRCTT.
Collapse
|
26
|
Takemura A, Gong S, Sekine S, Ito K. Inhibition of biliary network reconstruction by benzbromarone delays recovery from pre-existing liver injury. Toxicology 2019; 423:32-41. [DOI: 10.1016/j.tox.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/09/2019] [Accepted: 05/13/2019] [Indexed: 01/23/2023]
|
27
|
Le W, Chen B, Cui Z, Liu Z, Shi D. Detection of cancer cells based on glycolytic-regulated surface electrical charges. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-018-0080-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
28
|
iTRAQ-based proteome profiling of hyposaline responses in zygotes of the Pacific oyster Crassostrea gigas. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 30:14-24. [PMID: 30771561 DOI: 10.1016/j.cbd.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/22/2022]
Abstract
Low salinity treatment is proven to be the practical polyploidy inducing method for shellfish with advantages of lower cost, higher operability and reliable food security. However, little is known about the possible molecular mechanism of hypotonic induction. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) based proteomic profiling was pursued to investigate the responses of zygotes of the Pacific oyster Crassostrea gigas to low salinity. A total of 2235 proteins were identified and 87 proteins were considered differentially expressed, of which 14 were up-regulated and 69 were down-regulated. Numerous functional proteins including ADP ribosylation factor 2, DNA repair protein Rad50, splicing factor 3B, tubulin-specific Chaperone D were significantly changed in abundance, and were involved in various biology processes including energy generation, vesicle trafficking, DNA/RNA/protein metabolism and cytoskeleton modification, indicating the prominent modulation of cell division and embryonic development. Parallel reaction monitoring (PRM) analyses were carried out for validation of the expression levels of differentially expressed proteins (DEPs), which indicated high reliability of the proteomic results. Our study not only demonstrated the proteomic alterations in oyster zygotes under low salinity, but also provided, in part, clues to the relatively lower hatching rate and higher mortality of induced larvae. Above all, this study presents a valuable foundation for further studies on mechanisms of hypotonic induction.
Collapse
|
29
|
Budai A, Horváth G, Tretter L, Radák Z, Koltai E, Bori Z, Torma F, Lukáts Á, Röhlich P, Szijártó A, Fülöp A. Mitochondrial function after associating liver partition and portal vein ligation for staged hepatectomy in an experimental model. Br J Surg 2018; 106:120-131. [PMID: 30259964 DOI: 10.1002/bjs.10978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) is a two-stage strategy to induce rapid regeneration of the remnant liver. The technique has been associated with high mortality and morbidity rates. This study aimed to evaluate mitochondrial function, biogenesis and morphology during ALPPS-induced liver regeneration. METHODS Male Wistar rats (n = 100) underwent portal vein ligation (PVL) or ALPPS. The animals were killed at 0 h (without operation), and 24, 48, 72 or 168 h after intervention. Regeneration rate and proliferation index were assessed. Mitochondrial oxygen consumption and adenosine 5'-triphosphate (ATP) production were measured. Mitochondrial biogenesis was evaluated by protein level measurements of peroxisome proliferator-activated receptor γ co-activator (PGC) 1-α, nuclear respiratory factor (NRF) 1 and 2, and mitochondrial transcription factor α. Mitochondrial morphology was evaluated by electron microscopy. RESULTS Regeneration rate and Ki-67 index were significantly raised in the ALPPS group compared with the PVL group (regeneration rate at 168 h: mean(s.d.) 291·2(21·4) versus 245·1(13·8) per cent, P < 0·001; Ki-67 index at 24 h: 86·9(4·6) versus 66·2(4·9) per cent, P < 0·001). In the ALPPS group, mitochondrial function was impaired 48 h after the intervention compared with that in the PVL group (induced ATP production); (complex I: 361·9(72·3) versus 629·7(165·8) nmol per min per mg, P = 0·038; complex II: 517·5(48·8) versus 794·8(170·4) nmol per min per mg, P = 0·044). Markers of mitochondrial biogenesis were significantly lower 48 and 72 h after ALPPS compared with PVL (PGC1-α at 48 h: 0·61-fold decrease, P = 0·045; NRF1 at 48 h: 0·48-fold decrease, P = 0·028). Mitochondrial size decreased significantly after ALPPS (0·26(0·05) versus 0·40(0·07) μm2 ; P = 0·034). CONCLUSION Impaired mitochondrial function and biogenesis, along with the rapid energy-demanding cell proliferation, may cause hepatocyte dysfunction after ALPPS. Surgical relevance Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) is a well known surgical strategy that combines liver partition and portal vein ligation. This method induces immense regeneration in the future liver remnant. The rapid volume increase is of benefit for resectability, but the mortality and morbidity rates of ALPPS are strikingly high. Moreover, lagging functional recovery of the remnant liver has been reported recently. In this translational study, ALPPS caused an overwhelming inflammatory response that interfered with the peroxisome proliferator-activated receptor γ co-activator 1-α-coordinated, stress-induced, mitochondrial biogenesis pathway. This resulted in the accumulation of immature and malfunctioning mitochondria in hepatocytes during the early phase of liver regeneration (bioenergetic destabilization). These findings might explain some of the high morbidity if confirmed in patients.
