1
|
Song Y, Budiyanto E, Kumar A, Landrot G, Tüysüz H. Prebiotic Interconversion of Pyruvate and Lactate over Zeolite-Supported Ni Catalyst. Angew Chem Int Ed Engl 2025:e202503747. [PMID: 40153137 DOI: 10.1002/anie.202503747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 03/30/2025]
Abstract
Submarine hydrothermal vents harbor diverse microbial communities and have long intrigued researchers studying the origin of life. Transition metals in these environments can be reduced by serpentinization, potentially forming zeolite-supported transition metal nanoparticles capable of driving prebiotic chemistry. This inorganic structure could catalyze biochemical reactions, including converting metabolically crucial pyruvate before the emergence of biological processes. This study explores the catalytic interconversion of pyruvate and lactate, mediated by lactate dehydrogenase in biochemical systems, using inorganic zeolite Y-supported Ni nanoparticles (Ni/Y) under mild hydrothermal vent conditions. Our results demonstrate that Ni/Y effectively catalyzes the hydrogenation of pyruvate in an inert environment, facilitated by the in situ generation of H₂ through an autocatalytic reaction between Ni/Y and H₂O. Post-reaction analysis by X-ray absorption spectroscopy (XAS) revealed structural transformations in the catalyst, including the formation of unique nickel oxide and hydroxide species, along with extra-framework aluminum from zeolite dealumination, resulting in a thin amorphous nickel oxide/hydroxide layer. Notably, Ni/Y also enables the oxidative reconversion of lactate to pyruvate under atmospheric conditions-an essential reaction catalyzed by lactate dehydrogenase in biological systems. These findings underscore the potential prebiotic role of Ni/Y, suggesting they may have catalyzed the synthesis of key metabolic intermediates.
Collapse
Affiliation(s)
- Youngdong Song
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Eko Budiyanto
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Ashwani Kumar
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Gautier Landrot
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint-Aubin, 91190, France
| | - Harun Tüysüz
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Catalysis and Energy Materials, IMDEA Materials Institute, Calle Eric Kandel 2, Getafe, Madrid, 28906, Spain
| |
Collapse
|
2
|
Li R, Deng Q, Han L, Ouyang T, Che S, Fang Y. Prebiotic formation of enantiomeric excess D-amino acids on natural pyrite. Nat Commun 2024; 15:10130. [PMID: 39578467 PMCID: PMC11584652 DOI: 10.1038/s41467-024-54481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
D-amino acids, found in excess in a minority of organisms and crucial for marine invertebrates, contrast with the more common L-amino acids in most life forms. The local prebiotic origin of D-amino acid enantiomeric excess in natural systems remains an unsolved conundrum. Herein, we demonstrate the formation of enantiomeric excess (ee) D-amino acids through photocatalytic reductive amination of α-keto acids on natural pyrite. Various amino acids with ee values in the range of 14.5-42.4%, are formed. The wavy arrangement of atoms on the surface of pyrite is speculated to lead to the preferential formation of D-amino acids. This work reveals the intrinsic asymmetric photocatalytic activity of pyrite, which could expand understandings on mechanism of asymmetric catalysis and chirality of inorganic crystals. Furthermore, it provides a plausible pathway for the prebiotic formation of D-amino acids, adding further evidence to the origin of D-amino acids enantiomeric excess in natural systems.
Collapse
Affiliation(s)
- Ruiqi Li
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Quanzheng Deng
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Tianwei Ouyang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Composite Materials, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Shunai Che
- School of Chemical Science and Engineering, Tongji University, Shanghai, China.
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Composite Materials, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China.
| | - Yuxi Fang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Composite Materials, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Chimiak L, Hara E, Sessions A, Templeton A. Glycine synthesis from nitrate and glyoxylate mediated by ferroan brucite: An integrated pathway for prebiotic amine synthesis. Proc Natl Acad Sci U S A 2024; 121:e2408248121. [PMID: 39467141 PMCID: PMC11551427 DOI: 10.1073/pnas.2408248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 10/30/2024] Open
Abstract
Amino acids are present in all known life, so identifying the environmental conditions under which they can be synthesized constrains where life on Earth might have formed and where life might be found on other planetary bodies. All known abiotic amino acid syntheses require ammonia, which is only produced in reducing and neutral atmospheres. Here, we demonstrate that the Fe-bearing hydroxide mineral ferroan brucite [Fe0.33,Mg0.67(OH)2] can mediate the reaction of nitrate and glyoxylate to form glycine, the simplest amino acid used in life. Up to 97% of this glycine was detected only after acid digestion of the mineral, demonstrating that it had been strongly partitioned to the mineral. The dicarboxylic amino acid 3-hydroxy aspartate was also detected, which suggests that reactants underwent a mechanism that simultaneously produced mono- and dicarboxylic amino acids. Nitrate can be produced in both neutral and oxidizing atmospheres, so reductive amination of nitrate and glyoxylate on a ferroan brucite surface expands origins of life scenarios. First, it expands the environmental conditions in which life's precursors could form to include oxidizing atmospheres. Second, it demonstrates the ability of ferroan brucite, an abundant, secondary mineral in serpentinizing systems where olivine is partly hydrated, to mediate reductive amination. Finally, the results demonstrate the need to consider mineral-bound products when analyzing samples for abiotic amino acid synthesis.
Collapse
Affiliation(s)
- L. Chimiak
- Department of Geological Sciences, University of Colorado, Boulder, CO80309
| | - E. Hara
- Department of Geological Sciences, University of Colorado, Boulder, CO80309
| | - A. Sessions
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - A.S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO80309
| |
Collapse
|
4
|
Vázquez A, Pinacho P, Parra-Santamaría M, Basterretxea FJ, Chin W, Cocinero EJ. Exploring atmospheric nucleation processes: Hydration and fluoroalcoholic complexation of pyruvic acid. J Chem Phys 2024; 161:144311. [PMID: 39399966 DOI: 10.1063/5.0230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
This study examines the intermolecular interactions between small molecules and solvents, with a particular focus on pyruvic acid (PA). PA plays a significant role in biochemistry, astrochemistry, and atmospheric chemistry, particularly in aerosol particle formation. Previous studies on PA have been expanded upon by exploring its hydration and complexation with 2,2,2-trifluoroethanol (TFE). The clusters were generated using a supersonic expansion and characterized by broadband Fourier transform microwave spectroscopy. The structures of the clusters were identified by comparing the experimental results with high-level quantum-chemical computations. Among the possible isomers for the hydrated complex, the Tc-(H2O)2 kinetic complex, where PA exhibits an internal hydrogen bond, was favored over the Tt-(H2O)2 form, predicted to be the most stable conformer. Transitions from both the A and E internal rotation substates were observed exclusively in the dihydrate. The complex with TFE did not exhibit splitting due to the internal rotation of the methyl top. This is attributed to the presence of electronegative fluorine groups in TFE, stabilizing the complex through additional CH⋯F interactions, thereby hindering the internal rotation motion of the methyl top.
