1
|
Dukes HE, Tinker KA, Ottesen EA. Disentangling hindgut metabolism in the American cockroach through single-cell genomics and metatranscriptomics. Front Microbiol 2023; 14:1156809. [PMID: 37323917 PMCID: PMC10266427 DOI: 10.3389/fmicb.2023.1156809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Omnivorous cockroaches host a complex hindgut microbiota comprised of insect-specific lineages related to those found in mammalian omnivores. Many of these organisms have few cultured representatives, thereby limiting our ability to infer the functional capabilities of these microbes. Here we present a unique reference set of 96 high-quality single cell-amplified genomes (SAGs) from bacterial and archaeal cockroach gut symbionts. We additionally generated cockroach hindgut metagenomic and metatranscriptomic sequence libraries and mapped them to our SAGs. By combining these datasets, we are able to perform an in-depth phylogenetic and functional analysis to evaluate the abundance and activities of the taxa in vivo. Recovered lineages include key genera within Bacteroidota, including polysaccharide-degrading taxa from the genera Bacteroides, Dysgonomonas, and Parabacteroides, as well as a group of unclassified insect-associated Bacteroidales. We also recovered a phylogenetically diverse set of Firmicutes exhibiting a wide range of metabolic capabilities, including-but not limited to-polysaccharide and polypeptide degradation. Other functional groups exhibiting high relative activity in the metatranscriptomic dataset include multiple putative sulfate reducers belonging to families in the Desulfobacterota phylum and two groups of methanogenic archaea. Together, this work provides a valuable reference set with new insights into the functional specializations of insect gut symbionts and frames future studies of cockroach hindgut metabolism.
Collapse
Affiliation(s)
- Helen E. Dukes
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Kara A. Tinker
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, United States
| | | |
Collapse
|
2
|
Song Y, Hervé V, Radek R, Pfeiffer F, Zheng H, Brune A. Characterization and phylogenomic analysis of Breznakiella homolactica gen. nov. sp. nov. indicate that termite gut treponemes evolved from non-acetogenic spirochetes in cockroaches. Environ Microbiol 2021; 23:4228-4245. [PMID: 33998119 DOI: 10.1111/1462-2920.15600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023]
Abstract
Spirochetes of the genus Treponema are surprisingly abundant in termite guts, where they play an important role in reductive acetogenesis. Although they occur in all termites investigated, their evolutionary origin is obscure. Here, we isolated the first representative of 'termite gut treponemes' from cockroaches, the closest relatives of termites. Phylogenomic analysis revealed that Breznakiella homolactica gen. nov. sp. nov. represents the most basal lineage of the highly diverse 'termite cluster I', a deep-branching sister group of Treponemataceae (fam. 'Termitinemataceae') that was present already in the cockroach ancestor of termites and subsequently coevolved with its host. Breznakiella homolactica is obligately anaerobic and catalyses the homolactic fermentation of both hexoses and pentoses. Resting cells produced acetate in the presence of oxygen. Genome analysis revealed the presence of pyruvate oxidase and catalase, and a cryptic potential for the formation of acetate, ethanol, formate, CO2 and H2 - the fermentation products of termite gut isolates. Genes encoding key enzymes of reductive acetogenesis, however, are absent, confirming the hypothesis that the ancestral metabolism of the cluster was fermentative, and that the capacity for acetogenesis from H2 plus CO2 - the most intriguing property among termite gut treponemes - was acquired by lateral gene transfer.