Collapse
Affiliation(s)
- A Budai
- First Department of Surgery, Hepato-Pancreato-Biliary Surgical Research Centre, Budapest, Hungary
| | - G Horváth
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - L Tretter
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
| | - Z Radák
- Research Institute of Sport and Natural Sciences, University of Physical Education, Budapest, Hungary
| | - E Koltai
- Research Institute of Sport and Natural Sciences, University of Physical Education, Budapest, Hungary
| | - Z Bori
- Research Institute of Sport and Natural Sciences, University of Physical Education, Budapest, Hungary
| | - F Torma
- Research Institute of Sport and Natural Sciences, University of Physical Education, Budapest, Hungary
| | - Á Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - P Röhlich
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - A Szijártó
- First Department of Surgery, Hepato-Pancreato-Biliary Surgical Research Centre, Budapest, Hungary
| | - A Fülöp
- First Department of Surgery, Hepato-Pancreato-Biliary Surgical Research Centre, Budapest, Hungary
| |
Collapse
|
30
|
Fu D, Lippincott-Schwartz J. Monitoring the Effects of Pharmacological Reagents on Mitochondrial Morphology. ACTA ACUST UNITED AC 2018; 79:e45. [PMID: 29924486 DOI: 10.1002/cpcb.45] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This protocol describes how to apply appropriate pharmacological controls to induce mitochondrial fusion or fission in studies of mitochondria morphology for four different mammalian cell types, HepG2 human liver hepatocellular carcinoma cells, MCF7 human breast adenocarcinoma cells, HEK293 human embryonic kidney cells, and collagen sandwich culture of primary rat hepatocytes. The protocol provides methods of treating cells with these pharmacological controls, staining mitochondria with commercially available MitoTracker Green and TMRE dyes, and imaging the mitochondrial morphology in live cells using a confocal fluorescent microscope. It also describes the cell culture methods needed for this protocol. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Dong Fu
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina.,Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | | |
Collapse
|
31
|
Woods DC, Khrapko K, Tilly JL. Influence of Maternal Aging on Mitochondrial Heterogeneity, Inheritance, and Function in Oocytes and Preimplantation Embryos. Genes (Basel) 2018; 9:E265. [PMID: 29883421 PMCID: PMC5977205 DOI: 10.3390/genes9050265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
Contrasting the equal contribution of nuclear genetic material from maternal and paternal sources to offspring, passage of mitochondria, and thus mitochondrial DNA (mtDNA), is uniparental through the egg. Since mitochondria in eggs are ancestral to all somatic mitochondria of the next generation and to all cells of future generations, oocytes must prepare for the high energetic demands of maturation, fertilization and embryogenesis while simultaneously ensuring that their mitochondrial genomes are inherited in an undamaged state. Although significant effort has been made to understand how the mtDNA bottleneck and purifying selection act coordinately to prevent silent and unchecked spreading of invisible mtDNA mutations through the female germ line across successive generations, it is unknown if and how somatic cells of the immediate next generation are spared from inheritance of detrimental mtDNA molecules. Here, we review unique aspects of mitochondrial activity and segregation in eggs and early embryos, and how these events play into embryonic developmental competency in the face of advancing maternal age.
Collapse
Affiliation(s)
- Dori C Woods
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Konstantin Khrapko
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Jonathan L Tilly
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Zhang J, Ren L, Yang X, White M, Greenhaw J, Harris T, Wu Q, Bryant M, Papoian T, Mattes W, Shi Q. Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett 2018; 291:138-148. [PMID: 29655783 DOI: 10.1016/j.toxlet.2018.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/07/2023]
Abstract
Of the 34 FDA approved oral small-molecule kinase inhibitors (KI), 23 (68%) have warnings for hepatotoxicity in product labeling. To better understand the mechanisms of KI hepatotoxicity and whether such effects can be predicted, we examined 34 KIs for cytotoxicity in primary rat and human hepatocytes. The hepatocytes were treated with KIs at ten concentrations normalized to maximal therapeutic blood levels (Cmax). At 5 and 24 h post treatment, lactate dehydrogenase or alanine aminotransferase leakage, caspase 3/7 activities and cellular adenosine triphosphate levels were measured. At 1 to 100-fold Cmax, while 5 KIs were neither toxic to human nor rat hepatocytes, 3 KIs showed similar cytotoxicity in both species and 26 KIs showed species-biased cytotoxicity, with 16 KIs being more toxic to human hepatocytes and 10 KIs being more toxic to rat hepatocytes. At concentrations of 1-, 2.5-, 5-, 10-, 100-fold Cmax, the number of cytotoxic KIs in human hepatocytes was 4, 8, 11, 14 and 27, respectively, and the corresponding number in rat hepatocytes was 1, 4, 9, 12 and 27, respectively. When hepatocyte cytotoxicity at 100-fold Cmax was used to predict KI clinical hepatotoxicity reflected in product labeling, the accuracy was 0.65 with human hepatocytes and 0.59 with rat cells. When the criterion of daily dose ≥100 mg or Cmax ≥1.1 μM was used to predict KI hepatotoxicity, the accuracy was 0.56 or 0.47, respectively. These results suggest both indirect and direct drug-induced hepatocyte toxicity may contribute to the mechanisms of KI-induced hepatotoxicity seen clinically and use of primary hepatocytes is a useful in vitro model to help predict such toxicity.