Collapse
Affiliation(s)
- Andrea Vázquez
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48080 Bilbao, Spain
- Instituto Biofisika (CSIC, UPV/EHU), 48080 Bilbao, Spain
| | - Pablo Pinacho
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48080 Bilbao, Spain
- Instituto Biofisika (CSIC, UPV/EHU), 48080 Bilbao, Spain
| | - Maider Parra-Santamaría
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48080 Bilbao, Spain
- Instituto Biofisika (CSIC, UPV/EHU), 48080 Bilbao, Spain
| | - Francisco J Basterretxea
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48080 Bilbao, Spain
| | - Wutharath Chin
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Emilio J Cocinero
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48080 Bilbao, Spain
- Instituto Biofisika (CSIC, UPV/EHU), 48080 Bilbao, Spain
| |
Collapse
|
5
|
Chandru K, Potiszil C, Jia TZ. Alternative Pathways in Astrobiology: Reviewing and Synthesizing Contingency and Non-Biomolecular Origins of Terrestrial and Extraterrestrial Life. Life (Basel) 2024; 14:1069. [PMID: 39337854 PMCID: PMC11433091 DOI: 10.3390/life14091069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The pursuit of understanding the origins of life (OoL) on and off Earth and the search for extraterrestrial life (ET) are central aspects of astrobiology. Despite the considerable efforts in both areas, more novel and multifaceted approaches are needed to address these profound questions with greater detail and with certainty. The complexity of the chemical milieu within ancient geological environments presents a diverse landscape where biomolecules and non-biomolecules interact. This interaction could lead to life as we know it, dominated by biomolecules, or to alternative forms of life where non-biomolecules could play a pivotal role. Such alternative forms of life could be found beyond Earth, i.e., on exoplanets and the moons of Jupiter and Saturn. Challenging the notion that all life, including ET life, must use the same building blocks as life on Earth, the concept of contingency-when expanded beyond its macroevolution interpretation-suggests that non-biomolecules may have played essential roles at the OoL. Here, we review the possible role of contingency and non-biomolecules at the OoL and synthesize a conceptual model formally linking contingency with non-biomolecular OoL theories. This model emphasizes the significance of considering the role of non-biomolecules both at the OoL on Earth or beyond, as well as their potential as agnostic biosignatures indicative of ET Life.
Collapse
Affiliation(s)
- Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43600, Malaysia
- Polymer Research Center (PORCE), Faculty of Science and Technology, National University of Malaysia, Selangor 43600, Malaysia
- Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa 682-0193, Tottori, Japan
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku 152-8550, Tokyo, Japan
| |
Collapse
|
6
|
Chakraborty A, Henkel S, Schwaab G, Havenith M. Structural Characterization of Pyruvic Acid Dimers Formed inside Helium Nanodroplets by Infrared Spectroscopy and Ab Initio Study. J Phys Chem A 2024; 128:5307-5313. [PMID: 38938084 DOI: 10.1021/acs.jpca.4c02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The structural arrangements of α-keto acid complexes hold significant interest across various fields of chemistry such as enzyme modeling, drug design, or polymer blending. Herein, we report mass-selective infrared (IR) spectra of pyruvic acid monomers and dimers in the range 1720-1820 cm-1 recorded in helium nanodroplets at 0.37 K. The monomer features IR bands at 1807.1 and 1734.5 cm-1, which are assigned to the carboxylic and ketonic C═O stretching vibrations, respectively. Furthermore, the pyruvic acid dimers generated inside the helium nanodroplets are characterized by carboxylic and ketonic C═O stretch vibrations appearing at 1799.2 and 1737.0 cm-1, respectively. This frequency shift of ±7 cm-1 for both C═O stretching bands from the monomer to the dimer demonstrates that the structural motif of the monomer is maintained upon dimer aggregation in helium nanodroplets. The structural assignments were supported by a comparison of the MP2/aug-cc-pVDZ-predicted harmonic vibrational spectra at the C═O stretching region with the experiments. The global minimum monomer structure with an intramolecular hydrogen bond and its dimer stabilized by both inter- and intramolecular hydrogen bonding interactions reproduce the experimental spectra from the monomer and dimer. This assigned dimer structure lies ca.11 kJ/mol above the corresponding global minimum and is favored in helium nanodroplets due to the long-range realignment of molecules via dipole-dipole interaction, followed by short-range stabilization upon intermolecular hydrogen bond formation. The barrier for reconfiguration of the precooled monomer conformer leading to the formation of the most stable dimer structure is around 58 kJ/mol, which is infeasible at 0.37 K.
Collapse
Affiliation(s)
- Arghya Chakraborty
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Stefan Henkel
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Gerhard Schwaab
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
7
|
Zhou T, Meng Q, Sun R, Xu D, Zhu F, Jia C, Zhou S, Chen S, Yang Y. Structure and gene expression changes of the gill and liver in juvenile black porgy (Acanthopagrus schlegelii) under different salinities. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101228. [PMID: 38547756 DOI: 10.1016/j.cbd.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 05/27/2024]
Abstract
Black porgy (Acanthopagrus schlegelii) is an important marine aquaculture species in China. It is an ideal object for the cultivation of low-salinity aquaculture strains in marine fish and the study of salinity tolerance mechanisms in fish because of its strong low-salinity tolerance ability. Gill is the main osmoregulatory organ in fish, and the liver plays an important role in the adaptation of the organism to stressful environments. In order to understand the coping mechanisms of the gills and livers of black porgy in different salinity environments, this study explored these organs after 30 days of culture in hypoosmotic (0.5 ppt), isosmotic (12 ppt), and normal seawater (28 ppt) at histologic, physiologic, and transcriptomic levels. The findings indicated that gill exhibited a higher number of differentially expressed genes than the liver, emphasizing the gill's heightened sensitivity to salinity changes. Protein interaction networks and enrichment analyses highlighted energy metabolism as a key regulatory focus at both 0.5 ppt and 12 ppt salinity in gills. Additionally, gills showed enrichment in ions, substance transport, and other metabolic pathways, suggesting a more direct regulatory response to salinity stress. The liver's regulatory patterns at different salinities exhibited significant distinctions, with pathways and genes related to metabolism, immunity, and antioxidants predominantly activated at 0.5 ppt, and molecular processes linked to cell proliferation taking precedence at 12 ppt salinity. Furthermore, the study revealed a reduction in the volume of the interlamellar cell mass (ILCM) of the gills, enhancing the contact area of the gill lamellae with water. At 0.5 ppt salinity, hepatic antioxidant enzyme activity increased, accompanied by oxidative stress damage. Conversely, at 12 ppt salinity, gill NKA activity significantly decreased without notable changes in liver structure. These results underscore the profound impact of salinity on gill structure and function, highlighting the crucial role of the liver in adapting to salinity environments.
Collapse
Affiliation(s)
- Tangjian Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Meng
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Ruijian Sun
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Dafeng Xu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Fei Zhu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Chaofeng Jia
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Shimiao Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shuyin Chen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Yunxia Yang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
8
|
Barge LM, Fournier GP. Considerations for Detecting Organic Indicators of Metabolism on Enceladus. ASTROBIOLOGY 2024; 24:328-338. [PMID: 38507694 DOI: 10.1089/ast.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Enceladus is of interest to astrobiology and the search for life since it is thought to host active hydrothermal activity and habitable conditions. It is also possible that the organics detected on Enceladus may indicate an active prebiotic or biotic system; in particular, the conditions on Enceladus may favor mineral-driven protometabolic reactions. When including metabolism-related biosignatures in Enceladus mission concepts, it is necessary to base these in a clearer understanding of how these signatures could also be produced prebiotically. In addition, postulating which biological metabolisms to look for on Enceladus requires a non-Earth-centric approach since the details of biological metabolic pathways are heavily shaped by adaptation to geochemical conditions over the planet's history. Creating metabolism-related organic detection objectives for Enceladus missions, therefore, requires consideration of how metabolic systems may operate differently on another world, while basing these speculations on observed Earth-specific microbial processes. In addition, advances in origin-of-life research can play a critical role in distinguishing between interpretations of any future organic detections on Enceladus, and the discovery of an extant prebiotic system would be a transformative astrobiological event in its own right.
