1
|
Bardo MT, Charnigo RJ, Shaykin JD, Malone SG, Ortinski PI, Turner JR. Modeling escalation of drug intake to identify molecular targets for treating substance use disorders: A slippery slope upward. Neurosci Biobehav Rev 2025; 174:106175. [PMID: 40280289 DOI: 10.1016/j.neubiorev.2025.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Among the various checklist items used to diagnose substance use disorders (SUDs), the most recent version of the Diagnostic and Statistical Manual (DSM-5) begins with three items that imply a loss of control characterized by taking increasingly larger amounts of the drug and for longer periods. This process, often called "escalation", has been modeled in laboratory animals with the goal of identifying the mechanisms associated with SUDs. The current review first summarizes the different interpretations used to explain escalation of drug intake. Next, we examine the various ways that escalation of intake has been defined in clinical populations and how preclinical models have captured this phenomenon in the laboratory. Next, we critically discuss the key issues relevant to statistical modeling of escalation of drug intake in both humans and non-human animals, with the goal of quantifying individual differences in escalation behavior that may be useful for identifying a SUD "phenotype". Although both preclinical and clinical data rarely consider individual differences in escalation as a discrete factor, we also summarize findings indicating that common models of escalated drug intake are associated with specific genetic and cellular changes. Building on this framework of investigation is intended to offer insights in understanding the trajectory of SUDs, thus uncovering novel avenues for prevention and treatment.
Collapse
Affiliation(s)
- M T Bardo
- Department of Psychology, College of Arts and Sciences, University of Kentucky, USA.
| | - R J Charnigo
- Department of Biostatistics, College of Public Health, University of Kentucky, USA
| | - J D Shaykin
- Department of Psychology, College of Arts and Sciences, University of Kentucky, USA
| | - S G Malone
- Department of Psychology, College of Arts and Sciences, University of Kentucky, USA
| | - P I Ortinski
- Department of Neuroscience, College of Medicine, University of Kentucky, USA
| | - J R Turner
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, USA
| |
Collapse
|
2
|
Jæger KH, Tveito A. A possible path to persistent re-entry waves at the outlet of the left pulmonary vein. NPJ Syst Biol Appl 2024; 10:79. [PMID: 39043674 PMCID: PMC11266599 DOI: 10.1038/s41540-024-00406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Atrial fibrillation (AF) is the most common form of cardiac arrhythmia, often evolving from paroxysmal episodes to persistent stages over an extended timeframe. While various factors contribute to this progression, the precise biophysical mechanisms driving it remain unclear. Here we explore how rapid firing of cardiomyocytes at the outlet of the pulmonary vein of the left atria can create a substrate for a persistent re-entry wave. This is grounded in a recently formulated mathematical model of the regulation of calcium ion channel density by intracellular calcium concentration. According to the model, the number of calcium channels is controlled by the intracellular calcium concentration. In particular, if the concentration increases above a certain target level, the calcium current is weakened to restore the target level of calcium. During rapid pacing, the intracellular calcium concentration of the cardiomyocytes increases leading to a substantial reduction of the calcium current across the membrane of the myocytes, which again reduces the action potential duration. In a spatially resolved cell-based model of the outlet of the pulmonary vein of the left atria, we show that the reduced action potential duration can lead to re-entry. Initiated by rapid pacing, often stemming from paroxysmal AF episodes lasting several days, the reduction in calcium current is a critical factor. Our findings illustrate how such episodes can foster a conducive environment for persistent AF through electrical remodeling, characterized by diminished calcium currents. This underscores the importance of promptly addressing early AF episodes to prevent their progression to chronic stages.
