1
|
Kosicki M, Laboy Cintrón D, Keukeleire P, Schubach M, Page NF, Georgakopoulos-Soares I, Akiyama JA, Plajzer-Frick I, Novak CS, Kato M, Hunter RD, von Maydell K, Barton S, Godfrey P, Beckman E, Sanders SJ, Kircher M, Pennacchio LA, Ahituv N. Massively parallel reporter assays and mouse transgenic assays provide correlated and complementary information about neuronal enhancer activity. Nat Commun 2025; 16:4786. [PMID: 40404660 PMCID: PMC12098896 DOI: 10.1038/s41467-025-60064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
High-throughput massively parallel reporter assays (MPRAs) and phenotype-rich in vivo transgenic mouse assays are two potentially complementary ways to study the impact of noncoding variants associated with psychiatric diseases. Here, we investigate the utility of combining these assays. Specifically, we carry out an MPRA in induced human neurons on over 50,000 sequences derived from fetal neuronal ATAC-seq datasets and enhancers validated in mouse assays. We also test the impact of over 20,000 variants, including synthetic mutations and 167 common variants associated with psychiatric disorders. We find a strong and specific correlation between MPRA and mouse neuronal enhancer activity. Four out of five tested variants with significant MPRA effects affected neuronal enhancer activity in mouse embryos. Mouse assays also reveal pleiotropic variant effects that could not be observed in MPRA. Our work provides a catalog of functional neuronal enhancers and variant effects and highlights the effectiveness of combining MPRAs and mouse transgenic assays.
Collapse
Affiliation(s)
- Michael Kosicki
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dianne Laboy Cintrón
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Pia Keukeleire
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, 23562, Lübeck, Germany
| | - Max Schubach
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Nicholas F Page
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Psychiatry and Behavioral Sciences, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jennifer A Akiyama
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine S Novak
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Momoe Kato
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Riana D Hunter
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kianna von Maydell
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sarah Barton
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Patrick Godfrey
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Erik Beckman
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stephan J Sanders
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Psychiatry and Behavioral Sciences, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 16 7TY, UK
| | - Martin Kircher
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, 23562, Lübeck, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Len A Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94158, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
2
|
Brown AR, Fox GA, Kaplow IM, Lawler AJ, Phan BN, Gadey L, Wirthlin ME, Ramamurthy E, May GE, Chen Z, Su Q, McManus CJ, van de Weerd R, Pfenning AR. An in vivo systemic massively parallel platform for deciphering animal tissue-specific regulatory function. Front Genet 2025; 16:1533900. [PMID: 40270544 PMCID: PMC12016043 DOI: 10.3389/fgene.2025.1533900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction: Transcriptional regulation is an important process wherein non-protein coding enhancer sequences play a key role in determining cell type identity and phenotypic diversity. In neural tissue, these gene regulatory processes are crucial for coordinating a plethora of interconnected and regionally specialized cell types, ensuring their synchronized activity in generating behavior. Recognizing the intricate interplay of gene regulatory processes in the brain is imperative, as mounting evidence links neurodevelopment and neurological disorders to non-coding genome regions. While genome-wide association studies are swiftly identifying non-coding human disease-associated loci, decoding regulatory mechanisms is challenging due to causal variant ambiguity and their specific tissue impacts. Methods: Massively parallel reporter assays (MPRAs) are widely used in cell culture to study the non-coding enhancer regions, linking genome sequence differences to tissue-specific regulatory function. However, widespread use in animals encounters significant challenges, including insufficient viral library delivery and library quantification, irregular viral transduction rates, and injection site inflammation disrupting gene expression. Here, we introduce a systemic MPRA (sysMPRA) to address these challenges through systemic intravenous AAV viral delivery. Results: We demonstrate successful transduction of the MPRA library into diverse mouse tissues, efficiently identifying tissue specificity in candidate enhancers and aligning well with predictions from machine learning models. We highlight that sysMPRA effectively uncovers regulatory effects stemming from the disruption of MEF2C transcription factor binding sites, single-nucleotide polymorphisms, and the consequences of genetic variations associated with late-onset Alzheimer's disease. Conclusion: SysMPRA is an effective library delivering method that simultaneously determines the transcriptional functions of hundreds of enhancers in vivo across multiple tissues.
Collapse
Affiliation(s)
- Ashley R. Brown
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Grant A. Fox
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Irene M. Kaplow
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - BaDoi N. Phan
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lahari Gadey
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Morgan E. Wirthlin
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Easwaran Ramamurthy
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Gemma E. May
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Ziheng Chen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Qiao Su
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - C. Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Robert van de Weerd
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Andreas R. Pfenning
- Ray and Stephanie Lane Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Koutsi M, Pouliou M, Chatzopoulos D, Champezou L, Zagkas K, Vasilogianni M, Kouroukli A, Agelopoulos M. An evolutionarily conserved constellation of functional cis-elements programs the virus-responsive fate of the human (epi)genome. Nucleic Acids Res 2025; 53:gkaf207. [PMID: 40131776 PMCID: PMC11934927 DOI: 10.1093/nar/gkaf207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Human health depends on perplexing defensive cellular responses against microbial pathogens like Viruses. Despite the major effort undertaken, the (epi)genomic mechanisms that human cells utilize to tailor defensive gene expression programs against microbial attacks have remained inadequately understood, mainly due to a significant lack of recording of the in vivo functional cis-regulatory modules (CRMs) of the human genome. Here, we introduce the virus-responsive fate of the human (epi)genome as characterized in naïve and infected cells by functional genomics, computational biology, DNA evolution, and DNA Grammar and Syntax investigations. We discovered that multitudes of novel functional virus-responsive CRMs (vrCRMs) compose typical enhancers (tEs), super-enhancers (SEs), repetitive-DNA enhancers (rDEs), and stand-alone functional genomic stretches that grant human cells regulatory underpinnings for layering basal immunity and eliminating illogical/harmful defensive responses under homeostasis, yet stimulating virus-responsive genes and transposable elements (TEs) upon infection. Moreover, extensive epigenomic reprogramming of previously unknown SE landscapes marks the transition from naïve to antiviral human cell states and involves the functions of the antimicrobial transcription factors (TFs), including interferon response factor 3 (IRF3) and nuclear factor-κB (NF-κB), as well as coactivators and transcriptional apparatus, along with intensive modifications/alterations in histone marks and chromatin accessibility. Considering the polyphyletic evolutionary fingerprints of the composite DNA sequences of the vrCRMs assessed by TFs-STARR-seq, ranging from the animal to microbial kingdoms, the conserved features of antimicrobial TFs and chromatin complexes, and their pluripotent stimulus-induced activation, these findings shed light on how mammalian (epi)genomes evolved their functions to interpret the exogenous stress inflicted and program defensive transcriptional responses against microbial agents. Crucially, many known human short variants, e.g. single-nucleotide polymorphisms (SNPs), insertions, deletions etc., and quantitative trait loci (QTLs) linked to autoimmune diseases, such as multiple sclerosis (MS), systemic lupus erythematosus (SLE), Crohn's disease (CD) etc., were mapped within or vastly proximal (±2.5 kb) to the novel in vivo functional SEs and vrCRMs discovered, thus underscoring the impact of their (mal)functions on human physiology and disease development. Hence, we delved into the virus-responsive fate of the human (epi)genome and illuminated its architecture, function, evolutionary origins, and its significance for cellular homeostasis. These results allow us to chart the "Human hyper-Atlas of virus-infection", an integrated "molecular in silico" encyclopedia situated in the UCSC Genome Browser that benefits our mechanistic understanding of human infectious/(auto)immune diseases development and can facilitate the generation of in vivo preclinical animal models, drug design, and evolution of therapeutic applications.
Collapse
Affiliation(s)
- Marianna A Koutsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Marialena Pouliou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Dimitris Chatzopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Lydia Champezou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Konstantinos Zagkas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Marili Vasilogianni
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Alexandra G Kouroukli
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| |
Collapse
|
4
|
Degner KN, Bell JL, Jones SD, Won H. Just a SNP away: The future of in vivo massively parallel reporter assay. CELL INSIGHT 2025; 4:100214. [PMID: 39618480 PMCID: PMC11607654 DOI: 10.1016/j.cellin.2024.100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 04/03/2025]
Abstract
The human genome is largely noncoding, yet the field is still grasping to understand how noncoding variants impact transcription and contribute to disease etiology. The massively parallel reporter assay (MPRA) has been employed to characterize the function of noncoding variants at unprecedented scales, but its application has been largely limited by the in vitro context. The field will benefit from establishing a systemic platform to study noncoding variant function across multiple tissue types under physiologically relevant conditions. However, to date, MPRA has been applied to only a handful of in vivo conditions. Given the complexity of the central nervous system and its widespread interactions with all other organ systems, our understanding of neuropsychiatric disorder-associated noncoding variants would be greatly advanced by studying their functional impact in the intact brain. In this review, we discuss the importance, technical considerations, and future applications of implementing MPRA in the in vivo space with the focus on neuropsychiatric disorders.
Collapse
Affiliation(s)
- Katherine N. Degner
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica L. Bell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sean D. Jones
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Friedman RZ, Ramu A, Lichtarge S, Wu Y, Tripp L, Lyon D, Myers CA, Granas DM, Gause M, Corbo JC, Cohen BA, White MA. Active learning of enhancers and silencers in the developing neural retina. Cell Syst 2025; 16:101163. [PMID: 39778579 PMCID: PMC11827711 DOI: 10.1016/j.cels.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/17/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Deep learning is a promising strategy for modeling cis-regulatory elements. However, models trained on genomic sequences often fail to explain why the same transcription factor can activate or repress transcription in different contexts. To address this limitation, we developed an active learning approach to train models that distinguish between enhancers and silencers composed of binding sites for the photoreceptor transcription factor cone-rod homeobox (CRX). After training the model on nearly all bound CRX sites from the genome, we coupled synthetic biology with uncertainty sampling to generate additional rounds of informative training data. This allowed us to iteratively train models on data from multiple rounds of massively parallel reporter assays. The ability of the resulting models to discriminate between CRX sites with identical sequence but opposite functions establishes active learning as an effective strategy to train models of regulatory DNA. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Ryan Z Friedman
- The Edison Family Center for Genome Sciences & Systems Biology, Saint Louis, MO 63110, USA; Department of Genetics, Saint Louis, MO 63110, USA
| | - Avinash Ramu
- The Edison Family Center for Genome Sciences & Systems Biology, Saint Louis, MO 63110, USA; Department of Genetics, Saint Louis, MO 63110, USA
| | - Sara Lichtarge
- The Edison Family Center for Genome Sciences & Systems Biology, Saint Louis, MO 63110, USA; Department of Genetics, Saint Louis, MO 63110, USA
| | - Yawei Wu
- The Edison Family Center for Genome Sciences & Systems Biology, Saint Louis, MO 63110, USA; Department of Genetics, Saint Louis, MO 63110, USA
| | - Lloyd Tripp
- The Edison Family Center for Genome Sciences & Systems Biology, Saint Louis, MO 63110, USA; Department of Genetics, Saint Louis, MO 63110, USA
| | - Daniel Lyon
- The Edison Family Center for Genome Sciences & Systems Biology, Saint Louis, MO 63110, USA; Department of Genetics, Saint Louis, MO 63110, USA
| | - Connie A Myers
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David M Granas
- The Edison Family Center for Genome Sciences & Systems Biology, Saint Louis, MO 63110, USA; Department of Genetics, Saint Louis, MO 63110, USA
| | - Maria Gause
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Barak A Cohen
- The Edison Family Center for Genome Sciences & Systems Biology, Saint Louis, MO 63110, USA; Department of Genetics, Saint Louis, MO 63110, USA
| | - Michael A White
- The Edison Family Center for Genome Sciences & Systems Biology, Saint Louis, MO 63110, USA; Department of Genetics, Saint Louis, MO 63110, USA.