Collapse
Affiliation(s)
- Yulin Song
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
| | - Fabienne Pfeiffer
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Hao Zheng
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, 35043, Germany
| |
Collapse
|
3
|
Loh HQ, Hervé V, Brune A. Metabolic Potential for Reductive Acetogenesis and a Novel Energy-Converting [NiFe] Hydrogenase in Bathyarchaeia From Termite Guts - A Genome-Centric Analysis. Front Microbiol 2021; 11:635786. [PMID: 33613473 PMCID: PMC7886697 DOI: 10.3389/fmicb.2020.635786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Symbiotic digestion of lignocellulose in the hindgut of higher termites is mediated by a diverse assemblage of bacteria and archaea. During a large-scale metagenomic study, we reconstructed 15 metagenome-assembled genomes of Bathyarchaeia that represent two distinct lineages in subgroup 6 (formerly MCG-6) unique to termite guts. One lineage (TB2; Candidatus Termitimicrobium) encodes all enzymes required for reductive acetogenesis from CO2 via an archaeal variant of the Wood–Ljungdahl pathway, involving tetrahydromethanopterin as C1 carrier and an (ADP-forming) acetyl-CoA synthase. This includes a novel 11-subunit hydrogenase, which possesses the genomic architecture of the respiratory Fpo-complex of other archaea but whose catalytic subunit is phylogenetically related to and shares the conserved [NiFe] cofactor-binding motif with [NiFe] hydrogenases of subgroup 4 g. We propose that this novel Fpo-like hydrogenase provides part of the reduced ferredoxin required for CO2 reduction and is driven by the electrochemical membrane potential generated from the ATP conserved by substrate-level phosphorylation; the other part may require the oxidation of organic electron donors, which would make members of TB2 mixotrophic acetogens. Members of the other lineage (TB1; Candidatus Termiticorpusculum) are definitely organotrophic because they consistently lack hydrogenases and/or methylene-tetrahydromethanopterin reductase, a key enzyme of the archaeal Wood–Ljungdahl pathway. Both lineages have the genomic capacity to reduce ferredoxin by oxidizing amino acids and might conduct methylotrophic acetogenesis using unidentified methylated compound(s). Our results indicate that Bathyarchaeia of subgroup 6 contribute to acetate formation in the guts of higher termites and substantiate the genomic evidence for reductive acetogenesis from organic substrates, possibly including methylated compounds, in other uncultured representatives of the phylum.
Collapse
Affiliation(s)
- Hui Qi Loh
- Research Group Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vincent Hervé
- Research Group Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Brune
- Research Group Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
4
|
Ruby E. Getting to know our microbial friends by dropping into their neighbourhood. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:27-30. [PMID: 33047473 DOI: 10.1111/1758-2229.12895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Edward Ruby
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| |
Collapse
|
5
|
Zeng W, Liu B, Zhong J, Li Q, Li Z. A Natural High-Sugar Diet Has Different Effects on the Prokaryotic Community Structures of Lower and Higher Termites (Blattaria). ENVIRONMENTAL ENTOMOLOGY 2020; 49:21-32. [PMID: 31782953 DOI: 10.1093/ee/nvz130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 06/10/2023]
Abstract
The lignocellulosic digestive symbiosis in termites is a dynamic survival adaptation system. While the contribution of hereditary and habitat factors to the development of the symbiotic bacterial community of termites had been confirmed, the manner in which these factors affect functional synergism among different bacterial lineages has still not been fully elucidated. Therefore, the 16S rRNA gene libraries of Odontotermes formosanus Shiraki (Blattodea: Termitidae) and Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae) sampled from sugarcane fields (high sugar) or pine tree forests (no free sugar) were sequenced. The results verify that the prokaryotic community structures of termites could be significantly reshaped by native dietary isolation within a species. Although the most dominant phyla are convergent in all samples, their relative abundances in these two termite species exhibited a reverse variation pattern when the termite hosts were fed on the high-sugar diet. Furthermore, we showed that the taxonomic composition of the dominant phyla at the family or genus level differentiate depending on the diet and the host phylogeny. We hypothesize that the flexible bacterial assemblages at low taxonomic level might exert variable functional collaboration to accommodate to high-sugar diet. In addition, the functional predictions of Tax4Fun suggest a stable metabolic functional structure of the microbial communities of the termites in both different diet habitats and taxonomy. We propose that the symbiotic bacterial community in different host termites developed a different functional synergistic pattern, which may be essential to maintain the stability of the overall metabolic function for the survival of termites.
