1
|
Zhang C, Wang T, Yuan J, Wang T, Ma B, Xu B, Bai R, Tang X, Zhang X, Wu M, Lei T, Xu W, Guo Y, Li N. Potential predictive value of CD8A and PGF protein expression in gastric cancer patients treated with neoadjuvant immunotherapy. BMC Cancer 2025; 25:674. [PMID: 40221689 PMCID: PMC11993984 DOI: 10.1186/s12885-025-14046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Immunoneoadjuvant therapy has gained significant attention due to its remarkable advancements in cancer treatment. This study aimed to investigate the molecular mechanisms underlying immunoneoadjuvant therapy through a comprehensive multiomics analysis of samples from a registered clinical trial cohort. METHODS Preoperative samples were collected from 16 patients, and postoperative samples were obtained from 12 among them. RNA sequencing (RNA-seq) and Olink proteomics were employed to identify key genes before and after neoadjuvant treatment. The weighted coexpression network was constructed using Weighted gene co-expression network analysis (WGCNA). Furthermore, the proportion of infiltrated immune cells was calculated using xCell based on normalized expression data derived from RNA-seq. RESULTS Patients were stratified into T1 (good efficacy) and T2 (poor efficacy) groups based on Tumor Regression Grade (TRG) to neoadjuvant immunotherapy. Compared to the T2 group (TRG2 and TRG3), the T1 group (TRG0 and TRG1) showed significant differences in pathways related to inflammatory response and myeloid leukocyte activation. Furthermore, the T1 group exhibited elevated levels of CD8+ T cells and B cells. The top two factors with the highest area under the Receiver Operating Characteristic (ROC) curve were CD8a molecule (CD8A) (1.000) and C-C motif chemokine ligand 20 (CCL20) (0.967). Additionally, the expression of placenta growth factor (PGF) and TNF receptor superfamily member 21 (TNFRSF21) proteins significantly increased in the T1 group compared to the T2 group. High expression of CD8A and PGF were associated with favorable and poor prognosis in gastric cancer patients, respectively. Immunoinfiltration analysis revealed a positive correlation between CD8A and dendritic cell (DC) levels, while a negative correlation was observed with myeloid-derived suppressor cell (MDSC) levels. CONCLUSIONS Through multiomics analysis, we discovered that CD8A is linked to enhanced treatment response and tumor regression. In contrast, PGF appears to exert adverse effects on treatment outcomes, suggesting a complex interplay of factors influencing the efficacy of immunoneoadjuvant therapy in gastric cancer.
Collapse
Affiliation(s)
- Chengjuan Zhang
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, P. R. China
| | - Tingjie Wang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Yuan
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Tao Wang
- The Kids Research Institute Australia, School of Medicine, the University of Western Australia, Nedlands, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Benling Xu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ruihua Bai
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiance Tang
- Department of Medical Records, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaojie Zhang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Minqing Wu
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Tianqi Lei
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenhao Xu
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, P. R. China.
| | - Ning Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
2
|
Nonogaki R, Ota H, Takeuchi J, Nakano Y, Sajiki AF, Todoroki T, Nakamura K, Kaneko H, Nishiguchi KM. Analysis of the aqueous humor before and after the administration of faricimab in patients with nAMD. Sci Rep 2024; 14:31951. [PMID: 39738534 PMCID: PMC11685434 DOI: 10.1038/s41598-024-83473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
This study aimed to evaluate the changes in cytokine levels in the aqueous humor and factors of treatment resistance following intravitreal faricimab injection in treatment-naïve patients with neovascular age-related macular degeneration. A total of 32 eyes were analyzed before and after a single faricimab injection. Although the best-corrected visual acuity (BCVA) showed no significant improvement, the mean central retinal thickness decreased significantly by 73.7% (P < 0.01), and more than 90% of the eyes showed improvement in exudative changes 1 month after faricimab injection. Moreover, the aqueous humor concentrations of vascular endothelial growth factor (VEGF)-A, angiopoietin (Ang)-2, and placental growth factor considerably decreased 1 month after faricimab injection. Multivariate analyses adjusted for age, sex, BCVA, central choroidal thickness, and aqueous humor cytokines revealed that higher Ang-2 levels in the aqueous humor at baseline were associated with better treatment response to faricimab injection. These findings suggest that the dual inhibition of VEGF-A and Ang-2 by faricimab is effective in reducing exudative changes and that Ang-2 may serve as a potential biomarker for predicting faricimab treatment response.
Collapse
Affiliation(s)
- Ryo Nonogaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hikaru Ota
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Department of Ophthalmology, Nagoya University School of Medicine, 65 Tsurumai, Shouwa, Aichi, Japan.
| | - Jun Takeuchi
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo, Japan
| | - Yuyako Nakano
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ai Fujita Sajiki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahito Todoroki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichi Nakamura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Gao Y, Li F, Ni X, Yang S, Liu H, Wu X, Liu J, Ma J. Design, synthesis and biological evaluation of VEGFR-2/HDAC dual inhibitors as multitargeted antitumor agents based on fruquintinib and vorinostat. RSC Adv 2023; 13:28462-28480. [PMID: 37771923 PMCID: PMC10523135 DOI: 10.1039/d3ra05542f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Herein, a series of 4-(benzofuran-6-yloxy)quinazoline derivatives as VEGFR-2/HDAC dual inhibitors were designed and synthesized based on fruquintinib and vorinostat. Among them, compound 13 exhibited potent inhibitory activity against VEGFR-2 and HDAC1 with IC50 values of 57.83 nM and 9.82 nM, and displayed moderate to significant antiproliferative activity against MCF-7, A549, HeLa and HUVEC. The cellular mechanism studies revealed that compound 13 arrested the cell cycle at the S and G2 phases, and induced significant apoptosis in HeLa cells. Tube formation assay in HUVECs demonstrated that 13 had a significant anti-angiogenic effect. Additionally, a molecular docking study supported the initial design strategy. These results highlighted that 13 was a valuable VEGFR-2/HDAC dual inhibitor and deserved further study for cancer therapy.
Collapse
Affiliation(s)
- Yali Gao
- Pharmacy Department, The Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 PR China
| | - Fei Li
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine Shiyan 442008 Hubei PR China
| | - Xin Ni
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Siwang Yang
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Han Liu
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Xingye Wu
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Jieqing Liu
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| | - Junjie Ma
- School of Medicine, Huaqiao University Quanzhou 362000 PR China
| |
Collapse
|
4
|
Yasuda K, Noma H, Oyama E, Yanagida K, Asakage M, Shimura M. Effects of Intravitreal Ranibizumab Injection to Treat Macular Edema due to Central Retinal Vein Occlusion on Choroidal Findings and Functional-Morphological Parameters. Ophthalmic Res 2023; 66:1063-1070. [PMID: 37331343 PMCID: PMC10614477 DOI: 10.1159/000531498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
INTRODUCTION Little research has examined the effects of anti-vascular endothelial growth factor therapy on subfoveal choroidal thickness (SCT), choroidal blood flow, aqueous flare, and humor levels of growth and inflammatory factors in patients with macular edema due to central retinal vein occlusion (CRVO). METHODS In 58 patients with macular edema due to CRVO treated by intravitreal ranibizumab injection (IRI), we retrospectively assessed best-corrected visual acuity (BCVA, assessed as the logarithm of the minimum angle of resolution [logMAR]), 8 aqueous factors (by suspension array), mean blur rate (MBR; estimated by laser speckle flowgraphy as a measure of choroidal blood flow), aqueous flare (with a laser flare meter), and SCT and central macular thickness (CMT; by optical coherence tomography). RESULTS After 4 weeks, IRI resulted in a significant improvement in BCVA and CMT and a significant reduction in SCT, choroidal MBR, and aqueous flare. SCT was significantly positively correlated with placental growth factor and significantly negatively correlated with platelet-derived growth factor-AA, and change in SCT was significantly negatively correlated with change in BCVA (logMAR). Aqueous flare was significantly negatively correlated with SCT. CONCLUSION Growth and inflammatory factors may be associated with SCT, and changes in SCT may be associated with changes in BCVA after IRI to treat macular edema due to CRVO.
Collapse
Affiliation(s)
- Kanako Yasuda
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan
| | - Hidetaka Noma
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan
| | - Eri Oyama
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan
| | - Kosei Yanagida
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan
| | - Masaki Asakage
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Shimura
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Cao Y. Blood vessels in fat tissues and vasculature-derived signals in controlling lipid metabolism and metabolic disease. Chin Med J (Engl) 2022; 135:2647-2652. [PMID: 36382988 PMCID: PMC9943976 DOI: 10.1097/cm9.0000000000002406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 65 Stockholm, Sweden
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
| |
Collapse
|
6
|
GEINDREAU M, BRUCHARD M, VEGRAN F. Role of Cytokines and Chemokines in Angiogenesis in a Tumor Context. Cancers (Basel) 2022; 14:cancers14102446. [PMID: 35626056 PMCID: PMC9139472 DOI: 10.3390/cancers14102446] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Tumor growth in solid cancers requires adequate nutrient and oxygen supply, provided by blood vessels created by angiogenesis. Numerous studies have demonstrated that this mechanism plays a crucial role in cancer development and appears to be a well-defined hallmark of cancer. This process is carefully regulated, notably by cytokines with pro-angiogenic or anti-angiogenic features. In this review, we will discuss the role of cytokines in the modulation of angiogenesis. In addition, we will summarize the therapeutic approaches based on cytokine modulation and their clinical approval. Abstract During carcinogenesis, tumors set various mechanisms to help support their development. Angiogenesis is a crucial process for cancer development as it drives the creation of blood vessels within the tumor. These newly formed blood vessels insure the supply of oxygen and nutrients to the tumor, helping its growth. The main factors that regulate angiogenesis are the five members of the vascular endothelial growth factor (VEGF) family. Angiogenesis is a hallmark of cancer and has been the target of new therapies this past few years. However, angiogenesis is a complex phenomenon with many redundancy pathways that ensure its maintenance. In this review, we will first describe the consecutive steps forming angiogenesis, as well as its classical regulators. We will then discuss how the cytokines and chemokines present in the tumor microenvironment can induce or block angiogenesis. Finally, we will focus on the therapeutic arsenal targeting angiogenesis in cancer and the challenges they have to overcome.
Collapse
Affiliation(s)
- Mannon GEINDREAU
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
| | - Mélanie BRUCHARD
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
| | - Frédérique VEGRAN
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
7
|
Alhazzani K, Venkatesan T, Natarajan U, Algahtani M, Alaseem A, Alobid S, Rathinavelu A. Evaluation of antitumor effects of VEGFR-2 inhibitor F16 in a colorectal xenograft model. Biotechnol Lett 2022; 44:787-801. [PMID: 35501620 DOI: 10.1007/s10529-022-03243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES Colorectal cancer (CRC) is the third most prevalent type of cancer in the United States. The treatment options for cancer include surgery, chemotherapy, radiation, and/or targeted therapy, which show significant improvement in overall survival. Among the various available treatments, antagonizing VEGF/VEGFR-2 pathways have shown effectiveness in limiting colorectal cancer growth and improving clinical outcomes. In this regard, we hypothesized that F16, a novel VEGFR-2 inhibitor, would control colorectal cancer growth by blocking the VEGFR-2 singling pathway in both in vitro and in vivo conditions. Therefore, the current study was aimed to analyze the efficacy of F16 on the growth of Colo 320DM cells under in vitro and in vivo conditions. RESULTS Human RT2 profiler PCR array analysis results clearly showed that angiogenesis and anti-apoptosis-related gene expressions were significantly reduced in HUVEC cells after F16 (5 μM) treatment. In addition, Western blot results revealed that F16 attenuated the downstream signaling of the VEGFR-2 pathway in HUVEC cells by up-regulating the p53 and p21 levels and down-regulating the p-AKT and p-FAK levels. Accordingly, F16 confirmed potent cytotoxic effects against the cell viability of Colo 320DM tumors, with an IC50 value of 9.52 ± 1.49 µM. Furthermore, treatment of mice implanted with Colo 320DM xenograft tumors showed a significant reduction in tumor growth and increases in survival rate compared to controls. Immunohistochemistry analysis of tumor tissues showed a reduction in CD31 levels also in F16 treated groups. CONCLUSIONS These results justify further evaluation of F16 as a potential new therapeutic agent for treating colorectal cancers.