Collapse
Affiliation(s)
| | - Aslak Tveito
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| |
Collapse
|
3
|
Khamis H, Cohen O. Coupled action potential and calcium dynamics underlie robust spontaneous firing in dopaminergic neurons. Phys Biol 2024; 21:026005. [PMID: 38382117 DOI: 10.1088/1478-3975/ad2bd4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Dopaminergic neurons are specialized cells in the substantia nigra, tasked with dopamine secretion. This secretion relies on intracellular calcium signaling coupled to neuronal electrical activity. These neurons are known to display spontaneous calcium oscillationsin-vitroandin-vivo, even in synaptic isolation, controlling the basal dopamine levels. Here we outline a kinetic model for the ion exchange across the neuronal plasma membrane. Crucially, we relax the assumption of constant, cytoplasmic sodium and potassium concentration. We show that sodium-potassium dynamics are strongly coupled to calcium dynamics and are essential for the robustness of spontaneous firing frequency. The model predicts several regimes of electrical activity, including tonic and 'burst' oscillations, and predicts the switch between those in response to perturbations. 'Bursting' correlates with increased calcium amplitudes, while maintaining constant average, allowing for a vast change in the calcium signal responsible for dopamine secretion. All the above traits provide the flexibility to create rich action potential dynamics that are crucial for cellular function.
Collapse
Affiliation(s)
- Hadeel Khamis
- Gateway Institute for Brain Research, Fort Lauderdale, FL 33314, United States of America
| | - Ohad Cohen
- Gateway Institute for Brain Research, Fort Lauderdale, FL 33314, United States of America
| |
Collapse
|
4
|
Jæger KH, Charwat V, Wall S, Healy KE, Tveito A. Do calcium channel blockers applied to cardiomyocytes cause increased channel expression resulting in reduced efficacy? NPJ Syst Biol Appl 2024; 10:22. [PMID: 38429306 PMCID: PMC10907638 DOI: 10.1038/s41540-024-00347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024] Open
Abstract
In the initial hours following the application of the calcium channel blocker (CCB) nifedipine to microtissues consisting of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we observe notable variations in the drug's efficacy. Here, we investigate the possibility that these temporal changes in CCB effects are associated with adaptations in the expression of calcium ion channels in cardiomyocyte membranes. To explore this, we employ a recently developed mathematical model that delineates the regulation of calcium ion channel expression by intracellular calcium concentrations. According to the model, a decline in intracellular calcium levels below a certain target level triggers an upregulation of calcium ion channels. Such an upregulation, if instigated by a CCB, would then counteract the drug's inhibitory effect on calcium currents. We assess this hypothesis using time-dependent measurements of hiPSC-CMs dynamics and by refining an existing mathematical model of myocyte action potentials incorporating the dynamic nature of the number of calcium ion channels. The revised model forecasts that the CCB-induced reduction in intracellular calcium concentrations leads to a subsequent increase in calcium ion channel expression, thereby attenuating the drug's overall efficacy. The data and fit models suggest that dynamic changes in cardiac cells in the presence of CCBs may be explainable by induced changes in protein expression, and that this may lead to challenges in understanding calcium based drug effects on the heart unless timings of applications are carefully considered.
Collapse
Affiliation(s)
| | | | - Samuel Wall
- Simula Research Laboratory, Oslo, Norway
- Organos Inc., Berkeley, CA, USA
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Department of Material Science and Engineering, University of California, Berkeley, CA, USA
| | | |
Collapse
|
5
|
Ratliff A, Pekala D, Wenner P. Plasticity in Preganglionic and Postganglionic Neurons of the Sympathetic Nervous System during Embryonic Development. eNeuro 2023; 10:ENEURO.0297-23.2023. [PMID: 37833062 PMCID: PMC10630925 DOI: 10.1523/eneuro.0297-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Sympathetic preganglionic neurons (SPNs) are the final output neurons from the central arm of the autonomic nervous system. Therefore, SPNs represent a crucial component of the sympathetic nervous system for integrating several inputs before driving the postganglionic neurons (PGNs) in the periphery to control end organ function. The mechanisms which establish and regulate baseline sympathetic tone and overall excitability of SPNs and PGNs are poorly understood. The SPNs are also known as the autonomic motoneurons (MNs) as they arise from the same progenitor line as somatic MNs that innervate skeletal muscles. Previously our group has identified a rich repertoire of homeostatic plasticity (HP) mechanisms in somatic MNs of the embryonic chick following in vivo synaptic blockade. Here, using the same model system, we examined whether SPNs exhibit similar homeostatic capabilities to that of somatic MNs. Indeed, we found that after 2-d reduction of excitatory synaptic input, SPNs showed a significant increase in intracellular chloride levels, the mechanism underlying GABAergic synaptic scaling in this system. This form of HP could therefore play a role in the early establishment of a setpoint of excitability in this part of the sympathetic nervous system. Next, we asked whether homeostatic mechanisms are expressed in the synaptic targets of SPNs, the PGNs. In this case we blocked synaptic input to PGNs in vivo (48-h treatment), or acutely ex vivo, however neither treatment induced homeostatic adjustments in PGN excitability. We discuss differences in the homeostatic capacity between the central and peripheral component of the sympathetic nervous system.
