1
|
Zhang T, Geng M, Li X, Gu Y, Zhao W, Ning Q, Zhao Z, Wang L, Zhang H, Zhang F. Identification of Oxidative Stress-Related Biomarkers for Pain-Depression Comorbidity Based on Bioinformatics. Int J Mol Sci 2024; 25:8353. [PMID: 39125922 PMCID: PMC11313298 DOI: 10.3390/ijms25158353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Oxidative stress has been identified as a major factor in the development and progression of pain and psychiatric disorders, but the underlying biomarkers and molecular signaling pathways remain unclear. This study aims to identify oxidative stress-related biomarkers and signaling pathways in pain-depression comorbidity. Integrated bioinformatics analyses were applied to identify key genes by comparing pain-depression comorbidity-related genes and oxidative stress-related genes. A total of 580 differentially expressed genes and 35 differentially expressed oxidative stress-related genes (DEOSGs) were identified. By using a weighted gene co-expression network analysis and a protein-protein interaction network, 43 key genes and 5 hub genes were screened out, respectively. DEOSGs were enriched in biological processes and signaling pathways related to oxidative stress and inflammation. The five hub genes, RNF24, MGAM, FOS, and TKT, were deemed potential diagnostic and prognostic markers for patients with pain-depression comorbidity. These genes may serve as valuable targets for further research and may aid in the development of early diagnosis, prevention strategies, and pharmacotherapy tools for this particular patient population.
Collapse
Affiliation(s)
- Tianyun Zhang
- Postdoctoral Research Station in Biology, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Menglu Geng
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoke Li
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Yulin Gu
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Wenjing Zhao
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Qi Ning
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Zijie Zhao
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Wang
- Postdoctoral Research Station in Biology, Hebei Medical University, Shijiazhuang 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaxing Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Fan Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Hebei Medical University, Shijiazhuang 050017, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medica University, Shijiazhuang 050017, China
| |
Collapse
|
2
|
Zhang L, Liu N, Shao J, Gao D, Liu Y, Zhao Y, Han C, Chen D, Wang L, Lu WW, Yang F. Bidirectional control of parathyroid hormone and bone mass by subfornical organ. Neuron 2023; 111:1914-1932.e6. [PMID: 37084721 DOI: 10.1016/j.neuron.2023.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/02/2022] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
Parathyroid hormone (PTH) is one of the most important hormones for bone turnover and calcium homeostasis. It is unclear how the central nervous system regulates PTH. The subfornical organ (SFO) lies above the third ventricle and modulates body fluid homeostasis. Through retrograde tracing, electrophysiology, and in vivo calcium imaging, we identified the SFO as an important brain nucleus that responds to serum PTH changes in mice. Chemogenetic stimulation of GABAergic neurons in SFO induces decreased serum PTH followed by a decrease in trabecular bone mass. Conversely, stimulation of glutamatergic neurons in the SFO promoted serum PTH and bone mass. Moreover, we found that the blockage of different PTH receptors in the SFO affects peripheral PTH levels and the PTH's response to calcium stimulation. Furthermore, we identified a GABAergic projection from the SFO to the paraventricular nucleus, which modulates PTH and bone mass. These findings advance our understanding of the central neural regulation of PTH at cellular and circuit level.