Collapse
Affiliation(s)
- Khalid Alhazzani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Thiagarajan Venkatesan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Ave., Fort Lauderdale, FL, 33314, USA
| | - Umamaheswari Natarajan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Ave., Fort Lauderdale, FL, 33314, USA
| | - Mohammad Algahtani
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Ali Alaseem
- College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, 13317, Saudi Arabia
| | - Saad Alobid
- Pharmacology and Toxicology Department, College of Pharmacy, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Appu Rathinavelu
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Ave., Fort Lauderdale, FL, 33314, USA. .,College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA.
| |
Collapse
|
8
|
Yang F, Zhang Q, Guo Q, Pan Q, Wen C, Lv X, Zhu W, Zheng P. Design, synthesis and biological evaluation of 4-phenoxy-pyridine/pyrimidine derivatives as dual VEGFR-2/c-Met inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01561g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A class of 4-phenoxy-pyridine/pyrimidine derivatives (23a–23p and 24a–24h) were designed, synthesized and evaluated as potent dual VEGFR-2/c-Met inhibitors.
Collapse
Affiliation(s)
- Feiyi Yang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qian Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
- School of Biological Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Qiuyan Guo
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qingshan Pan
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Chunping Wen
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Xinya Lv
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Wufu Zhu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Pengwu Zheng
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| |
Collapse
|
9
|
Jin H, Quesada C, Aliabouzar M, Kripfgans OD, Franceschi RT, Liu J, Putnam AJ, Fabiilli ML. Release of basic fibroblast growth factor from acoustically-responsive scaffolds promotes therapeutic angiogenesis in the hind limb ischemia model. J Control Release 2021; 338:773-783. [PMID: 34530052 PMCID: PMC8526405 DOI: 10.1016/j.jconrel.2021.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/18/2023]
Abstract
Pro-angiogenic growth factors have been studied as potential therapeutics for cardiovascular diseases like critical limb ischemia (CLI). However, the translation of these factors has remained a challenge, in part, due to problems associated with safe and effective delivery. Here, we describe a hydrogel-based delivery system for growth factors where release is modulated by focused ultrasound (FUS), specifically a mechanism termed acoustic droplet vaporization. With these fibrin-based, acoustically-responsive scaffolds (ARSs), release of a growth factor is non-invasively and spatiotemporally-controlled in an on-demand manner using non-thermal FUS. In vitro studies demonstrated sustained release of basic fibroblast growth factor (bFGF) from the ARSs using repeated applications of FUS. In in vivo studies, ARSs containing bFGF were implanted in mice following induction of hind limb ischemia, a preclinical model of CLI. During the 4-week study, mice in the ARS + FUS group longitudinally exhibited significantly more perfusion and less visible necrosis compared to other experimental groups. Additionally, significantly greater angiogenesis and less fibrosis were observed for the ARS + FUS group. Overall, these results highlight a promising, FUS-based method of delivering a pro-angiogenic growth factor for stimulating angiogenesis and reperfusion in a cardiovascular disease model. More broadly, these results could be used to personalize the delivery of therapeutics in different regenerative applications by actively controlling the release of a growth factor.
Collapse
Affiliation(s)
- Hai Jin
- Department of Medical Ultrasound, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Carole Quesada
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Renny T Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Dental School, University of Michigan, Ann Arbor, MI, USA
| | - Jianhua Liu
- Department of Medical Ultrasound, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Uemura A, Fruttiger M, D'Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD, Langmann T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res 2021; 84:100954. [PMID: 33640465 PMCID: PMC8385046 DOI: 10.1016/j.preteyeres.2021.100954] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Five vascular endothelial growth factor receptor (VEGFR) ligands (VEGF-A, -B, -C, -D, and placental growth factor [PlGF]) constitute the VEGF family. VEGF-A binds VEGF receptors 1 and 2 (VEGFR1/2), whereas VEGF-B and PlGF only bind VEGFR1. Although much research has been conducted on VEGFR2 to elucidate its key role in retinal diseases, recent efforts have shown the importance and involvement of VEGFR1 and its family of ligands in angiogenesis, vascular permeability, and microinflammatory cascades within the retina. Expression of VEGFR1 depends on the microenvironment, is differentially regulated under hypoxic and inflammatory conditions, and it has been detected in retinal and choroidal endothelial cells, pericytes, retinal and choroidal mononuclear phagocytes (including microglia), Müller cells, photoreceptor cells, and the retinal pigment epithelium. Whilst the VEGF-A decoy function of VEGFR1 is well established, consequences of its direct signaling are less clear. VEGFR1 activation can affect vascular permeability and induce macrophage and microglia production of proinflammatory and proangiogenic mediators. However the ability of the VEGFR1 ligands (VEGF-A, PlGF, and VEGF-B) to compete against each other for receptor binding and to heterodimerize complicates our understanding of the relative contribution of VEGFR1 signaling alone toward the pathologic processes seen in diabetic retinopathy, retinal vascular occlusions, retinopathy of prematurity, and age-related macular degeneration. Clinically, anti-VEGF drugs have proven transformational in these pathologies and their impact on modulation of VEGFR1 signaling is still an opportunity-rich field for further research.
Collapse
Affiliation(s)
- Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Sandro De Falco
- Angiogenesis Laboratory, Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy; ANBITION S.r.l., Via Manzoni 1, 80123, Naples, Italy.
| | - Antonia M Joussen
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, and Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| | - Lynne R Brunck
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kristian T Johnson
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - George N Lambrou
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kay D Rittenhouse
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.
| |
Collapse
|
11
|
Effects of ranibizumab on growth factors and mediators of inflammation in the aqueous humor of patients with diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 2021; 259:2597-2603. [PMID: 33772356 DOI: 10.1007/s00417-021-05154-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE The study aims to investigate changes in the aqueous humor levels of 8 growth factors and inflammatory mediators after intravitreal ranibizumab injection (IRI) and the relationship between these substances and functional-morphological parameters in patients with diabetic macular edema (DME). METHODS We recruited 25 patients with DME who were scheduled to receive 2 doses of IRI at monthly intervals. At baseline and 1 month after IRI, we measured aqueous levels of vascular endothelial growth factor (VEGF), placental growth factor (PlGF), monocyte chemoattractant protein 1 (MCP-1), soluble intercellular adhesion molecule-1 (sICAM-1), platelet-derived growth factor (PDGF)-AA, interleukin (IL)-6, IL-8, and interferon-gamma inducible protein 10 (IP-10) by the suspension array method. Central macular edema (CMT) or macular volume (MV) was examined by optical coherence tomography before and 1 month after IRI, and the improvement of macular edema was evaluated by calculating the percent change of CMT or MV. RESULTS Aqueous humor levels of VEGF, PlGF, PDGF-AA, and IP-10 were significantly decreased 1 month after IRI (P < 0.001, P = 0.002, P = 0.002, and P = 0.005, respectively). In addition, the baseline aqueous humor levels of PlGF, MCP-1, and IL-6 were significantly correlated with the improvement in best corrected visual acuity (P = 0.036, P = 0.024, and P = 0.049, respectively). The baseline aqueous humor level of sICAM-1 was significantly negatively correlated with the change in CMT (P = 0.005), and the baseline aqueous humor levels of VEGF and PlGF were significantly correlated with the change in MV (P = 0.020 and P = 0.003, respectively). Furthermore, the percentage reduction in VEGF after IRI was significantly correlated with the change in MV (P = 0.037). CONCLUSIONS Our findings suggest that the change in aqueous humor levels of VEGF, PlGF, and ICAM-1 in DME may not only be an anatomic response but also a potential therapeutic target. CLINICAL TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network (UMIN) clinical trial registry. The registration number is UMIN000030301.
Collapse
|
12
|
Capillary Rarefaction in Obesity and Metabolic Diseases-Organ-Specificity and Possible Mechanisms. Cells 2020; 9:cells9122683. [PMID: 33327460 PMCID: PMC7764934 DOI: 10.3390/cells9122683] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity and its comorbidities like diabetes, hypertension and other cardiovascular disorders are the leading causes of death and disability worldwide. Metabolic diseases cause vascular dysfunction and loss of capillaries termed capillary rarefaction. Interestingly, obesity seems to affect capillary beds in an organ-specific manner, causing morphological and functional changes in some tissues but not in others. Accordingly, treatment strategies targeting capillary rarefaction result in distinct outcomes depending on the organ. In recent years, organ-specific vasculature and endothelial heterogeneity have been in the spotlight in the field of vascular biology since specialized vascular systems have been shown to contribute to organ function by secreting varying autocrine and paracrine factors and by providing niches for stem cells. This review summarizes the recent literature covering studies on organ-specific capillary rarefaction observed in obesity and metabolic diseases and explores the underlying mechanisms, with multiple modes of action proposed. It also provides a glimpse of the reported therapeutic perspectives targeting capillary rarefaction. Further studies should address the reasons for such organ-specificity of capillary rarefaction, investigate strategies for its prevention and reversibility and examine potential signaling pathways that can be exploited to target it.
Collapse
|
13
|
Ravikumar G, Mukhopadhyay A, Mani C, Kocchar P, Crasta J, Thomas T, Dwarkanath P, Thomas A, Kurpad AV, Sridhar TS. Placental expression of angiogenesis-related genes and their receptors in IUGR pregnancies: correlation with fetoplacental and maternal parameters. J Matern Fetal Neonatal Med 2020; 33:3954-3961. [PMID: 30922130 DOI: 10.1080/14767058.2019.1593362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Objectives: Aberrations in placental vascular development compromising fetal supply of oxygen and essential nutrients can be a significant contributor to intrauterine growth restriction (IUGR). The development of placental vascular tree is under the influence of two families of growth factors, namely the vascular endothelial growth factor (VEGF) family and angiopoietin/TEK family. In this study, we have examined the expression of angiogenesis-related growth factors, mainly VEGF family and angiopoietin-TEK (endothelial-specific receptor tyrosine kinase) family genes in placentae from IUGR pregnancies uncomplicated by preeclampsia (PE) compared to normal pregnancies.Methods: Placentae from normotensive IUGR (n = 42) and appropriate for gestational age (AGA) pregnancies (n = 47) were collected and examined histologically. Clinical parameters were obtained from the medical records. Real-time quantitative PCR was performed to assess placental transcript abundance of VEGF, PGF, FLT1, ANGPT1, ANGPT2, and TEK normalized to a panel of reference genes. Associations of placental transcript abundance of the genes with maternal, placental, and neonatal parameters were tested.Results: Placental transcript abundance for VEGF (relative expression 10.81 versus 12.98, p < .001), PGF (12.14 versus 13.8, p < .001) and ANGPT2 (3.67 versus 9.55, p = .002) were significantly lower in IUGR placentae compared to AGA. The transcript level of VEGF showed significant negative correlation with birth weight (r = -0.419, p = .006), placental weight (r = -0.318, p = .040), placental length (r = -0.389, p = .011) and breadth (r = -0.308, p = .047) only in the IUGR group. Presence of histopathological features of hypoxia correlated with significantly higher transcript levels of PGF in IUGR placentae (12.6 versus 10.9, p = .046).Conclusion: The low levels of VEGF transcripts may be responsible for the impaired angiogenesis in IUGR placentae. The significance of higher relative expression of PGF in the presence of chronic hypoxia needs to be explored.