Collapse
Affiliation(s)
- April Ratliff
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Dobromila Pekala
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Peter Wenner
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
6
|
Dhyani V, George K, Gare S, Venkatesh KV, Mitra K, Giri L. A computational model to uncover the biophysical underpinnings of neural firing heterogeneity in dissociated hippocampal cultures. Hippocampus 2023; 33:1208-1227. [PMID: 37705290 DOI: 10.1002/hipo.23575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
Calcium (Ca2+ ) imaging reveals a variety of correlated firing in cultures of dissociated hippocampal neurons, pinpointing the non-synaptic paracrine release of glutamate as a possible mediator for such firing patterns, although the biophysical underpinnings remain unknown. An intriguing possibility is that extracellular glutamate could bind metabotropic receptors linked with inositol trisphosphate (IP3 ) mediated release of Ca2+ from the endoplasmic reticulum of individual neurons, thereby modulating neural activity in combination with sarco/endoplasmic reticulum Ca2+ transport ATPase (SERCA) and voltage-gated Ca2+ channels (VGCC). However, the possibility that such release may occur in different neuronal compartments and can be inherently stochastic poses challenges in the characterization of such interplay between various Ca2+ channels. Here we deploy biophysical modeling in association with Monte Carlo parameter sampling to characterize such interplay and successfully predict experimentally observed Ca2+ patterns. The results show that the neurotransmitter level at the plasma membrane is the extrinsic source of heterogeneity in somatic Ca2+ transients. Our analysis, in particular, identifies the origin of such heterogeneity to an intrinsic differentiation of hippocampal neurons in terms of multiple cellular properties pertaining to intracellular Ca2+ signaling, such as VGCC, IP3 receptor, and SERCA expression. In the future, the biophysical model and parameter estimation approach used in this study can be upgraded to predict the response of a system of interconnected neurons.
Collapse
Affiliation(s)
- Vaibhav Dhyani
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Optical Science Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Kevin George
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Suman Gare
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Kishalay Mitra
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
7
|
Stein W, Torres G, Giménez L, Espinosa-Novo N, Geißel JP, Vidal-Gadea A, Harzsch S. Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit. Front Cell Neurosci 2023; 17:1263591. [PMID: 37920203 PMCID: PMC10619761 DOI: 10.3389/fncel.2023.1263591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction At the cellular level, acute temperature changes alter ionic conductances, ion channel kinetics, and the activity of entire neuronal circuits. This can result in severe consequences for neural function, animal behavior and survival. In poikilothermic animals, and particularly in aquatic species whose core temperature equals the surrounding water temperature, neurons experience rather rapid and wide-ranging temperature fluctuations. Recent work on pattern generating neural circuits in the crustacean stomatogastric nervous system have demonstrated that neuronal circuits can exhibit an intrinsic robustness to temperature fluctuations. However, considering the increased warming of the oceans and recurring heatwaves due to climate change, the question arises whether this intrinsic robustness can acclimate to changing environmental conditions, and whether it differs between species and ocean habitats. Methods We address these questions using the pyloric pattern generating circuits in the stomatogastric nervous system of two crab species, Hemigrapsus sanguineus and Carcinus maenas that have seen a worldwide expansion in recent decades. Results and discussion Consistent with their history as invasive species, we find that pyloric activity showed a broad temperature robustness (>30°C). Moreover, the temperature-robust range was dependent on habitat temperature in both species. Warm-acclimating animals shifted the critical temperature at which circuit activity breaks down to higher temperatures. This came at the cost of robustness against cold stimuli in H. sanguineus, but not in C. maenas. Comparing the temperature responses of C. maenas from a cold latitude (the North Sea) to those from a warm latitude (Spain) demonstrated that similar shifts in robustness occurred in natural environments. Our results thus demonstrate that neuronal temperature robustness correlates with, and responds to, environmental temperature conditions, potentially preparing animals for changing ecological conditions and shifting habitats.