Collapse
Affiliation(s)
- Lu Zhang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Nian Liu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jie Shao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dashuang Gao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yunhui Liu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yingzi Zhao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuanliang Han
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liping Wang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen, Guangdong, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, Guangdong, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - William Weijia Lu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China; Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen, Guangdong, China; CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen, Guangdong, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Shi Y, Chen Y, Deng L, Du K, Lu S, Chen T. Structural Understanding of Peptide-Bound G Protein-Coupled Receptors: Peptide-Target Interactions. J Med Chem 2023; 66:1083-1111. [PMID: 36625741 DOI: 10.1021/acs.jmedchem.2c01309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The activation of G protein-coupled receptors (GPCRs) is triggered by ligand binding to their orthosteric sites, which induces ligand-specific conformational changes. Agonists and antagonists bound to GPCR orthosteric sites provide detailed information on ligand-binding modes. Among these, peptide ligands play an instrumental role in GPCR pharmacology and have attracted increased attention as therapeutic drugs. The recent breakthrough in GPCR structural biology has resulted in the remarkable availability of peptide-bound GPCR complexes. Despite the several structural similarities shared by these receptors, they exhibit distinct features in terms of peptide recognition and receptor activation. From this perspective, we have summarized the current status of peptide-bound GPCR structural complexes, largely focusing on the interactions between the receptor and its peptide ligand at the orthosteric site. In-depth structural investigations have yielded valuable insights into the molecular mechanisms underlying peptide recognition. This study would contribute to the discovery of GPCR peptide drugs with improved therapeutic effects.
Collapse
Affiliation(s)
- Yuxin Shi
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yi Chen
- Department of Ultrasound Interventional, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200433, China
| | - Liping Deng
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
4
|
Sun J, Yuan Y, Wu X, Liu A, Wang J, Yang S, Liu B, Kong Y, Wang L, Zhang K, Li Q, Zhang S, Yuan T, Xu TL, Huang J. Excitatory SST neurons in the medial paralemniscal nucleus control repetitive self-grooming and encode reward. Neuron 2022; 110:3356-3373.e8. [PMID: 36070748 DOI: 10.1016/j.neuron.2022.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/27/2022] [Accepted: 08/05/2022] [Indexed: 01/13/2023]
Abstract
The use of body-focused repetitive behaviors (BFRBs) is conceptualized as a means of coping with stress. However, the neurological mechanism by which repetitive behaviors affect anxiety regulation is unclear. Here, we identify that the excitatory somatostatin-positive neurons in the medial paralemniscal nucleus (MPLSST neurons) in mice promote self-grooming and encode reward. MPLSST neurons display prominent grooming-related neuronal activity. Loss of function of MPLSST neurons impairs both self-grooming and post-stress anxiety alleviation. Activation of MPLSST neurons is rewarding and sufficient to drive reinforcement by activating dopamine (DA) neurons in the ventral tegmental area (VTA) and eliciting dopamine release. The neuropeptide SST facilitates the rewarding impact of MPLSST neurons. MPLSST neuron-mediated self-grooming is triggered by the input from the central amygdala (CeA). Our study reveals a dual role of CeA-MPLSST-VTADA circuit in self-grooming and post-stress anxiety regulation and conceptualizes MPLSST neurons as an interface linking the stress and reward systems in mice.
Collapse
Affiliation(s)
- Jingjing Sun
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuan Yuan
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaohua Wu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Anqi Liu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingjie Wang
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuo Yang
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bing Liu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yalei Kong
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lizhao Wang
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Li
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Siyu Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tifei Yuan
- Shanghai Mental Health Center, Shanghai 200030, China
| | - Tian-Le Xu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ju Huang
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
5
|
Anneser L, Gemmer A, Eilers T, Alcantara IC, Loos AY, Ryu S, Schuman EM. The neuropeptide Pth2 modulates social behavior and anxiety in zebrafish. iScience 2022; 25:103868. [PMID: 35243231 PMCID: PMC8861652 DOI: 10.1016/j.isci.2022.103868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 01/09/2023] Open
Abstract
Behavior is context-dependent and often modulated by an animal's internal state. In particular, different social contexts can alter anxiety levels and modulate social behavior. The vertebrate-specific neuropeptide parathyroid hormone 2 (pth2) is regulated by the presence of conspecifics in zebrafish. As its cognate receptor, the parathyroid hormone 2 receptor (pth2r), is widely expressed across the brain, we tested fish lacking the functional Pth2 peptide in several anxiety-related and social behavior paradigms. Here, we show that the propensity to react to sudden stimuli with an escape response was increased in pth2 -/- zebrafish, consistent with an elevated anxiety level. While overall social preference for conspecifics was maintained in pth2 -/- fish until the early juvenile stage, we found that both social preference and shoaling were altered later in development. The data presented suggest that the neuropeptide Pth2 modulates several conserved behaviors and may thus enable the animal to react appropriately in different social contexts.