Collapse
Affiliation(s)
- Gayatri Ravikumar
- Department of Pathology, St. John's Medical College, St. John's National Academy of Health Sciences, Bangalore, India
| | - Arpita Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Ceera Mani
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Prachi Kocchar
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Julian Crasta
- Department of Pathology, St. John's Medical College, St. John's National Academy of Health Sciences, Bangalore, India
| | - Tinku Thomas
- Department of Biostatistics, St. John's Medical College, St. John's National Academy of Health Sciences, Bangalore, India
| | - Pratibha Dwarkanath
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Annamma Thomas
- Department of Obstetrics and Gynaecology, St. John's Medical College Hospital, St. John's National Academy of Health Sciences, Bangalore, India
| | - Anura V Kurpad
- Department of Physiology, Division of Nutrition, St. John's Medical College, St. John's National Academy of Health Sciences, Bangalore, India
| | - Tirumalai Srinivas Sridhar
- Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| |
Collapse
|
14
|
Cui W, Sun XY, Sun LP, Li J, Liu ZL, Zhang H. Comparison of the Effect of Intravitreal Conbercept and Ranibizumab on Aqueous Humor Cytokines in Central Retinal Vein Occlusion-Related Macular Edema. J Ocul Pharmacol Ther 2020; 37:52-59. [PMID: 33216685 DOI: 10.1089/jop.2020.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: To analyze changes in the levels of angiogenic and inflammatory cytokines following the administration of intravitreal conbercept (IVC) or intravitreal ranibizumab (IVR) in patients with macular edema (ME) due to central retinal vein occlusion (CRVO). Methods: This retrospective study was conducted between June 2015 and January 2016 in The First Hospital of China Medical University. We administered 3 consecutive monthly doses of IVC (23 eyes) or IVR (19 eyes) in 42 eyes with CRVO-ME. At each injection, we collected aqueous humor samples and used multiplex bead assays to measure 7 angiogenic and inflammatory cytokines [vascular endothelial growth factor (VEGF), placental growth factor (PlGF), platelet-derived growth factor (PDGF)-AA, monocyte chemoattractant protein (MCP)-1, and interleukins (ILs)-6, 8, and 12]. Results: Visual acuity and ME improved significantly in both groups during the treatment period. Compared with the baseline, all the cytokine concentrations in the aqueous humor samples decreased significantly at 1 and 2 months after the initial dose of IVC or IVR. The improvement of visual acuity and ME and the changes of aqueous humor cytokine levels were similar in both groups. Concentrations of VEGF, PlGF, MCP-1, PDGF-AA, IL-6, IL-8, and IL-12 levels did not show significant intergroup differences after 1 month (P = 0.369, 0.312, 0.185, 0.353, 0.135, 0.487, and 0.337, respectively) and 2 months (P = 0.305, 0.376, 0.230, 0.519, 0.114, 0.960, and 0.830, respectively) of follow-up. Conclusion: IVC and IVR induced comparable improvements in clinical parameters, along with equivalent reductions in the concentrations of angiogenic and inflammatory cytokines in the aqueous humor.
Collapse
Affiliation(s)
- Wei Cui
- Department of Ophthalmology, Liaoning Province Benxi Central Hospital, Benxi, China
| | - Xu-Yang Sun
- Department of Ophthalmology, Hainan General Hospital, Haikou, China
- Department of Ophthalmology and The First Hospital of China Medical University, Shenyang, China
| | - Li-Ping Sun
- Tumor Etiology and Screening Department of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Jun Li
- Department of Ophthalmology and The First Hospital of China Medical University, Shenyang, China
| | - Zhe-Li Liu
- Department of Ophthalmology and The First Hospital of China Medical University, Shenyang, China
| | - Han Zhang
- Department of Ophthalmology and The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Endothelial-specific YY1 governs sprouting angiogenesis through directly interacting with RBPJ. Proc Natl Acad Sci U S A 2020; 117:4792-4801. [PMID: 32075915 DOI: 10.1073/pnas.1916198117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is tightly regulated by gene transcriptional programs. Yin Ying 1 (YY1) is a ubiquitously distributed transcription factor with diverse and complex biological functions; however, little is known about the cell-type-specific role of YY1 in vascular development and angiogenesis. Here we report that endothelial cell (EC)-specific YY1 deletion in mice led to embryonic lethality as a result of abnormal angiogenesis and vascular defects. Tamoxifen-inducible EC-specific YY1 knockout (YY1 iΔEC ) mice exhibited a scarcity of retinal sprouting angiogenesis with fewer endothelial tip cells. YY1 iΔEC mice also displayed severe impairment of retinal vessel maturation. In an ex vivo mouse aortic ring assay and a human EC culture system, YY1 depletion impaired endothelial sprouting and migration. Mechanistically, YY1 functions as a repressor protein of Notch signaling that controls EC tip-stalk fate determination. YY1 deficiency enhanced Notch-dependent gene expression and reduced tip cell formation. Specifically, YY1 bound to the N-terminal domain of RBPJ (recombination signal binding protein for Ig Kappa J region) and competed with the Notch coactivator MAML1 (mastermind-like protein 1) for binding to RBPJ, thereby impairing the NICD (intracellular domain of the Notch protein)/MAML1/RBPJ complex formation. Our study reveals an essential role of endothelial YY1 in controlling sprouting angiogenesis through directly interacting with RBPJ and forming a YY1-RBPJ nuclear repression complex.
Collapse
|
16
|
Matsushima R, Noma H, Yasuda K, Goto H, Shimura M. Role of Cytokines in Ranibizumab Therapy for Macular Edema in Patients with Central Retinal Vein Occlusion. J Ocul Pharmacol Ther 2019; 35:407-412. [DOI: 10.1089/jop.2019.0011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ryosuke Matsushima
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Hachioji, Tokyo, Japan
| | - Hidetaka Noma
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Hachioji, Tokyo, Japan
| | - Kanako Yasuda
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Hachioji, Tokyo, Japan
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Masahiko Shimura
- Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, Hachioji, Tokyo, Japan
| |
Collapse
|
17
|
Albonici L, Giganti MG, Modesti A, Manzari V, Bei R. Multifaceted Role of the Placental Growth Factor (PlGF) in the Antitumor Immune Response and Cancer Progression. Int J Mol Sci 2019; 20:ijms20122970. [PMID: 31216652 PMCID: PMC6627047 DOI: 10.3390/ijms20122970] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
The sharing of molecules function that affects both tumor growth and neoangiogenesis with cells of the immune system creates a mutual interplay that impairs the host’s immune response against tumor progression. Increasing evidence shows that tumors are able to create an immunosuppressive microenvironment by recruiting specific immune cells. Moreover, molecules produced by tumor and inflammatory cells in the tumor microenvironment create an immunosuppressive milieu able to inhibit the development of an efficient immune response against cancer cells and thus fostering tumor growth and progression. In addition, the immunoediting could select cancer cells that are less immunogenic or more resistant to lysis. In this review, we summarize recent findings regarding the immunomodulatory effects and cancer progression of the angiogenic growth factor namely placental growth factor (PlGF) and address the biological complex effects of this cytokine. Different pathways of the innate and adaptive immune response in which, directly or indirectly, PlGF is involved in promoting tumor immune escape and metastasis will be described. PlGF is important for building up vascular structures and functions. Although PlGF effects on vascular and tumor growth have been widely summarized, its functions in modulating the immune intra-tumoral microenvironment have been less highlighted. In agreement with PlGF functions, different antitumor strategies can be envisioned.
Collapse
Affiliation(s)
- Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
18
|
Abdelazeem KNM, Droppova B, Sukkar B, Al-Maghout T, Pelzl L, Zacharopoulou N, Ali Hassan NH, Abdel-Fattah KI, Stournaras C, Lang F. Upregulation of Orai1 and STIM1 expression as well as store-operated Ca 2+ entry in ovary carcinoma cells by placental growth factor. Biochem Biophys Res Commun 2019; 512:467-472. [PMID: 30902388 DOI: 10.1016/j.bbrc.2019.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Placental growth factor (PlGF) is produced by tumor cells and stimulates tumor growth and metastasis in part by upregulation of hypoxia inducible factor HIF1α. Orchestration of tumor cell proliferation and migration involves oscillations of cytosolic Ca2+ activity ([Ca2+]i). The [Ca2+]i oscillations could be accomplished by triggering of intracellular Ca2+ release followed by store-operated Ca2+-entry (SOCE). Mechanisms accomplishing SOCE include the pore-forming ion channel unit Orai1 and its regulator STIM1. The present study explored whether PlGF influences the expression of Orai1 and STIM1, as well as SOCE and whether this effect impacts on HIF1α expression. To this end, ovary carcinoma cells were cultured for 24 h without and with PlGF (10 ng/ml). Orai1, STIM1 and HIF1α transcript levels were quantified utilizing RT-PCR and Orai1, STIM1 and HIF1α protein levels by Western blotting. [Ca2+]i was estimated from Fura-2-fluorescence and SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with extracellular Ca2+ removal and sarcoendoplasmatic Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 μM). As a result, exposure of ovary carcinoma cells to PlGF was followed by a significant increase of Orai1 as well as STIM1 transcript and protein levels. PlGF significantly increased store-operated Ca2+-entry following re-addition of extracellular Ca2+, an effect virtually abrogated by Orai1 inhibitor MRS1845 (10 μM). PlGF further increased HIF1α transcript and protein levels, an effect again significantly blunted by MRS1845 (10 μM). In conclusion, PlGF upregulates expression of both, Orai1 and STIM1 thus enhancing store-operated Ca2+-entry with subsequent upregulation of HIF1α.
Collapse
Affiliation(s)
- Khalid N M Abdelazeem
- Department of Internal Medicine III, Eberhard Karls,University, Tübingen, Germany; Radiation Biology Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Barbora Droppova
- Department of Internal Medicine III, Eberhard Karls,University, Tübingen, Germany
| | - Basma Sukkar
- Department of Internal Medicine III, Eberhard Karls,University, Tübingen, Germany
| | - Tamer Al-Maghout
- Department of Internal Medicine III, Eberhard Karls,University, Tübingen, Germany
| | - Lisann Pelzl
- Department of Internal Medicine III, Eberhard Karls,University, Tübingen, Germany
| | - Nefeli Zacharopoulou
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | | | - Kamal I Abdel-Fattah
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Department of Internal Medicine III, Eberhard Karls,University, Tübingen, Germany.
| |
Collapse
|
19
|
Motohashi R, Noma H, Yasuda K, Kotake O, Goto H, Shimura M. Dynamics of soluble vascular endothelial growth factor receptors and their ligands in aqueous humour during ranibizumab for age-related macular degeneration. JOURNAL OF INFLAMMATION-LONDON 2018; 15:26. [PMID: 30534004 PMCID: PMC6280338 DOI: 10.1186/s12950-018-0203-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/22/2018] [Indexed: 12/27/2022]
Abstract
Background Intravitreal ranibizumab injection (IRI) is effective for patients with exudative age-related macular degeneration (AMD) and decreases intraocular levels of vascular endothelial growth factor (VEGF), but VEGF receptor intraocular dynamics after IRI are unclear. Therefore, we evaluated changes in the aqueous humor levels of soluble vascular endothelial growth factor receptor (sVEGFR)-1, sVEGFR-2, and their ligands for these receptors (VEGF) patients with AMD receiving IRI. Methods The subjects were 24 patients with AMD (24 eyes) who received 3 doses of IRI at monthly intervals. Aqueous humor samples were obtained when each IRI dose was given (visits 0, 1, and 2 at 4-week intervals). Then the suspension array method was employed to measure sVEGFR-1, sVEGFR-2, VEGF, and placental growth factor (PlGF) in aqueous humor samples from the 24 AMD patients and 13 cataract patients (as controls). Best corrected visual acuity (BCVA; logMAR) chart and central macular thickness (CMT; optical coherence tomography) were also assessed over time. Results At baseline, the aqueous humor levels of sVEGFR-1, sVEGFR-2, VEGF, and PlGF were significantly higher in the AMD group than in the control group. There was a significant correlation between VEGF and PlGF or between sVEGFR-1 and sVEGFR-2. BCVA and CMT both improved significantly after IRI, and the aqueous humor levels of VEGF, PlGF, and sVEGFR-1 also decreased significantly. Conclusions VEGFRs may be involved in the pathogenesis of AMD. IRI improves clinical parameters in AMD patients by suppressing intraocular levels of VEGF, PlGF, and sVEGFR-1.