Collapse
Affiliation(s)
- Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- Stiftung Alfried Krupp Kolleg Greifswald, Greifswald, Germany
| | - Gabriela Torres
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Luis Giménez
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
- School of Ocean Sciences, Bangor University, Bangor, United Kingdom
| | - Noé Espinosa-Novo
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Jan Phillipp Geißel
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Andrés Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Alonso LM, Rue MCP, Marder E. Gating of homeostatic regulation of intrinsic excitability produces cryptic long-term storage of prior perturbations. Proc Natl Acad Sci U S A 2023; 120:e2222016120. [PMID: 37339223 PMCID: PMC10293857 DOI: 10.1073/pnas.2222016120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Neurons and neuronal circuits must maintain their function throughout the life of the organism despite changing environments. Previous theoretical and experimental work suggests that neurons monitor their activity using intracellular calcium concentrations to regulate their intrinsic excitability. Models with multiple sensors can distinguish among different patterns of activity, but previous work using models with multiple sensors produced instabilities that lead the models' conductances to oscillate and then to grow without bound and diverge. We now introduce a nonlinear degradation term that explicitly prevents the maximal conductances to grow beyond a bound. We combine the sensors' signals into a master feedback signal that can be used to modulate the timescale of conductance evolution. Effectively, this means that the negative feedback can be gated on and off according to how far the neuron is from its target. The modified model recovers from multiple perturbations. Interestingly, depolarizing the models to the same membrane potential with current injection or with simulated high extracellular K+ produces different changes in conductances, arguing that caution must be used in interpreting manipulations that serve as a proxy for increased neuronal activity. Finally, these models accrue traces of prior perturbations that are not visible in their control activity after perturbation but that shape their responses to subsequent perturbations. These cryptic or hidden changes may provide insight into disorders such as posttraumatic stress disorder that only become visible in response to specific perturbations.
Collapse
Affiliation(s)
- Leandro M. Alonso
- Volen Center and Biology Department, Brandeis University, Waltham, MA02454
| | - Mara C. P. Rue
- Volen Center and Biology Department, Brandeis University, Waltham, MA02454
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA02454
| |
Collapse
|
9
|
Yang J, Prescott SA. Homeostatic regulation of neuronal function: importance of degeneracy and pleiotropy. Front Cell Neurosci 2023; 17:1184563. [PMID: 37333893 PMCID: PMC10272428 DOI: 10.3389/fncel.2023.1184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Neurons maintain their average firing rate and other properties within narrow bounds despite changing conditions. This homeostatic regulation is achieved using negative feedback to adjust ion channel expression levels. To understand how homeostatic regulation of excitability normally works and how it goes awry, one must consider the various ion channels involved as well as the other regulated properties impacted by adjusting those channels when regulating excitability. This raises issues of degeneracy and pleiotropy. Degeneracy refers to disparate solutions conveying equivalent function (e.g., different channel combinations yielding equivalent excitability). This many-to-one mapping contrasts the one-to-many mapping described by pleiotropy (e.g., one channel affecting multiple properties). Degeneracy facilitates homeostatic regulation by enabling a disturbance to be offset by compensatory changes in any one of several different channels or combinations thereof. Pleiotropy complicates homeostatic regulation because compensatory changes intended to regulate one property may inadvertently disrupt other properties. Co-regulating multiple properties by adjusting pleiotropic channels requires greater degeneracy than regulating one property in isolation and, by extension, can fail for additional reasons such as solutions for each property being incompatible with one another. Problems also arise if a perturbation is too strong and/or negative feedback is too weak, or because the set point is disturbed. Delineating feedback loops and their interactions provides valuable insight into how homeostatic regulation might fail. Insofar as different failure modes require distinct interventions to restore homeostasis, deeper understanding of homeostatic regulation and its pathological disruption may reveal more effective treatments for chronic neurological disorders like neuropathic pain and epilepsy.