| |
Collapse
|
6
|
Hollingsworth EW, Liu TA, Alcantara JA, Chen CX, Jacinto SH, Kvon EZ. Rapid and quantitative functional interrogation of human enhancer variant activity in live mice. Nat Commun 2025; 16:409. [PMID: 39762235 PMCID: PMC11704014 DOI: 10.1038/s41467-024-55500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Functional analysis of non-coding variants associated with congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice in less than two weeks. We use this technology to examine and measure the gain- and loss-of-function effects of enhancer variants previously linked to limb polydactyly, autism spectrum disorder, and craniofacial malformation. By combining dual-enSERT with single-cell transcriptomics, we characterise gene expression in cells where the enhancer is normally and ectopically active, revealing candidate pathways that may lead to enhancer misregulation. Finally, we demonstrate the widespread utility of dual-enSERT by testing the effects of fifteen previously uncharacterised rare and common non-coding variants linked to neurodevelopmental disorders. In doing so we identify variants that reproducibly alter the in vivo activity of OTX2 and MIR9-2 brain enhancers, implicating them in autism. Dual-enSERT thus allows researchers to go from identifying candidate enhancer variants to analysis of comparative enhancer activity in live embryos in under two weeks.
Collapse
Affiliation(s)
- Ethan W Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Medical Scientist Training Program, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Taryn A Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Joshua A Alcantara
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Cindy X Chen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Sandra H Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA.
| |
Collapse
|
7
|
Baniulyte G, McCann AA, Woodstock DL, Sammons MA. Crosstalk between paralogs and isoforms influences p63-dependent regulatory element activity. Nucleic Acids Res 2024; 52:13812-13831. [PMID: 39565223 DOI: 10.1093/nar/gkae1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
The p53 family of transcription factors (p53, p63 and p73) regulate diverse organismal processes including tumor suppression, maintenance of genome integrity and the development of skin and limbs. Crosstalk between transcription factors with highly similar DNA binding profiles, like those in the p53 family, can dramatically alter gene regulation. While p53 is primarily associated with transcriptional activation, p63 mediates both activation and repression. The specific mechanisms controlling p63-dependent gene regulatory activity are not well understood. Here, we use massively parallel reporter assays (MPRA) to investigate how local DNA sequence context influences p63-dependent transcriptional activity. Most regulatory elements with a p63 response element motif (p63RE) activate transcription, although binding of the p63 paralog, p53, drives a substantial proportion of that activity. p63RE sequence content and co-enrichment with other known activating and repressing transcription factors, including lineage-specific factors, correlates with differential p63RE-mediated activities. p63 isoforms dramatically alter transcriptional behavior, primarily shifting inactive regulatory elements towards high p63-dependent activity. Our analysis provides novel insight into how local sequence and cellular context influences p63-dependent behaviors and highlights the key, yet still understudied, role of transcription factor paralogs and isoforms in controlling gene regulatory element activity.
Collapse
Affiliation(s)
- Gabriele Baniulyte
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Abby A McCann
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Dana L Woodstock
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| |
Collapse
|
8
|
La Fleur A, Shi Y, Seelig G. Decoding biology with massively parallel reporter assays and machine learning. Genes Dev 2024; 38:843-865. [PMID: 39362779 PMCID: PMC11535156 DOI: 10.1101/gad.351800.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Massively parallel reporter assays (MPRAs) are powerful tools for quantifying the impacts of sequence variation on gene expression. Reading out molecular phenotypes with sequencing enables interrogating the impact of sequence variation beyond genome scale. Machine learning models integrate and codify information learned from MPRAs and enable generalization by predicting sequences outside the training data set. Models can provide a quantitative understanding of cis-regulatory codes controlling gene expression, enable variant stratification, and guide the design of synthetic regulatory elements for applications from synthetic biology to mRNA and gene therapy. This review focuses on cis-regulatory MPRAs, particularly those that interrogate cotranscriptional and post-transcriptional processes: alternative splicing, cleavage and polyadenylation, translation, and mRNA decay.
Collapse
Affiliation(s)
- Alyssa La Fleur
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, California 92697, USA;
| | - Georg Seelig
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA;
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
9
|
Bruner WS, Grant SFA. Translation of genome-wide association study: from genomic signals to biological insights. Front Genet 2024; 15:1375481. [PMID: 39421299 PMCID: PMC11484060 DOI: 10.3389/fgene.2024.1375481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Since the turn of the 21st century, genome-wide association study (GWAS) have successfully identified genetic signals associated with a myriad of common complex traits and diseases. As we transition from establishing robust genetic associations with diverse phenotypes, the central challenge is now focused on characterizing the underlying functional mechanisms driving these signals. Previous GWAS efforts have revealed multiple variants, each conferring relatively subtle susceptibility, collectively contributing to the pathogenesis of various common diseases. Such variants can further exhibit associations with multiple other traits and differ across ancestries, plus disentangling causal variants from non-causal due to linkage disequilibrium complexities can lead to challenges in drawing direct biological conclusions. Combined with cellular context considerations, such challenges can reduce the capacity to definitively elucidate the biological significance of GWAS signals, limiting the potential to define mechanistic insights. This review will detail current and anticipated approaches for functional interpretation of GWAS signals, both in terms of characterizing the underlying causal variants and the corresponding effector genes.
Collapse
Affiliation(s)
- Winter S. Bruner
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Struan F. A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
10
|
McCann AA, Baniulyte G, Woodstock DL, Sammons MA. Context dependent activity of p63-bound gene regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593326. [PMID: 38766006 PMCID: PMC11100809 DOI: 10.1101/2024.05.09.593326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The p53 family of transcription factors regulate numerous organismal processes including the development of skin and limbs, ciliogenesis, and preservation of genetic integrity and tumor suppression. p53 family members control these processes and gene expression networks through engagement with DNA sequences within gene regulatory elements. Whereas p53 binding to its cognate recognition sequence is strongly associated with transcriptional activation, p63 can mediate both activation and repression. How the DNA sequence of p63-bound gene regulatory elements is linked to these varied activities is not yet understood. Here, we use massively parallel reporter assays (MPRA) in a range of cellular and genetic contexts to investigate the influence of DNA sequence on p63-mediated transcription. Most regulatory elements with a p63 response element motif (p63RE) activate transcription, with those sites bound by p63 more frequently or adhering closer to canonical p53 family response element sequences driving higher transcriptional output. The most active regulatory elements are those also capable of binding p53. Elements uniquely bound by p63 have varied activity, with p63RE-mediated repression associated with lower overall GC content in flanking sequences. Comparison of activity across cell lines suggests differential activity of elements may be regulated by a combination of p63 abundance or context-specific cofactors. Finally, changes in p63 isoform expression dramatically alters regulatory element activity, primarily shifting inactive elements towards a strong p63-dependent activity. Our analysis of p63-bound gene regulatory elements provides new insight into how sequence, cellular context, and other transcription factors influence p63-dependent transcription. These studies provide a framework for understanding how p63 genomic binding locally regulates transcription. Additionally, these results can be extended to investigate the influence of sequence content, genomic context, chromatin structure on the interplay between p63 isoforms and p53 family paralogs.
Collapse
Affiliation(s)
- Abby A. McCann
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York. 1400 washington Ave, Albany, NY 12222
| | - Gabriele Baniulyte
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York. 1400 washington Ave, Albany, NY 12222
| | - Dana L. Woodstock
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York. 1400 washington Ave, Albany, NY 12222
| | - Morgan A. Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York. 1400 washington Ave, Albany, NY 12222
| |
Collapse
|
11
|
Bhattarai KR, Mobley RJ, Barnett KR, Ferguson DC, Hansen BS, Diedrich JD, Bergeron BP, Yoshimura S, Yang W, Crews KR, Manring CS, Jabbour E, Paietta E, Litzow MR, Kornblau SM, Stock W, Inaba H, Jeha S, Pui CH, Cheng C, Pruett-Miller SM, Relling MV, Yang JJ, Evans WE, Savic D. Investigation of inherited noncoding genetic variation impacting the pharmacogenomics of childhood acute lymphoblastic leukemia treatment. Nat Commun 2024; 15:3681. [PMID: 38693155 PMCID: PMC11063049 DOI: 10.1038/s41467-024-48124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents.
Collapse
Affiliation(s)
- Kashi Raj Bhattarai
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Robert J Mobley
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kelly R Barnett
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jonathan D Diedrich
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brennan P Bergeron
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Satoshi Yoshimura
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo, Japan
| | - Wenjian Yang
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kristine R Crews
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher S Manring
- Alliance Hematologic Malignancy Biorepository; Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, 43210, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mark R Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy Stock
- Comprehensive Cancer Center, University of Chicago Medicine, Chicago, IL, USA
| | - Hiroto Inaba
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sima Jeha
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ching-Hon Pui
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mary V Relling
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jun J Yang
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - William E Evans
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Daniel Savic
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
12
|
Cornejo-Páramo P, Petrova V, Zhang X, Young RS, Wong ES. Emergence of enhancers at late DNA replicating regions. Nat Commun 2024; 15:3451. [PMID: 38658544 PMCID: PMC11043393 DOI: 10.1038/s41467-024-47391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Enhancers are fast-evolving genomic sequences that control spatiotemporal gene expression patterns. By examining enhancer turnover across mammalian species and in multiple tissue types, we uncover a relationship between the emergence of enhancers and genome organization as a function of germline DNA replication time. While enhancers are most abundant in euchromatic regions, enhancers emerge almost twice as often in late compared to early germline replicating regions, independent of transposable elements. Using a deep learning sequence model, we demonstrate that new enhancers are enriched for mutations that alter transcription factor (TF) binding. Recently evolved enhancers appear to be mostly neutrally evolving and enriched in eQTLs. They also show more tissue specificity than conserved enhancers, and the TFs that bind to these elements, as inferred by binding sequences, also show increased tissue-specific gene expression. We find a similar relationship with DNA replication time in cancer, suggesting that these observations may be time-invariant principles of genome evolution. Our work underscores that genome organization has a profound impact in shaping mammalian gene regulation.