Collapse
Affiliation(s)
- Jun Zhang
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, USA
| | - Lijun Ren
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, USA
| | - Xi Yang
- Division of Cardiovascular and Renal Products, Office of New Drugs I, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, USA
| | - Matthew White
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, USA
| | - James Greenhaw
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, USA
| | - Tashika Harris
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, USA; University of Arkansas in Little Rock, Little Rock, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, USA
| | - Matthew Bryant
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, USA
| | - Thomas Papoian
- Division of Cardiovascular and Renal Products, Office of New Drugs I, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, USA
| | - William Mattes
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, USA
| | - Qiang Shi
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, USA.
| |
Collapse
|
33
|
Ellis JL, Bove KE, Schuetz EG, Leino D, Valencia CA, Schuetz JD, Miethke A, Yin C. Zebrafish abcb11b mutant reveals strategies to restore bile excretion impaired by bile salt export pump deficiency. Hepatology 2018; 67:1531-1545. [PMID: 29091294 PMCID: PMC6480337 DOI: 10.1002/hep.29632] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
UNLABELLED Bile salt export pump (BSEP) adenosine triphosphate-binding cassette B11 (ABCB11) is a liver-specific ABC transporter that mediates canalicular bile salt excretion from hepatocytes. Human mutations in ABCB11 cause progressive familial intrahepatic cholestasis type 2. Although over 150 ABCB11 variants have been reported, our understanding of their biological consequences is limited by the lack of an experimental model that recapitulates the patient phenotypes. We applied CRISPR/Cas9-based genome editing technology to knock out abcb11b, the ortholog of human ABCB11, in zebrafish and found that these mutants died prematurely. Histological and ultrastructural analyses showed that abcb11b mutant zebrafish exhibited hepatocyte injury similar to that seen in patients with progressive familial intrahepatic cholestasis type 2. Hepatocytes of mutant zebrafish failed to excrete the fluorescently tagged bile acid that is a substrate of human BSEP. Multidrug resistance protein 1, which is thought to play a compensatory role in Abcb11 knockout mice, was mislocalized to the hepatocyte cytoplasm in abcb11b mutant zebrafish and in a patient lacking BSEP protein due to nonsense mutations in ABCB11. We discovered that BSEP deficiency induced autophagy in both human and zebrafish hepatocytes. Treatment with rapamycin restored bile acid excretion, attenuated hepatocyte damage, and extended the life span of abcb11b mutant zebrafish, correlating with the recovery of canalicular multidrug resistance protein 1 localization. CONCLUSIONS Collectively, these data suggest a model that rapamycin rescues BSEP-deficient phenotypes by prompting alternative transporters to excrete bile salts; multidrug resistance protein 1 is a candidate for such an alternative transporter. (Hepatology 2018;67:1531-1545).
Collapse
Affiliation(s)
- Jillian L. Ellis
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kevin E. Bove
- Department of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Erin G. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Daniel Leino
- Department of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - C. Alexander Valencia
- Program and Division of Human Genetics, Molecular Genetics Laboratory, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Alexander Miethke
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA,Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
34
|
de Boussac H, Gondeau C, Briolotti P, Duret C, Treindl F, Römer M, Fabre JM, Herrero A, Ramos J, Maurel P, Templin M, Gerbal-Chaloin S, Daujat-Chavanieu M. Epidermal Growth Factor Represses Constitutive Androstane Receptor Expression in Primary Human Hepatocytes and Favors Regulation by Pregnane X Receptor. Drug Metab Dispos 2018; 46:223-236. [PMID: 29269410 DOI: 10.1124/dmd.117.078683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
Growth factors have key roles in liver physiology and pathology, particularly by promoting cell proliferation and growth. Recently, it has been shown that in mouse hepatocytes, epidermal growth factor receptor (EGFR) plays a crucial role in the activation of the xenosensor constitutive androstane receptor (CAR) by the antiepileptic drug phenobarbital. Due to the species selectivity of CAR signaling, here we investigated epidermal growth factor (EGF) role in CAR signaling in primary human hepatocytes. Primary human hepatocytes were incubated with CITCO, a human CAR agonist, or with phenobarbital, an indirect CAR activator, in the presence or absence of EGF. CAR-dependent gene expression modulation and PXR involvement in these responses were assessed upon siRNA-based silencing of the genes that encode CAR and PXR. EGF significantly reduced CAR expression and prevented gene induction by CITCO and, to a lower extent, by phenobarbital. In the absence of EGF, phenobarbital and CITCO modulated the expression of 144 and 111 genes, respectively, in primary human hepatocytes. Among these genes, only 15 were regulated by CITCO and one by phenobarbital in a CAR-dependent manner. Conversely, in the presence of EGF, CITCO and phenobarbital modulated gene expression only in a CAR-independent and PXR-dependent manner. Overall, our findings suggest that in primary human hepatocytes, EGF suppresses specifically CAR signaling mainly through transcriptional regulation and drives the xenobiotic response toward a pregnane X receptor (PXR)-mediated mechanism.