Collapse
Affiliation(s)
- Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Steven A. Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Zang Y, Marder E, Marom S. Sodium channel slow inactivation normalizes firing in axons with uneven conductance distributions. Curr Biol 2023; 33:1818-1824.e3. [PMID: 37023754 PMCID: PMC10175232 DOI: 10.1016/j.cub.2023.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
The Na+ channels that are important for action potentials show rapid inactivation, a state in which they do not conduct, although the membrane potential remains depolarized.1,2 Rapid inactivation is a determinant of millisecond-scale phenomena, such as spike shape and refractory period. Na+ channels also inactivate orders of magnitude more slowly, and this slow inactivation has impacts on excitability over much longer timescales than those of a single spike or a single inter-spike interval.3,4,5,6,7,8,9,10 Here, we focus on the contribution of slow inactivation to the resilience of axonal excitability11,12 when ion channels are unevenly distributed along the axon. We study models in which the voltage-gated Na+ and K+ channels are unevenly distributed along axons with different variances, capturing the heterogeneity that biological axons display.13,14 In the absence of slow inactivation, many conductance distributions result in spontaneous tonic activity. Faithful axonal propagation is achieved with the introduction of Na+ channel slow inactivation. This "normalization" effect depends on relations between the kinetics of slow inactivation and the firing frequency. Consequently, neurons with characteristically different firing frequencies will need to implement different sets of channel properties to achieve resilience. The results of this study demonstrate the importance of the intrinsic biophysical properties of ion channels in normalizing axonal function.
Collapse
Affiliation(s)
- Yunliang Zang
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA
| | - Shimon Marom
- Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
11
|
Moise N, Weinberg SH. Emergent activity, heterogeneity, and robustness in a calcium feedback model of the sinoatrial node. Biophys J 2023; 122:1613-1632. [PMID: 36945778 PMCID: PMC10183324 DOI: 10.1016/j.bpj.2023.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN activity emerges at an early point in life and maintains a steady rhythm for the lifetime of the organism. The ion channel composition and currents of SAN cells can be influenced by a variety of factors. Therefore, the emergent activity and long-term stability imply some form of dynamical feedback control of SAN activity. We adapt a recent feedback model-previously utilized to describe control of ion conductances in neurons-to a model of SAN cells and tissue. The model describes a minimal regulatory mechanism of ion channel conductances via feedback between intracellular calcium and an intrinsic target calcium level. By coupling a SAN cell to the calcium feedback model, we show that spontaneous electrical activity emerges from quiescence and is maintained at steady state. In a 2D SAN tissue model, spatial variability in intracellular calcium targets lead to significant, self-organized heterogeneous ion channel expression and calcium transients throughout the tissue. Furthermore, multiple pacemaking regions appear, which interact and lead to time-varying cycle length, demonstrating that variability in heart rate is an emergent property of the feedback model. Finally, we demonstrate that the SAN tissue is robust to the silencing of leading cells or ion channel knockouts. Thus, the calcium feedback model can reproduce and explain many fundamental emergent properties of activity in the SAN that have been observed experimentally based on a minimal description of intracellular calcium and ion channel regulatory networks.