Collapse
Affiliation(s)
- Lukas Anneser
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
| | - Anja Gemmer
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
| | - Tim Eilers
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
| | - Ivan C. Alcantara
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
| | - Anett-Yvonn Loos
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
| | - Soojin Ryu
- Living Systems Institute & College of Medicine and Health, University of Exeter, Exeter EX4 4QD, UK
- Johannes Gutenberg University Medical Center, Mainz 55131, Germany
| | - Erin M. Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
| |
Collapse
|
6
|
Molecular insights into differentiated ligand recognition of the human parathyroid hormone receptor 2. Proc Natl Acad Sci U S A 2021; 118:2101279118. [PMID: 34353904 PMCID: PMC8364112 DOI: 10.1073/pnas.2101279118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The parathyroid hormone receptor 2 (PTH2R) is a class B1 G protein-coupled receptor (GPCR) involved in the regulation of calcium transport, nociception mediation, and wound healing. Naturally occurring mutations in PTH2R were reported to cause hereditary diseases, including syndromic short stature. Here, we report the cryogenic electron microscopy structure of PTH2R bound to its endogenous ligand, tuberoinfundibular peptide (TIP39), and a heterotrimeric Gs protein at a global resolution of 2.8 Å. The structure reveals that TIP39 adopts a unique loop conformation at the N terminus and deeply inserts into the orthosteric ligand-binding pocket in the transmembrane domain. Molecular dynamics simulation and site-directed mutagenesis studies uncover the basis of ligand specificity relative to three PTH2R agonists, TIP39, PTH, and PTH-related peptide. We also compare the action of TIP39 with an antagonist lacking six residues from the peptide N terminus, TIP(7-39), which underscores the indispensable role of the N terminus of TIP39 in PTH2R activation. Additionally, we unveil that a disease-associated mutation G258D significantly diminished cAMP accumulation induced by TIP39. Together, these results not only provide structural insights into ligand specificity and receptor activation of class B1 GPCRs but also offer a foundation to systematically rationalize the available pharmacological data to develop therapies for various disorders associated with PTH2R.
Collapse
|
7
|
Identification of tetracycline combinations as EphB1 tyrosine kinase inhibitors for treatment of neuropathic pain. Proc Natl Acad Sci U S A 2021; 118:2016265118. [PMID: 33627480 DOI: 10.1073/pnas.2016265118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have demonstrated that the synaptic EphB1 receptor tyrosine kinase is a major mediator of neuropathic pain, suggesting that targeting the activity of this receptor might be a viable therapeutic option. Therefore, we set out to determine if any FDA-approved drugs can act as inhibitors of the EphB1 intracellular catalytic domain. An in silico screen was first used to identify a number of tetracycline antibiotics which demonstrated potential docking to the ATP-binding catalytic domain of EphB1. Kinase assays showed that demeclocycline, chlortetracycline, and minocycline inhibit EphB1 kinase activity at low micromolar concentrations. In addition, we cocrystallized chlortetracycline and EphB1 receptor, which confirmed its binding to the ATP-binding domain. Finally, in vivo administration of the three-tetracycline combination inhibited the phosphorylation of EphB1 in the brain, spinal cord, and dorsal root ganglion (DRG) and effectively blocked neuropathic pain in mice. These results indicate that demeclocycline, chlortetracycline, and minocycline can be repurposed for treatment of neuropathic pain and potentially for other indications that would benefit from inhibition of EphB1 receptor kinase activity.