Collapse
Affiliation(s)
- Hugues de Boussac
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Claire Gondeau
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Philippe Briolotti
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Cédric Duret
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Fridolin Treindl
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Michael Römer
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Jean-Michel Fabre
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Astrid Herrero
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Jeanne Ramos
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Patrick Maurel
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Markus Templin
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Sabine Gerbal-Chaloin
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| | - Martine Daujat-Chavanieu
- IRMB, INSERM, University Montpellier, Montpellier, France (H.d.B., C.G., P.B., C.D., P.M., S.G.-C., M.D.-C.); CHU Montpellier, IRMB, Montpellier, France (C.G., C.D., M.D.-C.); Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany (F.T., M.T.); Centre of Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany (M.R.); Department of Digestive Surgery, Hospital Saint Eloi, CHU Montpellier, Montpellier, France (J.-M.F.); Departments of General Surgery, Division of Transplantation, College of Medicine, University of Montpellier, Montpellier, France (A.H.); and Pathological Anatomy Department, Hospital Guy de Chauliac, CHU Montpellier, Montpellier, France (J.R.)
| |
Collapse
|
35
|
Heslop JA, Rowe C, Walsh J, Sison-Young R, Jenkins R, Kamalian L, Kia R, Hay D, Jones RP, Malik HZ, Fenwick S, Chadwick AE, Mills J, Kitteringham NR, Goldring CEP, Kevin Park B. Mechanistic evaluation of primary human hepatocyte culture using global proteomic analysis reveals a selective dedifferentiation profile. Arch Toxicol 2017; 91:439-452. [PMID: 27039104 PMCID: PMC5225178 DOI: 10.1007/s00204-016-1694-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
The application of primary human hepatocytes following isolation from human tissue is well accepted to be compromised by the process of dedifferentiation. This phenomenon reduces many unique hepatocyte functions, limiting their use in drug disposition and toxicity assessment. The aetiology of dedifferentiation has not been well defined, and further understanding of the process would allow the development of novel strategies for sustaining the hepatocyte phenotype in culture or for improving protocols for maturation of hepatocytes generated from stem cells. We have therefore carried out the first proteomic comparison of primary human hepatocyte differentiation. Cells were cultured for 0, 24, 72 and 168 h as a monolayer in order to permit unrestricted hepatocyte dedifferentiation, so as to reveal the causative signalling pathways and factors in this process, by pathway analysis. A total of 3430 proteins were identified with a false detection rate of <1 %, of which 1117 were quantified at every time point. Increasing numbers of significantly differentially expressed proteins compared with the freshly isolated cells were observed at 24 h (40 proteins), 72 h (118 proteins) and 168 h (272 proteins) (p < 0.05). In particular, cytochromes P450 and mitochondrial proteins underwent major changes, confirmed by functional studies and investigated by pathway analysis. We report the key factors and pathways which underlie the loss of hepatic phenotype in vitro, particularly those driving the large-scale and selective remodelling of the mitochondrial and metabolic proteomes. In summary, these findings expand the current understanding of dedifferentiation should facilitate further development of simple and complex hepatic culture systems.
Collapse
Affiliation(s)
- James A. Heslop
- Division of Molecular and Clinical Pharmacology, The Institute of Translational Medicine, MRC Centre for Drug Safety Science, The University of Liverpool, Liverpool, L69 3GE UK
| | - Cliff Rowe
- CN Bio, Centre for Innovation and Enterprise, Oxford University Begbroke Science Park, Begbroke, Oxfordshire OX5 1PF UK
| | - Joanne Walsh
- Division of Molecular and Clinical Pharmacology, The Institute of Translational Medicine, MRC Centre for Drug Safety Science, The University of Liverpool, Liverpool, L69 3GE UK
| | - Rowena Sison-Young
- Division of Molecular and Clinical Pharmacology, The Institute of Translational Medicine, MRC Centre for Drug Safety Science, The University of Liverpool, Liverpool, L69 3GE UK
| | - Roz Jenkins
- Division of Molecular and Clinical Pharmacology, The Institute of Translational Medicine, MRC Centre for Drug Safety Science, The University of Liverpool, Liverpool, L69 3GE UK
| | - Laleh Kamalian
- Division of Molecular and Clinical Pharmacology, The Institute of Translational Medicine, MRC Centre for Drug Safety Science, The University of Liverpool, Liverpool, L69 3GE UK
| | - Richard Kia
- Division of Molecular and Clinical Pharmacology, The Institute of Translational Medicine, MRC Centre for Drug Safety Science, The University of Liverpool, Liverpool, L69 3GE UK
| | - David Hay
- Division of Molecular and Clinical Pharmacology, The Institute of Translational Medicine, MRC Centre for Drug Safety Science, The University of Liverpool, Liverpool, L69 3GE UK
| | - Robert P. Jones
- University Hospital Aintree, Longmoor Lane, Liverpool, L9 7AL UK
| | - Hassan Z. Malik
- University Hospital Aintree, Longmoor Lane, Liverpool, L9 7AL UK
| | - Stephen Fenwick
- University Hospital Aintree, Longmoor Lane, Liverpool, L9 7AL UK
| | - Amy E. Chadwick
- Division of Molecular and Clinical Pharmacology, The Institute of Translational Medicine, MRC Centre for Drug Safety Science, The University of Liverpool, Liverpool, L69 3GE UK
| | - John Mills
- AstraZeneca, Personalised Healthcare and Biomarkers, Alderley Park, Cheshire SK10 4TG UK
| | - Neil R. Kitteringham
- Division of Molecular and Clinical Pharmacology, The Institute of Translational Medicine, MRC Centre for Drug Safety Science, The University of Liverpool, Liverpool, L69 3GE UK
| | - Chris E. P. Goldring
- Division of Molecular and Clinical Pharmacology, The Institute of Translational Medicine, MRC Centre for Drug Safety Science, The University of Liverpool, Liverpool, L69 3GE UK
| | - B. Kevin Park
- Division of Molecular and Clinical Pharmacology, The Institute of Translational Medicine, MRC Centre for Drug Safety Science, The University of Liverpool, Liverpool, L69 3GE UK
| |
Collapse
|
36
|
Kang SWS, Haydar G, Taniane C, Farrell G, Arias IM, Lippincott-Schwartz J, Fu D. AMPK Activation Prevents and Reverses Drug-Induced Mitochondrial and Hepatocyte Injury by Promoting Mitochondrial Fusion and Function. PLoS One 2016; 11:e0165638. [PMID: 27792760 PMCID: PMC5085033 DOI: 10.1371/journal.pone.0165638] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK). When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury.