Collapse
Affiliation(s)
- Wenhui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Bingrong Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Junhong Zhong
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Qiujian Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| |
Collapse
|
6
|
Stochasticity in the enterococcal sex pheromone response revealed by quantitative analysis of transcription in single cells. PLoS Genet 2017; 13:e1006878. [PMID: 28671948 PMCID: PMC5515443 DOI: 10.1371/journal.pgen.1006878] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/18/2017] [Accepted: 06/19/2017] [Indexed: 12/23/2022] Open
Abstract
In Enterococcus faecalis, sex pheromone-mediated transfer of antibiotic resistance plasmids can occur under unfavorable conditions, for example, when inducing pheromone concentrations are low and inhibiting pheromone concentrations are high. To better understand this paradox, we adapted fluorescence in situ hybridization chain reaction (HCR) methodology for simultaneous quantification of multiple E. faecalis transcripts at the single cell level. We present direct evidence for variability in the minimum period, maximum response level, and duration of response of individual cells to a specific inducing condition. Tracking of induction patterns of single cells temporally using a fluorescent reporter supported HCR findings. It also revealed subpopulations of rapid responders, even under low inducing pheromone concentrations where the overall response of the entire population was slow. The strong, rapid induction of small numbers of cells in cultures exposed to low pheromone concentrations is in agreement with predictions of a stochastic model of the enterococcal pheromone response. The previously documented complex regulatory circuitry controlling the pheromone response likely contributes to stochastic variation in this system. In addition to increasing our basic understanding of the biology of a horizontal gene transfer system regulated by cell-cell signaling, demonstration of the stochastic nature of the pheromone response also impacts any future efforts to develop therapeutic agents targeting the system. Quantitative single cell analysis using HCR also has great potential to elucidate important bacterial regulatory mechanisms not previously amenable to study at the single cell level, and to accelerate the pace of functional genomic studies.
Collapse
|
7
|
Bi S, Yue S, Zhang S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev 2017; 46:4281-4298. [DOI: 10.1039/c7cs00055c] [Citation(s) in RCA: 393] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review provides a comprehensive overview of the fundamental principles, analysis techniques, and application fields of hybridization chain reaction and its development status.
Collapse
Affiliation(s)
- Sai Bi
- Collaborative Innovation Center for Marine Biomass Fiber
- Materials and Textiles of Shandong Province
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
| | - Shuzhen Yue
- Collaborative Innovation Center for Marine Biomass Fiber
- Materials and Textiles of Shandong Province
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers
- College of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- P. R. China
| |
Collapse
|
8
|
Kuwahara H, Yuki M, Izawa K, Ohkuma M, Hongoh Y. Genome of 'Ca. Desulfovibrio trichonymphae', an H 2-oxidizing bacterium in a tripartite symbiotic system within a protist cell in the termite gut. ISME JOURNAL 2016; 11:766-776. [PMID: 27801909 PMCID: PMC5322295 DOI: 10.1038/ismej.2016.143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/19/2016] [Accepted: 09/02/2016] [Indexed: 11/23/2022]
Abstract
The cellulolytic protist Trichonympha agilis in the termite gut permanently hosts two symbiotic bacteria, ‘Candidatus Endomicrobium trichonymphae' and ‘Candidatus Desulfovibrio trichonymphae'. The former is an intracellular symbiont, and the latter is almost intracellular but still connected to the outside via a small pore. The complete genome of ‘Ca. Endomicrobium trichonymphae' has previously been reported, and we here present the complete genome of ‘Ca. Desulfovibrio trichonymphae'. The genome is small (1 410 056 bp), has many pseudogenes, and retains biosynthetic pathways for various amino acids and cofactors, which are partially complementary to those of ‘Ca. Endomicrobium trichonymphae'. An amino acid permease gene has apparently been transferred between the ancestors of these two symbionts; a lateral gene transfer has affected their metabolic capacity. Notably, ‘Ca. Desulfovibrio trichonymphae' retains the complex system to oxidize hydrogen by sulfate and/or fumarate, while genes for utilizing other substrates common in desulfovibrios are pseudogenized or missing. Thus, ‘Ca. Desulfovibrio trichonymphae' is specialized to consume hydrogen that may otherwise inhibit fermentation processes in both T. agilis and ‘Ca. Endomicrobium trichonymphae'. The small pore may be necessary to take up sulfate. This study depicts a genome-based model of a multipartite symbiotic system within a cellulolytic protist cell in the termite gut.