Collapse
Affiliation(s)
- Laura M Barge
- Planetary Science Section, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Gregory P Fournier
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Richter M, Sattler C, Schöne C, Rother M. Pyruvate-dependent growth of Methanosarcina acetivorans. J Bacteriol 2024; 206:e0036323. [PMID: 38305193 PMCID: PMC10882976 DOI: 10.1128/jb.00363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Methanogenesis is a key step during anaerobic biomass degradation. Methanogenic archaea (methanogens) are the only organisms coupling methanogenic substrate conversion to energy conservation. The range of substrates utilized by methanogens is limited, with acetate and H2+CO2 being the ecologically most relevant. The only single methanogenic energy substrate containing more carbon-carbon bonds than acetate is pyruvate. Only the aggregate-forming, freshwater methanogen Methanosarcina barkeri Fusaro was shown to grow on this compound. Here, the pyruvate-utilizing capabilities of the single-celled, marine Methanosarcina acetivorans were addressed. Robust pyruvate-dependent, methanogenic, growth could be established by omitting CO2 from the growth medium. Growth rates which were independent of the pyruvate concentration indicated that M. acetivorans actively translocates pyruvate across the cytoplasmic membrane. When 2-bromoethanesulfonate (BES) inhibited methanogenesis to more than 99%, pyruvate-dependent growth was acetogenic and sustained. However, when methanogenesis was completely inhibited M. acetivorans did not grow on pyruvate. Analysis of metabolites showed that acetogenesis is used by BES-inhibited M. acetivorans as a sink for electrons derived from pyruvate oxidation and that other, thus far unidentified, metabolites are produced.IMPORTANCEThe known range of methanogenic growth substrates is very limited and M. acetivorans is only the second methanogenic species for which growth on pyruvate is demonstrated. Besides some commonalities, analysis of M. acetivorans highlights differences in pyruvate metabolism among Methanosarcina species. The observation that M. acetivorans probably imports pyruvate actively indicates that the capabilities for heterotrophic catabolism in methanogens may be underestimated. The mostly acetogenic growth of M. acetivorans on pyruvate with concomitant inhibition of methanogenesis confirms that energy conservation of methanogenic archaea can be independent of methane formation.
Collapse
Affiliation(s)
- Marcus Richter
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | | | - Christian Schöne
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| | - Michael Rother
- Fakultät Biologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Ju Y, Zhang H, Jiang Y, Wang W, Kan G, Yu K, Wang X, Liu J, Jiang J. Aqueous microdroplets promote C-C bond formation and sequences in the reverse tricarboxylic acid cycle. Nat Ecol Evol 2023; 7:1892-1902. [PMID: 37679455 DOI: 10.1038/s41559-023-02193-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
The reverse tricarboxylic acid cycle (rTCA) is a central anabolic network that uses carbon dioxide (CO2) and may have provided complex carbon substrates for life before the advent of RNA or enzymes. However, non-enzymatic promotion of the rTCA cycle, in particular carbon fixation, remains challenging, even with primordial metal catalysis. Here, we report that the fixation of CO2 by reductive carboxylation of succinate and α-ketoglutarate was achieved in aqueous microdroplets under ambient conditions without the use of catalysts. Under identical conditions, the aqueous microdroplets also facilitated the sequences in the rTCA cycle, including reduction, hydration, dehydration and retro-aldol cleavage and linked with the glyoxylate cycle. These reactions of the rTCA cycle were compatible with the aqueous microdroplets, as demonstrated with two-reaction and four-reaction sequences. A higher selectivity giving higher product yields was also observed. Our results suggest that the microdroplets provide an energetically favourable microenvironment and facilitate a non-enzymatic version of the rTCA cycle in prebiotic carbon anabolism.
Collapse
Affiliation(s)
- Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China.
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China.
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China
| | - Wenxin Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
| | - Jilin Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China.
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China.
| |
Collapse
|
11
|
de Graaf R, De Decker Y, Sojo V, Hudson R. Quantifying Catalysis at the Origin of Life. Chemistry 2023; 29:e202301447. [PMID: 37578090 DOI: 10.1002/chem.202301447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 08/15/2023]
Abstract
The construction of hypothetical environments to produce organic molecules such as metabolic intermediates or amino acids is the subject of ongoing research into the emergence of life. Experiments specifically focused on an anabolic approach typically rely on a mineral catalyst to facilitate the supply of organics that may have produced prebiotic building blocks for life. Alternatively to a true catalytic system, a mineral could be sacrificially oxidized in the production of organics, necessitating the emergent 'life' to turn to virgin materials for each iteration of metabolic processes. The aim of this perspective is to view the current 'metabolism-first' literature through the lens of materials chemistry to evaluate the need for higher catalytic activity and materials analyses. While many elegant studies have detailed the production of chemical building blocks under geologically plausible and biologically relevant conditions, few appear to do so with sub-stoichiometric amounts of metals or minerals. Moving toward sub-stoichiometric metals with rigorous materials analyses is necessary to demonstrate the viability of an elusive cornerstone of the 'metabolism-first' hypotheses: catalysis. We emphasize that future work should aim to demonstrate decreased catalyst loading, increased productivity, and/or rigorous materials analyses for evidence of true catalysis.
Collapse
Affiliation(s)
- Ruvan de Graaf
- Department of Chemistry, College of the Atlantic, 105 Eden Street, Bar Harbor, Maine, 04609, USA
| | - Yannick De Decker
- Center for Nonlinear Phenomena and Complex Systems, Université libre de Bruxelles, CP 231, 1050, Ixelles, Belgium
| | - Victor Sojo
- Institute for Comparative Genomics & Richard Gilder Graduate School, Université libre de Bruxelles, American Museum of Natural History, 79th Street at Central Park West. New York, NY, 10024-5192, USA
| | - Reuben Hudson
- Department of Chemistry, College of the Atlantic, 105 Eden Street, Bar Harbor, Maine, 04609, USA
- Department of Chemistry, Colby College, 4000 Mayflower Hill Drive, Waterville, Maine, 04901, USA
| |
Collapse
|
12
|
Holler S, Bartlett S, Löffler RJG, Casiraghi F, Diaz CIS, Cartwright JHE, Hanczyc MM. Hybrid organic-inorganic structures trigger the formation of primitive cell-like compartments. Proc Natl Acad Sci U S A 2023; 120:e2300491120. [PMID: 37561785 PMCID: PMC10438843 DOI: 10.1073/pnas.2300491120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Alkaline hydrothermal vents have become a candidate setting for the origins of life on Earth and beyond. This is due to several key features including the presence of gradients of temperature, redox potential, pH, the availability of inorganic minerals, and the existence of a network of inorganic pore spaces that could have served as primitive compartments. Chemical gardens have long been used as experimental proxies for hydrothermal vents. This paper investigates-10pc]Please note that the spelling of the following author name in the manuscript differs from the spelling provided in the article metadata: Richard J. G. Löffler. The spelling provided in the manuscript has been retained; please confirm. a set of prebiotic interactions between such inorganic structures and fatty alcohols. The integration of a medium-chain fatty alcohol, decanol, within these inorganic minerals, produced a range of emergent 3 dimensions structures at both macroscopic and microscopic scales. Fatty alcohols can be considered plausible prebiotic amphiphiles that might have assisted the formation of protocellular structures such as vesicles. The experiments presented herein show that neither chemical gardens nor decanol alone promote vesicle formation, but chemical gardens grown in the presence of decanol, which is then integrated into inorganic mineral structures, support vesicle formation. These observations suggest that the interaction of fatty alcohols and inorganic mineral structures could have played an important role in the emergence of protocells, yielding support for the evolution of living cells.
Collapse
Affiliation(s)
- Silvia Holler
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Richard J. G. Löffler
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Federica Casiraghi
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
| | - Claro Ignacio Sainz Diaz
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Cientificas–Universidad de Granada, Armilla, Granada18100, Spain
| | - Julyan H. E. Cartwright
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Cientificas–Universidad de Granada, Armilla, Granada18100, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada18071, Spain
| | - Martin M. Hanczyc
- Cellular, Computational and Integrative Biology Department, Laboratory for Artificial Biology, University of Trento, Povo38123, Italy
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM87106
| |
Collapse
|
13
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
14
|
Beyazay T, Belthle KS, Farès C, Preiner M, Moran J, Martin WF, Tüysüz H. Ambient temperature CO 2 fixation to pyruvate and subsequently to citramalate over iron and nickel nanoparticles. Nat Commun 2023; 14:570. [PMID: 36732515 PMCID: PMC9894855 DOI: 10.1038/s41467-023-36088-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The chemical reactions that formed the building blocks of life at origins required catalysts, whereby the nature of those catalysts influenced the type of products that accumulated. Recent investigations have shown that at 100 °C awaruite, a Ni3Fe alloy that naturally occurs in serpentinizing systems, is an efficient catalyst for CO2 conversion to formate, acetate, and pyruvate. These products are identical with the intermediates and products of the acetyl-CoA pathway, the most ancient CO2 fixation pathway and the backbone of carbon metabolism in H2-dependent autotrophic microbes. Here, we show that Ni3Fe nanoparticles prepared via the hard-templating method catalyze the conversion of H2 and CO2 to formate, acetate and pyruvate at 25 °C under 25 bar. Furthermore, the 13C-labeled pyruvate can be further converted to acetate, parapyruvate, and citramalate over Ni, Fe, and Ni3Fe nanoparticles at room temperature within one hour. These findings strongly suggest that awaruite can catalyze both the formation of citramalate, the C5 product of pyruvate condensation with acetyl-CoA in microbial carbon metabolism, from pyruvate and the formation of pyruvate from CO2 at very moderate reaction conditions without organic catalysts. These results align well with theories for an autotrophic origin of microbial metabolism under hydrothermal vent conditions.