Collapse
Affiliation(s)
- Paola Cornejo-Páramo
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, Sydney, NSW, Australia
| | - Veronika Petrova
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, Sydney, NSW, Australia
| | - Xuan Zhang
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Robert S Young
- Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, United Kingdom
- Zhejiang University - University of Edinburgh Institute, Zhejiang University, 718 East Haizhou Road, 314400, Haining, PR China
| | - Emily S Wong
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Kosicki M, Cintrón DL, Page NF, Georgakopoulos-Soares I, Akiyama JA, Plajzer-Frick I, Novak CS, Kato M, Hunter RD, von Maydell K, Barton S, Godfrey P, Beckman E, Sanders SJ, Pennacchio LA, Ahituv N. Massively parallel reporter assays and mouse transgenic assays provide complementary information about neuronal enhancer activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590634. [PMID: 38712228 PMCID: PMC11071441 DOI: 10.1101/2024.04.22.590634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Genetic studies find hundreds of thousands of noncoding variants associated with psychiatric disorders. Massively parallel reporter assays (MPRAs) and in vivo transgenic mouse assays can be used to assay the impact of these variants. However, the relevance of MPRAs to in vivo function is unknown and transgenic assays suffer from low throughput. Here, we studied the utility of combining the two assays to study the impact of non-coding variants. We carried out an MPRA on over 50,000 sequences derived from enhancers validated in transgenic mouse assays and from multiple fetal neuronal ATAC-seq datasets. We also tested over 20,000 variants, including synthetic mutations in highly active neuronal enhancers and 177 common variants associated with psychiatric disorders. Variants with a high impact on MPRA activity were further tested in mice. We found a strong and specific correlation between MPRA and mouse neuronal enhancer activity including changes in neuronal enhancer activity in mouse embryos for variants with strong MPRA effects. Mouse assays also revealed pleiotropic variant effects that could not be observed in MPRA. Our work provides a large catalog of functional neuronal enhancers and variant effects and highlights the effectiveness of combining MPRAs and mouse transgenic assays.
Collapse
Affiliation(s)
- Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dianne Laboy Cintrón
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nicholas F. Page
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jennifer A. Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Catherine S. Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Riana D. Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kianna von Maydell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sarah Barton
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick Godfrey
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Erik Beckman
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stephan J. Sanders
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 16 7TY, UK
| | - Len A. Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
14
|
Shepherdson JL, Friedman RZ, Zheng Y, Sun C, Oh IY, Granas DM, Cohen BA, Chen S, White MA. Pathogenic variants in CRX have distinct cis-regulatory effects on enhancers and silencers in photoreceptors. Genome Res 2024; 34:243-255. [PMID: 38355306 PMCID: PMC10984388 DOI: 10.1101/gr.278133.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Dozens of variants in the gene for the homeodomain transcription factor (TF) cone-rod homeobox (CRX) are linked with human blinding diseases that vary in their severity and age of onset. How different variants in this single TF alter its function in ways that lead to a range of phenotypes is unclear. We characterized the effects of human disease-causing variants on CRX cis-regulatory function by deploying massively parallel reporter assays (MPRAs) in mouse retina explants carrying knock-ins of two variants, one in the DNA-binding domain (p.R90W) and the other in the transcriptional effector domain (p.E168d2). The degree of reporter gene dysregulation in these mutant Crx retinas corresponds with their phenotypic severity. The two variants affect similar sets of enhancers, and p.E168d2 has distinct effects on silencers. Cis-regulatory elements (CREs) near cone photoreceptor genes are enriched for silencers that are derepressed in the presence of p.E168d2. Chromatin environments of CRX-bound loci are partially predictive of episomal MPRA activity, and distal elements whose accessibility increases later in retinal development are enriched for CREs with silencer activity. We identified a set of potentially pleiotropic regulatory elements that convert from silencers to enhancers in retinas that lack a functional CRX effector domain. Our findings show that phenotypically distinct variants in different domains of CRX have partially overlapping effects on its cis-regulatory function, leading to misregulation of similar sets of enhancers while having a qualitatively different impact on silencers.
Collapse
Affiliation(s)
- James L Shepherdson
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Ryan Z Friedman
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Yiqiao Zheng
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Inez Y Oh
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - David M Granas
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Barak A Cohen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Michael A White
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA;
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| |
Collapse
|
15
|
Luthra I, Jensen C, Chen XE, Salaudeen AL, Rafi AM, de Boer CG. Regulatory activity is the default DNA state in eukaryotes. Nat Struct Mol Biol 2024; 31:559-567. [PMID: 38448573 DOI: 10.1038/s41594-024-01235-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Genomes encode for genes and non-coding DNA, both capable of transcriptional activity. However, unlike canonical genes, many transcripts from non-coding DNA have limited evidence of conservation or function. Here, to determine how much biological noise is expected from non-genic sequences, we quantify the regulatory activity of evolutionarily naive DNA using RNA-seq in yeast and computational predictions in humans. In yeast, more than 99% of naive DNA bases were transcribed. Unlike the evolved transcriptome, naive transcripts frequently overlapped with opposite sense transcripts, suggesting selection favored coherent gene structures in the yeast genome. In humans, regulation-associated chromatin activity is predicted to be common in naive dinucleotide-content-matched randomized DNA. Here, naive and evolved DNA have similar co-occurrence and cell-type specificity of chromatin marks, challenging these as indicators of selection. However, in both yeast and humans, extreme high activities were rare in naive DNA, suggesting they result from selection. Overall, basal regulatory activity seems to be the default, which selection can hone to evolve a function or, if detrimental, repress.
Collapse
Affiliation(s)
- Ishika Luthra
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cassandra Jensen
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xinyi E Chen
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Asfar Lathif Salaudeen
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdul Muntakim Rafi
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carl G de Boer
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
16
|
Liu J, Ashuach T, Inoue F, Ahituv N, Yosef N, Kreimer A. Optimizing sequence design strategies for perturbation MPRAs: a computational evaluation framework. Nucleic Acids Res 2024; 52:1613-1627. [PMID: 38296821 PMCID: PMC10939410 DOI: 10.1093/nar/gkae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
The advent of perturbation-based massively parallel reporter assays (MPRAs) technique has facilitated the delineation of the roles of non-coding regulatory elements in orchestrating gene expression. However, computational efforts remain scant to evaluate and establish guidelines for sequence design strategies for perturbation MPRAs. In this study, we propose a framework for evaluating and comparing various perturbation strategies for MPRA experiments. Within this framework, we benchmark three different perturbation approaches from the perspectives of alteration in motif-based profiles, consistency of MPRA outputs, and robustness of models that predict the activities of putative regulatory motifs. While our analyses show very similar results across multiple benchmarking metrics, the predictive modeling for the approach involving random nucleotide shuffling shows significant robustness compared with the other two approaches. Thus, we recommend designing sequences by randomly shuffling the nucleotides of the perturbed site in perturbation-MPRA, followed by a coherence check to prevent the introduction of other variations of the target motifs. In summary, our evaluation framework and the benchmarking findings create a resource of computational pipelines and highlight the potential of perturbation-MPRA in predicting non-coding regulatory activities.
Collapse
Affiliation(s)
- Jiayi Liu
- Graduate Program in Cell & Developmental Biology, Rutgers, The State University of New Jersey, 604 Allison Rd, Piscataway, NJ 08854, USA
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, 679 Hoes Lane West, Piscataway, Piscataway, NJ 08854, USA
| | - Tal Ashuach
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, 387 Soda Hall, Berkeley, CA 94720, USA
| | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Faculty of Medicine Building B, Yoshidatachibanacho, Sakyo Ward, Kyoto 606-8303, Japan
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, 1700 4th Street, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | - Nir Yosef
- Department of Systems Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
- Chan-Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
- Department of Systems Immunology, Ragon Institute of MGH, MIT, and Harvard Institute of Science, 400 Technology Square, Cambridge, MA 02139, USA
| | - Anat Kreimer
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, 679 Hoes Lane West, Piscataway, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Loell KJ, Friedman RZ, Myers CA, Corbo JC, Cohen BA, White MA. Transcription factor interactions explain the context-dependent activity of CRX binding sites. PLoS Comput Biol 2024; 20:e1011802. [PMID: 38227575 PMCID: PMC10817189 DOI: 10.1371/journal.pcbi.1011802] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/26/2024] [Accepted: 01/06/2024] [Indexed: 01/18/2024] Open
Abstract
The effects of transcription factor binding sites (TFBSs) on the activity of a cis-regulatory element (CRE) depend on the local sequence context. In rod photoreceptors, binding sites for the transcription factor (TF) Cone-rod homeobox (CRX) occur in both enhancers and silencers, but the sequence context that determines whether CRX binding sites contribute to activation or repression of transcription is not understood. To investigate the context-dependent activity of CRX sites, we fit neural network-based models to the activities of synthetic CREs composed of photoreceptor TFBSs. The models revealed that CRX binding sites consistently make positive, independent contributions to CRE activity, while negative homotypic interactions between sites cause CREs composed of multiple CRX sites to function as silencers. The effects of negative homotypic interactions can be overcome by the presence of other TFBSs that either interact cooperatively with CRX sites or make independent positive contributions to activity. The context-dependent activity of CRX sites is thus determined by the balance between positive heterotypic interactions, independent contributions of TFBSs, and negative homotypic interactions. Our findings explain observed patterns of activity among genomic CRX-bound enhancers and silencers, and suggest that enhancers may require diverse TFBSs to overcome negative homotypic interactions between TFBSs.