Collapse
Affiliation(s)
- Hirokazu Kuwahara
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Masahiro Yuki
- Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Kazuki Izawa
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Moriya Ohkuma
- Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan.,Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Japan
| | - Yuichi Hongoh
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Japan
| |
Collapse
|
9
|
Choi HMT, Calvert CR, Husain N, Huss D, Barsi JC, Deverman BE, Hunter RC, Kato M, Lee SM, Abelin ACT, Rosenthal AZ, Akbari OS, Li Y, Hay BA, Sternberg PW, Patterson PH, Davidson EH, Mazmanian SK, Prober DA, van de Rijn M, Leadbetter JR, Newman DK, Readhead C, Bronner ME, Wold B, Lansford R, Sauka-Spengler T, Fraser SE, Pierce NA. Mapping a multiplexed zoo of mRNA expression. Development 2016; 143:3632-3637. [PMID: 27702788 PMCID: PMC5087610 DOI: 10.1242/dev.140137] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022]
Abstract
In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences.
Collapse
Affiliation(s)
- Harry M T Choi
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Colby R Calvert
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Naeem Husain
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David Huss
- Department of Radiology, Children's Hospital Los Angeles, CA 90027, USA Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Julius C Barsi
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Benjamin E Deverman
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ryan C Hunter
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mihoko Kato
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - S Melanie Lee
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anna C T Abelin
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Adam Z Rosenthal
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Omar S Akbari
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuwei Li
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Bruce A Hay
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul H Patterson
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eric H Davidson
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David A Prober
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Matt van de Rijn
- Department of Pathology, Stanford University Medical School, Stanford, CA 94305, USA
| | - Jared R Leadbetter
- Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dianne K Newman
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carol Readhead
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Marianne E Bronner
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Barbara Wold
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rusty Lansford
- Department of Radiology, Children's Hospital Los Angeles, CA 90027, USA Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Scott E Fraser
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Niles A Pierce
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA Division of Engineering & Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
10
|
Abreu NA, Taga ME. Decoding molecular interactions in microbial communities. FEMS Microbiol Rev 2016; 40:648-63. [PMID: 27417261 DOI: 10.1093/femsre/fuw019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2016] [Indexed: 12/21/2022] Open
Abstract
Microbial communities govern numerous fundamental processes on earth. Discovering and tracking molecular interactions among microbes is critical for understanding how single species and complex communities impact their associated host or natural environment. While recent technological developments in DNA sequencing and functional imaging have led to new and deeper levels of understanding, we are limited now by our inability to predict and interpret the intricate relationships and interspecies dependencies within these communities. In this review, we highlight the multifaceted approaches investigators have taken within their areas of research to decode interspecies molecular interactions that occur between microbes. Understanding these principles can give us greater insight into ecological interactions in natural environments and within synthetic consortia.