Collapse
Affiliation(s)
- Ryosuke Motohashi
- 1Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo, 193-0998 Japan
| | - Hidetaka Noma
- 1Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo, 193-0998 Japan
| | - Kanako Yasuda
- 1Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo, 193-0998 Japan
| | - Osamu Kotake
- 1Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo, 193-0998 Japan
| | - Hiroshi Goto
- 2Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Shimura
- 1Department of Ophthalmology, Hachioji Medical Center, Tokyo Medical University, 1163, Tatemachi, Hachioji, Tokyo, 193-0998 Japan
| |
Collapse
|
20
|
Iwamoto H, Abe M, Yang Y, Cui D, Seki T, Nakamura M, Hosaka K, Lim S, Wu J, He X, Sun X, Lu Y, Zhou Q, Shi W, Torimura T, Nie G, Li Q, Cao Y. Cancer Lipid Metabolism Confers Antiangiogenic Drug Resistance. Cell Metab 2018; 28:104-117.e5. [PMID: 29861385 DOI: 10.1016/j.cmet.2018.05.005] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 11/02/2017] [Accepted: 05/03/2018] [Indexed: 01/01/2023]
Abstract
Intrinsic and evasive antiangiogenic drug (AAD) resistance is frequently developed in cancer patients, and molecular mechanisms underlying AAD resistance remain largely unknown. Here we describe AAD-triggered, lipid-dependent metabolic reprogramming as an alternative mechanism of AAD resistance. Unexpectedly, tumor angiogenesis in adipose and non-adipose environments is equally sensitive to AAD treatment. AAD-treated tumors in adipose environment show accelerated growth rates in the presence of a minimal number of microvessels. Mechanistically, AAD-induced tumor hypoxia initiates the fatty acid oxidation metabolic reprogramming and increases uptake of free fatty acid (FFA) that stimulates cancer cell proliferation. Inhibition of carnitine palmitoyl transferase 1A (CPT1) significantly compromises the FFA-induced cell proliferation. Genetic and pharmacological loss of CPT1 function sensitizes AAD therapeutic efficacy and enhances its anti-tumor effects. Together, we propose an effective cancer therapy concept by combining drugs that target angiogenesis and lipid metabolism.
Collapse
Affiliation(s)
- Hideki Iwamoto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden; Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Mitsuhiko Abe
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden; Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Dongmei Cui
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Masaki Nakamura
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Sharon Lim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Jieyu Wu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Xingkang He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Xiaoting Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden; Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yongtian Lu
- Key Laboratory of International Collaborations, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Yanerdao Road, Qingdao 266071, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Yanerdao Road, Qingdao 266071, China
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Guohui Nie
- Key Laboratory of International Collaborations, Second People's Hospital of Shenzhen, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden.
| |
Collapse
|
21
|
Shan Y, Wang B, Zhang J. New strategies in achieving antiangiogenic effect: Multiplex inhibitors suppressing compensatory activations of RTKs. Med Res Rev 2018; 38:1674-1705. [DOI: 10.1002/med.21517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/19/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Yuanyuan Shan
- Department of Pharmacy; The First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Binghe Wang
- Department of Chemistry; Center for Diagnostics and Therapeutics; Georgia State University; Atlanta GA USA
| | - Jie Zhang
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
22
|
Demura T, Takada T, Shimoda N, Hioka T, Iwaguchi Y, Ichihara S, Gotoda H. Mechanism underlying the negative effect of prostate volume on the outcome of extensive transperineal ultrasound-guided template prostate biopsy. Cancer Med 2018; 7:336-343. [PMID: 29341453 PMCID: PMC5806096 DOI: 10.1002/cam4.1300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Previous studies have indicated a possible relationship between increased prostate volume (PV) and decreased biopsy yield, although the mechanism involved is unclear. We evaluated 1650 patients who underwent template biopsy. The distribution of 993 cancer lesions in 302 prostatectomy specimens was compared with the biopsy data to determine whether each lesion was detected. A receiver operating characteristic (ROC) model was used to determine the diagnostic accuracy of prostate-specific antigen (PSA) and related markers. A medical record number (MRN) was used as a negative control. The cancer positive rate did not change as PSA increased in patients with PV ≥50 mL (P = 0.466), although it increased as PSA increased in patients with PV<50 mL (P = 0.001). The detection rate of cancer lesions decreased as the diameter of the lesions decreased (P = 0.018), but remained unchanged with respect to PV. The diameters of the maximum lesions in patients with PV ≥ 50 mL were significantly smaller than those in patients with PV<50 mL (P = 0.003). In patients with PV ≥ 50 mL, the areas under the ROC curves for PSA-related markers did not differ significantly from that for MRN, although they were significantly greater than that for MRN in patients with PV<50 mL (P < 0.001). These results suggest that an increase in PV is associated with a decrease in size and detectability of cancer lesions resulting in a decrease in biopsy yield. Loss of diagnostic accuracy of markers in patients with PV ≥ 50 mL indicates a decrease in serum levels of PSA produced by prostate cancer, which suggests growth inhibition of the cancer.
Collapse
Affiliation(s)
| | - Takenori Takada
- Terrestrial EcologyGraduate School of Environmental Earth ScienceHokkaido UniversitySapporoJapan
| | - Naohiko Shimoda
- Department of UrologySapporo Kosei General HospitalSapporoJapan
| | - Takaya Hioka
- Department of UrologySapporo Kosei General HospitalSapporoJapan
| | - Yoshihumi Iwaguchi
- Department of Clinical PathologySapporo Kosei General HospitalSapporoJapan
| | - Shin Ichihara
- Department of Clinical PathologySapporo Kosei General HospitalSapporoJapan
| | - Hiroko Gotoda
- Department of Clinical PathologySapporo Kosei General HospitalSapporoJapan
| |
Collapse
|
23
|
Li Y, Lorca RA, Su EJ. Molecular and cellular underpinnings of normal and abnormal human placental blood flows. J Mol Endocrinol 2018; 60:R9-R22. [PMID: 29097590 PMCID: PMC5732864 DOI: 10.1530/jme-17-0139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
Abnormal placental function is well-established as a major cause for poor pregnancy outcome. Placental blood flow within the maternal uteroplacental compartment, the fetoplacental circulation or both is a vital factor in mediating placental function. Impairment in flow in either or both vasculatures is a significant risk factor for adverse pregnancy outcome, potentially impacting maternal well-being, affecting immediate neonatal health and even influencing the long-term health of the infant. Much remains unknown regarding the mechanistic underpinnings of proper placental blood flow. This review highlights the currently recognized molecular and cellular mechanisms in the development of normal uteroplacental and fetoplacental blood flows. Utilizing the entities of preeclampsia and fetal growth restriction as clinical phenotypes that are often evident downstream of abnormal placental blood flow, mechanisms underlying impaired uteroplacental and fetoplacental blood flows are also discussed. Deficiencies in knowledge, which limit the efficacy of clinical care, are also highlighted, underscoring the need for continued research on normal and abnormal placental blood flows.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Obstetrics and GynecologyDivision of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ramón A Lorca
- Department of Obstetrics and GynecologyDivision of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emily J Su
- Department of Obstetrics and GynecologyDivision of Maternal-Fetal Medicine/Division of Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
24
|
Mesquita J, Castro-de-Sousa JP, Vaz-Pereira S, Neves A, Passarinha LA, Tomaz CT. Vascular endothelial growth factors and placenta growth factor in retinal vasculopathies: Current research and future perspectives. Cytokine Growth Factor Rev 2017; 39:102-115. [PMID: 29248329 DOI: 10.1016/j.cytogfr.2017.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Abstract
Vision loss due to disease or degeneration of the eye (retina, choroid, retinal veins, or macula) is a leading cause of blindness worldwide. In most cases, vision-threatening ocular diseases are accompanied by abnormal changes in the vasculature of the eye, especially the retina, and these conditions are collectively referred to as retinal vasculopathies. Impaired blood supply or hypoxia stimulates angiogenesis in the vascular and non-vascular sections of the eye, which results in neovascularization, leading to conditions such as diabetic retinopathy or age-related macular degeneration. Studies show that vascular endothelial growth factors: VEGF-A, VEGF-B, and placental growth factor (PlGF) are elevated in these diseases, and hence, these factors could be used as markers for disease prognosis and therapy. In this review, we discuss the function of these growth factors in normal development and disease, with focus on ocular disorders and emphasize the importance of accurately determining their levels in the vitreous and serum of patients for correct diagnosis and therapy.
Collapse
Affiliation(s)
- Joana Mesquita
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| | - João Paulo Castro-de-Sousa
- Faculty of Medical Sciences, Universidade da Beira Interior, Covilhã, Portugal; Department of Ophthalmology, Centro Hospitalar de Leiria, R. das Olhalvas, 2410-197 Leiria, Portugal.
| | - Sara Vaz-Pereira
- Department of Ophthalmology, Hospital de Santa Maria, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal; Department of Ophthalmology, Faculty of Medicine, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal.
| | - Arminda Neves
- Department of Ophthalmology, Centro Hospitalar de Leiria, R. das Olhalvas, 2410-197 Leiria, Portugal.
| | - Luís A Passarinha
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; Faculty of Medical Sciences, Universidade da Beira Interior, Covilhã, Portugal.
| | - Cândida T Tomaz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| |
Collapse
|
25
|
Rodríguez-Cerdeira C, Molares-Vila A, Carnero-Gregorio M, Corbalán-Rivas A. Recent advances in melanoma research via "omics" platforms. J Proteomics 2017; 188:152-166. [PMID: 29138111 DOI: 10.1016/j.jprot.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/25/2017] [Accepted: 11/08/2017] [Indexed: 02/09/2023]
Abstract
Melanoma has a high mortality rate and metastatic melanoma is highly resistant to conventional therapies. "Omics" fields such as proteomics and microRNA and exosome studies have provided new knowledge to complement the information generated by genomic studies. This work aimed to review the current status of biomarker discovery for melanoma through multi-"omics" platforms. A few sets of novel microRNAs and proteins are described, some of them with important implications in suppressing melanoma at different stages. Upregulation of genes involved in angiogenesis, immunosuppressive factors, modification of stroma, capture of melanoma cells in lymph nodes and factors responsible for tumour cell recruitment have been identified in exosomes, among molecules with other functions. A remarkable series of proteins involved in epithelial-mesenchymal/mesenchymal-epithelial transitions, inflammation, motility, proliferation and progression processes, centrosome amplification, aneuploidy, inhibition of CD8+ effector T-cells, and metastasis in general were identified. Genomic and protein-protein interactions or metabolome levels were not analysed. Proteomics tools such as Orbitrap shotgun mass spectrometry or deep mining proteomic analysis utilizing high-resolution reversed phase nanoseparation in combination with mass spectrometry are also discussed. The application of these tools together with bioinformatics approaches applied to the clinical setting will enable the implementation of personalized medicine in the near future.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Dermatology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain.
| | - Alberto Molares-Vila
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Analytical & Food Chemistry, Universidade de Vigo (UVIGO), Spain
| | - Miguel Carnero-Gregorio
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics & Immunology, Universidade de Vigo (UVIGO), Spain
| | - Alberte Corbalán-Rivas
- Nursery Department, Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, A Coruña, Spain
| |
Collapse
|
26
|
Off-tumor targets compromise antiangiogenic drug sensitivity by inducing kidney erythropoietin production. Proc Natl Acad Sci U S A 2017; 114:E9635-E9644. [PMID: 29078273 DOI: 10.1073/pnas.1703431114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Anti-VEGF drugs are commonly used for treatment of a variety of cancers in human patients, and they often develop resistance. The mechanisms underlying anti-VEGF resistance in human cancer patients are largely unknown. Here, we show that in mouse tumor models and in human cancer patients, the anti-VEGF drug-induced kidney hypoxia augments circulating levels of erythropoietin (EPO). Gain-of-function studies show that EPO protects tumor vessels from anti-VEGF treatment and compromises its antitumor effects. Loss of function by blocking EPO function using a pharmacological approach markedly increases antitumor activity of anti-VEGF drugs through inhibition of tumor angiogenesis. Similarly, genetic loss-of-function data shows that deletion of EpoR in nonerythroid cells significantly increases antiangiogenic and antitumor effects of anti-VEGF therapy. Finally, in a relatively large cohort study, we show that treatment of human colorectal cancer patients with bevacizumab augments circulating EPO levels. These findings uncover a mechanism of desensitizing antiangiogenic and anticancer effects by kidney-produced EPO. Our work presents conceptual advances of our understanding of mechanisms underlying antiangiogenic drug resistance.