Collapse
Affiliation(s)
| | - Ghada Haydar
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Caitlin Taniane
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Geoffrey Farrell
- Liver Research Group, Australian National University Medical School, Canberra, Australia
| | - Irwin M. Arias
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Dong Fu
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
37
|
Levy G, Habib N, Guzzardi MA, Kitsberg D, Bomze D, Ezra E, Uygun BE, Uygun K, Trippler M, Schlaak JF, Shibolet O, Sklan EH, Cohen M, Timm J, Friedman N, Nahmias Y. Nuclear receptors control pro-viral and antiviral metabolic responses to hepatitis C virus infection. Nat Chem Biol 2016; 12:1037-1045. [PMID: 27723751 DOI: 10.1038/nchembio.2193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Viruses lack the basic machinery needed to replicate and therefore must hijack the host's metabolism to propagate. Virus-induced metabolic changes have yet to be systematically studied in the context of host transcriptional regulation, and such studies shoul offer insight into host-pathogen metabolic interplay. In this work we identified hepatitis C virus (HCV)-responsive regulators by coupling system-wide metabolic-flux analysis with targeted perturbation of nuclear receptors in primary human hepatocytes. We found HCV-induced upregulation of glycolysis, ketogenesis and drug metabolism, with glycolysis controlled by activation of HNF4α, ketogenesis by PPARα and FXR, and drug metabolism by PXR. Pharmaceutical inhibition of HNF4α reversed HCV-induced glycolysis, blocking viral replication while increasing apoptosis in infected cells showing virus-induced dependence on glycolysis. In contrast, pharmaceutical inhibition of PPARα or FXR reversed HCV-induced ketogenesis but increased viral replication, demonstrating a novel host antiviral response. Our results show that virus-induced changes to a host's metabolism can be detrimental to its life cycle, thus revealing a biologically complex relationship between virus and host.
Collapse
Affiliation(s)
- Gahl Levy
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Habib
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Maria Angela Guzzardi
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Daniel Kitsberg
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Bomze
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elishai Ezra
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Faculty of Engineering, Jerusalem College of Technology, Jerusalem, Israel
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin Trippler
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Joerg F Schlaak
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Oren Shibolet
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Merav Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joerg Timm
- Institute for Virology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Nir Friedman
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
38
|
Porat‐Shliom N, Tietgens AJ, Van Itallie CM, Vitale‐Cross L, Jarnik M, Harding OJ, Anderson JM, Gutkind JS, Weigert R, Arias IM. Liver kinase B1 regulates hepatocellular tight junction distribution and function in vivo. Hepatology 2016; 64:1317-29. [PMID: 27396550 PMCID: PMC5033699 DOI: 10.1002/hep.28724] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Liver kinase B1 (LKB1) and its downstream effector AMP-activated protein kinase (AMPK) play critical roles in polarity establishment by regulating membrane trafficking and energy metabolism. In collagen sandwich-cultured hepatocytes, loss of LKB1 or AMPK impaired apical ABCB11 (Bsep) trafficking and bile canalicular formation. In the present study, we used liver-specific (albumin-Cre) LKB1 knockout mice (LKB1(-/-) ) to investigate the role of LKB1 in the maintenance of functional tight junction (TJ) in vivo. Transmission electron microscopy examination revealed that hepatocyte apical membrane with microvilli substantially extended into the basolateral domain of LKB1(-/-) livers. Immunofluorescence studies revealed that loss of LKB1 led to longer and wider canalicular structures correlating with mislocalization of the junctional protein, cingulin. To test junctional function, we used intravital microscopy to quantify the transport kinetics of 6-carboxyfluorescein diacetate (6-CFDA), which is processed in hepatocytes into its fluorescent derivative 6-carboxyfluorescein (6-CF) and secreted into the canaliculi. In LKB1(-/-) mice, 6-CF remained largely in hepatocytes, canalicular secretion was delayed, and 6-CF appeared in the blood. To test whether 6-CF was transported through permeable TJ, we intravenously injected low molecular weight (3 kDa) dextran in combination with 6-CFDA. In wild-type mice, 3 kDa dextran remained in the vasculature, whereas it rapidly appeared in the abnormal bile canaliculi in LKB1(-/-) mice, confirming that junctional disruption resulted in paracellular exchange between the blood stream and the bile canaliculus. CONCLUSION LKB1 plays a critical role in regulating the maintenance of TJ and paracellular permeability, which may explain how various drugs, chemicals, and metabolic states that inhibit the LKB1/AMPK pathway result in cholestasis. (Hepatology 2016;64:1317-1329).