Collapse
Affiliation(s)
- Nicole A Abreu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | - Michiko E Taga
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| |
Collapse
|
11
|
Ikeda-Ohtsubo W, Strassert JFH, Köhler T, Mikaelyan A, Gregor I, McHardy AC, Tringe SG, Hugenholtz P, Radek R, Brune A. ‘Candidatus
Adiutrix intracellularis’, an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria
and a putative homoacetogen. Environ Microbiol 2016; 18:2548-64. [DOI: 10.1111/1462-2920.13234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Jürgen F. H. Strassert
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
- Institute of Biology/Zoology, Free University of Berlin; Königin-Luise-Strasse 1-3 14195 Berlin Germany
| | - Tim Köhler
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Aram Mikaelyan
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| | - Ivan Gregor
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Inhoffenstraße 7 38124 Braunschweig Germany
- Department of Algorithmic Bioinformatics; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Alice C. McHardy
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Inhoffenstraße 7 38124 Braunschweig Germany
- Department of Algorithmic Bioinformatics; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| | | | - Phil Hugenholtz
- Department of Energy Joint Genome Institute; Walnut Creek; CA 94598 USA
- Australian Centre for Ecogenomics, The University of Queensland; Brisbane QLD 4072 Australia
| | - Renate Radek
- Institute of Biology/Zoology, Free University of Berlin; Königin-Luise-Strasse 1-3 14195 Berlin Germany
| | - Andreas Brune
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
| |
Collapse
|
12
|
Degli Esposti M, Martinez Romero E. A survey of the energy metabolism of nodulating symbionts reveals a new form of respiratory complex I. FEMS Microbiol Ecol 2016; 92:fiw084. [DOI: 10.1093/femsec/fiw084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 01/18/2023] Open
|
13
|
Abstract
Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level.
Collapse
|
14
|
Abstract
Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Qian Li
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.,School of Life Science & Technology, ShanghaiTech University , Shanghai 200031, China
| |
Collapse
|
15
|
Brune A, Dietrich C. The Gut Microbiota of Termites: Digesting the Diversity in the Light of Ecology and Evolution. Annu Rev Microbiol 2015. [DOI: 10.1146/annurev-micro-092412-155715] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas Brune
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; ,
| | - Carsten Dietrich
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; ,
| |
Collapse
|
16
|
Isolation of methanotrophic bacteria from termite gut. Microbiol Res 2015; 179:29-37. [DOI: 10.1016/j.micres.2015.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/08/2015] [Accepted: 06/06/2015] [Indexed: 11/20/2022]
|
17
|
Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D, Inoue JI, Darby AC, Hongoh Y. Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proc Natl Acad Sci U S A 2015; 112:10224-30. [PMID: 25979941 PMCID: PMC4547241 DOI: 10.1073/pnas.1423979112] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Symbiotic associations of cellulolytic eukaryotic protists and diverse bacteria are common in the gut microbial communities of termites. Besides cellulose degradation by the gut protists, reductive acetogenesis from H2 plus CO2 and nitrogen fixation by gut bacteria play crucial roles in the host termites' nutrition by contributing to the energy demand of termites and supplying nitrogen poor in their diet, respectively. Fractionation of these activities and the identification of key genes from the gut community of the wood-feeding termite Hodotermopsis sjoestedti revealed that substantial activities in the gut--nearly 60% of reductive acetogenesis and almost exclusively for nitrogen fixation--were uniquely attributed to the endosymbiotic bacteria of the cellulolytic protist in the genus Eucomonympha. The rod-shaped endosymbionts were surprisingly identified as a spirochete species in the genus Treponema, which usually exhibits a characteristic spiral morphology. The endosymbionts likely use H2 produced by the protist for these dual functions. Although H2 is known to inhibit nitrogen fixation in some bacteria, it seemed to rather stimulate this important mutualistic process. In addition, the single-cell genome analyses revealed the endosymbiont's potentials of the utilization of sugars for its energy requirement, and of the biosynthesis of valuable nutrients such as amino acids from the fixed nitrogen. These metabolic interactions are suitable for the dual functions of the endosymbiont and reconcile its substantial contributions in the gut.