Collapse
|
27
|
Zhu Q, Pan X, Sun Y, Wang Z, Liu F, Li A, Zhao Z, Wang Y, Li K, Mi L. Biological nanoparticles carrying the Hmda-7 gene are effective in inhibiting pancreatic cancer in vitro and in vivo. PLoS One 2017; 12:e0185507. [PMID: 28985230 PMCID: PMC5630125 DOI: 10.1371/journal.pone.0185507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Objectives Pancreatic cancer is one of the most common malignancies of the digestive system, and remains a clinical challenge. This study aimed to assess the effects of bovine serum albumin (BSA) nanoparticles carrying the hMDA-7 gene (BSA-NP-hMDA-7) in the treatment of pancreatic cancer. Methods BSA-NP-hMDA-7 was generated by nanotechnology and gene recombination technology. A total of 5 BXPC-3 or PANC-1 pancreatic cancer cell groups were examined, including Control, BSA-NPs, Empty vector, hMDA-7 plasmid, and hMDA-7 BSA-NPs groups, respectively. Proliferation and apoptosis of cultured cells were assessed by the MTT method and flow-cytometry, respectively. In addition, pancreatic cancer models were established with both cell lines in nude mice, and the expression profiles of hMDA-7 and VEGF in cancer tissues were measured by Western blot and immunohistochemistry. Results BSA-NP-hMDA-7 nanoparticles were successfully generated, and significantly inhibited the proliferation of BXPC-3 and PANC-1 cells; in addition, apoptosis rates were higher in both cell lines after treatment with BSA-NP-hMDA-7 (P<0.05). Nude mouse xenograft studies indicated that treatment with BSA-NP-hMDA-7 nanoparticles resulted in decreased tumor size. Moreover, the hMDA-7 protein was found in tumor tissues after hMDA-7 gene transfection, while BSA-NP-hMDA-7 significantly suppressed VEGF expression in tumor tissues. Similar results were obtained for both BXPC-3 and PANC-1 xenograft models. Conclusion BSA nanoparticles carrying the hMDA-7 gene effectively transfected BXPC-3 and PANC-1 pancreatic cancer cells, causing reduced cell proliferation and enhanced apoptosis in vitro. In mouse xenografts, BSA-NP-hMDA-7 treatment decreased tumor size and reduced VEGF expression. These findings indicated that BSA-NP-hMDA-7 might exert anticancer effects via VEGF suppression.
Collapse
Affiliation(s)
- Qingyun Zhu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinting Pan
- The Affiliated Hospital of Qingdao University, Qingdao, China
- * E-mail:
| | - Yunbo Sun
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhengbin Wang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fuguo Liu
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiqin Li
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhihui Zhao
- Nano New Material Key Laboratories of Qingdao University, Qingdao, China
| | - Yunlong Wang
- Nano New Material Key Laboratories of Qingdao University, Qingdao, China
| | - Kun Li
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liangyu Mi
- Department of ICU, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Pleniceanu O, Shukrun R, Omer D, Vax E, Kanter I, Dziedzic K, Pode-Shakked N, Mark-Daniei M, Pri-Chen S, Gnatek Y, Alfandary H, Varda-Bloom N, Bar-Lev DD, Bollag N, Shtainfeld R, Armon L, Urbach A, Kalisky T, Nagler A, Harari-Steinberg O, Arbiser JL, Dekel B. Peroxisome proliferator-activated receptor gamma (PPARγ) is central to the initiation and propagation of human angiomyolipoma, suggesting its potential as a therapeutic target. EMBO Mol Med 2017; 9:508-530. [PMID: 28275008 PMCID: PMC5376758 DOI: 10.15252/emmm.201506111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Angiomyolipoma (AML), the most common benign renal tumor, can result in severe morbidity from hemorrhage and renal failure. While mTORC1 activation is involved in its growth, mTORC1 inhibitors fail to eradicate AML, highlighting the need for new therapies. Moreover, the identity of the AML cell of origin is obscure. AML research, however, is hampered by the lack of in vivo models. Here, we establish a human AML‐xenograft (Xn) model in mice, recapitulating AML at the histological and molecular levels. Microarray analysis demonstrated tumor growth in vivo to involve robust PPARG‐pathway activation. Similarly, immunostaining revealed strong PPARG expression in human AML specimens. Accordingly, we demonstrate that while PPARG agonism accelerates AML growth, PPARG antagonism is inhibitory, strongly suppressing AML proliferation and tumor‐initiating capacity, via a TGFB‐mediated inhibition of PDGFB and CTGF. Finally, we show striking similarity between AML cell lines and mesenchymal stem cells (MSCs) in terms of antigen and gene expression and differentiation potential. Altogether, we establish the first in vivo human AML model, which provides evidence that AML may originate in a PPARG‐activated renal MSC lineage that is skewed toward adipocytes and smooth muscle and away from osteoblasts, and uncover PPARG as a regulator of AML growth, which could serve as an attractive therapeutic target.
Collapse
Affiliation(s)
- Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Racheli Shukrun
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Einav Vax
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Kanter
- Faculty of Engineering, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Klaudyna Dziedzic
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Pode-Shakked
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Mark-Daniei
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sara Pri-Chen
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Hadas Alfandary
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Nephrology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Nira Varda-Bloom
- Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel
| | - Dekel D Bar-Lev
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Naomi Bollag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Rachel Shtainfeld
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Leah Armon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tomer Kalisky
- Faculty of Engineering, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Arnon Nagler
- Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA.,Winship Cancer Institute, Atlanta Veterans Administration Hospital, Atlanta, GA, USA
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel .,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Zhang L, Shan Y, Ji X, Zhu M, Li C, Sun Y, Si R, Pan X, Wang J, Ma W, Dai B, Wang B, Zhang J. Discovery and evaluation of triple inhibitors of VEGFR-2, TIE-2 and EphB4 as anti-angiogenic and anti-cancer agents. Oncotarget 2017; 8:104745-104760. [PMID: 29285210 PMCID: PMC5739597 DOI: 10.18632/oncotarget.20065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/30/2017] [Indexed: 11/25/2022] Open
Abstract
Receptor tyrosine kinases (RTKs), especially VEGFR-2, TIE-2, and EphB4, play a crucial role in both angiogenesis and tumorigenesis. Moreover, complexity and heterogeneity of angiogenesis make it difficult to treat such pathological traits with single-target agents. Herein, we developed two classes of multi-target RTK inhibitors (RTKIs) based on the highly conserved ATP-binding pocket of VEGFR-2/TIE-2/EphB4, using previously reported BPS-7 as a lead compound. These multi-target RTKIs exhibited considerable potential as novel anti-angiogenic and anticancer agents. Among them, QDAU5 displayed the most promising potency and selectivity. It significantly suppressed viability of EA.hy926 and proliferation of several cancer cells. Further investigations indicated that QDAU5 showed high affinity to VEGFR-2 and reduced the phosphorylation of VEGFR-2. We identified QDAU5 as a potent multiple RTKs inhibitor exhibiting prominent anti-angiogenic and anticancer potency both in vitro and in vivo. Moreover, quinazolin-4(3H)-one has been identified as an excellent hinge binding moiety for multi-target inhibitors of angiogenic VEGFR-2, Tie-2, and EphB4.
Collapse
Affiliation(s)
- Lin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xingyue Ji
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, United States
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, United States
| | - Chuansheng Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ying Sun
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ru Si
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jinfeng Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Weina Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, United States
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
30
|
Qi MH, Liu JK, Ye J, Li MH, Wan HJ, Qi ZY, Yin YX, Ou X, Yu GY. Angiotensin Ⅱ induces epithelial-mesenchymal transition in hepatocellular carcinoma cells. Shijie Huaren Xiaohua Zazhi 2017; 25:1103-1109. [DOI: 10.11569/wcjd.v25.i12.1103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of molecules of the renin-angiotensin system (RAS) in hepatocellular carcinoma (HCC) and explore whether angiotensin Ⅱ (Ang Ⅱ) induces epithelial-mesenchymal transition (EMT) in SSMC7721 cells.
METHODS Fifty-six HCC tissues were collected, and immunohistochemistry and Western blot were used to assess the expression of angiotensin converting enzyme 1 (ACE1), ACE2, vimentin, E-cadherin proteins in these tissues. Ang II was then used to stimulate SSMC7721 cells to detect whether EMT markers such as vimentin and E-cadherin were induced.
RESULTS Compared with normal tissues, the expression of ACE1 and AT1 in HCC tumor tissues were higher. Ang II up-regulated the expression of vimentin but down-regulated the expression of E-cadherin in SSMC7721 cells.
CONCLUSION The RAS may play a role in HCC metastasis.
Collapse
|
31
|
Weidle UH, Birzele F, Kollmorgen G, Rüger R. The Multiple Roles of Exosomes in Metastasis. Cancer Genomics Proteomics 2017; 14:1-15. [PMID: 28031234 DOI: 10.21873/cgp.20015] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
Exosomes are important contributors to cell-cell communication and their role as diagnostic markers for cancer and the pathogenesis for cancer is under intensive investigation. Here, we focus on their role in metastasis-related processes. We discuss their impact regarding promotion of invasion and migration of tumor cells, conditioning of lymph nodes, generation of premetastatic niches and organotropism of metastasis. Furthermore, we highlight interactions of exosomes with bone marrow and stromal components such as fibroblasts, endothelial cells, myeloid- and other immune-related cells in the context of metastases. For all processes as described above, we outline molecular and cellular components for therapeutic intervention with metastatic processes.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Fabian Birzele
- Roche Innovation Center Basel, F. Hoffman La-Roche, Basel, Switzerland
| | - Gwen Kollmorgen
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Rüdiger Rüger
- Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| |
Collapse
|
32
|
Abstract
Vascular pericytes, an important cellular component in the tumor microenvironment, are often associated with tumor vasculatures, and their functions in cancer invasion and metastasis are poorly understood. Here we show that PDGF-BB induces pericyte-fibroblast transition (PFT), which significantly contributes to tumor invasion and metastasis. Gain- and loss-of-function experiments demonstrate that PDGF-BB-PDGFRβ signaling promotes PFT both in vitro and in in vivo tumors. Genome-wide expression analysis indicates that PDGF-BB-activated pericytes acquire mesenchymal progenitor features. Pharmacological inhibition and genetic deletion of PDGFRβ ablate the PDGF-BB-induced PFT. Genetic tracing of pericytes with two independent mouse strains, TN-AP-CreERT2:R26R-tdTomato and NG2-CreERT2:R26R-tdTomato, shows that PFT cells gain stromal fibroblast and myofibroblast markers in tumors. Importantly, coimplantation of PFT cells with less-invasive tumor cells in mice markedly promotes tumor dissemination and invasion, leading to an increased number of circulating tumor cells and metastasis. Our findings reveal a mechanism of vascular pericytes in PDGF-BB-promoted cancer invasion and metastasis by inducing PFT, and thus targeting PFT may offer a new treatment option of cancer metastasis.