Collapse
Affiliation(s)
- Kaiser J. Loell
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Ryan Z. Friedman
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Connie A. Myers
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Barak A. Cohen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Michael A. White
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
18
|
Hollingsworth EW, Liu TA, Jacinto SH, Chen CX, Alcantara JA, Kvon EZ. Rapid and Quantitative Functional Interrogation of Human Enhancer Variant Activity in Live Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570890. [PMID: 38105996 PMCID: PMC10723448 DOI: 10.1101/2023.12.10.570890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Functional analysis of non-coding variants associated with human congenital disorders remains challenging due to the lack of efficient in vivo models. Here we introduce dual-enSERT, a robust Cas9-based two-color fluorescent reporter system which enables rapid, quantitative comparison of enhancer allele activities in live mice of any genetic background. We use this new technology to examine and measure the gain- and loss-of-function effects of enhancer variants linked to limb polydactyly, autism, and craniofacial malformation. By combining dual-enSERT with single-cell transcriptomics, we characterize variant enhancer alleles at cellular resolution, thereby implicating candidate molecular pathways in pathogenic enhancer misregulation. We further show that independent, polydactyly-linked enhancer variants lead to ectopic expression in the same cell populations, indicating shared genetic mechanisms underlying non-coding variant pathogenesis. Finally, we streamline dual-enSERT for analysis in F0 animals by placing both reporters on the same transgene separated by a synthetic insulator. Dual-enSERT allows researchers to go from identifying candidate enhancer variants to analysis of comparative enhancer activity in live embryos in under two weeks.
Collapse
Affiliation(s)
- Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Medical Scientist Training Program, University of California, Irvine School of Medicine, Irvine, CA 92697, USA
| | - Taryn A. Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Sandra H. Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Cindy X. Chen
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Joshua A. Alcantara
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
19
|
Pan D, Zhang X, Jin K, Jin ZB. CRX haploinsufficiency compromises photoreceptor precursor translocation and differentiation in human retinal organoids. Stem Cell Res Ther 2023; 14:346. [PMID: 38049871 PMCID: PMC10696917 DOI: 10.1186/s13287-023-03590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The CRX-associated autosomal dominant retinopathies suggest a possible pathogenic mechanism of gene haploinsufficiency. However, based on reported human patient cases and studies with mouse models, it is hard to confirm the specific weight of haploinsufficiency in pathogenesis due to the interspecies gaps between gene expression and function. METHODS We created monoallelic CRX by replacing one allele with tdTomato in human embryonic stem cells (hESCs) and subsequently dissect pathogenesis in hESCs-derived retinal organoids. We used transcriptome and immunofluorescence analyses to dissect phenotypic differences between CRX-monoallelic knockout and control wildtype organoids. For location analysis of CRX+ cells, a CRX-expression-tracing system was constructed in control hESCs. We implemented long-term live-cell imaging to describe the translocation of CRX+ cells between two groups in early organoid differentiation. The expression pattern of these dynamic differences was validated using RNA-seq and immunofluorescence assays. RESULTS We identified delayed differentiation of outer nuclear layer (ONL) stratification along with thinner ONL, serious loss of photoreceptor outer segments, as well as downregulated expression of gene for phototransduction and inner/outer segment formation. By live-cell imaging and immunostaining, we observed the overtension of actomyosin network and the arrested translocation of monoallelic CRX+ cells in the early stage of retinal differentiation. CONCLUSIONS We confirmed that gene haploinsufficiency is the mechanism for the dominant pathogenicity of CRX and discovered that CRX regulated postmitotic photoreceptor precursor translocation in addition to its specification of photoreceptor cell fates during human retinal development. These findings revealed a new underlying mechanism of CRX dominant pathogenesis and provided a new clue for the treatment of CRX-associated human retinopathies.
Collapse
Affiliation(s)
- Deng Pan
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
20
|
Shepherdson JL, Friedman RZ, Zheng Y, Sun C, Oh IY, Granas DM, Cohen BA, Chen S, White MA. Pathogenic variants in Crx have distinct cis-regulatory effects on enhancers and silencers in photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.27.542576. [PMID: 37292699 PMCID: PMC10245955 DOI: 10.1101/2023.05.27.542576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dozens of variants in the photoreceptor-specific transcription factor (TF) CRX are linked with human blinding diseases that vary in their severity and age of onset. It is unclear how different variants in this single TF alter its function in ways that lead to a range of phenotypes. We examined the effects of human disease-causing variants on CRX cis-regulatory function by deploying massively parallel reporter assays (MPRAs) in live mouse retinas carrying knock-ins of two variants, one in the DNA binding domain (p.R90W) and the other in the transcriptional effector domain (p.E168d2). The degree of reporter gene dysregulation caused by the variants corresponds with their phenotypic severity. The two variants affect similar sets of enhancers, while p.E168d2 has stronger effects on silencers. Cis-regulatory elements (CREs) near cone photoreceptor genes are enriched for silencers that are de-repressed in the presence of p.E168d2. Chromatin environments of CRX-bound loci were partially predictive of episomal MPRA activity, and silencers were notably enriched among distal elements whose accessibility increases later in retinal development. We identified a set of potentially pleiotropic regulatory elements that convert from silencers to enhancers in retinas that lack a functional CRX effector domain. Our findings show that phenotypically distinct variants in different domains of CRX have partially overlapping effects on its cis-regulatory function, leading to misregulation of similar sets of enhancers, while having a qualitatively different impact on silencers.
Collapse
Affiliation(s)
- James L. Shepherdson
- Department of Genetics
- Edison Family Center for Genome Sciences & Systems Biology
| | - Ryan Z. Friedman
- Department of Genetics
- Edison Family Center for Genome Sciences & Systems Biology
| | | | - Chi Sun
- Department of Ophthalmology and Visual Sciences
| | - Inez Y. Oh
- Department of Ophthalmology and Visual Sciences
| | - David M. Granas
- Department of Genetics
- Edison Family Center for Genome Sciences & Systems Biology
| | - Barak A. Cohen
- Department of Genetics
- Edison Family Center for Genome Sciences & Systems Biology
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Michael A. White
- Department of Genetics
- Edison Family Center for Genome Sciences & Systems Biology
| |
Collapse
|
21
|
Abstract
Enhancers are cis-regulatory elements that can stimulate gene expression from distance, and drive precise spatiotemporal gene expression profiles during development. Functional enhancers display specific features including an open chromatin conformation, Histone H3 lysine 27 acetylation, Histone H3 lysine 4 mono-methylation enrichment, and enhancer RNAs production. These features are modified upon developmental cues which impacts their activity. In this review, we describe the current state of knowledge about enhancer functions and the diverse chromatin signatures found on enhancers. We also discuss the dynamic changes of enhancer chromatin signatures, and their impact on lineage specific gene expression profiles, during development or cellular differentiation.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,CONTACT Amandine Barral Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. 3400 Civic Blvd, Philadelphia, Pennsylvania19104, USA
| | - Jérôme Déjardin
- Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, Montpellier, France,Jérôme Déjardin Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier34000, France
| |
Collapse
|
22
|
Liu J, Ashuach T, Inoue F, Ahituv N, Yosef N, Kreimer A. Best practices for perturbation MPRA-a computational evaluation framework of sequence design strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559768. [PMID: 37808807 PMCID: PMC10557651 DOI: 10.1101/2023.09.27.559768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The advent of the perturbation-based massively parallel reporter assays (MPRAs) technique has enabled delineating of the roles of non-coding regulatory elements in orchestrating gene expression. However, computational efforts remain scant to evaluate and establish guidelines for sequence design strategies for perturbation MPRAs. Here, we propose a framework for evaluating and comparing various perturbation strategies for MPRA experiments. Under this framework, we benchmark three different perturbation approaches from the perspectives of alteration in motif-based profiles, consistency of MPRA outputs, and robustness of models that predict the activities of putative regulatory motifs. Although our analyses show similar while significant results in multiple metrics, the method of randomly shuffling nucleotides outperform the other two methods. Thus, we still recommend designing sequences by randomly shuffling the nucleotides of the perturbed site in perturbation-MPRA. The evaluation framework, together with the benchmarking findings in our work, creates a resource of computational pipelines and illustrates the promise of perturbation-MPRA for predicting non-coding regulatory activities.
Collapse
Affiliation(s)
- Jiayi Liu
- Graduate Programs in Molecular Biosciences, Rutgers, The State
University of New Jersey, 604 Allison Rd, Piscataway, NJ, 08854, USA
- Department of Biochemistry and Molecular Biology, Rutgers, The
State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The
State University of New Jersey, 679 Hoes Lane West, Piscataway, Piscataway, NJ, 08854,
USA
| | - Tal Ashuach
- Department of Electrical Engineering and Computer Sciences and
Center for Computational Biology, University of California, Berkeley, 387 Soda Hall,
Berkeley, CA, 94720, USA
| | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi),
Kyoto University, Faculty of Medicine Building B, Yoshidatachibanacho, Sakyo Ward, Kyoto,
606-8303, Japan
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University
of California, San Francisco, 513 Parnassus Ave, CA, 94143, USA
- Institute for Human Genetics, University of California, San
Francisco, 513 Parnassus Ave, CA, 94143, USA
| | - Nir Yosef
- Department of Systems Immunology, Weizmann Institute of Science,
234 Herzl Street, Rehovot 7610001 Israel
- Chan-Zuckerberg Biohub, 499 Illinois St, San Francisco, CA,
94158, USA
- Department of Systems Immunology, Ragon Institute of MGH, MIT,
and Harvard Institute of Science, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Anat Kreimer
- Department of Biochemistry and Molecular Biology, Rutgers, The
State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The
State University of New Jersey, 679 Hoes Lane West, Piscataway, Piscataway, NJ, 08854,
USA
| |
Collapse
|
23
|
Gonçalves TM, Stewart CL, Baxley SD, Xu J, Li D, Gabel HW, Wang T, Avraham O, Zhao G. Towards a comprehensive regulatory map of Mammalian Genomes. RESEARCH SQUARE 2023:rs.3.rs-3294408. [PMID: 37841836 PMCID: PMC10571623 DOI: 10.21203/rs.3.rs-3294408/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Genome mapping studies have generated a nearly complete collection of genes for the human genome, but we still lack an equivalently vetted inventory of human regulatory sequences. Cis-regulatory modules (CRMs) play important roles in controlling when, where, and how much a gene is expressed. We developed a training data-free CRM-prediction algorithm, the Mammalian Regulatory MOdule Detector (MrMOD) for accurate CRM prediction in mammalian genomes. MrMOD provides genome position-fixed CRM models similar to the fixed gene models for the mouse and human genomes using only genomic sequences as the inputs with one adjustable parameter - the significance p-value. Importantly, MrMOD predicts a comprehensive set of high-resolution CRMs in the mouse and human genomes including all types of regulatory modules not limited to any tissue, cell type, developmental stage, or condition. We computationally validated MrMOD predictions used a compendium of 21 orthogonal experimental data sets including thousands of experimentally defined CRMs and millions of putative regulatory elements derived from hundreds of different tissues, cell types, and stimulus conditions obtained from multiple databases. In ovo transgenic reporter assay demonstrates the power of our prediction in guiding experimental design. We analyzed CRMs located in the chromosome 17 using unsupervised machine learning and identified groups of CRMs with multiple lines of evidence supporting their functionality, linking CRMs with upstream binding transcription factors and downstream target genes. Our work provides a comprehensive base pair resolution annotation of the functional regulatory elements and non-functional regions in the mammalian genomes.