Collapse
Affiliation(s)
- Moriya Ohkuma
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, and Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Ibaraki 305-0074, Japan;
| | - Satoko Noda
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, and Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Satoshi Hattori
- Department of Food, Life, and Environmental Sciences, Yamagata University, Yamagata 997-8555, Japan
| | - Toshiya Iida
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, and
| | - Masahiro Yuki
- Biomass Research Platform Team, RIKEN Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Ibaraki 305-0074, Japan
| | - David Starns
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, and Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; and
| | - Jun-ichi Inoue
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, and
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; and
| | - Yuichi Hongoh
- Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, and Department of Biological Sciences, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
18
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
19
|
Use of Hybridization Chain Reaction-Fluorescent In Situ Hybridization To Track Gene Expression by Both Partners during Initiation of Symbiosis. Appl Environ Microbiol 2015; 81:4728-35. [PMID: 25956763 DOI: 10.1128/aem.00890-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/29/2015] [Indexed: 11/20/2022] Open
Abstract
The establishment of a productive symbiosis between Euprymna scolopes, the Hawaiian bobtail squid, and its luminous bacterial symbiont, Vibrio fischeri, is mediated by transcriptional changes in both partners. A key challenge to unraveling the steps required to successfully initiate this and many other symbiotic associations is characterization of the timing and location of these changes. We report on the adaptation of hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) to simultaneously probe the spatiotemporal regulation of targeted genes in both E. scolopes and V. fischeri. This method revealed localized, transcriptionally coregulated epithelial cells within the light organ that responded directly to the presence of bacterial cells while, at the same time, provided a sensitive means to directly show regulated gene expression within the symbiont population. Thus, HCR-FISH provides a new approach for characterizing habitat transition in bacteria and for discovering host tissue responses to colonization.
Collapse
|
20
|
Disturbance of the intestinal microbial community by ursolic acid contributes to its function as a regulator of fat deposition. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Abdul Rahman N, Parks DH, Willner DL, Engelbrektson AL, Goffredi SK, Warnecke F, Scheffrahn RH, Hugenholtz P. A molecular survey of Australian and North American termite genera indicates that vertical inheritance is the primary force shaping termite gut microbiomes. MICROBIOME 2015; 3:5. [PMID: 25830022 PMCID: PMC4379614 DOI: 10.1186/s40168-015-0067-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 01/02/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Termites and their microbial gut symbionts are major recyclers of lignocellulosic biomass. This important symbiosis is obligate but relatively open and more complex in comparison to other well-known insect symbioses such as the strict vertical transmission of Buchnera in aphids. The relative roles of vertical inheritance and environmental factors such as diet in shaping the termite gut microbiome are not well understood. RESULTS The gut microbiomes of 66 specimens representing seven higher and nine lower termite genera collected in Australia and North America were profiled by small subunit (SSU) rRNA amplicon pyrosequencing. These represent the first reported culture-independent gut microbiome data for three higher termite genera: Tenuirostritermes, Drepanotermes, and Gnathamitermes; and two lower termite genera: Marginitermes and Porotermes. Consistent with previous studies, bacteria comprise the largest fraction of termite gut symbionts, of which 11 phylotypes (6 Treponema, 1 Desulfarculus-like, 1 Desulfovibrio, 1 Anaerovorax-like, 1 Sporobacter-like, and 1 Pirellula-like) were widespread occurring in ≥50% of collected specimens. Archaea are generally considered to comprise only a minority of the termite gut microbiota (<3%); however, archaeal relative abundance was substantially higher and variable in a number of specimens including Macrognathotermes, Coptotermes, Schedorhinotermes, Porotermes, and Mastotermes (representing up to 54% of amplicon reads). A ciliate related to Clevelandella was detected in low abundance in Gnathamitermes indicating that protists were either reacquired after protists loss in higher termites or persisted in low numbers across this transition. Phylogenetic analyses of the bacterial communities indicate that vertical inheritance is the primary force shaping termite gut microbiota. The effect of diet is secondary and appears to influence the relative abundance, but not membership, of the gut communities. CONCLUSIONS Vertical inheritance is the primary force shaping the termite gut microbiome indicating that species are successfully and faithfully passed from one generation to the next via trophallaxis or coprophagy. Changes in relative abundance can occur on shorter time scales and appear to be an adaptive mechanism for dietary fluctuations.