Collapse
|
33
|
Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun 2016; 7:12680. [PMID: 27580750 PMCID: PMC5025794 DOI: 10.1038/ncomms12680] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/21/2016] [Indexed: 12/21/2022] Open
Abstract
The impact of discontinuation of anti-VEGF cancer therapy in promoting cancer metastasis is unknown. Here we show discontinuation of anti-VEGF treatment creates a time-window of profound structural changes of liver sinusoidal vasculatures, exhibiting hyper-permeability and enlarged open-pore sizes of the fenestrated endothelium and loss of VE-cadherin. The drug cessation caused highly leaky hepatic vasculatures permit tumour cell intravasation and extravasation. Discontinuation of an anti-VEGF antibody-based drug and sunitinib markedly promotes liver metastasis. Mechanistically, host hepatocyte, but not tumour cell-derived vascular endothelial growth factor (VEGF), is responsible for cancer metastasis. Deletion of hepatocyte VEGF markedly ablates the ‘off-drug'-induced metastasis. These findings provide mechanistic insights on anti-VEGF cessation-induced metastasis and raise a new challenge for uninterrupted and sustained antiangiogenic therapy for treatment of human cancers. Anti-VEGF therapy often produces limited beneficial effects in cancer patients. Here, the authors show that discontinuation of anti-VEGF cancer therapy in xenografts-bearing mice increases cancer cells extravasation and intravasation in liver through the host-derived VEGF.
Collapse
|
34
|
Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther 2016; 164:204-25. [PMID: 27288725 DOI: 10.1016/j.pharmthera.2016.06.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interaction of numerous signaling pathways in endothelial and mesangial cells results in exquisite control of the process of physiological angiogenesis, with a central role played by vascular endothelial growth factor receptor 2 (VEGFR-2) and its cognate ligands. However, deregulated angiogenesis participates in numerous pathological processes. Excessive activation of VEGFR-2 has been found to mediate tissue-damaging vascular changes as well as the induction of blood vessel expansion to support the growth of solid tumors. Consequently, therapeutic intervention aimed at inhibiting the VEGFR-2 pathway has become a mainstay of treatment in cancer and retinal diseases. In this review, we introduce the concepts of physiological and pathological angiogenesis, the crucial role played by the VEGFR-2 pathway in these processes, and the various inhibitors of its activity that have entered the clinical practice. We primarily focus on the development of ramucirumab, the antagonist monoclonal antibody (mAb) that inhibits VEGFR-2 and has recently been approved for use in patients with gastric, colorectal, and lung cancers. We examine in-depth the pre-clinical studies using DC101, the mAb to mouse VEGFR-2, which provided a conceptual foundation for the role of VEGFR-2 in physiological and pathological angiogenesis. Finally, we discuss further clinical development of ramucirumab and the future of targeting the VEGF pathway for the treatment of cancer.
Collapse
|
35
|
Scartozzi M, Vincent L, Chiron M, Cascinu S. Aflibercept, a New Way to Target Angiogenesis in the Second Line Treatment of Metastatic Colorectal Cancer (mCRC). Target Oncol 2016; 11:489-500. [DOI: 10.1007/s11523-016-0447-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Lin X, Sun B, Zhu D, Zhao X, Sun R, Zhang Y, Zhang D, Dong X, Gu Q, Li Y, Liu F. Notch4+ cancer stem-like cells promote the metastatic and invasive ability of melanoma. Cancer Sci 2016; 107:1079-91. [PMID: 27234159 PMCID: PMC4982579 DOI: 10.1111/cas.12978] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022] Open
Abstract
Sphere formation in conditioned serum‐free culture medium supplemented with epidermal growth factor and basic fibroblast growth factor (tumorospheres) is considered useful for the enrichment of cancer stem‐like cells, also known as tumor‐initiating cells. We used a gene expression microarray to investigate the gene expression profile of melanoma cancer stem‐like cells (MCSLCs). The results showed that MCSLCs highly expressed the following Notch signaling pathway molecules: Notch3 (NM_008716), Notch4 (NM_010929), Dtx4 (NM_172442), and JAG2 (NM_010588). Immunofluorescence staining showed tumorosphere cells highly expressed Notch4. Notch4high B16F10 cells were isolated by FACS, and Western blotting showed that high Notch4 expression is related to the expression of epithelial–mesenchymal transition (EMT)‐associated proteins. Reduced invasive and migratory properties concomitant with the downregulation of the EMT markers Twist1, vimentin, and VE‐cadherin and the overexpression of E‐cadherin was observed in human melanoma A375 and MUM‐2B cells. In these cells, Notch4 was also downregulated, both by Notch4 gene knockdown and by application of the γ‐secretase inhibitor, DAPT. Mechanistically, the re‐overexpression of Twist1 by the transfection of cells with a Twist1 expression plasmid led to an increase in VE‐cadherin expression and a decrease in E‐cadherin expression. Immunohistochemical analysis of 120 human melanoma tissues revealed a significant correlation between the high expression of Notch4 and the metastasis of melanoma. Taken together, our findings indicate that Notch4+ MCSLCs trigger EMT and promote the metastasis of melanoma cells.
Collapse
Affiliation(s)
- Xian Lin
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Dongwang Zhu
- Department of Surgery, Stomatological Hospital of Tianjin Medical University, Tianjin, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Ran Sun
- Department of Surgery, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Qiang Gu
- Department of Pathology, Tianjin Medical University, Tianjin, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
37
|
Wu J, Xue X, Zhang B, Cao H, Kong F, Jiang W, Li J, Sun D, Guo R. Enhanced antitumor activity and attenuated cardiotoxicity of Epirubicin combined with Paeonol against breast cancer. Tumour Biol 2016; 37:12301-12313. [PMID: 27272157 DOI: 10.1007/s13277-016-5088-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/15/2016] [Indexed: 12/13/2022] Open
Abstract
Epirubicin is widely used for the therapy of various breast cancers. However, it has serious adverse side effects, particularly cardiotoxicity, which can cause irreversible damage in patients. Paeonol, an active component from Moutan Cortex, enhances antitumor activity of antineoplastics and reduces toxicities induced by chemotherapeutics. In this study, we investigated the anticancer activity of Paeonol in combination with Epirubicin against breast cancer and the alleviated effect of Paeonol on cardiotoxicity induced by Epirubicin. The apoptosis results and the coefficient of drug interaction values suggested significantly synergistic in combination of Paeonol and Epirubicin to 4T1 and MCF-7 cells. We further examined antitumor activities of Paeonol or/and Epirubicin in vivo in BALB/c mice and found that co-treatment of Paeonol and Epirubicin had a synergistic inhibitory effect on tumor growth and enhanced apoptosis in tumors in vivo compared with Epirubicin alone. Increased apoptosis was associated with the activation of apoptosis-related proteins including PARP, Bax, caspase 3, and inhibition of p38/JNK/ERK MAPKs. Moreover, Paeonol exhibited a mitigative effect on Epirubicin-induced cardiotoxicity through suppressing NF-kB pathway. In conclusion, Paeonol (a) enhanced the antitumor activity of Epirubicin in a synergistic manner against breast cancer cells via inhibiting p38/JNK/ERK MAPKs and (b) alleviated Epirubicin-induced cardiotoxicity by suppressing NF-kB pathway. These findings suggest that combination of Paeonol and Epirubicin is potentially applicable for breast cancer treatment.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacy, The Second Hospital of Shandong University, 247# Beiyuan Road, Jinan, 250033, China.,Department of Pharmacology, School of Medicine, Shandong University, 44# West Wenhua Road, Jinan, 250012, China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital of Shandong University, 247# Beiyuan Road, Jinan, 250033, China
| | - Bin Zhang
- Department of Pharmacy, The Second Hospital of Shandong University, 247# Beiyuan Road, Jinan, 250033, China
| | - Hongmei Cao
- Department of Pharmacy, People's Hospital of Zhangqiu, 308# Huiquan Road, Jinan, 250033, China
| | - Feng Kong
- Central Laboratory, The Second Hospital of Shandong University, 247# Beiyuan Road, Jinan, 250033, China
| | - Wen Jiang
- Central Laboratory, The Second Hospital of Shandong University, 247# Beiyuan Road, Jinan, 250033, China
| | - Juan Li
- Department of Pharmacy, The Second Hospital of Shandong University, 247# Beiyuan Road, Jinan, 250033, China
| | - Deqing Sun
- Department of Pharmacy, The Second Hospital of Shandong University, 247# Beiyuan Road, Jinan, 250033, China.
| | - Ruichen Guo
- Institute of Clinical Pharmacology, Qi Lu Hospital of Shandong University, 107# West Wenhua Road, Jinan, 250012, China.
| |
Collapse
|
38
|
Huang D, Zhao C, Ju R, Kumar A, Tian G, Huang L, Zheng L, Li X, Liu L, Wang S, Ren X, Ye Z, Chen W, Xing L, Chen Q, Gao Z, Mi J, Tang Z, Wang B, Zhang S, Lee C, Li X. VEGF-B inhibits hyperglycemia- and Macugen-induced retinal apoptosis. Sci Rep 2016; 6:26059. [PMID: 27189805 PMCID: PMC4870690 DOI: 10.1038/srep26059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial growth factor B (VEGF-B) was discovered a long time ago. However, its role in hyperglycemia- and VEGF-A inhibition-induced retinal apoptosis remains unknown thus far. Yet, drugs that can block VEGF-B are being used to treat patients with diabetic retinopathy and other ocular neovascular diseases. It is therefore urgent to have a better understanding of the function of VEGF-B in these pathologies. Here, we report that both streptozotocin (STZ)-induced diabetes in rats and Macugen intravitreal injection in mice leads to retinal apoptosis in retinal ganglion cell and outer nuclear layers respectively. Importantly, VEGF-B treatment by intravitreal injection markedly reduced retinal apoptosis in both models. We further reveal that VEGF-B and its receptors, vascular endothelial growth factor 1 (VEGFR1) and neuropilin 1 (NP1), are abundantly expressed in rat retinae and choroids and are upregulated by high glucose with concomitant activation of Akt and Erk. These data highlight an important function of VEGF-B in protecting retinal cells from apoptosis induced by hyperglycemia and VEGF-A inhibition. VEGF-B may therefore have a therapeutic potential in treating various retinal degenerative diseases, and modulation of VEGF-B activity in the eye needs careful consideration.