Collapse
|
8
|
Activity of Parathyroid Hormone Receptor Genes in Ligamentum Flavum Biopsies of Patients with Spinal Canal and Dural Sac Stenosis at the Lumbar Level. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Costa-Pereira JT, Ribeiro J, Martins I, Tavares I. Role of Spinal Cord α 2-Adrenoreceptors in Noradrenergic Inhibition of Nociceptive Transmission During Chemotherapy-Induced Peripheral Neuropathy. Front Neurosci 2020; 13:1413. [PMID: 32009887 PMCID: PMC6974806 DOI: 10.3389/fnins.2019.01413] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a problem during cancer treatment and for cancer survivors but the central mechanisms underlying CIPN remain understudied. This study aims to determine if CIPN is associated with alterations of noradrenergic modulation of nociceptive transmission at the spinal cord. CIPN was induced in male Wistar rats by paclitaxel injections. One month after CIPN induction, the behavioral effects of the administration of reboxetine (noradrenaline reuptake inhibitor), clonidine (agonist of α2-adrenoreceptors; α2–AR) and atipamezole (antagonist of α2–AR) were evaluated using the von Frey and cold plate tests. Furthermore, we measured the expression of the noradrenaline biosynthetic enzyme dopamine-β-hydroxylase (DBH) and of α2–AR in the spinal dorsal horn. Reboxetine and clonidine reversed the behavioral signs of CIPN whereas the opposite occurred with atipamezole. In the 3 pharmacological approaches, a higher effect was detected in mechanical allodynia, the pain modality which is under descending noradrenergic control. DBH expression was increased at the spinal dorsal horn of paclitaxel-injected animals. The enhanced noradrenergic inhibition during CIPN may represent an adaptation of the descending noradrenergic pain control system to the increased arrival of peripheral nociceptive input. A potentiation of the α2–AR mediated antinociception at the spinal cord may represent a therapeutic opportunity to face CIPN.
Collapse
Affiliation(s)
- José Tiago Costa-Pereira
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Joana Ribeiro
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Isabel Martins
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Liu Y, Zhao J, Fan X, Guo W. Dysfunction in Serotonergic and Noradrenergic Systems and Somatic Symptoms in Psychiatric Disorders. Front Psychiatry 2019; 10:286. [PMID: 31178761 PMCID: PMC6537908 DOI: 10.3389/fpsyt.2019.00286] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
Somatic symptoms include a range of physical experiences, such as pain, muscle tension, body shaking, difficulty in breathing, heart palpitation, blushing, fatigue, and sweating. Somatic symptoms are common in major depressive disorder (MDD), anxiety disorders, and some other psychiatric disorders. However, the etiology of somatic symptoms remains unclear. Somatic symptoms could be a response to emotional distress in patients with those psychiatric conditions. Increasing evidence supports the role of aberrant serotoninergic and noradrenergic neurotransmission in somatic symptoms. The physiological alterations underlying diminished serotonin (5-HT) and norepinephrine (NE) signaling may contribute to impaired signal transduction, reduced 5-HT, or NE release from terminals of presynaptic neurons, and result in alternations in function and/or number of receptors and changes in intracellular signal processing. Multiple resources of data support each of these mechanisms. Animal models have shown physiological responses, similar to somatic symptoms seen in psychiatric patients, after manipulations of 5-HT and NE neurotransmission. Human genetic studies have identified many single-nucleotide polymorphisms risk loci associated with somatic symptoms. Several neuroimaging findings support that somatic symptoms are possibly associated with a state of reduced receptor binding. This narrative literature review aimed to discuss the involvement of serotonergic and noradrenergic systems in the pathophysiology of somatic symptoms. Future research combining neuroimaging techniques and genetic analysis to further elucidate the biological mechanisms of somatic symptoms and to develop novel treatment strategies is needed.