Collapse
Affiliation(s)
- Nicolae Moise
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
12
|
Abbott MC, Machta BB. Far from Asymptopia: Unbiased High-Dimensional Inference Cannot Assume Unlimited Data. ENTROPY (BASEL, SWITZERLAND) 2023; 25:434. [PMID: 36981323 PMCID: PMC10048238 DOI: 10.3390/e25030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Inference from limited data requires a notion of measure on parameter space, which is most explicit in the Bayesian framework as a prior distribution. Jeffreys prior is the best-known uninformative choice, the invariant volume element from information geometry, but we demonstrate here that this leads to enormous bias in typical high-dimensional models. This is because models found in science typically have an effective dimensionality of accessible behaviors much smaller than the number of microscopic parameters. Any measure which treats all of these parameters equally is far from uniform when projected onto the sub-space of relevant parameters, due to variations in the local co-volume of irrelevant directions. We present results on a principled choice of measure which avoids this issue and leads to unbiased posteriors by focusing on relevant parameters. This optimal prior depends on the quantity of data to be gathered, and approaches Jeffreys prior in the asymptotic limit. However, for typical models, this limit cannot be justified without an impossibly large increase in the quantity of data, exponential in the number of microscopic parameters.
Collapse
|
13
|
Zang Y, Marder E. Neuronal morphology enhances robustness to perturbations of channel densities. Proc Natl Acad Sci U S A 2023; 120:e2219049120. [PMID: 36787352 PMCID: PMC9974411 DOI: 10.1073/pnas.2219049120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/14/2023] [Indexed: 02/15/2023] Open
Abstract
Biological neurons show significant cell-to-cell variability but have the striking ability to maintain their key firing properties in the face of unpredictable perturbations and stochastic noise. Using a population of multi-compartment models consisting of soma, neurites, and axon for the lateral pyloric neuron in the crab stomatogastric ganglion, we explore how rebound bursting is preserved when the 14 channel conductances in each model are all randomly varied. The coupling between the axon and other compartments is critical for the ability of the axon to spike during bursts and consequently determines the set of successful solutions. When the coupling deviates from a biologically realistic range, the neuronal tolerance of conductance variations is lessened. Thus, the gross morphological features of these neurons enhance their robustness to perturbations of channel densities and expand the space of individual variability that can maintain a desired output pattern.
Collapse
Affiliation(s)
- Yunliang Zang
- Volen Center, Brandeis University, Waltham, MA02454
- Department of Biology, Brandeis University, Waltham, MA02454
| | - Eve Marder
- Volen Center, Brandeis University, Waltham, MA02454
- Department of Biology, Brandeis University, Waltham, MA02454
| |
Collapse
|
14
|
Quinn KN, Abbott MC, Transtrum MK, Machta BB, Sethna JP. Information geometry for multiparameter models: new perspectives on the origin of simplicity. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 86:10.1088/1361-6633/aca6f8. [PMID: 36576176 PMCID: PMC10018491 DOI: 10.1088/1361-6633/aca6f8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/29/2022] [Indexed: 05/20/2023]
Abstract
Complex models in physics, biology, economics, and engineering are oftensloppy, meaning that the model parameters are not well determined by the model predictions for collective behavior. Many parameter combinations can vary over decades without significant changes in the predictions. This review uses information geometry to explore sloppiness and its deep relation to emergent theories. We introduce themodel manifoldof predictions, whose coordinates are the model parameters. Itshyperribbonstructure explains why only a few parameter combinations matter for the behavior. We review recent rigorous results that connect the hierarchy of hyperribbon widths to approximation theory, and to the smoothness of model predictions under changes of the control variables. We discuss recent geodesic methods to find simpler models on nearby boundaries of the model manifold-emergent theories with fewer parameters that explain the behavior equally well. We discuss a Bayesian prior which optimizes the mutual information between model parameters and experimental data, naturally favoring points on the emergent boundary theories and thus simpler models. We introduce a 'projected maximum likelihood' prior that efficiently approximates this optimal prior, and contrast both to the poor behavior of the traditional Jeffreys prior. We discuss the way the renormalization group coarse-graining in statistical mechanics introduces a flow of the model manifold, and connect stiff and sloppy directions along the model manifold with relevant and irrelevant eigendirections of the renormalization group. Finally, we discuss recently developed 'intensive' embedding methods, allowing one to visualize the predictions of arbitrary probabilistic models as low-dimensional projections of an isometric embedding, and illustrate our method by generating the model manifold of the Ising model.