Collapse
Affiliation(s)
| | | | | | - Jason Xu
- Missouri University of Science & Technology
| | - Daofeng Li
- Washington University School of Medicine
| | | | - Ting Wang
- Washington University School of Medicine
| | | | | |
Collapse
|
24
|
Mulvey B, Selmanovic D, Dougherty JD. Sex Significantly Impacts the Function of Major Depression-Linked Variants In Vivo. Biol Psychiatry 2023; 94:466-478. [PMID: 36803612 PMCID: PMC10425576 DOI: 10.1016/j.biopsych.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Genome-wide association studies have discovered blocks of common variants-likely transcriptional-regulatory-associated with major depressive disorder (MDD), though the functional subset and their biological impacts remain unknown. Likewise, why depression occurs in females more frequently than males is unclear. We therefore tested the hypothesis that risk-associated functional variants interact with sex and produce greater impact in female brains. METHODS We developed techniques to directly measure regulatory variant activity and sex interactions using massively parallel reporter assays in the mouse brain in vivo, in a cell type-specific manner, and applied these approaches to measure activity of >1000 variants from >30 MDD loci. RESULTS We identified extensive sex-by-allele effects in mature hippocampal neurons, suggesting that sex-differentiated impacts of genetic risk may underlie sex bias in disease. Unbiased informatics approaches indicated that functional MDD variants recurrently disrupt a number of transcription factor binding motifs, including those of sex hormone receptors. We confirmed a role for the latter by performing massively parallel reporter assays in neonatal mice on the day of birth (during a sex-differentiating hormone surge) and hormonally quiescent juveniles. CONCLUSIONS Our study provides novel insights into the influence of age, biological sex, and cell type on regulatory variant function and provides a framework for in vivo parallel assays to functionally define interactions between organismal variables such as sex and regulatory variation. Moreover, we experimentally demonstrate that a portion of the sex differences seen in MDD occurrence may be a product of sex-differentiated effects at associated regulatory variants.
Collapse
Affiliation(s)
- Bernard Mulvey
- Division of Biology and Biomedical Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Din Selmanovic
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Joseph D Dougherty
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Intellectual and Developmental Disabilities Research Center, Washington University in St. Louis School of Medicine, St. Louis, Missouri.
| |
Collapse
|
25
|
Kleinschmidt H, Xu C, Bai L. Using Synthetic DNA Libraries to Investigate Chromatin and Gene Regulation. Chromosoma 2023; 132:167-189. [PMID: 37184694 PMCID: PMC10542970 DOI: 10.1007/s00412-023-00796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Despite the recent explosion in genome-wide studies in chromatin and gene regulation, we are still far from extracting a set of genetic rules that can predict the function of the regulatory genome. One major reason for this deficiency is that gene regulation is a multi-layered process that involves an enormous variable space, which cannot be fully explored using native genomes. This problem can be partially solved by introducing synthetic DNA libraries into cells, a method that can test the regulatory roles of thousands to millions of sequences with limited variables. Here, we review recent applications of this method to study transcription factor (TF) binding, nucleosome positioning, and transcriptional activity. We discuss the design principles, experimental procedures, and major findings from these studies and compare the pros and cons of different approaches.
Collapse
Affiliation(s)
- Holly Kleinschmidt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
26
|
Friedman RZ, Ramu A, Lichtarge S, Myers CA, Granas DM, Gause M, Corbo JC, Cohen BA, White MA. Active learning of enhancer and silencer regulatory grammar in photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554146. [PMID: 37662358 PMCID: PMC10473580 DOI: 10.1101/2023.08.21.554146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cis-regulatory elements (CREs) direct gene expression in health and disease, and models that can accurately predict their activities from DNA sequences are crucial for biomedicine. Deep learning represents one emerging strategy to model the regulatory grammar that relates CRE sequence to function. However, these models require training data on a scale that exceeds the number of CREs in the genome. We address this problem using active machine learning to iteratively train models on multiple rounds of synthetic DNA sequences assayed in live mammalian retinas. During each round of training the model actively selects sequence perturbations to assay, thereby efficiently generating informative training data. We iteratively trained a model that predicts the activities of sequences containing binding motifs for the photoreceptor transcription factor Cone-rod homeobox (CRX) using an order of magnitude less training data than current approaches. The model's internal confidence estimates of its predictions are reliable guides for designing sequences with high activity. The model correctly identified critical sequence differences between active and inactive sequences with nearly identical transcription factor binding sites, and revealed order and spacing preferences for combinations of motifs. Our results establish active learning as an effective method to train accurate deep learning models of cis-regulatory function after exhausting naturally occurring training examples in the genome.
Collapse
Affiliation(s)
- Ryan Z. Friedman
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Avinash Ramu
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Sara Lichtarge
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Connie A. Myers
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110
| | - David M. Granas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Maria Gause
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Barak A. Cohen
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110
| | - Michael A. White
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, 63110
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110
| |
Collapse
|
27
|
Smith GD, Ching WH, Cornejo-Páramo P, Wong ES. Decoding enhancer complexity with machine learning and high-throughput discovery. Genome Biol 2023; 24:116. [PMID: 37173718 PMCID: PMC10176946 DOI: 10.1186/s13059-023-02955-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Enhancers are genomic DNA elements controlling spatiotemporal gene expression. Their flexible organization and functional redundancies make deciphering their sequence-function relationships challenging. This article provides an overview of the current understanding of enhancer organization and evolution, with an emphasis on factors that influence these relationships. Technological advancements, particularly in machine learning and synthetic biology, are discussed in light of how they provide new ways to understand this complexity. Exciting opportunities lie ahead as we continue to unravel the intricacies of enhancer function.
Collapse
Affiliation(s)
- Gabrielle D Smith
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Wan Hern Ching
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
| | - Paola Cornejo-Páramo
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Emily S Wong
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
28
|
Hartwig T, Banf M, Prietsch GP, Zhu JY, Mora-Ramírez I, Schippers JHM, Snodgrass SJ, Seetharam AS, Huettel B, Kolkman JM, Yang J, Engelhorn J, Wang ZY. Hybrid allele-specific ChIP-seq analysis identifies variation in brassinosteroid-responsive transcription factor binding linked to traits in maize. Genome Biol 2023; 24:108. [PMID: 37158941 PMCID: PMC10165856 DOI: 10.1186/s13059-023-02909-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Genetic variation in regulatory sequences that alter transcription factor (TF) binding is a major cause of phenotypic diversity. Brassinosteroid is a growth hormone that has major effects on plant phenotypes. Genetic variation in brassinosteroid-responsive cis-elements likely contributes to trait variation. Pinpointing such regulatory variations and quantitative genomic analysis of the variation in TF-target binding, however, remains challenging. How variation in transcriptional targets of signaling pathways such as the brassinosteroid pathway contributes to phenotypic variation is an important question to be investigated with innovative approaches. RESULTS Here, we use a hybrid allele-specific chromatin binding sequencing (HASCh-seq) approach and identify variations in target binding of the brassinosteroid-responsive TF ZmBZR1 in maize. HASCh-seq in the B73xMo17 F1s identifies thousands of target genes of ZmBZR1. Allele-specific ZmBZR1 binding (ASB) has been observed for 18.3% of target genes and is enriched in promoter and enhancer regions. About a quarter of the ASB sites correlate with sequence variation in BZR1-binding motifs and another quarter correlate with haplotype-specific DNA methylation, suggesting that both genetic and epigenetic variations contribute to the high level of variation in ZmBZR1 occupancy. Comparison with GWAS data shows linkage of hundreds of ASB loci to important yield and disease-related traits. CONCLUSION Our study provides a robust method for analyzing genome-wide variations of TF occupancy and identifies genetic and epigenetic variations of the brassinosteroid response transcription network in maize.
Collapse
Affiliation(s)
- Thomas Hartwig
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
- Heinrich-Heine University, Universitätsstraße 1, Düsseldorf, NRW, 40225, Germany.
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, NRW, 50829, Germany.
| | - Michael Banf
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - Gisele Passaia Prietsch
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - Jia-Ying Zhu
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, SA, 06466, Germany
| | - Isabel Mora-Ramírez
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, SA, 06466, Germany
| | - Jos H M Schippers
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, Seeland, SA, 06466, Germany
| | - Samantha J Snodgrass
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 339A Bessey Hall, Ames, IA, 50011, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 339A Bessey Hall, Ames, IA, 50011, USA
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, NRW, 50829, Germany
| | - Judith M Kolkman
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, 413 Bradfield Hall, Ithaca, NY, 14853, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, 363 Keim Hall, Lincoln, NE, 68583, USA
| | - Julia Engelhorn
- Heinrich-Heine University, Universitätsstraße 1, Düsseldorf, NRW, 40225, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, NRW, 50829, Germany
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
| |
Collapse
|
29
|
Das M, Hossain A, Banerjee D, Praul CA, Girirajan S. Challenges and considerations for reproducibility of STARR-seq assays. Genome Res 2023; 33:479-495. [PMID: 37130797 PMCID: PMC10234304 DOI: 10.1101/gr.277204.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 03/15/2023] [Indexed: 05/04/2023]
Abstract
High-throughput methods such as RNA-seq, ChIP-seq, and ATAC-seq have well-established guidelines, commercial kits, and analysis pipelines that enable consistency and wider adoption for understanding genome function and regulation. STARR-seq, a popular assay for directly quantifying the activities of thousands of enhancer sequences simultaneously, has seen limited standardization across studies. The assay is long, with more than 250 steps, and frequent customization of the protocol and variations in bioinformatics methods raise concerns for reproducibility of STARR-seq studies. Here, we assess each step of the protocol and analysis pipelines from published sources and in-house assays, and identify critical steps and quality control (QC) checkpoints necessary for reproducibility of the assay. We also provide guidelines for experimental design, protocol scaling, customization, and analysis pipelines for better adoption of the assay. These resources will allow better optimization of STARR-seq for specific research needs, enable comparisons and integration across studies, and improve the reproducibility of results.