Collapse
Affiliation(s)
- Yi Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| | - Xiaoduo Fan
- University of Massachusetts Medical School, UMass Memorial Medical Center, Worcester, MA, United States
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| |
Collapse
|
11
|
Verri T, Werner A. Type II Na +-phosphate Cotransporters and Phosphate Balance in Teleost Fish. Pflugers Arch 2018; 471:193-212. [PMID: 30542786 DOI: 10.1007/s00424-018-2239-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 12/27/2022]
Abstract
Teleost fish are excellent models to study the phylogeny of the slc34 gene family, Slc34-mediated phosphate (Pi) transport and how Slc34 transporters contribute Pi homeostasis. Fish need to accumulate Pi from the diet to sustain growth. Much alike in mammals, intestinal uptake in fish is partly a paracellular and partly a Slc34-mediated transcellular process. Acute regulation of Pi balance is achieved in the kidney via a combination of Slc34-mediated secretion and/or reabsorption. A great plasticity is observed in how various species perform and combine the different processes of secretion and reabsorption. A reason for this diversity is found in one or two whole genome duplication events followed by potential gene loss; consequently, teleosts exhibit distinctly different repertoires of Slc34 transporters. Moreover, due to habitats with vastly different salinity, teleosts face the challenge of either preserving water in a hyperosmotic environment (seawater) or excreting water in hypoosmotic freshwater. An additional challenge in understanding teleost Pi homeostasis are the genome duplication and retention events that diversified peptide hormones such as parathyroid hormone and stanniocalcin. Dietary Pi and non-coding RNAs also regulate the expression of piscine Slc34 transporters. The adaptive responses of teleost Slc34 transporters to e.g. Pi diets and vitamin D are informative in the context of comparative physiology, but also relevant in applied physiology and aquaculture. In fact, Pi is essential for teleost fish growth but it also exerts significant adverse consequences if over-supplied. Thus, investigating Slc34 transporters helps tuning the physiology of commercially valuable teleost fish in a confined environment.
Collapse
Affiliation(s)
- Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| | - Andreas Werner
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Suarez-Bregua P, Cal L, Cañestro C, Rotllant J. PTH Reloaded: A New Evolutionary Perspective. Front Physiol 2017; 8:776. [PMID: 29062283 PMCID: PMC5640766 DOI: 10.3389/fphys.2017.00776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/22/2017] [Indexed: 11/23/2022] Open
Abstract
The parathyroid hormone (PTH) family is a group of structurally-related secreted peptides involved in bone mineral homeostasis and multitude of developmental processes in vertebrates. These peptides mediate actions through PTH receptors (PTHRs), which belong to the transmembrane G protein-coupled receptor group. To date, genes encoding for PTH and PTHR have only been identified in chordates, suggesting that this signaling pathway may be an evolutionary innovation of our phylum. In vertebrates, we found up to six PTH and three PTHR different paralogs, varying in number between mammals and teleost fishes due to the different rounds of whole-genome duplication and specific gene losses suffered between the two groups of animals. The diversification of the PTH gene family has been accompanied by both functional divergence and convergence, making sometimes difficult the comparison between PTH peptides of teleosts and mammals. Here, we review the roles of all Pth peptides in fishes, and based on the evolutionary history of PTH paralogs, we propose a new and simple nomenclature from PTH1 to PTH4. Moreover, the recent characterization of the Pth4 in zebrafish allows us to consider the prominent role of the brain-to-bone signaling pathway in the regulation of bone development and homeostasis. Finally, comparison between PTH peptides of fish and mammals allows us to discuss an evolutionary model for PTH functions related to bone mineral balance during the vertebrate transition from an aquatic to a terrestrial environment.