Collapse
Affiliation(s)
- Tuğçe Beyazay
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Kendra S Belthle
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Martina Preiner
- Faculty of Geosciences, Utrecht University, Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, The Netherlands
| | - Joseph Moran
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, France
| | - William F Martin
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany.
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
15
|
McGuinness KN, Klau GW, Morrison SM, Moore EK, Seipp J, Falkowski PG, Nanda V. Evaluating Mineral Lattices as Evolutionary Proxies for Metalloprotein Evolution. ORIGINS LIFE EVOL B 2022; 52:263-275. [DOI: 10.1007/s11084-022-09630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
|
16
|
Barge LM, Rodriguez LE, Weber JM, Theiling BP. Determining the "Biosignature Threshold" for Life Detection on Biotic, Abiotic, or Prebiotic Worlds. ASTROBIOLOGY 2022; 22:481-493. [PMID: 34898272 DOI: 10.1089/ast.2021.0079] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of prebiotic chemistry has demonstrated that complex organic chemical systems that exhibit various life-like properties can be produced abiotically in the laboratory. Understanding these chemical systems is important for astrobiology and life detection since we do not know the extent to which prebiotic chemistry might exist or have existed on other worlds. Nor do we know what signatures are diagnostic of an extant or "failed" prebiotic system. On Earth, biology has suppressed most abiotic organic chemistry and overprints geologic records of prebiotic chemistry; therefore, it is difficult to validate whether chemical signatures from future planetary missions are remnant or extant prebiotic systems. The "biosignature threshold" between whether a chemical signature is more likely to be produced by abiotic versus biotic chemistry on a given world could vary significantly, depending on the particular environment, and could change over time, especially if life were to emerge and diversify on that world. To interpret organic signatures detected during a planetary mission, we advocate for (1) gaining a more complete understanding of prebiotic/abiotic chemical possibilities in diverse planetary environments and (2) involving experimental prebiotic samples as analogues when generating comparison libraries for "life-detection" mission instruments.
Collapse
Affiliation(s)
- Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
17
|
Chirality in Organic and Mineral Systems: A Review of Reactivity and Alteration Processes Relevant to Prebiotic Chemistry and Life Detection Missions. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chirality is a central feature in the evolution of biological systems, but the reason for biology’s strong preference for specific chiralities of amino acids, sugars, and other molecules remains a controversial and unanswered question in origins of life research. Biological polymers tend toward homochiral systems, which favor the incorporation of a single enantiomer (molecules with a specific chiral configuration) over the other. There have been numerous investigations into the processes that preferentially enrich one enantiomer to understand the evolution of an early, racemic, prebiotic organic world. Chirality can also be a property of minerals; their interaction with chiral organics is important for assessing how post-depositional alteration processes could affect the stereochemical configuration of simple and complex organic molecules. In this paper, we review the properties of organic compounds and minerals as well as the physical, chemical, and geological processes that affect organic and mineral chirality during the preservation and detection of organic compounds. We provide perspectives and discussions on the reactions and analytical techniques that can be performed in the laboratory, and comment on the state of knowledge of flight-capable technologies in current and future planetary missions, with a focus on organics analysis and life detection.
Collapse
|
18
|
Abstract
Tremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
19
|
|
20
|
Stubbs RT, Yadav M, Krishnamurthy R, Springsteen G. A plausible metal-free ancestral analogue of the Krebs cycle composed entirely of α-ketoacids. Nat Chem 2020; 12:1016-1022. [PMID: 33046840 PMCID: PMC8570912 DOI: 10.1038/s41557-020-00560-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 08/26/2020] [Indexed: 12/02/2022]
Abstract
Efforts to decipher the prebiotic roots of metabolic pathways have focused on recapitulating modern biological transformations, with metals typically serving in place of cofactors and enzymes. Here we show that the reaction of glyoxylate with pyruvate under mild aqueous conditions produces a series of α-ketoacid analogues of the reductive citric acid cycle without the need for metals or enzyme catalysts. The transformations proceed in the same sequence as the reverse Krebs cycle, resembling a protometabolic pathway, with glyoxylate acting as both the carbon source and reducing agent. Furthermore, the α-ketoacid analogues provide a natural route for the synthesis of amino acids by transamination with glycine, paralleling the extant metabolic mechanisms and obviating the need for metal-catalysed abiotic reductive aminations. This emerging sequence of prebiotic reactions could have set the stage for the advent of increasingly sophisticated pathways operating under catalytic control.
Collapse
Affiliation(s)
- R Trent Stubbs
- Department of Chemistry, Furman University, Greenville, SC, USA
- NSF-NASA Center for Chemical Evolution, Atlanta, GA, USA
| | - Mahipal Yadav
- NSF-NASA Center for Chemical Evolution, Atlanta, GA, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ramanarayanan Krishnamurthy
- NSF-NASA Center for Chemical Evolution, Atlanta, GA, USA.
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| | - Greg Springsteen
- Department of Chemistry, Furman University, Greenville, SC, USA.
- NSF-NASA Center for Chemical Evolution, Atlanta, GA, USA.
| |
Collapse
|
21
|
A way to thioacetate esters compatible with non-oxidative prebiotic conditions. Sci Rep 2020; 10:14488. [PMID: 32879403 PMCID: PMC7467925 DOI: 10.1038/s41598-020-71524-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/17/2020] [Indexed: 11/22/2022] Open
Abstract
The centrality of pyruvate oxidative decarboxylation into acetyl-CoA in current biochemistry is a strong argument for proposing that a similar reaction have been necessary for the development of an effective protometabolism on the primitive Earth. However, such a decarboxylation requires the use of an oxidant and a catalyst, today enzymatic. Based on the mechanisms of the pyruvate dehydrogenase complex and pyruvate-ferredoxin oxidoreductase, we propose that the initial mechanism involved disulfides and occurred via radicals. A first disulfide is obtained by reacting glyoxylate with hydrogen sulfide. It is then possible to produce a wide variety of other disulfides by exchange reactions. When reacted with pyruvate under UV light they give thioesters. This process requires no oxidant and is therefore compatible with what is known of the redox conditions of the early Earth. Neither does it require any catalyst. It could be the first way to acetyl thioesters, a way that was later improved by the introduction of catalysts, first minerals, then enzymes.