Collapse
Affiliation(s)
- Nurdyana Abdul Rahman
- />Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland Australia
| | - Donovan H Parks
- />Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland Australia
| | - Dana L Willner
- />Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland Australia
- />Current address: Department of Statistics, University of Illinois Urbana-Champaign, Champaign, IL USA
| | - Anna L Engelbrektson
- />DOE Joint Genome Institute, Walnut Creek, CA USA
- />Current address: Energy Biosciences Institute, University of California, Berkeley, CA USA
| | | | - Falk Warnecke
- />DOE Joint Genome Institute, Walnut Creek, CA USA
- />Jena School for Microbial Communication (JSMC) and Microbial Ecology Group, Friedrich Schiller University Jena, Jena, Germany
| | - Rudolf H Scheffrahn
- />Fort Lauderdale Research and Education Center, University of Florida, Davie, FL USA
| | - Philip Hugenholtz
- />Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland Australia
- />DOE Joint Genome Institute, Walnut Creek, CA USA
| |
Collapse
|
22
|
Yamaguchi T, Kawakami S, Hatamoto M, Imachi H, Takahashi M, Araki N, Yamaguchi T, Kubota K. In situ DNA-hybridization chain reaction (HCR): a facilitated in situ HCR system for the detection of environmental microorganisms. Environ Microbiol 2015; 17:2532-41. [DOI: 10.1111/1462-2920.12745] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 11/22/2014] [Accepted: 12/06/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Tsuyoshi Yamaguchi
- Department of Environmental Systems Engineering; Nagaoka University of Technology; 1603-1 Kamitomioka Nagaoka Niigata 940-2188 Japan
| | - Shuji Kawakami
- Department of Environmental Systems Engineering; Nagaoka University of Technology; 1603-1 Kamitomioka Nagaoka Niigata 940-2188 Japan
- Department of Construction Systems Engineering; Anan National College of Technology; 265 Aoki Minobayashi Anan Tokushima 774-0017 Japan
| | - Masashi Hatamoto
- Department of Environmental Systems Engineering; Nagaoka University of Technology; 1603-1 Kamitomioka Nagaoka Niigata 940-2188 Japan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR); Japan Agency for Marine-Earth Science & Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
| | - Masanobu Takahashi
- Department of Environmental Systems Engineering; Nagaoka University of Technology; 1603-1 Kamitomioka Nagaoka Niigata 940-2188 Japan
- Department of Civil and Environmental Engineering; Tohoku University; 6-6-06 Aoba Sendai Miyagi 980-8579 Japan
| | - Nobuo Araki
- Department of Civil Engineering; Nagaoka National College of Technology; 888 Nishikatagai Nagaoka Niigata 940-8532 Japan
| | - Takashi Yamaguchi
- Department of Environmental Systems Engineering; Nagaoka University of Technology; 1603-1 Kamitomioka Nagaoka Niigata 940-2188 Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering; Tohoku University; 6-6-06 Aoba Sendai Miyagi 980-8579 Japan
| |
Collapse
|
23
|
Mathematical tools to optimize the design of oligonucleotide probes and primers. Appl Microbiol Biotechnol 2014; 98:9595-608. [PMID: 25359473 DOI: 10.1007/s00253-014-6165-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/12/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
The identification and quantification of specific organisms in mixed microbial communities often relies on the ability to design oligonucleotide probes and primers with high specificity and sensitivity. The design of these oligonucleotides (or "oligos" for short) shares many of the same principles in spite of their widely divergent applications. Three common molecular biology technologies that require oligonucleotide design are polymerase chain reaction (PCR), fluorescence in situ hybridization (FISH), and DNA microarrays. This article reviews techniques and software available for the design and optimization of oligos with the goal of targeting a specific group of organisms within mixed microbial communities. Strategies for enhancing specificity without compromising sensitivity are described, as well as design tools well suited for this purpose.