Collapse
Affiliation(s)
- Natalie Porat‐Shliom
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial ResearchNational Institutes of HealthBethesdaMD,Laboratory of Cellular and Molecular Biology, National Cancer InstituteNational Institutes of HealthBethesdaMD
| | - Amber J. Tietgens
- Laboratory of Tight Junction Structure and FunctionNational Heart, Lung, and Blood InstituteBethesdaMD
| | - Christina M. Van Itallie
- Laboratory of Tight Junction Structure and FunctionNational Heart, Lung, and Blood InstituteBethesdaMD
| | - Lynn Vitale‐Cross
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial ResearchNational Institutes of HealthBethesdaMD
| | - Michal Jarnik
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| | - Olivia J. Harding
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial ResearchNational Institutes of HealthBethesdaMD
| | - James M. Anderson
- Laboratory of Tight Junction Structure and FunctionNational Heart, Lung, and Blood InstituteBethesdaMD
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial ResearchNational Institutes of HealthBethesdaMD,Present address: University of California, San Diego, Moores Cancer CenterLa JollaCA92093
| | - Roberto Weigert
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial ResearchNational Institutes of HealthBethesdaMD,Laboratory of Cellular and Molecular Biology, National Cancer InstituteNational Institutes of HealthBethesdaMD
| | - Irwin M. Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| |
Collapse
|
39
|
Takemura A, Izaki A, Sekine S, Ito K. Inhibition of bile canalicular network formation in rat sandwich cultured hepatocytes by drugs associated with risk of severe liver injury. Toxicol In Vitro 2016; 35:121-30. [PMID: 27256767 DOI: 10.1016/j.tiv.2016.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 04/05/2016] [Accepted: 05/27/2016] [Indexed: 01/21/2023]
Abstract
Idiosyncratic drug-induced liver injury is a clinical concern with serious consequences. Although many preclinical screening methods have been proposed, it remains difficult to identify compounds associated with this rare but potentially fatal liver condition. Here, we propose a novel assay system to assess the risk of liver injury. Rat primary hepatocytes were cultured in a sandwich configuration, which enables the formation of a typical bile canalicular network. From day 2 to 3, test drugs, mostly selected from a list of cholestatic drugs, were administered, and the length of the network was semi-quantitatively measured by immunofluorescence. Liver injury risk information was collected from drug labels and was compared with in vitro measurements. Of 23 test drugs examined, 15 exhibited potent inhibition of bile canalicular network formation (<60% of control). Effects on cell viability were negligible or minimal as confirmed by lactate dehydrogenase leakage and cellular ATP content assays. For the potent 15 drugs, IC50 values were determined. Finally, maximum daily dose divided by the inhibition constant gave good separation of the highest risk of severe liver toxicity drugs such as troglitazone, benzbromarone, flutamide, and amiodarone from lower risk drugs. In conclusion, inhibitory effect on the bile canalicular network formation observed in in vitro sandwich cultured hepatocytes evaluates a new aspect of drug toxicity, particularly associated with aggravation of liver injury.
Collapse
Affiliation(s)
- Akinori Takemura
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Aya Izaki
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Shuichi Sekine
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Kousei Ito
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
40
|
Sharanek A, Burban A, Burbank M, Le Guevel R, Li R, Guillouzo A, Guguen-Guillouzo C. Rho-kinase/myosin light chain kinase pathway plays a key role in the impairment of bile canaliculi dynamics induced by cholestatic drugs. Sci Rep 2016; 6:24709. [PMID: 27169750 PMCID: PMC4867683 DOI: 10.1038/srep24709] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/01/2016] [Indexed: 01/12/2023] Open
Abstract
Intrahepatic cholestasis represents a frequent manifestation of drug-induced liver injury; however, the mechanisms underlying such injuries are poorly understood. In this study of human HepaRG and primary hepatocytes, we found that bile canaliculi (BC) underwent spontaneous contractions, which are essential for bile acid (BA) efflux and require alternations in myosin light chain (MLC2) phosphorylation/dephosphorylation. Short exposure to 6 cholestatic compounds revealed that BC constriction and dilation were associated with disruptions in the ROCK/MLCK/myosin pathway. At the studied concentrations, cyclosporine A and chlorpromazine induced early ROCK activity, resulting in permanent MLC2 phosphorylation and BC constriction. However, fasudil reduced ROCK activity and caused rapid, substantial and permanent MLC2 dephosphorylation, leading to BC dilation. The remaining compounds (1-naphthyl isothiocyanate, deoxycholic acid and bosentan) caused BC dilation without modulating ROCK activity, although they were associated with a steady decrease in MLC2 phosphorylation via MLCK. These changes were associated with a common loss of BC contractions and failure of BA clearance. These results provide the first demonstration that cholestatic drugs alter BC dynamics by targeting the ROCK/MLCK pathway; in addition, they highlight new insights into the mechanisms underlying bile flow failure and can be used to identify new predictive biomarkers of drug-induced cholestasis.