Collapse
Affiliation(s)
- Maitreya Das
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Molecular and Cellular Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ayaan Hossain
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Deepro Banerjee
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Craig Alan Praul
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Molecular and Cellular Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
30
|
Zheng Y, VanDusen NJ. Massively Parallel Reporter Assays for High-Throughput In Vivo Analysis of Cis-Regulatory Elements. J Cardiovasc Dev Dis 2023; 10:jcdd10040144. [PMID: 37103023 PMCID: PMC10146671 DOI: 10.3390/jcdd10040144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The rapid improvement of descriptive genomic technologies has fueled a dramatic increase in hypothesized connections between cardiovascular gene expression and phenotypes. However, in vivo testing of these hypotheses has predominantly been relegated to slow, expensive, and linear generation of genetically modified mice. In the study of genomic cis-regulatory elements, generation of mice featuring transgenic reporters or cis-regulatory element knockout remains the standard approach. While the data obtained is of high quality, the approach is insufficient to keep pace with candidate identification and therefore results in biases introduced during the selection of candidates for validation. However, recent advances across a range of disciplines are converging to enable functional genomic assays that can be conducted in a high-throughput manner. Here, we review one such method, massively parallel reporter assays (MPRAs), in which the activities of thousands of candidate genomic regulatory elements are simultaneously assessed via the next-generation sequencing of a barcoded reporter transcript. We discuss best practices for MPRA design and use, with a focus on practical considerations, and review how this emerging technology has been successfully deployed in vivo. Finally, we discuss how MPRAs are likely to evolve and be used in future cardiovascular research.
Collapse
|
31
|
Bhattarai KR, Mobley RJ, Barnett KR, Ferguson DC, Hansen BS, Diedrich JD, Bergeron BP, Yang W, Crews KR, Manring CS, Jabbour E, Paietta E, Litzow MR, Kornblau SM, Stock W, Inaba H, Jeha S, Pui CH, Cheng C, Pruett-Miller SM, Relling MV, Yang JJ, Evans WE, Savic D. Functional investigation of inherited noncoding genetic variation impacting the pharmacogenomics of childhood acute lymphoblastic leukemia treatment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.10.23285762. [PMID: 36798219 PMCID: PMC9934807 DOI: 10.1101/2023.02.10.23285762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Although acute lymphoblastic leukemia (ALL) is the most common childhood cancer, there is limited understanding of the contribution of inherited genetic variation on inter-individual differences in chemotherapy response. Defining genetic factors impacting therapy failure can help better predict response and identify drug resistance mechanisms. We therefore mapped inherited noncoding variants associated with chemotherapeutic drug resistance and/or treatment outcome to ALL cis-regulatory elements and investigated their gene regulatory potential and genomic connectivity using massively parallel reporter assays and promoter capture Hi-C, respectively. We identified 53 variants with reproducible allele-specific effects on transcription and high-confidence gene targets. Subsequent functional interrogation of the top variant (rs1247117) determined that it disrupted a PU.1 consensus motif and PU.1 binding affinity. Importantly, deletion of the genomic interval containing rs1247117 sensitized ALL cells to vincristine. Together, these data demonstrate that noncoding regulatory variation associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to chemotherapeutic agents in ALL.
Collapse
Affiliation(s)
- Kashi Raj Bhattarai
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Robert J. Mobley
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Kelly R. Barnett
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Daniel C. Ferguson
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Baranda S. Hansen
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jonathan D. Diedrich
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Brennan P. Bergeron
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Wenjian Yang
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Kristine R. Crews
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Christopher S. Manring
- Alliance Hematologic Malignancy Biorepository; Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH 43210, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Mark R. Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wendy Stock
- Comprehensive Cancer Center, University of Chicago Medicine, Chicago, IL
| | - Hiroto Inaba
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Sima Jeha
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mary V. Relling
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Jun J. Yang
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN
| | - William E. Evans
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Daniel Savic
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
32
|
Li Y, Kong F, Cui H, Wang F, Li C, Ma J. SENIES: DNA Shape Enhanced Two-Layer Deep Learning Predictor for the Identification of Enhancers and Their Strength. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:637-645. [PMID: 35015646 DOI: 10.1109/tcbb.2022.3142019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Identifying enhancers is a critical task in bioinformatics due to their primary role in regulating gene expression. For this reason, various computational algorithms devoted to enhancer identification have been put forward over the years. More features are extracted from the single DNA sequences to boost the performance. Nevertheless, DNA structural information is neglected, which is an essential factor affecting the binding preferences of transcription factors to regulatory elements like enhancers. Here, we propose SENIES, a DNA shape enhanced deep learning predictor, to identify enhancers and their strength. The predictor consists of two layers where the first layer is for enhancer and non-enhancer identification, and the second layer is for predicting the strength of enhancers. Apart from two common sequence-derived features (i.e., one-hot and k-mer), DNA shape is introduced to describe the 3D structures of DNA sequences. Performance comparison with state-of-the-art methods conducted on public datasets demonstrates the effectiveness and robustness of our predictor. The code implementation of SENIES is publicly available at https://github.com/hlju-liye/SENIES.
Collapse
|
33
|
Patra P, Gao YQ. Sequence-Specific Structural Features and Solvation Properties of Transcription Factor Binding DNA Motifs: Insights from Molecular Dynamics Simulation. J Phys Chem B 2022; 126:9187-9206. [PMID: 36322688 DOI: 10.1021/acs.jpcb.2c05749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sequence-specific recognition of transcription factor (TF) binding motifs in the target site of DNA over the vast amount of non-target DNA is of primary importance for the transcriptional regulation of gene expression by the TFs. Binding of TFs to the target site of DNA relies not only on the direct contact formation but also on the structural and conformational features of DNA. Recognition of DNA structural features or shape readout by proteins is an important factor in the context of TF-DNA interaction. Based on the atomistic molecular simulation, here we report the sequence-dependent unique structural features, solvation, and ion-binding properties of biologically relevant AT- and GC-rich human TF binding motifs in DNA. Counterion and water distribution around the motif is found to be sensitive to the motif sequence, which is accompanied with the DNA shape features. The motif sequence affects the electrostatic potential along the grooves, and cytosine methylation alters the DNA shape features. Characteristic solvation properties of TF binding motif DNA fragments infer that an ionic environment and hydration influences are essential to describe TF-DNA interactions.
Collapse
Affiliation(s)
- Piya Patra
- Shenzhen Bay Laboratory, Institute of Systems and Physical Biology, Shenzhen 518107, China
| | - Yi Qin Gao
- Shenzhen Bay Laboratory, Institute of Systems and Physical Biology, Shenzhen 518107, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Pang B, van Weerd JH, Hamoen FL, Snyder MP. Identification of non-coding silencer elements and their regulation of gene expression. Nat Rev Mol Cell Biol 2022; 24:383-395. [DOI: 10.1038/s41580-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
|
35
|
Leung AKY, Yao L, Yu H. Functional genomic assays to annotate enhancer-promoter interactions genome wide. Hum Mol Genet 2022; 31:R97-R104. [PMID: 36018818 PMCID: PMC9585677 DOI: 10.1093/hmg/ddac204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022] Open
Abstract
Enhancers are pivotal for regulating gene transcription that occurs at promoters. Identification of the interacting enhancer-promoter pairs and understanding the mechanisms behind how they interact and how enhancers modulate transcription can provide fundamental insight into gene regulatory networks. Recently, advances in high-throughput methods in three major areas-chromosome conformation capture assay, such as Hi-C to study basic chromatin architecture, ectopic reporter experiments such as self-transcribing active regulatory region sequencing (STARR-seq) to quantify promoter and enhancer activity, and endogenous perturbations such as clustered regularly interspaced short palindromic repeat interference (CRISPRi) to identify enhancer-promoter compatibility-have further our knowledge about transcription. In this review, we will discuss the major method developments and key findings from these assays.
Collapse
Affiliation(s)
- Alden King-Yung Leung
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Genomics and Proteomics Technology Development (CGPT), Cornell University, Ithaca NY 14853, USA
| | - Li Yao
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Genomics and Proteomics Technology Development (CGPT), Cornell University, Ithaca NY 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Genomics and Proteomics Technology Development (CGPT), Cornell University, Ithaca NY 14853, USA
| |
Collapse
|
36
|
Cooper YA, Guo Q, Geschwind DH. Multiplexed functional genomic assays to decipher the noncoding genome. Hum Mol Genet 2022; 31:R84-R96. [PMID: 36057282 PMCID: PMC9585676 DOI: 10.1093/hmg/ddac194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Linkage disequilibrium and the incomplete regulatory annotation of the noncoding genome complicates the identification of functional noncoding genetic variants and their causal association with disease. Current computational methods for variant prioritization have limited predictive value, necessitating the application of highly parallelized experimental assays to efficiently identify functional noncoding variation. Here, we summarize two distinct approaches, massively parallel reporter assays and CRISPR-based pooled screens and describe their flexible implementation to characterize human noncoding genetic variation at unprecedented scale. Each approach provides unique advantages and limitations, highlighting the importance of multimodal methodological integration. These multiplexed assays of variant effects are undoubtedly poised to play a key role in the experimental characterization of noncoding genetic risk, informing our understanding of the underlying mechanisms of disease-associated loci and the development of more robust predictive classification algorithms.
Collapse
Affiliation(s)
- Yonatan A Cooper
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Qiuyu Guo
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
37
|
Staller MV. Transcription factors perform a 2-step search of the nucleus. Genetics 2022; 222:iyac111. [PMID: 35939561 PMCID: PMC9526044 DOI: 10.1093/genetics/iyac111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/14/2022] [Indexed: 01/02/2023] Open
Abstract
Transcription factors regulate gene expression by binding to regulatory DNA and recruiting regulatory protein complexes. The DNA-binding and protein-binding functions of transcription factors are traditionally described as independent functions performed by modular protein domains. Here, I argue that genome binding can be a 2-part process with both DNA-binding and protein-binding steps, enabling transcription factors to perform a 2-step search of the nucleus to find their appropriate binding sites in a eukaryotic genome. I support this hypothesis with new and old results in the literature, discuss how this hypothesis parsimoniously resolves outstanding problems, and present testable predictions.
Collapse
Affiliation(s)
- Max Valentín Staller
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
38
|
Spielmann M, Kircher M. Computational and experimental methods for classifying variants of unknown clinical significance. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006196. [PMID: 35483875 PMCID: PMC9059783 DOI: 10.1101/mcs.a006196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The increase in sequencing capacity, reduction in costs, and national and international coordinated efforts have led to the widespread introduction of next-generation sequencing (NGS) technologies in patient care. More generally, human genetics and genomic medicine are gaining importance for more and more patients. Some communities are already discussing the prospect of sequencing each individual's genome at time of birth. Together with digital health records, this shall enable individualized treatments and preventive measures, so-called precision medicine. A central step in this process is the identification of disease causal mutations or variant combinations that make us more susceptible for diseases. Although various technological advances have improved the identification of genetic alterations, the interpretation and ranking of the identified variants remains a major challenge. Based on our knowledge of molecular processes or previously identified disease variants, we can identify potentially functional genetic variants and, using different lines of evidence, we are sometimes able to demonstrate their pathogenicity directly. However, the vast majority of variants are classified as variants of uncertain clinical significance (VUSs) with not enough experimental evidence to determine their pathogenicity. In these cases, computational methods may be used to improve the prioritization and an increasing toolbox of experimental methods is emerging that can be used to assay the molecular effects of VUSs. Here, we discuss how computational and experimental methods can be used to create catalogs of variant effects for a variety of molecular and cellular phenotypes. We discuss the prospects of integrating large-scale functional data with machine learning and clinical knowledge for the development of accurate pathogenicity predictions for clinical applications.