Collapse
Affiliation(s)
- Delong Huang
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Chen Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Geng Tian
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Lei Zheng
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xianglin Li
- Medical Imaging Institute, Shandong Province Characteristical Key Subject, Medical Imaging and Nuclear Medicine, Binzhou Medical University, Yantai, 264003 P. R. China
| | - Lixian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Zhimin Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Liying Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Qishan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Zhiqin Gao
- Department of Cell Biology, Weifang Medical University, Weifang, 261053 P. R. China
| | - Jia Mi
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China
| | - Zhongshu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Bin Wang
- Medical Imaging Institute, Shandong Province Characteristical Key Subject, Medical Imaging and Nuclear Medicine, Binzhou Medical University, Yantai, 264003 P. R. China
| | - Shuping Zhang
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xuri Li
- Center for Medical and Pharmaceutical Research, Binzhou Medical University, Yantai, Shandong, 264003, P. R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| |
Collapse
|
39
|
Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, Yang X, Nakamura M, Wang J, Zhuang R, Morikawa H, Xue Y, Braun H, Beyaert R, Samani N, Nakae S, Hams E, Dissing S, Fallon PG, Langer R, Cao Y. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun 2016; 7:11385. [PMID: 27150562 PMCID: PMC4859070 DOI: 10.1038/ncomms11385] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/21/2016] [Indexed: 12/16/2022] Open
Abstract
Signalling molecules and pathways that mediate crosstalk between various tumour cellular compartments in cancer metastasis remain largely unknown. We report a mechanism of the interaction between perivascular cells and tumour-associated macrophages (TAMs) in promoting metastasis through the IL-33–ST2-dependent pathway in xenograft mouse models of cancer. IL-33 is the highest upregulated gene through activation of SOX7 transcription factor in PDGF-BB-stimulated pericytes. Gain- and loss-of-function experiments validate that IL-33 promotes metastasis through recruitment of TAMs. Pharmacological inhibition of the IL-33–ST2 signalling by a soluble ST2 significantly inhibits TAMs and metastasis. Genetic deletion of host IL-33 in mice also blocks PDGF-BB-induced TAM recruitment and metastasis. These findings shed light on the role of tumour stroma in promoting metastasis and have therapeutic implications for cancer therapy. Elevated IL-33 levels have been correlated with metastasis and poor prognosis. Here the authors show in mouse tumour xenograft models that PDGF-BB produced by tumour cells induces IL-33 via Sox7 in tumour pericytes, and IL-33 promotes metastasis through its effects on tumour-associated macrophages.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Patrik Andersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Yin Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Renhai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Hideki Iwamoto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Xiaojuan Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Masaki Nakamura
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Jian Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Rujie Zhuang
- The TCM Hospital of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Hiromasa Morikawa
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Yuan Xue
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Harald Braun
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.,Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center VIB, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.,Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center VIB, B-9052 Ghent, Belgium
| | - Nilesh Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Steen Dissing
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200N Copenhagen, Denmark
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Robert Langer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.,Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK.,Department of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
40
|
Endocrine vasculatures are preferable targets of an antitumor ineffective low dose of anti-VEGF therapy. Proc Natl Acad Sci U S A 2016; 113:4158-63. [PMID: 27035988 DOI: 10.1073/pnas.1601649113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Anti-VEGF-based antiangiogenic drugs are designed to block tumor angiogenesis for treatment of cancer patients. However, anti-VEGF drugs produce off-tumor target effects on multiple tissues and organs and cause broad adverse effects. Here, we show that vasculatures in endocrine organs were more sensitive to anti-VEGF treatment than tumor vasculatures. In thyroid, adrenal glands, and pancreatic islets, systemic treatment with low doses of an anti-VEGF neutralizing antibody caused marked vascular regression, whereas tumor vessels remained unaffected. Additionally, a low dose of VEGF blockade significantly inhibited the formation of thyroid vascular fenestrae, leaving tumor vascular structures unchanged. Along with vascular structural changes, the low dose of VEGF blockade inhibited vascular perfusion and permeability in thyroid, but not in tumors. Prolonged treatment with the low-dose VEGF blockade caused hypertension and significantly decreased circulating levels of thyroid hormone free-T3 and -T4, leading to functional impairment of thyroid. These findings show that the fenestrated microvasculatures in endocrine organs are more sensitive than tumor vasculatures in response to systemic anti-VEGF drugs. Thus, our data support the notion that clinically nonbeneficial treatments with anti-VEGF drugs could potentially cause adverse effects.
Collapse
|
41
|
Rajamanickam S, Panneerdoss S, Gorthi A, Timilsina S, Onyeagucha B, Kovalskyy D, Ivanov D, Hanes MA, Vadlamudi RK, Chen Y, Bishop AJ, Arbiser JL, Rao MK. Inhibition of FoxM1-Mediated DNA Repair by Imipramine Blue Suppresses Breast Cancer Growth and Metastasis. Clin Cancer Res 2016; 22:3524-36. [PMID: 26927663 DOI: 10.1158/1078-0432.ccr-15-2535] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/17/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE The approaches aimed at inhibiting the ability of cancer cells to repair DNA strand breaks have emerged as promising targets for treating cancers. Here, we assessed the potential of imipramine blue (IB), a novel analogue of antidepressant imipramine, to suppress breast cancer growth and metastasis by inhibiting the ability of breast cancer cells to repair DNA strand breaks by homologous recombination (HR). EXPERIMENTAL DESIGN The effect of IB on breast cancer growth and metastasis was assessed in vitro as well as in preclinical mouse models. Besides, the therapeutic efficacy and safety of IB was determined in ex vivo explants from breast cancer patients. The mechanism of action of IB was evaluated by performing gene-expression, drug-protein interaction, cell-cycle, and DNA repair studies. RESULTS We show that the systemic delivery of IB using nanoparticle-based delivery approach suppressed breast cancer growth and metastasis without inducing toxicity in preclinical mouse models. Using ex vivo explants from breast cancer patients, we demonstrated that IB inhibited breast cancer growth without affecting normal mammary epithelial cells. Furthermore, our mechanistic studies revealed that IB may interact and inhibit the activity of proto-oncogene FoxM1 and associated signaling that play critical roles in HR-mediated DNA repair. CONCLUSIONS These findings highlight the potential of IB to be applied as a safe regimen for treating breast cancer patients. Given that FoxM1 is an established therapeutic target for several cancers, the identification of a compound that inhibits FoxM1- and FoxM1-mediated DNA repair has immense translational potential for treating many aggressive cancers. Clin Cancer Res; 22(14); 3524-36. ©2016 AACR.
Collapse
Affiliation(s)
- Subapriya Rajamanickam
- Department of Cell and Structure Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas. Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Subbarayalu Panneerdoss
- Department of Cell and Structure Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas. Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Aparna Gorthi
- Department of Cell and Structure Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas. Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Santosh Timilsina
- Department of Cell and Structure Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas. Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Benjamin Onyeagucha
- Department of Cell and Structure Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas. Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Dmitri Ivanov
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Martha A Hanes
- Department of Laboratory Animal Resources, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas. Department of Epidemiology and Statistics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Alexander J Bishop
- Department of Cell and Structure Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas. Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jack L Arbiser
- Emory School of Medicine, Atlanta, Georgia. Veterans Administration Medical Center, Atlanta, Georgia
| | - Manjeet K Rao
- Department of Cell and Structure Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas. Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas.
| |
Collapse
|
42
|
Zhou M, Wang J, Wang W, Huang W, Ding X, Zhang X. Placenta Growth Factor in Eyes with Neovascular Glaucoma Is Decreased after Intravitreal Ranibizumab Injection. PLoS One 2016; 11:e0146993. [PMID: 26785251 PMCID: PMC4718677 DOI: 10.1371/journal.pone.0146993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/28/2015] [Indexed: 12/31/2022] Open
Abstract
Purpose To evaluate changes in the concentrations of placental growth factor (PlGF) and vascular endothelial growth factor-A (VEGF-A) in aqueous humor of patients with neovascular glaucoma (NVG) before and after an intravitreal injection of ranibizumab (IVR) and to determine the underlying correlation between the levels. Methods The prospective interventional comparative study involved 20 eyes of 20 patients with surgery-required advanced NVG and 20 control subjects from January 2013 to November 2013. The NVG eyes received the IVR treatment before glaucoma surgery. Aqueous humor was collected at the time of the IVR injection (pre- IVR) and at the time of antiglaucomatous surgery (post-IVR). Aqueous humor was also collected at the time of cataract surgery in normal control. Aqueous humor and plasma VEGF-A and PlGF levels were measured with an enzyme-linked immunosorbent assay methods, respectively. Results The mean aqueous humor PlGF and VEGF-A concentrations in the pre-IVR eyes were significantly higher than in those of the control subjects (p<0.001), whereas the plasma levels showed no significant difference. There was a statistically significant correlation between the aqueous humor PlGF and the VEGF-A concentration (r = 0.612, p = 0.003). The mean aqueous humor PlGF in the post-IVR eyes dramatically decreased from 1078.36 ± 755.83 to 177.64 ± 151.73 pg/mL (p<0.001). The VEGF-A level showed a similar trend from 3697.64 ± 2104.47 pg/mL to 183.54 ± 130.35 pg/mL (p<0.001). Conclusions Aqueous humor concentrations of VEGF-A and PlGF were significantly elevated in the eyes with NVG, and there was a positive correlation between the levels. After an IVR treatment, VEGF-A and PlGF were significantly decreased in NVG eyes.
Collapse
Affiliation(s)
- Minwen Zhou
- Department of Ophthalmology, Shanghai First People’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
- Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Jiawei Wang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Wei Wang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Wenbin Huang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Xiaoyan Ding
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Xiulan Zhang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
43
|
Vandewynckel YP, Laukens D, Devisscher L, Bogaerts E, Paridaens A, Van den Bussche A, Raevens S, Verhelst X, Van Steenkiste C, Jonckx B, Libbrecht L, Geerts A, Carmeliet P, Van Vlierberghe H. Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma. BMC Cancer 2016; 16:9. [PMID: 26753564 PMCID: PMC4707726 DOI: 10.1186/s12885-015-1990-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. We previously showed that the inhibition of placental growth factor (PlGF) exerts antitumour effects and induces vessel normalisation, possibly reducing hypoxia. However, the exact mechanism underlying these effects remains unclear. Because hypoxia and endoplasmic reticulum stress, which activates the unfolded protein response (UPR), have been implicated in HCC progression, we assessed the interactions between PlGF and these microenvironmental stresses. Methods PlGF knockout mice and validated monoclonal anti-PlGF antibodies were used in a diethylnitrosamine-induced mouse model for HCC. We examined the interactions among hypoxia, UPR activation and PlGF induction in HCC cells. Results Both the genetic and pharmacological inhibitions of PlGF reduced the chaperone levels and the activation of the PKR-like endoplasmic reticulum kinase (PERK) pathway of the UPR in diethylnitrosamine-induced HCC. Furthermore, we identified that tumour hypoxia was attenuated, as shown by reduced pimonidazole binding. Interestingly, hypoxic exposure markedly activated the PERK pathway in HCC cells in vitro, suggesting that PlGF inhibition may diminish PERK activation by improving oxygen delivery. We also found that PlGF expression is upregulated by different chemical UPR inducers via activation of the inositol-requiring enzyme 1 pathway in HCC cells. Conclusions PlGF inhibition attenuates PERK activation, likely by tempering hypoxia in HCC via vessel normalisation. The UPR, in turn, is able to regulate PlGF expression, suggesting the existence of a feedback mechanism for hypoxia-mediated UPR that promotes the expression of the angiogenic factor PlGF. These findings have important implications for our understanding of the effect of therapies normalising tumour vasculature. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1990-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yves-Paul Vandewynckel
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Debby Laukens
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Lindsey Devisscher
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Eliene Bogaerts
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Annelies Paridaens
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Anja Van den Bussche
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Sarah Raevens
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Xavier Verhelst
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Christophe Van Steenkiste
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | | | - Louis Libbrecht
- Department of Pathology, Ghent University Hospital, Ghent, Belgium.
| | - Anja Geerts
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Centre, KU Leuven, Leuven, Belgium. .,Laboratory of Angiogenesis & Neurovascular Link, Vesalius Research Centre, VIB, Leuven, Belgium.