Collapse
Affiliation(s)
- Ahmad Sharanek
- INSERM U991, Liver Metabolisms and Cancer, Rennes, France.,Rennes 1 University, Rennes, France
| | - Audrey Burban
- INSERM U991, Liver Metabolisms and Cancer, Rennes, France.,Rennes 1 University, Rennes, France
| | - Matthew Burbank
- INSERM U991, Liver Metabolisms and Cancer, Rennes, France.,Rennes 1 University, Rennes, France
| | - Rémy Le Guevel
- ImPACcell platform, Biosit, Rennes 1 University, Rennes, France
| | - Ruoya Li
- Biopredic International, St Grégoire, France
| | - André Guillouzo
- INSERM U991, Liver Metabolisms and Cancer, Rennes, France.,Rennes 1 University, Rennes, France
| | - Christiane Guguen-Guillouzo
- INSERM U991, Liver Metabolisms and Cancer, Rennes, France.,Rennes 1 University, Rennes, France.,Biopredic International, St Grégoire, France
| |
Collapse
|
41
|
Liu C, Sekine S, Ito K. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes. Toxicol Appl Pharmacol 2016; 302:23-30. [PMID: 27095095 DOI: 10.1016/j.taap.2016.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/14/2022]
Abstract
Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and in hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Cong Liu
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shuichi Sekine
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
42
|
Theurey P, Tubbs E, Vial G, Jacquemetton J, Bendridi N, Chauvin MA, Alam MR, Le Romancer M, Vidal H, Rieusset J. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J Mol Cell Biol 2016; 8:129-43. [DOI: 10.1093/jmcb/mjw004] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/01/2015] [Indexed: 12/20/2022] Open
|
43
|
Grassi G, Di Caprio G, Santangelo L, Fimia GM, Cozzolino AM, Komatsu M, Ippolito G, Tripodi M, Alonzi T. Autophagy regulates hepatocyte identity and epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions promoting Snail degradation. Cell Death Dis 2015; 6:e1880. [PMID: 26355343 PMCID: PMC4650445 DOI: 10.1038/cddis.2015.249] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 01/16/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) and the reverse process mesenchymal-to-epithelial transition (MET) are events involved in development, wound healing and stem cell behaviour and contribute pathologically to cancer progression. The identification of the molecular mechanisms underlying these phenotypic conversions in hepatocytes are fundamental to design specific therapeutic strategies aimed at optimising liver repair. The role of autophagy in EMT/MET processes of hepatocytes was investigated in liver-specific autophagy-deficient mice (Alb-Cre;ATG7fl/fl) and using the nontumorigenic immortalised hepatocytes cell line MMH. Autophagy deficiency in vivo reduces epithelial markers' expression and increases the levels of mesenchymal markers. These alterations are associated with an increased protein level of the EMT master regulator Snail, without transcriptional induction. Interestingly, we found that autophagy degrades Snail in a p62/SQSTM1 (Sequestosome-1)-dependent manner. Moreover, accordingly to a pro-epithelial function, we observed that autophagy stimulation strongly affects EMT progression, whereas it is necessary for MET. Finally, we found that the EMT induced by TGFβ affects the autophagy flux, indicating that these processes regulate each other. Overall, we found that autophagy regulates the phenotype plasticity of hepatocytes promoting their epithelial identity through the inhibition of the mesenchymal programme.
Collapse
Affiliation(s)
- G Grassi
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - G Di Caprio
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy.,Department of Cellular Biotechnologies and Hematology, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - L Santangelo
- Department of Cellular Biotechnologies and Hematology, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - G M Fimia
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - A M Cozzolino
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy.,Department of Cellular Biotechnologies and Hematology, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - M Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, 951-8510, Japan
| | - G Ippolito
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - M Tripodi
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy.,Department of Cellular Biotechnologies and Hematology, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - T Alonzi
- National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
44
|
Overeem AW, Bryant DM, van IJzendoorn SC. Mechanisms of apical–basal axis orientation and epithelial lumen positioning. Trends Cell Biol 2015; 25:476-85. [DOI: 10.1016/j.tcb.2015.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/24/2015] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
|
45
|
The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments. PLoS One 2014; 9:e106973. [PMID: 25222612 PMCID: PMC4164521 DOI: 10.1371/journal.pone.0106973] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/04/2014] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different. RESULTS Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell--along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex. SUMMARY We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance.
Collapse
|
46
|
Müsch A. The unique polarity phenotype of hepatocytes. Exp Cell Res 2014; 328:276-83. [PMID: 24956563 DOI: 10.1016/j.yexcr.2014.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 01/11/2023]
Abstract
Hepatocytes, the main epithelial cell type of the liver, function like all epithelial cells to mediate the vectorial flow of macromolecules into and out of the organ they encompass. They do so by establishing polarized surface domains and by restricting paracellular flow via their tight junctions and cell-cell adhesion. Yet, the cell and tissue organization of hepatocytes differs profoundly from that of most other epithelia, including those of the digestive and urinary tracts, the lung or the breast. The latter form monolayered tissues in which the apical domains of individual cells align around a central continuous luminal cavity that constitutes the tubules and acini characteristic of these organs. Hepatocytes, by contrast, form capillary-sized lumina with multiple neighbors resulting in a branched, tree-like bile canaliculi network that spreads across the liver parenchyme. I will discuss some of the key molecular features that distinguish the hepatocyte polarity phenotype from that of monopolar, columnar epithelia.