Collapse
|
24
|
Reid NM, Addison SL, West MA, Lloyd-Jones G. The bacterial microbiota of Stolotermes ruficeps (Stolotermitidae), a phylogenetically basal termite endemic to New Zealand. FEMS Microbiol Ecol 2014; 90:678-88. [PMID: 25196080 DOI: 10.1111/1574-6941.12424] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 12/01/2022] Open
Abstract
Stolotermes ruficeps is a widespread, primitive, lower termite occupying dead and decaying wood of many tree species in New Zealand's temperate forests. We identified core bacterial taxa involved in gut processes through combined DNA- and RNA (cDNA)-based pyrosequencing analysis of the 16S nucleotide sequence from five S. ruficeps colonies. Most family and many genus-level taxa were common to S. ruficeps colonies despite being sampled from different tree species. Major taxa identified were Spirochaetaceae, Elusimicrobiaceae and Porphyromonadaceae. Others less well known in termite guts were Synergistaceae, Desulfobacteraceae, Rhodocyclaceae, Lachnospiraceae and Ruminococcaceae. Synergistaceae, Lachnospiraceae and Spirochaetaceae were well represented in the RNA data set, indicating a high-protein synthesis potential. Using 130,800 sequences from nine S. ruficeps DNA and RNA data sets, we estimated a high level of bacterial richness (4024 phylotypes at 3% genetic distance). Very few abundant phylotypes were site-specific; almost all (95%) abundant phylotypes, representing 97% of data set sequences, were detected in at least two S. ruficeps colonies. This study of a little-researched phylogenetically basal termite identifies core bacteria taxa. These findings will extend inventories of termite gut microbiota and contribute to the understanding of the specificity of termite gut microbiota.
Collapse
|
25
|
Genome-wide effects of selenium and translational uncoupling on transcription in the termite gut symbiont Treponema primitia. mBio 2013; 4:e00869-13. [PMID: 24222491 PMCID: PMC3892789 DOI: 10.1128/mbio.00869-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
When prokaryotic cells acquire mutations, encounter translation-inhibiting substances, or experience adverse environmental conditions that limit their ability to synthesize proteins, transcription can become uncoupled from translation. Such uncoupling is known to suppress transcription of protein-encoding genes in bacteria. Here we show that the trace element selenium controls transcription of the gene for the selenocysteine-utilizing enzyme formate dehydrogenase (fdhFSec) through a translation-coupled mechanism in the termite gut symbiont Treponema primitia, a member of the bacterial phylum Spirochaetes. We also evaluated changes in genome-wide transcriptional patterns caused by selenium limitation and by generally uncoupling translation from transcription via antibiotic-mediated inhibition of protein synthesis. We observed that inhibiting protein synthesis in T. primitia influences transcriptional patterns in unexpected ways. In addition to suppressing transcription of certain genes, the expected consequence of inhibiting protein synthesis, we found numerous examples in which transcription of genes and operons is truncated far downstream from putative promoters, is unchanged, or is even stimulated overall. These results indicate that gene regulation in bacteria allows for specific post-initiation transcriptional responses during periods of limited protein synthesis, which may depend both on translational coupling and on unclassified intrinsic elements of protein-encoding genes. A large body of literature demonstrates that the coupling of transcription and translation is a general and essential method by which bacteria regulate gene expression levels. However, the potential role of noncanonical amino acids in regulating transcriptional output via translational control remains, for the most part, undefined. Furthermore, the genome-wide transcriptional state in response to translational decoupling is not well quantified. The results presented here suggest that the noncanonical amino acid selenocysteine is able to tune transcription of an important metabolic gene via translational coupling. Furthermore, a genome-wide analysis reveals that transcriptional decoupling produces a wide-ranging effect and that this effect is not uniform. These results exemplify how growth conditions that impact translational processivity can rapidly feed back on transcriptional productivity of prespecified groups of genes, providing bacteria with an efficient response to environmental changes.
Collapse
|