Collapse
|
22
|
Scossa F, Fernie AR. The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Comput Struct Biotechnol J 2020; 18:482-500. [PMID: 32180906 PMCID: PMC7063335 DOI: 10.1016/j.csbj.2020.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/21/2023] Open
Abstract
The origin of primordial metabolism and its expansion to form the metabolic networks extant today represent excellent systems to study the impact of natural selection and the potential adaptive role of novel compounds. Here we present the current hypotheses made on the origin of life and ancestral metabolism and present the theories and mechanisms by which the large chemical diversity of plants might have emerged along evolution. In particular, we provide a survey of statistical methods that can be used to detect signatures of selection at the gene and population level, and discuss potential and limits of these methods for investigating patterns of molecular adaptation in plant metabolism.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178 Rome, Italy
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| |
Collapse
|
23
|
Unique Solid Phase Microextraction Sampler Reveals Distinctive Biogeochemical Profiles among Various Deep-Sea Hydrothermal Vents. Sci Rep 2020; 10:1360. [PMID: 31992838 PMCID: PMC6987176 DOI: 10.1038/s41598-020-58418-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/20/2019] [Indexed: 11/08/2022] Open
Abstract
Current methods for biochemical and biogeochemical analysis of the deep-sea hydrothermal vent ecosystems rely on water sample recovery, or in situ analysis using underwater instruments with limited range of analyte detection and limited sensitivity. Even in cases where large quantities of sample are recovered, labile dissolved organic compounds may not be detected due to time delays between sampling and preservation. Here, we present a novel approach for in situ extraction of organic compounds from hydrothermal vent fluids through a unique solid phase microextraction (SPME) sampler. These samplers were deployed to sample effluent of vents on sulphide chimneys, located on Axial Seamount in the North-East Pacific, in the Urashima field on the southern Mariana back-arc, and at the Hafa Adai site in the central Mariana back-arc. Among the compounds that were extracted, a wide range of unique organic compounds, including labile dissolved organic sulfur compounds, were detected through high-resolution LC-MS/MS, among which were biomarkers of anammox bacteria, fungi, and lower animals. This report is the first to show that SPME can contribute to a broader understanding of deep sea ecology and biogeochemical cycles in hydrothermal vent ecosystems.
Collapse
|
24
|
Maltais TR, VanderVelde D, LaRowe DE, Goldman AD, Barge LM. Reactivity of Metabolic Intermediates and Cofactor Stability under Model Early Earth Conditions. ORIGINS LIFE EVOL B 2020; 50:35-55. [PMID: 31981046 DOI: 10.1007/s11084-019-09590-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/30/2019] [Indexed: 01/24/2023]
Abstract
Understanding the emergence of metabolic pathways is key to unraveling the factors that promoted the origin of life. One popular view is that protein cofactors acted as catalysts prior to the evolution of the protein enzymes with which they are now associated. We investigated the stability of acetyl coenzyme A (Acetyl Co-A, the group transfer cofactor in citric acid synthesis in the TCA cycle) under early Earth conditions, as well as whether Acetyl Co-A or its small molecule analogs thioacetate or acetate can catalyze the transfer of an acetyl group onto oxaloacetate in the absence of the citrate synthase enzyme. Several different temperatures, pH ranges, and compositions of aqueous environments were tested to simulate the Earth's early ocean and its possible components; the effect of these variables on oxaloacetate and cofactor chemistry were assessed under ambient and anoxic conditions. The cofactors tested are chemically stable under early Earth conditions, but none of the three compounds (Acetyl Co-A, thioacetate, or acetate) promoted synthesis of citric acid from oxaloacetate under the conditions tested. Oxaloacetate reacted with itself and/or decomposed to form a sequence of other products under ambient conditions, and under anoxic conditions was more stable; under ambient conditions the specific chemical pathways observed depended on the environmental conditions such as pH and presence/absence of bicarbonate or salt ions in early Earth ocean simulants. This work demonstrates the stability of these metabolic intermediates under anoxic conditions. However, even though free cofactors may be stable in a geological environmental setting, an enzyme or other mechanism to promote reaction specificity would likely be necessary for at least this particular reaction to proceed.
Collapse
Affiliation(s)
- Thora R Maltais
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - David VanderVelde
- Department of Chemistry, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA
| | - Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA, 90089, USA
| | - Aaron D Goldman
- Department of Biology, Oberlin College, Science Center K123 119 Woodland St., Oberlin, OH, 44074, USA.,Blue Marble Space Institute for Science, Seattle, Washington, 98154, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA.
| |
Collapse
|
25
|
Olson KR. Hydrogen sulfide, reactive sulfur species and coping with reactive oxygen species. Free Radic Biol Med 2019; 140:74-83. [PMID: 30703482 DOI: 10.1016/j.freeradbiomed.2019.01.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/19/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
Life began in a ferruginous (anoxic and Fe2+ dominated) world around 3.8 billion years ago (bya). Hydrogen sulfide (H2S) and other sulfur molecules from hydrothermal vents and other fissures provided many key necessities for life's origin including catalytic platforms (primordial enzymes) that also served as primitive boundaries (cell walls), substrates for organic synthesis and a continuous source of energy in the form of reducing equivalents. Anoxigenic photosynthesis oxidizing H2S followed within a few hundred million years and laid the metabolic groundwork for oxidative photosynthesis some half-billion years later that slightly and episodically increased atmospheric oxygen around 2.3 bya. This oxidized terrestrial sulfur to sulfate which was washed to the sea where it was reduced creating vast euxinic (anoxic and sulfidic) areas. It was in this environment that eukaryotic cells appeared around 1.5 bya and where they evolved for nearly 1 billion additional years. Oxidative photosynthesis finally oxidized the oceans and around 0.6 bya oxygen levels in the atmosphere and oceans began to rise toward present day levels. This is purported to have been a life-threatening event due to the prevalence of reactive oxygen species (ROS) and thus necessitated the elaboration of chemical and enzymatic antioxidant mechanisms. However, these antioxidants initially appeared around the time of anoxigenic photosynthesis suggesting a commitment to metabolism of reactive sulfur species (RSS). This review examines these events and suggests that many of the biological attributes assigned to ROS may, in fact, be due to RSS. This is underscored by observations that ROS and RSS are chemically similar, often indistinguishable by analytical methods and the fact that the bulk of biochemical and physiological experiments are performed in unphysiologically oxic environments where ROS are artifactually favored over RSS.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, Raclin Carmichael Hall, 1234 Notre Dame Ave, South Bend, IN 46617, USA.
| |
Collapse
|
26
|
Kitadai N, Nakamura R, Yamamoto M, Takai K, Yoshida N, Oono Y. Metals likely promoted protometabolism in early ocean alkaline hydrothermal systems. SCIENCE ADVANCES 2019; 5:eaav7848. [PMID: 31223650 PMCID: PMC6584212 DOI: 10.1126/sciadv.aav7848] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/15/2019] [Indexed: 06/01/2023]
Abstract
One of the most plausible scenarios of the origin of life assumes the preceding prebiotic autotrophic metabolism in sulfide-rich hydrothermal vent environments. However, geochemical mechanisms to harness the reductive power provided by hydrothermal systems remain to be elucidated. Here, we show that, under a geoelectrochemical condition realizable in the early ocean hydrothermal systems, several metal sulfides (FeS, Ag2S, CuS, and PbS) undergo hour- to day-scale conversion to the corresponding metals at ≤-0.7 V (versus the standard hydrogen electrode). The electrochemically produced FeS-Fe0 assemblage promoted various reactions including certain steps in the reductive tricarboxylic acid cycle with efficiencies far superior to those due to pure FeS. The threshold potential is readily generated in the H2-rich alkaline hydrothermal systems that were probably ubiquitous on the Hadean seafloor. Thus, widespread metal production and metal-sustained primordial metabolism were likely to occur as a natural consequence of the active hydrothermal processes on the Hadean Earth.