Collapse
Affiliation(s)
| | - Laura Cal
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, IRBio, Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
13
|
Metabolic Connection of Inflammatory Pain: Pivotal Role of a Pyruvate Dehydrogenase Kinase-Pyruvate Dehydrogenase-Lactic Acid Axis. J Neurosci 2016; 35:14353-69. [PMID: 26490872 DOI: 10.1523/jneurosci.1910-15.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Pyruvate dehydrogenase kinases (PDK1-4) are mitochondrial metabolic regulators that serve as decision makers via modulation of pyruvate dehydrogenase (PDH) activity to convert pyruvate either aerobically to acetyl-CoA or anaerobically to lactate. Metabolic dysregulation and inflammatory processes are two sides of the same coin in several pathophysiological conditions. The lactic acid surge associated with the metabolic shift has been implicated in diverse painful states. In this study, we investigated the role of PDK-PDH-lactic acid axis in the pathogenesis of chronic inflammatory pain. Deficiency of Pdk2 and/or Pdk4 in mice attenuated complete Freund's adjuvant (CFA)-induced pain hypersensitivities. Likewise, Pdk2/4 deficiency attenuated the localized lactic acid surge along with hallmarks of peripheral and central inflammation following intraplantar administration of CFA. In vitro studies supported the role of PDK2/4 as promoters of classical proinflammatory activation of macrophages. Moreover, the pharmacological inhibition of PDKs or lactic acid production diminished CFA-induced inflammation and pain hypersensitivities. Thus, a PDK-PDH-lactic acid axis seems to mediate inflammation-driven chronic pain, establishing a connection between metabolism and inflammatory pain. SIGNIFICANCE STATEMENT The mitochondrial pyruvate dehydrogenase (PDH) kinases (PDKs) and their substrate PDH orchestrate the conversion of pyruvate either aerobically to acetyl-CoA or anaerobically to lactate. Lactate, the predominant end product of glycolysis, has recently been identified as a signaling molecule for neuron-glia interactions and neuronal plasticity. Pathological metabolic shift and subsequent lactic acid production are thought to play an important role in diverse painful states; however, their contribution to inflammation-driven pain is still to be comprehended. Here, we report that the PDK-PDH-lactic acid axis constitutes a key component of inflammatory pain pathogenesis. Our findings establish an unanticipated link between metabolism and inflammatory pain. This study unlocks a previously ill-explored research avenue for the metabolic control of inflammatory pain pathogenesis.
Collapse
|
14
|
Incubation of Fear Is Regulated by TIP39 Peptide Signaling in the Medial Nucleus of the Amygdala. J Neurosci 2015; 35:12152-61. [PMID: 26338326 DOI: 10.1523/jneurosci.1736-15.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Fear-related psychopathologies such as post-traumatic stress disorder are characterized by impaired extinction of fearful memories. Recent behavioral evidence suggests that the neuropeptide tuberoinfundibular peptide of 39 residues (TIP39), via its receptor, the parathyroid hormone 2 receptor (PTH2R), modulates fear memory. Here we examined the anatomical and cellular localization of TIP39 signaling that contributes to the increase in fear memory over time following a traumatic event, called fear memory incubation. Contextual freezing, a behavioral sign of fear memory, was significantly greater in PTH2R knock-out than wild-type male mice 2 and 4 weeks after a 2 s 1.5 mA footshock. PTH2R knock-out mice had significantly reduced c-Fos activation in the medial amygdala (MeA) following both footshock and fear recall, but had normal activation in the hypothalamic paraventricular nucleus and the amygdalar central nucleus compared with wild-type. We therefore investigated the contribution of MeA TIP39 signaling to fear incubation. Similar to the effect of global TIP39 signaling loss, blockade of TIP39 signaling in the MeA by lentivirus-mediated expression of a secreted PTH2R antagonist augmented fear incubation. Ablation of MeA PTH2R-expressing neurons also strengthened the fear incubation effect. Using the designer receptor exclusively activated by designer drug pharmacogenetic approach, transient inhibition of MeA PTH2R-expressing neurons before or immediately after the footshock, but not at the time of fear recall, enhanced fear incubation. Collectively, the findings demonstrate that TIP39 signaling within the MeA at the time of an aversive event regulates the increase over time in fear associated with the event context. SIGNIFICANCE STATEMENT Fear-related psychopathologies such as post-traumatic stress disorder (PTSD) are characterized by excessive responses to trauma-associated cues. Fear responses can increase over time without additional cue exposure or stress. This work shows that modulatory processes within the medial nucleus of the amygdala near the time of a traumatic event influence the strength of fear responses that occur much later. The modulatory processes include signaling by the neuropeptide TIP39 and neurons that express its receptor. These findings will help in the understanding of why traumatic events sometimes have severe psychological consequences. One implication is that targeting neuromodulation in the medial amygdala could potentially help prevent development of PTSD.