| | - Hans Van Vlierberghe
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| |
Collapse
|
44
|
Zhang J, Jiang X, Jiang Y, Guo M, Zhang S, Li J, He J, Liu J, Wang J, Ouyang L. Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs. Eur J Med Chem 2015; 108:495-504. [PMID: 26717201 DOI: 10.1016/j.ejmech.2015.12.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 12/05/2015] [Accepted: 12/10/2015] [Indexed: 02/05/2023]
Abstract
Vascular endothelial growth factor receptor (VEGFR) is a very important receptor tyrosine kinase (RTK) that can induce angiogenesis, increase cell growth and metastasis, reduce apoptosis, alter cytoskeletal function, and affect other biologic changes. Moreover, it is identified to be deregulated in varieties of human cancers. Therefore, VEGFR turn out to be a remarkable target of significant types of anticancer drugs in clinical trials. On the other side, c-Met is the receptor of hepatocyte growth factor (HGF) and a receptor tyrosine kinase. Previous studies have shown that c-Met elicits many different signaling pathways mediating cell proliferation, migration, differentiation, and survival. Furthermore, the correlation between aberrant signaling of the HGF/c-Met pathway and aggressive tumor growth, poor prognosis in cancer patients has been established. Recent reports had shown that c-Met/HGF and VEGFR/VEGF (vascular endothelial growth factor) can act synergistically in the progression of many diseases. They were also found to be over expressed in many human cancers. Thus, in a variety of malignancies, VEGFR and c-Met receptor tyrosine kinases have acted as therapeutic targets. With the development of molecular biology techniques, further understanding of the human tumor disease pathogenesis and interrelated signaling pathways known to tumor cells, using a single target inhibitors have been difficult to achieve the desired therapeutic effect. At this point, with respect to the combination of two inhibitors, a single compound which is able to inhibit both VEGFR and c-Met may put forward the advantage of raising anticancer activity. With the strong interest in these compounds, this review represents a renewal of previous works on the development of dual VEGFR and c-Met small molecule inhibitors as novel anti-cancer agents. Newly collection derivatives have been mainly describing in their biological profiles and chemical structures.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiangdong Jiang
- Department of Information Engineering, Chongqing Vocational Institute of Safety Technology, Chongqing, 404020, China
| | - Yingnan Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingrui Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Shouyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jingjing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Jinhui Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China.
| |
Collapse
|
45
|
Liu Y, Li B, Wang X, Li G, Shang R, Yang J, Wang J, Zhang M, Chen Y, Zhang Y, Zhang C, Hao P. Angiotensin-(1-7) Suppresses Hepatocellular Carcinoma Growth and Angiogenesis via Complex Interactions of Angiotensin II Type 1 Receptor, Angiotensin II Type 2 Receptor and Mas Receptor. Mol Med 2015. [PMID: 26225830 DOI: 10.2119/molmed.2015.00022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently confirmed that angiotensin II (Ang II) type 1 receptor (AT1R) was overexpressed in hepatocellular carcinoma tissue using a murine hepatoma model. Angiotensin(Ang)-(1-7) has been found beneficial in ameliorating lung cancer and prostate cancer. Which receptor of Ang-(1-7) is activated to mediate its effects is much speculated. This study was designed to investigate the effects of Ang-(1-7) on hepatocellular carcinoma, as well as the probable mechanisms. H22 hepatoma-bearing mice were randomly divided into five groups for treatment: mock group, low-dose Ang-(1-7), high-dose Ang-(1-7), high-dose Ang-(1-7) + A779 and high-dose Ang-(1-7) + PD123319. Ang-(1-7) treatment inhibited tumor growth time- and dose-dependently by arresting tumor proliferation and promoting tumor apoptosis as well as inhibiting tumor angiogenesis. The effects of Ang-(1-7) on tumor proliferation and apoptosis were reversed by coadministration with A779 or PD123319, whereas the effects on tumor angiogenesis were completely reversed by A779 but not by PD123319. Moreover, Ang-(1-7) downregulated AT1R mRNA, upregulated mRNA levels of Ang II type 2 receptor (AT2R) and Mas receptor (MasR) and p38-MAPK phosphorylation and suppressed H22 cell-endothelial cell communication. Thus, Ang-(1-7) administration suppresses hepatocellular carcinoma via complex interactions of AT1R, AT2R and MasR and may provide a novel and promising approach for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yanping Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Cardiovascular and Cerebrovascular Disease, Shandong Provincial Medical Imaging Institute, Shandong University, Jinan, Shandong, China
| | - Bin Li
- Jinan Central Hospital, Affiliated with Shandong University, Jinan, Shandong, China
| | - Ximing Wang
- Shandong Key Laboratory of Cardiovascular and Cerebrovascular Disease, Shandong Provincial Medical Imaging Institute, Shandong University, Jinan, Shandong, China
| | - Guishuang Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Rui Shang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jianmin Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jiali Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yuguo Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Panpan Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
46
|
Yi B, Titze J, Rykova M, Feuerecker M, Vassilieva G, Nichiporuk I, Schelling G, Morukov B, Choukèr A. Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res 2015; 166:103-10. [PMID: 25497276 PMCID: PMC5538905 DOI: 10.1016/j.trsl.2014.11.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 12/14/2022]
Abstract
Increasing evidence indicated that excess salt consumption can impose risks on human health and a reduction in daily salt intake from the current average of approximately 12 g/d to 5-6 g/d was suggested by public health authorities. The studies on mice have revealed that sodium chloride plays a role in the modulation of the immune system and a high-salt diet can promote tissue inflammation and autoimmune disease. However, translational evidence of dietary salt on human immunity is scarce. We used an experimental approach of fixing salt intake of healthy human subjects at 12, 9, and 6 g/d for months and examined the relationship between salt-intake levels and changes in the immune system. Blood samples were taken from the end point of each salt intake period. Immune phenotype changes were monitored through peripheral leukocyte phenotype analysis. We assessed immune function changes through the characterization of cytokine profiles in response to mitogen stimulation. The results showed that subjects on the high-salt diet of 12 g/d displayed a significantly higher number of immune cell monocytes compared with the same subjects on a lower-salt diet, and correlation test revealed a strong positive association between salt-intake levels and monocyte numbers. The decrease in salt intake was accompanied by reduced production of proinflammatory cytokines interleukin (IL)-6 and IL-23, along with enhanced producing ability of anti-inflammatory cytokine IL-10. These results suggest that in healthy humans high-salt diet has a potential to bring about excessive immune response, which can be damaging to immune homeostasis, and a reduction in habitual dietary salt intake may induce potentially beneficial immune alterations.
Collapse
Affiliation(s)
- Buqing Yi
- Hospital of the University of Munich (LMU), Department of Anaesthesiology, Munich, Germany
| | - Jens Titze
- Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University, Erlangen, Germany; Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen, Germany; Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Marina Rykova
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - Matthias Feuerecker
- Hospital of the University of Munich (LMU), Department of Anaesthesiology, Munich, Germany
| | | | - Igor Nichiporuk
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - Gustav Schelling
- Hospital of the University of Munich (LMU), Department of Anaesthesiology, Munich, Germany
| | - Boris Morukov
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - Alexander Choukèr
- Hospital of the University of Munich (LMU), Department of Anaesthesiology, Munich, Germany.
| |
Collapse
|
47
|
VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients. Proc Natl Acad Sci U S A 2015; 112:E2900-9. [PMID: 25991856 DOI: 10.1073/pnas.1503500112] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The biological functions of VEGF-B in cancer progression remain poorly understood. Here, we report that VEGF-B promotes cancer metastasis through the remodeling of tumor microvasculature. Knockdown of VEGF-B in tumors resulted in increased perivascular cell coverage and impaired pulmonary metastasis of human melanomas. In contrast, the gain of VEGF-B function in tumors led to pseudonormalized tumor vasculatures that were highly leaky and poorly perfused. Tumors expressing high levels of VEGF-B were more metastatic, although primary tumor growth was largely impaired. Similarly, VEGF-B in a VEGF-A-null tumor resulted in attenuated primary tumor growth but substantial pulmonary metastases. VEGF-B also led to highly metastatic phenotypes in Vegfr1 tk(-/-) mice and mice treated with anti-VEGF-A. These data indicate that VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism. High expression levels of VEGF-B in two large-cohort studies of human patients with lung squamous cell carcinoma and melanoma correlated with poor survival. Taken together, our findings demonstrate that VEGF-B is a vascular remodeling factor promoting cancer metastasis and that targeting VEGF-B may be an important therapeutic approach for cancer metastasis.
Collapse
|
48
|
Iwamoto H, Zhang Y, Seki T, Yang Y, Nakamura M, Wang J, Yang X, Torimura T, Cao Y. PlGF-induced VEGFR1-dependent vascular remodeling determines opposing antitumor effects and drug resistance to Dll4-Notch inhibitors. SCIENCE ADVANCES 2015; 1:e1400244. [PMID: 26601163 PMCID: PMC4640632 DOI: 10.1126/sciadv.1400244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/11/2015] [Indexed: 06/05/2023]
Abstract
Inhibition of Dll4 (delta-like ligand 4)-Notch signaling-mediated tumor angiogenesis is an attractive approach in cancer therapy. However, inhibition of Dll4-Notch signaling has produced different effects in various tumors, and no biomarkers are available for predicting the anti-Dll4-Notch-associated antitumor activity. We show that human and mouse tumor cell-derived placental growth factor (PlGF) is a key determinant of the Dll4-Notch-induced vascular remodeling and tumor growth. In natural PlGF-expressing human tumors, inhibition of Dll4-Notch signaling markedly accelerated tumor growth by increasing blood perfusion in nonleaking tumor vasculatures. Conversely, in PlGF-negative tumors, Dll4 inhibition suppressed tumor growth by the formation of nonproductive and leaky vessels. Surprisingly, genetic inactivation of vascular endothelial growth factor receptor 1 (VEGFR1) completely abrogated the PlGF-modulated vascular remodeling and tumor growth, indicating a crucial role for VEGFR1-mediated signals in modulating Dll4-Notch functions. These findings provide mechanistic insights on PlGF-VEGFR1 signaling in the modulation of the Dll4-Notch pathway in angiogenesis and tumor growth, and have therapeutic implications of PlGF as a biomarker for predicting the antitumor benefits of Dll4 and Notch inhibitors.
Collapse
Affiliation(s)
- Hideki Iwamoto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Yin Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Yunlong Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Masaki Nakamura
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Jian Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Xiaojuan Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, People’s Republic of China
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 831 0011 Kurume, Japan
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
- Department of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden
- Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
49
|
Aguirre Palma LM, Gehrke I, Kreuzer KA. Angiogenic factors in chronic lymphocytic leukaemia (CLL): Where do we stand? Crit Rev Oncol Hematol 2014; 93:225-36. [PMID: 25459668 DOI: 10.1016/j.critrevonc.2014.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/23/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
The role of angiogenesis in haematological malignancies such as chronic lymphocytic leukaemia (CLL) is difficult to envision, because leukaemia cells are not dependent on a network of blood vessels to support basic physiological requirements. Regardless, CLL cells secrete high levels of major angiogenic factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF). Nonetheless, it remains unclear how most angiogenic factors regulate accumulation and delayed apoptosis of CLL cells. Angiogenic factors such as leptin, granulocyte colony-stimulating factor (G-CSF), follistatin, angiopoietin-1 (Ang1), angiogenin (ANG), midkine (MK), pleiotrophin (PTN), progranulin (PGRN), proliferin (PLF), placental growth factor (PIGF), and endothelial locus-1 (Del-1), represent novel therapeutic targets of future CLL research but have remained widely overlooked. This review aims to outline our current understanding of angiogenic growth factors and their relationship with CLL, a still uncured haematopoietic malignancy.
Collapse
Affiliation(s)
| | - Iris Gehrke
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB, Canada.
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
50
|
|