Collapse
Affiliation(s)
- Norio Kitadai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ryuhei Nakamura
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masahiro Yamamoto
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Naohiro Yoshida
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanazawa 226-8503, Japan
| | - Yoshi Oono
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801-3080, USA
| |
Collapse
|
27
|
Lee CC, Stiebritz MT, Hu Y. Reactivity of [Fe 4S 4] Clusters toward C1 Substrates: Mechanism, Implications, and Potential Applications. Acc Chem Res 2019; 52:1168-1176. [PMID: 30977994 DOI: 10.1021/acs.accounts.9b00063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
FeS proteins are metalloproteins prevalent in the metabolic pathways of most organisms, playing key roles in a wide range of essential cellular processes. A member of this protein family, the Fe protein of nitrogenase, is a homodimer that contains a redox-active [Fe4S4] cluster at the subunit interface and an ATP-binding site within each subunit. During catalysis, the Fe protein serves as the obligate electron donor for its catalytic partner, transferring electrons concomitant with ATP hydrolysis to the cofactor site of the catalytic component to enable substrate reduction. The effectiveness of Fe protein in electron transfer is reflected by the unique reactivity of nitrogenase toward small-molecule substrates. Most notably, nitrogenase is capable of catalyzing the ambient reduction of N2 and CO into NH4+ and hydrocarbons, respectively, in reactions that parallel the important industrial Haber-Bosch and Fischer-Tropsch processes. Other than participating in nitrogenase catalysis, the Fe protein also functions as an essential factor in nitrogenase assembly, which again highlights its capacity as an effective, ATP-dependent electron donor. Recently, the Fe protein of a soil bacterium, Azotobacter vinelandii, was shown to act as a reductase on its own and catalyze the ambient conversion of CO2 to CO at its [Fe4S4] cluster either under in vitro conditions when a strong reductant is supplied or under in vivo conditions through the action of an unknown electron donor(s) in the cell. Subsequently, the Fe protein of a mesophilic methanogenic organism, Methanosarcina acetivorans, was shown to catalyze the in vitro reduction of CO2 and CO into hydrocarbons under ambient conditions, illustrating an impact of protein scaffold on the redox properties of the [Fe4S4] cluster and the reactivity of the cluster toward C1 substrates. This reactivity was further traced to the [Fe4S4] cluster itself, as a synthetic [Fe4S4] compound was shown to catalyze the reduction of CO2 and CO to hydrocarbons in solutions in the presence of a strong reductant. Together, these observations pointed to an inherent ability of the [Fe4S4] clusters and, possibly, the FeS clusters in general to catalyze C1-substrate reduction. Theoretical calculations have led to the proposal of a plausible reaction pathway that involves the formation of hydrocarbons via aldehyde-like intermediates, providing an important framework for further mechanistic investigations of FeS-based activation and reduction of C1 substrates. In this Account, we summarize the recent work leading to the discovery of C1-substrate reduction by protein-bound and free [Fe4S4] clusters as well as the current mechanistic understanding of this FeS-based reactivity. In addition, we briefly discuss the evolutionary implications of this discovery and potential applications that could be developed to enable FeS-based strategies for the ambient recycling of unwanted C1 waste into useful chemical commodities.
Collapse
Affiliation(s)
- Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Martin T. Stiebritz
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
28
|
Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature 2019; 569:104-107. [PMID: 31043728 DOI: 10.1038/s41586-019-1151-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/05/2019] [Indexed: 02/08/2023]
Abstract
Life builds its molecules from carbon dioxide (CO2) and breaks them back down again through the intermediacy of just five metabolites, which are the universal hubs of biochemistry1. However, it is unclear how core biological metabolism began and why it uses the intermediates, reactions and pathways that it does. Here we describe a purely chemical reaction network promoted by ferrous iron, in which aqueous pyruvate and glyoxylate-two products of abiotic CO2 reduction2-4-build up 9 of the 11 intermediates of the biological Krebs (or tricarboxylic acid) cycle, including all 5 universal metabolic precursors. The intermediates simultaneously break down to CO2 in a life-like regime that resembles biological anabolism and catabolism5. Adding hydroxylamine6-8 and metallic iron into the system produces four biological amino acids in a manner that parallels biosynthesis. The observed network overlaps substantially with the Krebs and glyoxylate cycles9,10, and may represent a prebiotic precursor to these core metabolic pathways.
Collapse
|
29
|
Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems. Proc Natl Acad Sci U S A 2019; 116:4828-4833. [PMID: 30804197 DOI: 10.1073/pnas.1812098116] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron oxyhydroxide minerals, known to be chemically reactive and significant for elemental cycling, are thought to have been abundant in early-Earth seawater, sediments, and hydrothermal systems. In the anoxic Fe2+-rich early oceans, these minerals would have been only partially oxidized and thus redox-active, perhaps able to promote prebiotic chemical reactions. We show that pyruvate, a simple organic molecule that can form in hydrothermal systems, can undergo reductive amination in the presence of mixed-valence iron oxyhydroxides to form the amino acid alanine, as well as the reduced product lactate. Furthermore, geochemical gradients of pH, redox, and temperature in iron oxyhydroxide systems affect product selectivity. The maximum yield of alanine was observed when the iron oxyhydroxide mineral contained 1:1 Fe(II):Fe(III), under alkaline conditions, and at moderately warm temperatures. These represent conditions that may be found, for example, in iron-containing sediments near an alkaline hydrothermal vent system. The partially oxidized state of the precipitate was significant in promoting amino acid formation: Purely ferrous hydroxides did not drive reductive amination but instead promoted pyruvate reduction to lactate, and ferric hydroxides did not result in any reaction. Prebiotic chemistry driven by redox-active iron hydroxide minerals on the early Earth would therefore be strongly affected by geochemical gradients of Eh, pH, and temperature, and liquid-phase products would be able to diffuse to other conditions within the sediment column to participate in further reactions.
Collapse
|
30
|
Li Y, Kitadai N, Nakamura R. Chemical Diversity of Metal Sulfide Minerals and Its Implications for the Origin of Life. Life (Basel) 2018; 8:life8040046. [PMID: 30308967 PMCID: PMC6316247 DOI: 10.3390/life8040046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/29/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022] Open
Abstract
Prebiotic organic synthesis catalyzed by Earth-abundant metal sulfides is a key process for understanding the evolution of biochemistry from inorganic molecules, yet the catalytic functions of sulfides have remained poorly explored in the context of the origin of life. Past studies on prebiotic chemistry have mostly focused on a few types of metal sulfide catalysts, such as FeS or NiS, which form limited types of products with inferior activity and selectivity. To explore the potential of metal sulfides on catalyzing prebiotic chemical reactions, here, the chemical diversity (variations in chemical composition and phase structure) of 304 natural metal sulfide minerals in a mineralogy database was surveyed. Approaches to rationally predict the catalytic functions of metal sulfides are discussed based on advanced theories and analytical tools of electrocatalysis such as proton-coupled electron transfer, structural comparisons between enzymes and minerals, and in situ spectroscopy. To this end, we introduce a model of geoelectrochemistry driven prebiotic synthesis for chemical evolution, as it helps us to predict kinetics and selectivity of targeted prebiotic chemistry under “chemically messy conditions”. We expect that combining the data-mining of mineral databases with experimental methods, theories, and machine-learning approaches developed in the field of electrocatalysis will facilitate the prediction and verification of catalytic performance under a wide range of pH and Eh conditions, and will aid in the rational screening of mineral catalysts involved in the origin of life.
Collapse
Affiliation(s)
- Yamei Li
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Norio Kitadai
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Ryuhei Nakamura
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
31
|
Barge LM, Krause FC, Jones JP, Billings K, Sobron P. Geoelectrodes and Fuel Cells for Simulating Hydrothermal Vent Environments. ASTROBIOLOGY 2018; 18:1147-1158. [PMID: 30106308 DOI: 10.1089/ast.2017.1707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gradients generated in hydrothermal systems provide a significant source of free energy for chemosynthetic life and may play a role in present-day habitability on ocean worlds. Electron/proton/ion gradients, particularly in the context of hydrothermal chimney structures, may also be relevant to the origins of life on Earth. Hydrothermal vents are similar in some ways to typical fuel cell devices: redox/pH gradients between seawater and hydrothermal fluid are analogous to the fuel cell oxidant and fuel reservoirs; the porous chimney wall is analogous to a separator or ion-exchange membrane and is also a conductive path for electrons; and the hydrothermal minerals are analogous to electrode catalysts. The modular and scalable characteristics of fuel cell systems make for a convenient planetary geology test bed in which geologically relevant components may be assembled and investigated in a controlled simulation environment. We have performed fuel cell experiments and electrochemical studies to better understand the catalytic potential of seafloor minerals and vent chimneys, using samples from a black smoker vent chimney as an initial demonstration. In a fuel cell with Na+-conducting Nafion® membranes and liquid fuel/oxidant reservoirs (simulating the vent environment), the black smoker mineral catalyst in the membrane electrode assembly was effective in reducing O2 and oxidizing sulfide. In a H2/O2 polymer electrolyte membrane (PEM) fuel cell with H+-conducting Nafion membranes, the black smoker catalyst was effective in reducing O2 but not in oxidizing H2. These fuel cell experiments accurately simulated the redox reactions that could occur in a geological setting with this particular catalyst, and also tested whether the minerals are sufficiently active to replace a commercial fuel cell catalyst. Similar experiments with other geocatalysts could be utilized to test which redox reactions could be driven in other hydrothermal systems, including hypothesized vent systems on other worlds.