Collapse
Affiliation(s)
- Malte Spielmann
- Institute of Human Genetics, University of Lübeck, 23562 Lübeck, Germany;,Institute of Human Genetics, Christian-Albrechts-Universität, 24105 Kiel, Germany;,Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Martin Kircher
- Institute of Human Genetics, University of Lübeck, 23562 Lübeck, Germany;,Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany;,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10115 Berlin, Germany
| |
Collapse
|
39
|
Kreimer A, Ashuach T, Inoue F, Khodaverdian A, Deng C, Yosef N, Ahituv N. Massively parallel reporter perturbation assays uncover temporal regulatory architecture during neural differentiation. Nat Commun 2022; 13:1504. [PMID: 35315433 PMCID: PMC8938438 DOI: 10.1038/s41467-022-28659-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Gene regulatory elements play a key role in orchestrating gene expression during cellular differentiation, but what determines their function over time remains largely unknown. Here, we perform perturbation-based massively parallel reporter assays at seven early time points of neural differentiation to systematically characterize how regulatory elements and motifs within them guide cellular differentiation. By perturbing over 2,000 putative DNA binding motifs in active regulatory regions, we delineate four categories of functional elements, and observe that activity direction is mostly determined by the sequence itself, while the magnitude of effect depends on the cellular environment. We also find that fine-tuning transcription rates is often achieved by a combined activity of adjacent activating and repressing elements. Our work provides a blueprint for the sequence components needed to induce different transcriptional patterns in general and specifically during neural differentiation. How gene regulatory elements regulate gene expression during cellular differentiation remains largely unknown. Here the authors use perturbation-based massively parallel reporter assays at early time points of neural differentiation to systematically characterize how regulatory elements and motifs within them guide different transcriptional patterns.
Collapse
|
40
|
Palazzo AF, Kejiou NS. Non-Darwinian Molecular Biology. Front Genet 2022; 13:831068. [PMID: 35251134 PMCID: PMC8888898 DOI: 10.3389/fgene.2022.831068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
With the discovery of the double helical structure of DNA, a shift occurred in how biologists investigated questions surrounding cellular processes, such as protein synthesis. Instead of viewing biological activity through the lens of chemical reactions, this new field used biological information to gain a new profound view of how biological systems work. Molecular biologists asked new types of questions that would have been inconceivable to the older generation of researchers, such as how cellular machineries convert inherited biological information into functional molecules like proteins. This new focus on biological information also gave molecular biologists a way to link their findings to concepts developed by genetics and the modern synthesis. However, by the late 1960s this all changed. Elevated rates of mutation, unsustainable genetic loads, and high levels of variation in populations, challenged Darwinian evolution, a central tenant of the modern synthesis, where adaptation was the main driver of evolutionary change. Building on these findings, Motoo Kimura advanced the neutral theory of molecular evolution, which advocates that selection in multicellular eukaryotes is weak and that most genomic changes are neutral and due to random drift. This was further elaborated by Jack King and Thomas Jukes, in their paper “Non-Darwinian Evolution”, where they pointed out that the observed changes seen in proteins and the types of polymorphisms observed in populations only become understandable when we take into account biochemistry and Kimura’s new theory. Fifty years later, most molecular biologists remain unaware of these fundamental advances. Their adaptionist viewpoint fails to explain data collected from new powerful technologies which can detect exceedingly rare biochemical events. For example, high throughput sequencing routinely detects RNA transcripts being produced from almost the entire genome yet are present less than one copy per thousand cells and appear to lack any function. Molecular biologists must now reincorporate ideas from classical biochemistry and absorb modern concepts from molecular evolution, to craft a new lens through which they can evaluate the functionality of transcriptional units, and make sense of our messy, intricate, and complicated genome.
Collapse
|
41
|
Gage E, Agarwal D, Chenault C, Washington-Brown K, Szvetecz S, Jahan N, Wang Z, Jones MK, Zack DJ, Enke RA, Wahlin KJ. Temporal and Isoform-Specific Expression of CTBP2 Is Evolutionarily Conserved Between the Developing Chick and Human Retina. Front Mol Neurosci 2022; 14:773356. [PMID: 35095414 PMCID: PMC8793361 DOI: 10.3389/fnmol.2021.773356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Complex transcriptional gene regulation allows for multifaceted isoform production during retinogenesis, and novel isoforms transcribed from a single locus can have unlimited potential to code for diverse proteins with different functions. In this study, we explored the CTBP2/RIBEYE gene locus and its unique repertoire of transcripts that are conserved among vertebrates. We studied the transcriptional coregulator (CTBP2) and ribbon synapse-specific structural protein (RIBEYE) in the chicken retina by performing comprehensive histochemical and sequencing analyses to pinpoint cell and developmental stage-specific expression of CTBP2/RIBEYE in the developing chicken retina. We demonstrated that CTBP2 is widely expressed in retinal progenitors beginning in early retinogenesis but becomes limited to GABAergic amacrine cells in the mature retina. Inversely, RIBEYE is initially epigenetically silenced in progenitors and later expressed in photoreceptor and bipolar cells where they localize to ribbon synapses. Finally, we compared CTBP2/RIBEYE regulation in the developing human retina using a pluripotent stem cell derived retinal organoid culture system. These analyses demonstrate that similar regulation of the CTBP2/RIBEYE locus during chick and human retinal development is regulated by different members of the K50 homeodomain transcription factor family.
Collapse
Affiliation(s)
- Elizabeth Gage
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Devansh Agarwal
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, United States
| | - Calvin Chenault
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | | | - Sarah Szvetecz
- Department of Mathematics & Statistics, James Madison University, Harrisonburg, VA, United States
| | - Nusrat Jahan
- Department of Mathematics & Statistics, James Madison University, Harrisonburg, VA, United States
- The Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA, United States
| | - Zixiao Wang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Melissa K. Jones
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, United States
| | - Donald J. Zack
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ray A. Enke
- Department of Biology, James Madison University, Harrisonburg, VA, United States
- The Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA, United States
| | - Karl J. Wahlin
- Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
42
|
Waters CT, Gisselbrecht SS, Sytnikova YA, Cafarelli TM, Hill DE, Bulyk ML. Quantitative-enhancer-FACS-seq (QeFS) reveals epistatic interactions among motifs within transcriptional enhancers in developing Drosophila tissue. Genome Biol 2021; 22:348. [PMID: 34930411 PMCID: PMC8686523 DOI: 10.1186/s13059-021-02574-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the contributions of transcription factor DNA binding sites to transcriptional enhancers is a significant challenge. We developed Quantitative enhancer-FACS-Seq for highly parallel quantification of enhancer activities from a genomically integrated reporter in Drosophila melanogaster embryos. We investigate the contributions of the DNA binding motifs of four poorly characterized TFs to the activities of twelve embryonic mesodermal enhancers. We measure quantitative changes in enhancer activity and discover a range of epistatic interactions among the motifs, both synergistic and alleviating. We find that understanding the regulatory consequences of TF binding motifs requires that they be investigated in combination across enhancer contexts.
Collapse
Affiliation(s)
- Colin T Waters
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yuliya A Sytnikova
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tiziana M Cafarelli
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - David E Hill
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
43
|
Mauduit D, Taskiran II, Minnoye L, de Waegeneer M, Christiaens V, Hulselmans G, Demeulemeester J, Wouters J, Aerts S. Analysis of long and short enhancers in melanoma cell states. eLife 2021; 10:e71735. [PMID: 34874265 PMCID: PMC8691835 DOI: 10.7554/elife.71735] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Understanding how enhancers drive cell-type specificity and efficiently identifying them is essential for the development of innovative therapeutic strategies. In melanoma, the melanocytic (MEL) and the mesenchymal-like (MES) states present themselves with different responses to therapy, making the identification of specific enhancers highly relevant. Using massively parallel reporter assays (MPRAs) in a panel of patient-derived melanoma lines (MM lines), we set to identify and decipher melanoma enhancers by first focusing on regions with state-specific H3K27 acetylation close to differentially expressed genes. An in-depth evaluation of those regions was then pursued by investigating the activity of overlapping ATAC-seq peaks along with a full tiling of the acetylated regions with 190 bp sequences. Activity was observed in more than 60% of the selected regions, and we were able to precisely locate the active enhancers within ATAC-seq peaks. Comparison of sequence content with activity, using the deep learning model DeepMEL2, revealed that AP-1 alone is responsible for the MES enhancer activity. In contrast, SOX10 and MITF both influence MEL enhancer function with SOX10 being required to achieve high levels of activity. Overall, our MPRAs shed light on the relationship between long and short sequences in terms of their sequence content, enhancer activity, and specificity across melanoma cell states.
Collapse
Affiliation(s)
- David Mauduit
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Ibrahim Ihsan Taskiran
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Liesbeth Minnoye
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Maxime de Waegeneer
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Valerie Christiaens
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Gert Hulselmans
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Jonas Demeulemeester
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
- Cancer Genomics Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Jasper Wouters
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| | - Stein Aerts
- VIB-KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
- KU Leuven, Department of Human Genetics KU LeuvenLeuvenBelgium
| |
Collapse
|
44
|
Daghsni M, Aldiri I. Building a Mammalian Retina: An Eye on Chromatin Structure. Front Genet 2021; 12:775205. [PMID: 34764989 PMCID: PMC8576187 DOI: 10.3389/fgene.2021.775205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression by chromatin structure has been under intensive investigation, establishing nuclear organization and genome architecture as a potent and effective means of regulating developmental processes. The substantial growth in our knowledge of the molecular mechanisms underlying retinogenesis has been powered by several genome-wide based tools that mapped chromatin organization at multiple cellular and biochemical levels. Studies profiling the retinal epigenome and transcriptome have allowed the systematic annotation of putative cis-regulatory elements associated with transcriptional programs that drive retinal neural differentiation, laying the groundwork to understand spatiotemporal retinal gene regulation at a mechanistic level. In this review, we outline recent advances in our understanding of the chromatin architecture in the mammalian retina during development and disease. We focus on the emerging roles of non-coding regulatory elements in controlling retinal cell-type specific transcriptional programs, and discuss potential implications in untangling the etiology of eye-related disorders.