Collapse
|
15
|
Silberman Y, Fetterly TL, Awad EK, Milano EJ, Usdin TB, Winder DG. Ethanol produces corticotropin-releasing factor receptor-dependent enhancement of spontaneous glutamatergic transmission in the mouse central amygdala. Alcohol Clin Exp Res 2015; 39:2154-62. [PMID: 26503065 PMCID: PMC4624256 DOI: 10.1111/acer.12881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/14/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ethanol (EtOH) modulation of central amygdala (CeA) neurocircuitry plays a key role in the development of alcoholism via activation of the corticotropin-releasing factor (CRF) receptor (CRFR) system. Previous work has predominantly focused on EtOH × CRF interactions on the CeA GABA circuitry; however, our laboratory recently showed that CRF enhances CeA glutamatergic transmission. Therefore, this study sought to determine whether EtOH modulates CeA glutamate transmission via activation of CRF signaling. METHODS The effects of EtOH on spontaneous excitatory postsynaptic currents (sEPSCs) and basal resting membrane potentials were examined via standard electrophysiology methods in adult male C57BL/6J mice. Local ablation of CeA CRF neurons (CRF(CeAhDTR) ) was achieved by targeting the human diphtheria toxin receptor (hDTR) to CeA CRF neurons with an adeno-associated virus. Ablation was quantified post hoc with confocal microscopy. Genetic targeting of the diphtheria toxin active subunit to CRF neurons (CRF(DTA) mice) ablated CRF neurons throughout the central nervous system, as assessed by quantitative reverse transcriptase polymerase chain reaction quantification of CRF mRNA. RESULTS Acute bath application of EtOH significantly increased sEPSC frequency in a concentration-dependent manner in CeA neurons, and this effect was blocked by pretreatment of co-applied CRFR1 and CRFR2 antagonists. In experiments utilizing a CRF-tomato reporter mouse, EtOH did not significantly alter the basal membrane potential of CeA CRF neurons. The ability of EtOH to enhance CeA sEPSC frequency was not altered in CRF(CeAhDTR) mice despite a ~78% reduction in CeA CRF cell counts. The ability of EtOH to enhance CeA sEPSC frequency was also not altered in the CRF(DTA) mice despite a 3-fold reduction in CRF mRNA levels. CONCLUSIONS These findings demonstrate that EtOH enhances spontaneous glutamatergic transmission in the CeA via a CRFR-dependent mechanism. Surprisingly, our data suggest that this action may not require endogenous CRF.
Collapse
Affiliation(s)
- Yuval Silberman
- Molecular Physiology and Biophysics, Neuroscience Program, Vanderbilt University School of Medicine
| | - Tracy L. Fetterly
- Molecular Physiology and Biophysics, Neuroscience Program, Vanderbilt University School of Medicine
| | - Elias K. Awad
- Molecular Physiology and Biophysics, Neuroscience Program, Vanderbilt University School of Medicine
| | - Elana J. Milano
- Molecular Physiology and Biophysics, Neuroscience Program, Vanderbilt University School of Medicine
| | - Ted B. Usdin
- Section Fundamental Neuroscience, National Institute of Mental Health, National Institutes of Health
| | - Danny G. Winder
- Molecular Physiology and Biophysics, Neuroscience Program, Vanderbilt University School of Medicine
| |
Collapse
|
16
|
Thalamic neuropeptide mediating the effects of nursing on lactation and maternal motivation. Psychoneuroendocrinology 2013; 38:3070-84. [PMID: 24094875 PMCID: PMC3844093 DOI: 10.1016/j.psyneuen.2013.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 01/17/2023]
Abstract