Collapse
Affiliation(s)
- Katherine N Quinn
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, United States of America
| | - Michael C Abbott
- Department of Physics, Yale University, New Haven, CT, United States of America
| | - Mark K Transtrum
- Department of Physics and Astronomy, Brigham Young University, Provo, UT, United States of America
| | - Benjamin B Machta
- Department of Physics and Systems Biology Institute, Yale University, New Haven, CT, United States of America
| | - James P Sethna
- Department of Physics, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
15
|
Guarina L, Moghbel AN, Pourhosseinzadeh MS, Cudmore RH, Sato D, Clancy CE, Santana LF. Biological noise is a key determinant of the reproducibility and adaptability of cardiac pacemaking and EC coupling. J Gen Physiol 2022; 154:e202012613. [PMID: 35482009 PMCID: PMC9059386 DOI: 10.1085/jgp.202012613] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Each heartbeat begins with the generation of an action potential in pacemaking cells in the sinoatrial node. This signal triggers contraction of cardiac muscle through a process termed excitation-contraction (EC) coupling. EC coupling is initiated in dyadic structures of cardiac myocytes, where ryanodine receptors in the junctional sarcoplasmic reticulum come into close apposition with clusters of CaV1.2 channels in invaginations of the sarcolemma. Cooperative activation of CaV1.2 channels within these clusters causes a local increase in intracellular Ca2+ that activates the juxtaposed ryanodine receptors. A salient feature of healthy cardiac function is the reliable and precise beat-to-beat pacemaking and amplitude of Ca2+ transients during EC coupling. In this review, we discuss recent discoveries suggesting that the exquisite reproducibility of this system emerges, paradoxically, from high variability at subcellular, cellular, and network levels. This variability is attributable to stochastic fluctuations in ion channel trafficking, clustering, and gating, as well as dyadic structure, which increase intracellular Ca2+ variance during EC coupling. Although the effects of these large, local fluctuations in function and organization are sometimes negligible at the macroscopic level owing to spatial-temporal summation within and across cells in the tissue, recent work suggests that the "noisiness" of these intracellular Ca2+ events may either enhance or counterintuitively reduce variability in a context-dependent manner. Indeed, these noisy events may represent distinct regulatory features in the tuning of cardiac contractility. Collectively, these observations support the importance of incorporating experimentally determined values of Ca2+ variance in all EC coupling models. The high reproducibility of cardiac contraction is a paradoxical outcome of high Ca2+ signaling variability at subcellular, cellular, and network levels caused by stochastic fluctuations in multiple processes in time and space. This underlying stochasticity, which counterintuitively manifests as reliable, consistent Ca2+ transients during EC coupling, also allows for rapid changes in cardiac rhythmicity and contractility in health and disease.