Collapse
Affiliation(s)
- Laura M Barge
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Frederick C Krause
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - John-Paul Jones
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Keith Billings
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Pablo Sobron
- 2 Carl Sagan Center, SETI Institute , Mountain View, California
- 3 Impossible Sensing , St. Louis, Missouri
| |
Collapse
|
32
|
Yamamoto M, Nakamura R, Takai K. Deep-Sea Hydrothermal Fields as Natural Power Plants. ChemElectroChem 2018. [DOI: 10.1002/celc.201800394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Masahiro Yamamoto
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR); Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka 273-0061 Japan
| | - Ryuhei Nakamura
- Biofunctional Catalyst Research Team; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Earth-Life Science Institute; Tokyo Institute of Technology; 2-12-1-IE-1, Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Takai
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR); Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka 273-0061 Japan
| |
Collapse
|
33
|
|
34
|
Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle. Nat Commun 2018; 9:91. [PMID: 29311556 PMCID: PMC5758577 DOI: 10.1038/s41467-017-02591-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/08/2017] [Indexed: 11/09/2022] Open
Abstract
The development of metabolic approaches towards understanding the origins of life, which have focused mainly on the citric acid (TCA) cycle, have languished—primarily due to a lack of experimentally demonstrable and sustainable cycle(s) of reactions. We show here the existence of a protometabolic analog of the TCA involving two linked cycles, which convert glyoxylate into CO2 and produce aspartic acid in the presence of ammonia. The reactions proceed from either pyruvate, oxaloacetate or malonate in the presence of glyoxylate as the carbon source and hydrogen peroxide as the oxidant under neutral aqueous conditions and at mild temperatures. The reaction pathway demonstrates turnover under controlled conditions. These results indicate that simpler versions of metabolic cycles could have emerged under potential prebiotic conditions, laying the foundation for the appearance of more sophisticated metabolic pathways once control by (polymeric) catalysts became available. The citric acid cycle (TCA) is a fundamental metabolic pathway to release stored energy in living organisms. Here, the authors report two linked cycles of reactions that each oxidize glyoxylate into CO2 and generate intermediates shared with the modern TCA cycle, shedding light into a plausible TCA protometabolism.
Collapse
|
35
|
Identification of the Radical SAM Enzymes Involved in the Biosynthesis of Methanopterin and Coenzyme F 420 in Methanogens. Methods Enzymol 2018; 606:461-483. [DOI: 10.1016/bs.mie.2018.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Taran O. Electron Transfer between Electrically Conductive Minerals and Quinones. Front Chem 2017; 5:49. [PMID: 28752088 PMCID: PMC5508016 DOI: 10.3389/fchem.2017.00049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/21/2017] [Indexed: 01/04/2023] Open
Abstract
Long-distance electron transfer in marine environments couples physically separated redox half-reactions, impacting biogeochemical cycles of iron, sulfur and carbon. Bacterial bio-electrochemical systems that facilitate electron transfer via conductive filaments or across man-made electrodes are well-known, but the impact of abiotic currents across naturally occurring conductive and semiconductive minerals is poorly understood. In this paper I use cyclic voltammetry to explore electron transfer between electrodes made of common iron minerals (magnetite, hematite, pyrite, pyrrhotite, mackinawite, and greigite), and hydroquinones—a class of organic molecules found in carbon-rich sediments. Of all tested minerals, only pyrite and magnetite showed an increase in electric current in the presence of organic molecules, with pyrite showing excellent electrocatalytic performance. Pyrite electrodes performed better than commercially available glassy carbon electrodes and showed higher peak currents, lower overpotential values and a smaller separation between oxidation and reduction peaks for each tested quinone. Hydroquinone oxidation on pyrite surfaces was reversible, diffusion controlled, and stable over a large number of potential cycles. Given the ubiquity of both pyrite and quinones, abiotic electron transfer between minerals and organic molecules is likely widespread in Nature and may contribute to several different phenomena, including anaerobic respiration of a wide variety of microorganisms in temporally anoxic zones or in the proximity of hydrothermal vent chimneys, as well as quinone cycling and the propagation of anoxic zones in organic rich waters. Finally, interactions between pyrite and quinones make use of electrochemical gradients that have been suggested as an important source of energy for the origins of life on Earth. Ubiquinones and iron sulfide clusters are common redox cofactors found in electron transport chains across all domains of life and interactions between quinones and pyrite might have been an early analog of these ubiquitous systems.
Collapse
Affiliation(s)
- Olga Taran
- Department of Chemistry, Emory UniversityAtlanta, GA, United States
| |
Collapse
|
37
|
Remnants of an Ancient Metabolism without Phosphate. Cell 2017; 168:1126-1134.e9. [PMID: 28262353 DOI: 10.1016/j.cell.2017.02.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 01/31/2017] [Indexed: 11/23/2022]
Abstract
Phosphate is essential for all living systems, serving as a building block of genetic and metabolic machinery. However, it is unclear how phosphate could have assumed these central roles on primordial Earth, given its poor geochemical accessibility. We used systems biology approaches to explore the alternative hypothesis that a protometabolism could have emerged prior to the incorporation of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism producible from simple prebiotic compounds. This network is predicted to support the biosynthesis of a broad category of key biomolecules. Its enrichment for enzymes utilizing iron-sulfur clusters, and the fact that thermodynamic bottlenecks are more readily overcome by thioester rather than phosphate couplings, suggest that this network may constitute a "metabolic fossil" of an early phosphate-free nonenzymatic biochemistry. Our results corroborate and expand previous proposals that a putative thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system. PAPERCLIP.
Collapse
|
38
|
Barge LM, Branscomb E, Brucato JR, Cardoso SSS, Cartwright JHE, Danielache SO, Galante D, Kee TP, Miguel Y, Mojzsis S, Robinson KJ, Russell MJ, Simoncini E, Sobron P. Thermodynamics, Disequilibrium, Evolution: Far-From-Equilibrium Geological and Chemical Considerations for Origin-Of-Life Research. ORIGINS LIFE EVOL B 2017; 47:39-56. [PMID: 27271006 DOI: 10.1007/s11084-016-9508-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Affiliation(s)
- L M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91125, USA.
- Icy Worlds Team, NASA Astrobiology Institute, Mountain View, CA, 94043, USA.