Nursing has important physiological and psychological consequences on mothers during the postpartum period. Tuberoinfundibular peptide of 39 residues (TIP39) may contribute to its effects on prolactin release and maternal motivation. Since TIP39-containing fibers and the receptor for TIP39, the parathyroid hormone 2 receptor (PTH2 receptor) are abundant in the arcuate nucleus and the medial preoptic area, we antagonized TIP39 action locally to reveal its actions. Mediobasal hypothalamic injection of a virus encoding an antagonist of the PTH2 receptor markedly decreased basal serum prolactin levels and the suckling-induced prolactin release. In contrast, injecting this virus into the preoptic area had no effect on prolactin levels, but did dampen maternal motivation, judged by reduced time in a pup-associated cage during a place preference test. In support of an effect of TIP39 on maternal motivation, we observed that TIP39 containing fibers and terminals had the same distribution within the preoptic area as neurons expressing Fos in response to suckling. Furthermore, TIP39 terminals closely apposed the plasma membrane of 82% of Fos-ir neurons. Retrograde tracer injected into the arcuate nucleus and the medial preoptic area labeled TIP39 neurons in the posterior intralaminar complex of the thalamus (PIL), indicating that these cells but not other groups of TIP39 neurons project to these hypothalamic regions. We also found that TIP39 mRNA levels in the PIL markedly increased around parturition and remained elevated throughout the lactation period, demonstrating the availability of the peptide in postpartum mothers. Furthermore, suckling, but not pup exposure without physical contact, increased Fos expression by PIL TIP39 neurons. These results indicate that suckling activates TIP39 neurons in the PIL that affect prolactin release and maternal motivation via projections to the arcuate nucleus and the preoptic area, respectively.
Collapse
|
17
|
Weng HR, Gao M, Maixner DW. Glycogen synthase kinase 3 beta regulates glial glutamate transporter protein expression in the spinal dorsal horn in rats with neuropathic pain. Exp Neurol 2013; 252:18-27. [PMID: 24275526 DOI: 10.1016/j.expneurol.2013.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/07/2013] [Accepted: 11/13/2013] [Indexed: 12/30/2022]
Abstract
Dysfunctional glial glutamate transporters and over production of pro-inflammatory cytokines (including interleukin-1β, IL-1β) are two prominent mechanisms by which glial cells enhance neuronal activities in the spinal dorsal horn in neuropathic pain conditions. Endogenous molecules regulating production of IL-1β and glial glutamate functions remain poorly understood. In this study, we revealed a dynamic alteration of GSK3β activities and its role in regulating glial glutamate transporter 1 (GLT-1) protein expression in the spinal dorsal horn and nociceptive behaviors following the nerve injury. Specifically, GSK3β was expressed in both neurons and astrocytes in the spinal dorsal horn. GSK3β activities were suppressed on day 3 but increased on day 10 following the nerve injury. In parallel, protein expression of GLT-1 in the spinal dorsal horn was enhanced on day 3 but reduced on day 10. In contrast to these time-dependent changes, the activation of astrocytes and over-production of IL-1β were found on both day 3 and day 10. Meanwhile, thermal hyperalgesia was observed from day 2 through day 10 and mechanical allodynia from day 4 through day 10. Pre-emptive pharmacological inhibition of GSK3β activities significantly ameliorated thermal hyperalgesia and mechanical allodynia at the late stage but did not have effects at the early stage. These were accompanied with the suppression of GSK3β activities, prevention of decreased GLT-1 protein expression, inhibition of astrocytic activation, and reduction of IL-1β in the spinal dorsal horn on day 10. These data indicate that the increased GSK3β activity in the spinal dorsal horn is attributable to the downregulation of GLT-1 protein expression in neuropathic rats at the late stage. Further, we also demonstrated that the nerve-injury-induced thermal hyperalgesia on day 10 was transiently suppressed by pharmacological inhibition of GSK3β. Our study suggests that GSK3β may be a potential target for the development of analgesics for chronic neuropathic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, GA 30602, USA.
| | - Mei Gao
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, GA 30602, USA
| | - Dylan W Maixner
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, Athens, GA 30602, USA
| |
Collapse
|