Collapse
Affiliation(s)
- Marwa Daghsni
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Issam Aldiri
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
45
|
Friedman RZ, Granas DM, Myers CA, Corbo JC, Cohen BA, White MA. Information content differentiates enhancers from silencers in mouse photoreceptors. eLife 2021; 10:67403. [PMID: 34486522 PMCID: PMC8492058 DOI: 10.7554/elife.67403] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Enhancers and silencers often depend on the same transcription factors (TFs) and are conflated in genomic assays of TF binding or chromatin state. To identify sequence features that distinguish enhancers and silencers, we assayed massively parallel reporter libraries of genomic sequences targeted by the photoreceptor TF cone-rod homeobox (CRX) in mouse retinas. Both enhancers and silencers contain more TF motifs than inactive sequences, but relative to silencers, enhancers contain motifs from a more diverse collection of TFs. We developed a measure of information content that describes the number and diversity of motifs in a sequence and found that, while both enhancers and silencers depend on CRX motifs, enhancers have higher information content. The ability of information content to distinguish enhancers and silencers targeted by the same TF illustrates how motif context determines the activity of cis-regulatory sequences. Different cell types are established by activating and repressing the activity of specific sets of genes, a process controlled by proteins called transcription factors. Transcription factors work by recognizing and binding short stretches of DNA in parts of the genome called cis-regulatory sequences. A cis-regulatory sequence that increases the activity of a gene when bound by transcription factors is called an enhancer, while a sequence that causes a decrease in gene activity is called a silencer. To establish a cell type, a particular transcription factor will act on both enhancers and silencers that control the activity of different genes. For example, the transcription factor cone-rod homeobox (CRX) is critical for specifying different types of cells in the retina, and it acts on both enhancers and silencers. In rod photoreceptors, CRX activates rod genes by binding their enhancers, while repressing cone photoreceptor genes by binding their silencers. However, CRX always recognizes and binds to the same DNA sequence, known as its binding site, making it unclear why some cis-regulatory sequences bound to CRX act as silencers, while others act as enhancers. Friedman et al. sought to understand how enhancers and silencers, both bound by CRX, can have different effects on the genes they control. Since both enhancers and silencers contain CRX binding sites, the difference between the two must lie in the sequence of the DNA surrounding these binding sites. Using retinas that have been explanted from mice and kept alive in the laboratory, Friedman et al. tested the activity of thousands of CRX-binding sequences from the mouse genome. This showed that both enhancers and silencers have more copies of CRX-binding sites than sequences of the genome that are inactive. Additionally, the results revealed that enhancers have a diverse collection of binding sites for other transcription factors, while silencers do not. Friedman et al. developed a new metric they called information content, which captures the diverse combinations of different transcription binding sites that cis-regulatory sequences can have. Using this metric, Friedman et al. showed that it is possible to distinguish enhancers from silencers based on their information content. It is critical to understand how the DNA sequences of cis-regulatory regions determine their activity, because mutations in these regions of the genome can cause disease. However, since every person has thousands of benign mutations in cis-regulatory sequences, it is a challenge to identify specific disease-causing mutations, which are relatively rare. One long-term goal of models of enhancers and silencers, such as Friedman et al.’s information content model, is to understand how mutations can affect cis-regulatory sequences, and, in some cases, lead to disease.
Collapse
Affiliation(s)
- Ryan Z Friedman
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| | - David M Granas
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| | - Connie A Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Barak A Cohen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| | - Michael A White
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, United States.,Department of Genetics, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
46
|
Sinyakov AN, Ryabinin VA, Kostina EV. Application of Array-Based Oligonucleotides for Synthesis of Genetic Designs. Mol Biol 2021. [DOI: 10.1134/s0026893321030109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Savadel SD, Hartwig T, Turpin ZM, Vera DL, Lung PY, Sui X, Blank M, Frommer WB, Dennis JH, Zhang J, Bass HW. The native cistrome and sequence motif families of the maize ear. PLoS Genet 2021; 17:e1009689. [PMID: 34383745 PMCID: PMC8360572 DOI: 10.1371/journal.pgen.1009689] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/30/2021] [Indexed: 01/22/2023] Open
Abstract
Elucidating the transcriptional regulatory networks that underlie growth and development requires robust ways to define the complete set of transcription factor (TF) binding sites. Although TF-binding sites are known to be generally located within accessible chromatin regions (ACRs), pinpointing these DNA regulatory elements globally remains challenging. Current approaches primarily identify binding sites for a single TF (e.g. ChIP-seq), or globally detect ACRs but lack the resolution to consistently define TF-binding sites (e.g. DNAse-seq, ATAC-seq). To address this challenge, we developed MNase-defined cistrome-Occupancy Analysis (MOA-seq), a high-resolution (< 30 bp), high-throughput, and genome-wide strategy to globally identify putative TF-binding sites within ACRs. We used MOA-seq on developing maize ears as a proof of concept, able to define a cistrome of 145,000 MOA footprints (MFs). While a substantial majority (76%) of the known ATAC-seq ACRs intersected with the MFs, only a minority of MFs overlapped with the ATAC peaks, indicating that the majority of MFs were novel and not detected by ATAC-seq. MFs were associated with promoters and significantly enriched for TF-binding and long-range chromatin interaction sites, including for the well-characterized FASCIATED EAR4, KNOTTED1, and TEOSINTE BRANCHED1. Importantly, the MOA-seq strategy improved the spatial resolution of TF-binding prediction and allowed us to identify 215 motif families collectively distributed over more than 100,000 non-overlapping, putatively-occupied binding sites across the genome. Our study presents a simple, efficient, and high-resolution approach to identify putative TF footprints and binding motifs genome-wide, to ultimately define a native cistrome atlas. Understanding gene regulation remains a central goal of modern biology. Delineating the full set of regulatory DNA elements that orchestrate this regulation requires information at two scales; the broad landscape of accessible chromatin, and the site-specific binding of transcription factors (TFs) at discrete cis-regulatory DNA elements. Here we describe a single assay that uses micrococcal nuclease (MNase) as a structural probe to simultaneously reveal regions of accessible chromatin in addition to high-resolution footprints with signatures of TF-occupied cis-elements. We have used maize developing ear tissue as proof of concept, showing the method detects known TF-binding sites. This genome-wide assay not only defines chromatin landscapes, but crucially enables global discovery and mapping of sequence motifs underlying small footprints of ~30 bp to produce an atlas of candidate TF occupancy.
Collapse
Affiliation(s)
- Savannah D. Savadel
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Thomas Hartwig
- Institute for Molecular Physiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Independent research groups, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Zachary M. Turpin
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Daniel L. Vera
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Max Blank
- Institute for Molecular Physiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Independent research groups, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Wolf B. Frommer
- Institute for Molecular Physiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Independent research groups, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jonathan H. Dennis
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
48
|
Shih CH, Fay J. Cis-regulatory variants affect gene expression dynamics in yeast. eLife 2021; 10:e68469. [PMID: 34369376 PMCID: PMC8367379 DOI: 10.7554/elife.68469] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Evolution of cis-regulatory sequences depends on how they affect gene expression and motivates both the identification and prediction of cis-regulatory variants responsible for expression differences within and between species. While much progress has been made in relating cis-regulatory variants to expression levels, the timing of gene activation and repression may also be important to the evolution of cis-regulatory sequences. We investigated allele-specific expression (ASE) dynamics within and between Saccharomyces species during the diauxic shift and found appreciable cis-acting variation in gene expression dynamics. Within-species ASE is associated with intergenic variants, and ASE dynamics are more strongly associated with insertions and deletions than ASE levels. To refine these associations, we used a high-throughput reporter assay to test promoter regions and individual variants. Within the subset of regions that recapitulated endogenous expression, we identified and characterized cis-regulatory variants that affect expression dynamics. Between species, chimeric promoter regions generate novel patterns and indicate constraints on the evolution of gene expression dynamics. We conclude that changes in cis-regulatory sequences can tune gene expression dynamics and that the interplay between expression dynamics and other aspects of expression is relevant to the evolution of cis-regulatory sequences.
Collapse
Affiliation(s)
- Ching-Hua Shih
- Department of Biology, University of RochesterRochesterUnited States
| | - Justin Fay
- Department of Biology, University of RochesterRochesterUnited States
| |
Collapse
|
49
|
Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021; 7:47. [PMID: 34449663 PMCID: PMC8395730 DOI: 10.3390/ncrna7030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.
Collapse
Affiliation(s)
- Marios Lange
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
- Institute for Fundamental Biomedical Research, B.S.R.C “Alexander Fleming”, 34 Fleming Str., 16672 Vari, Greece
| |
Collapse
|
50
|
Mulvey B, Dougherty JD. Transcriptional-regulatory convergence across functional MDD risk variants identified by massively parallel reporter assays. Transl Psychiatry 2021; 11:403. [PMID: 34294677 PMCID: PMC8298436 DOI: 10.1038/s41398-021-01493-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Family and population studies indicate clear heritability of major depressive disorder (MDD), though its underlying biology remains unclear. The majority of single-nucleotide polymorphism (SNP) linkage blocks associated with MDD by genome-wide association studies (GWASes) are believed to alter transcriptional regulators (e.g., enhancers, promoters) based on enrichment of marks correlated with these functions. A key to understanding MDD pathophysiology will be elucidation of which SNPs are functional and how such functional variants biologically converge to elicit the disease. Furthermore, retinoids can elicit MDD in patients and promote depressive-like behaviors in rodent models, acting via a regulatory system of retinoid receptor transcription factors (TFs). We therefore sought to simultaneously identify functional genetic variants and assess retinoid pathway regulation of MDD risk loci. Using Massively Parallel Reporter Assays (MPRAs), we functionally screened over 1000 SNPs prioritized from 39 neuropsychiatric trait/disease GWAS loci, selecting SNPs based on overlap with predicted regulatory features-including expression quantitative trait loci (eQTL) and histone marks-from human brains and cell cultures. We identified >100 SNPs with allelic effects on expression in a retinoid-responsive model system. Functional SNPs were enriched for binding sequences of retinoic acid-receptive transcription factors (TFs), with additional allelic differences unmasked by treatment with all-trans retinoic acid (ATRA). Finally, motifs overrepresented across functional SNPs corresponded to TFs highly specific to serotonergic neurons, suggesting an in vivo site of action. Our application of MPRAs to screen MDD-associated SNPs suggests a shared transcriptional-regulatory program across loci, a component of which is unmasked by retinoids.
Collapse
Affiliation(s)
- Bernard Mulvey
- Departments of Genetics and Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Joseph D Dougherty
- Departments of Genetics and Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|