Collapse
Affiliation(s)
- Anne Müsch
- Albert-Einstein College of Medicine, Department of Cell & Molecular Biology, The Bronx, USA.
| |
Collapse
|
47
|
Banerjee J, Das Ghatak P, Roy S, Khanna S, Sequin EK, Bellman K, Dickinson BC, Suri P, Subramaniam VV, Chang CJ, Sen CK. Improvement of human keratinocyte migration by a redox active bioelectric dressing. PLoS One 2014; 9:e89239. [PMID: 24595050 PMCID: PMC3940438 DOI: 10.1371/journal.pone.0089239] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/17/2014] [Indexed: 01/25/2023] Open
Abstract
Exogenous application of an electric field can direct cell migration and improve wound healing; however clinical application of the therapy remains elusive due to lack of a suitable device and hence, limitations in understanding the molecular mechanisms. Here we report on a novel FDA approved redox-active Ag/Zn bioelectric dressing (BED) which generates electric fields. To develop a mechanistic understanding of how the BED may potentially influence wound re-epithelialization, we direct emphasis on understanding the influence of BED on human keratinocyte cell migration. Mapping of the electrical field generated by BED led to the observation that BED increases keratinocyte migration by three mechanisms: (i) generating hydrogen peroxide, known to be a potent driver of redox signaling, (ii) phosphorylation of redox-sensitive IGF1R directly implicated in cell migration, and (iii) reduction of protein thiols and increase in integrinαv expression, both of which are known to be drivers of cell migration. BED also increased keratinocyte mitochondrial membrane potential consistent with its ability to fuel an energy demanding migration process. Electric fields generated by a Ag/Zn BED can cross-talk with keratinocytes via redox-dependent processes improving keratinocyte migration, a critical event in wound re-epithelialization.
Collapse
Affiliation(s)
- Jaideep Banerjee
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Piya Das Ghatak
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Savita Khanna
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Emily K. Sequin
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Karen Bellman
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Bryan C. Dickinson
- Department of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Prerna Suri
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Vish V. Subramaniam
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher J. Chang
- Department of Chemistry and Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Chandan K. Sen
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
48
|
Yu C, Hu ZQ, Peng RY. Effects and mechanisms of a microcurrent dressing on skin wound healing: a review. Mil Med Res 2014; 1:24. [PMID: 26000170 PMCID: PMC4440595 DOI: 10.1186/2054-9369-1-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/10/2014] [Indexed: 12/28/2022] Open
Abstract
The variety of wound types has resulted in a wide range of wound dressings, with new products frequently being introduced to target different aspects of the wound healing process. The ideal wound dressing should achieve rapid healing at a reasonable cost, with minimal inconvenience to the patient. Microcurrent dressing, a novel wound dressing with inherent electric activity, can generate low-level microcurrents at the device-wound contact surface in the presence of moisture and can provide an advanced wound healing solution for managing wounds. This article offers a review of the effects and mechanisms of the microcurrent dressing on the healing of skin wounds.
Collapse
Affiliation(s)
- Chao Yu
- Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Zong-Qian Hu
- Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850 China
| |
Collapse
|
49
|
Fu D. Where is it and How Does it Get There - Intracellular Localization and Traffic of P-glycoprotein. Front Oncol 2013; 3:321. [PMID: 24416721 PMCID: PMC3874554 DOI: 10.3389/fonc.2013.00321] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022] Open
Abstract
P-glycoprotein (P-gp), an ATP-binding cassette, is able to transport structurally and chemically unrelated substrates. Over-expression of P-gp in cancer cells significantly decreases the intercellular amount of anticancer drugs, and results in multidrug resistance in cancer cells, a major obstacle in cancer chemotherapy. P-gp is mainly localized on the plasma membrane and functions as a drug efflux pump; however, P-gp is also localized in many intracellular compartments, such as endoplasmic reticulum, Golgi, endosomes, and lysosomes. P-gp moves between the intracellular compartments and the plasma membrane in a microtubule-actin dependent manner. This review highlights our current understanding of (1) the intracellular localization of P-gp; (2) the traffic and cycling pathways among the cellular compartments as well as between these compartments and the plasma membrane; and (3) the cellular factors regulating P-gp traffic and cycling. This review also presents a potential implication in overcoming P-gp-mediated multidrug resistance by targeting P-gp traffic and cycling pathways and impairing P-gp localization on the plasma membrane.
Collapse
Affiliation(s)
- Dong Fu
- Faculty of Pharmacy, The University of Sydney , Sydney, NSW , Australia
| |
Collapse
|
50
|
Tsuyama T, Kishikawa JI, Han YW, Harada Y, Tsubouchi A, Noji H, Kakizuka A, Yokoyama K, Uemura T, Imamura H. In vivo fluorescent adenosine 5'-triphosphate (ATP) imaging of Drosophila melanogaster and Caenorhabditis elegans by using a genetically encoded fluorescent ATP biosensor optimized for low temperatures. Anal Chem 2013; 85:7889-96. [PMID: 23875533 DOI: 10.1021/ac4015325] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine 5'-triphosphate (ATP) is the major energy currency of all living organisms. Despite its important functions, the spatiotemporal dynamics of ATP levels inside living multicellular organisms is unclear. In this study, we modified the genetically encoded Förster resonance energy transfer (FRET)-based ATP biosensor ATeam to optimize its affinity at low temperatures. This new biosensor, AT1.03NL, detected ATP changes inside Drosophila S2 cells more sensitively than the original biosensor did, at 25 °C. By expressing AT1.03NL in Drosophila melanogaster and Caenorhabditis elegans, we succeeded in imaging the in vivo ATP dynamics of these model animals at single-cell resolution.
Collapse
Affiliation(s)
- Taiichi Tsuyama
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|