| | - E Branscomb
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Champaign, IL, USA
| | - J R Brucato
- Astrophysical Observatory of Arcetri, Florence, Italy
| | - S S S Cardoso
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, CB2 3RA, UK
| | - J H E Cartwright
- Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18100 Armilla, Granada, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071, Granada, Spain
| | - S O Danielache
- Sophia University, Tokyo, Japan
- Earth and Life Science Institute, Tokyo Technical University, Tokyo, Japan
| | - D Galante
- Brazilian Synchrotron Light Laboratory, LNLS / CNPEM, Campinas, Brazil
| | - T P Kee
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Y Miguel
- Observatoire de Côte d'Azur, Nice, France
| | - S Mojzsis
- Department of Geological Sciences, University of Colorado, Boulder, CO, 80309-0399, USA
| | - K J Robinson
- School of Molecular Sciences and School of Earth & Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - M J Russell
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91125, USA
- Icy Worlds Team, NASA Astrobiology Institute, Mountain View, CA, 94043, USA
| | - E Simoncini
- Astrophysical Observatory of Arcetri, Florence, Italy
| | - P Sobron
- Carl Sagan Center, SETI Institute, Mountain View, CA, USA
- Impossible Sensing, St. Louis, MO, USA
| |
Collapse
|
39
|
Sickerman NS, Tanifuji K, Lee CC, Ohki Y, Tatsumi K, Ribbe MW, Hu Y. Reduction of C1 Substrates to Hydrocarbons by the Homometallic Precursor and Synthetic Mimic of the Nitrogenase Cofactor. J Am Chem Soc 2017; 139:603-606. [DOI: 10.1021/jacs.6b11633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nathaniel S. Sickerman
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Kazuki Tanifuji
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Chi Chung Lee
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Yasuhiro Ohki
- Department
of Chemistry, Graduate School of Science and Research Center for Materials
Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kazuyuki Tatsumi
- Department
of Chemistry, Graduate School of Science and Research Center for Materials
Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Markus W. Ribbe
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Yilin Hu
- Department
of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| |
Collapse
|
40
|
Perkins RJ, Shoemaker RK, Carpenter BK, Vaida V. Chemical Equilibria and Kinetics in Aqueous Solutions of Zymonic Acid. J Phys Chem A 2016; 120:10096-10107. [DOI: 10.1021/acs.jpca.6b10526] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Russell J. Perkins
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, UCB 215, Boulder, Colorado 80309, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado at Boulder, UCB 215, Boulder, Colorado 80309, United States
| | - Richard K. Shoemaker
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, UCB 215, Boulder, Colorado 80309, United States
| | - Barry K. Carpenter
- School
of Chemistry and the Physical Organic Chemistry Centre, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Veronica Vaida
- Department
of Chemistry and Biochemistry, University of Colorado at Boulder, UCB 215, Boulder, Colorado 80309, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado at Boulder, UCB 215, Boulder, Colorado 80309, United States
| |
Collapse
|
41
|
Schut GJ, Zadvornyy O, Wu CH, Peters JW, Boyd ES, Adams MWW. The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:958-70. [PMID: 26808919 DOI: 10.1016/j.bbabio.2016.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/26/2015] [Accepted: 01/18/2016] [Indexed: 11/29/2022]
Abstract
Complex I or NADH quinone oxidoreductase (NUO) is an integral component of modern day respiratory chains and has a close evolutionary relationship with energy-conserving [NiFe]-hydrogenases of anaerobic microorganisms. Specifically, in all of biology, the quinone-binding subunit of Complex I, NuoD, is most closely related to the proton-reducing, H2-evolving [NiFe]-containing catalytic subunit, MbhL, of membrane-bound hydrogenase (MBH), to the methanophenzine-reducing subunit of a methanogenic respiratory complex (FPO) and to the catalytic subunit of an archaeal respiratory complex (MBX) involved in reducing elemental sulfur (S°). These complexes also pump ions and have at least 10 homologous subunits in common. As electron donors, MBH and MBX use ferredoxin (Fd), FPO uses either Fd or cofactor F420, and NUO uses either Fd or NADH. In this review, we examine the evolutionary trajectory of these oxidoreductases from a proton-reducing ancestral respiratory complex (ARC). We hypothesize that the diversification of ARC to MBH, MBX, FPO and eventually NUO was driven by the larger energy yields associated with coupling Fd oxidation to the reduction of oxidants with increasing electrochemical potential, including protons, S° and membrane soluble organic compounds such as phenazines and quinone derivatives. Importantly, throughout Earth's history, the availability of these oxidants increased as the redox state of the atmosphere and oceans became progressively more oxidized as a result of the origin and ecological expansion of oxygenic photosynthesis. ARC-derived complexes are therefore remarkably stable respiratory systems with little diversity in core structure but whose general function appears to have co-evolved with the redox state of the biosphere. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Gerrit J Schut
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Oleg Zadvornyy
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Chang-Hao Wu
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - John W Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States
| | - Michael W W Adams
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
42
|
Olson KR, Straub KD. The Role of Hydrogen Sulfide in Evolution and the Evolution of Hydrogen Sulfide in Metabolism and Signaling. Physiology (Bethesda) 2016; 31:60-72. [DOI: 10.1152/physiol.00024.2015] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The chemical versatility of sulfur and its abundance in the prebiotic Earth as reduced sulfide (H2S) implicate this molecule in the origin of life 3.8 billion years ago and also as a major source of energy in the first seven-eighths of evolution. The tremendous increase in ambient oxygen ∼600 million years ago brought an end to H2S as an energy source, and H2S-dependent animals either became extinct, retreated to isolated sulfide niches, or adapted. The first 3 billion years of molecular tinkering were not lost, however, and much of this biochemical armamentarium easily adapted to an oxic environment where it contributes to metabolism and signaling even in humans. This review examines the role of H2S in evolution and the evolution of H2S metabolism and signaling.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Indiana University School of Medicine, South Bend, South Bend, Indiana; and
| | - Karl D. Straub
- Central Arkansas Veteran's Healthcare System and University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
43
|
Francis BR. The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells. Life (Basel) 2015; 5:467-505. [PMID: 25679748 PMCID: PMC4390864 DOI: 10.3390/life5010467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/02/2015] [Indexed: 12/22/2022] Open
Abstract
Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and polypeptides is proposed. The cell consists of an iron-sulfide particle enclosed by tholin, a heterogeneous organic material that is produced by Miller-Urey type experiments that simulate conditions on the early Earth. As the synthesis of nucleic acids evolved from β-linked polyesters, the singlet coding system for replication evolved into a four nucleotide/four amino acid process (AMP = aspartic acid, GMP = glycine, UMP = valine, CMP = alanine) and then into the triplet ribosomal process that permitted multiple copies of protein to be synthesized independent of replication. This hypothesis reconciles the “genetics first” and “metabolism first” approaches to the origin of life and explains why there are four bases in the genetic alphabet.
Collapse
Affiliation(s)
- Brian R Francis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
44
|
Reeves EP, McDermott JM, Seewald JS. The origin of methanethiol in midocean ridge hydrothermal fluids. Proc Natl Acad Sci U S A 2014; 111:5474-9. [PMID: 24706901 PMCID: PMC3992694 DOI: 10.1073/pnas.1400643111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simple alkyl thiols such as methanethiol (CH3SH) are widely speculated to form in seafloor hot spring fluids. Putative CH3SH synthesis by abiotic (nonbiological) reduction of inorganic carbon (CO2 or CO) has been invoked as an initiation reaction for the emergence of protometabolism and microbial life in primordial hydrothermal settings. Thiols are also presumptive ligands for hydrothermal trace metals and potential fuels for associated microbial communities. In an effort to constrain sources and sinks of CH3SH in seafloor hydrothermal systems, we determined for the first time its abundance in diverse hydrothermal fluids emanating from ultramafic, mafic, and sediment-covered midocean ridge settings. Our data demonstrate that the distribution of CH3SH is inconsistent with metastable equilibrium with inorganic carbon, indicating that production by abiotic carbon reduction is more limited than previously proposed. CH3SH concentrations are uniformly low (∼10(-8) M) in high-temperature fluids (>200 °C) from all unsedimented systems and, in many cases, suggestive of metastable equilibrium with CH4 instead. Associated low-temperature fluids (<200 °C) formed by admixing of seawater, however, are invariably enriched in CH3SH (up to ∼10(-6) M) along with NH4(+) and low-molecular-weight hydrocarbons relative to high-temperature source fluids, resembling our observations from a sediment-hosted system. This strongly implicates thermogenic interactions between upwelling fluids and microbial biomass or associated dissolved organic matter during subsurface mixing in crustal aquifers. Widespread thermal degradation of subsurface organic matter may be an important source of organic production in unsedimented hydrothermal systems and may influence microbial metabolic strategies in cooler near-seafloor and plume habitats.
Collapse
Affiliation(s)
- Eoghan P. Reeves
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, D-28359 Bremen, Germany
| | - Jill M. McDermott
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and
| | - Jeffrey S. Seewald
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and
| |
Collapse
|
45
|
Mapping metabolism onto the prebiotic organic chemistry of hydrothermal vents. Proc Natl Acad Sci U S A 2013; 110:13236-7. [PMID: 23908404 DOI: 10.1073/pnas.1312470110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|