Collapse
Affiliation(s)
- Laura Guarina
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Ariana Neelufar Moghbel
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | | | - Robert H. Cudmore
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Daisuke Sato
- Department of Pharmacology, University of California Davis School of Medicine, Davis, CA
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Luis Fernando Santana
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| |
Collapse
|
16
|
Baculis BC, Kesavan H, Weiss AC, Kim EH, Tracy GC, Ouyang W, Tsai NP, Chung HJ. Homeostatic regulation of extracellular signal-regulated kinase 1/2 activity and axonal K v7.3 expression by prolonged blockade of hippocampal neuronal activity. Front Cell Neurosci 2022; 16:838419. [PMID: 35966206 PMCID: PMC9366003 DOI: 10.3389/fncel.2022.838419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Homeostatic plasticity encompasses the mechanisms by which neurons stabilize their synaptic strength and excitability in response to prolonged and destabilizing changes in their network activity. Prolonged activity blockade leads to homeostatic scaling of action potential (AP) firing rate in hippocampal neurons in part by decreased activity of N-Methyl-D-Aspartate receptors and subsequent transcriptional down-regulation of potassium channel genes including KCNQ3 which encodes Kv7.3. Neuronal Kv7 channels are mostly heterotetramers of Kv7.2 and Kv7.3 subunits and are highly enriched at the axon initial segment (AIS) where their current potently inhibits repetitive and burst firing of APs. However, whether a decrease in Kv7.3 expression occurs at the AIS during homeostatic scaling of intrinsic excitability and what signaling pathway reduces KCNQ3 transcript upon prolonged activity blockade remain unknown. Here, we report that prolonged activity blockade in cultured hippocampal neurons reduces the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) followed by a decrease in the activation of brain-derived neurotrophic factor (BDNF) receptor, Tropomyosin receptor kinase B (TrkB). Furthermore, both prolonged activity blockade and prolonged pharmacological inhibition of ERK1/2 decrease KCNQ3 and BDNF transcripts as well as the density of Kv7.3 and ankyrin-G at the AIS. Collectively, our findings suggest that a reduction in the ERK1/2 activity and subsequent transcriptional down-regulation may serve as a potential signaling pathway that links prolonged activity blockade to homeostatic control of BDNF-TrkB signaling and Kv7.3 density at the AIS during homeostatic scaling of AP firing rate.
Collapse
Affiliation(s)
- Brian C. Baculis
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Harish Kesavan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Amanda C. Weiss
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Edward H. Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Gregory C. Tracy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Wenhao Ouyang
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Nien-Pei Tsai
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
17
|
Jedlicka P, Bird AD, Cuntz H. Pareto optimality, economy-effectiveness trade-offs and ion channel degeneracy: improving population modelling for single neurons. Open Biol 2022; 12:220073. [PMID: 35857898 PMCID: PMC9277232 DOI: 10.1098/rsob.220073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neurons encounter unavoidable evolutionary trade-offs between multiple tasks. They must consume as little energy as possible while effectively fulfilling their functions. Cells displaying the best performance for such multi-task trade-offs are said to be Pareto optimal, with their ion channel configurations underpinning their functionality. Ion channel degeneracy, however, implies that multiple ion channel configurations can lead to functionally similar behaviour. Therefore, instead of a single model, neuroscientists often use populations of models with distinct combinations of ionic conductances. This approach is called population (database or ensemble) modelling. It remains unclear, which ion channel parameters in the vast population of functional models are more likely to be found in the brain. Here we argue that Pareto optimality can serve as a guiding principle for addressing this issue by helping to identify the subpopulations of conductance-based models that perform best for the trade-off between economy and functionality. In this way, the high-dimensional parameter space of neuronal models might be reduced to geometrically simple low-dimensional manifolds, potentially explaining experimentally observed ion channel correlations. Conversely, Pareto inference might also help deduce neuronal functions from high-dimensional Patch-seq data. In summary, Pareto optimality is a promising framework for improving population modelling of neurons and their circuits.
Collapse
Affiliation(s)
- Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany,Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt/Main, Germany,Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Alexander D. Bird
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany,Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany,Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| | - Hermann Cuntz
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany,Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Bülow P, Segal M, Bassell GJ. Mechanisms Driving the Emergence of Neuronal Hyperexcitability in Fragile X Syndrome. Int J Mol Sci 2022; 23:ijms23116315. [PMID: 35682993 PMCID: PMC9181819 DOI: 10.3390/ijms23116315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperexcitability is a shared neurophysiological phenotype across various genetic neurodevelopmental disorders, including Fragile X syndrome (FXS). Several patient symptoms are associated with hyperexcitability, but a puzzling feature is that their onset is often delayed until their second and third year of life. It remains unclear how and why hyperexcitability emerges in neurodevelopmental disorders. FXS is caused by the loss of FMRP, an RNA-binding protein which has many critical roles including protein synthesis-dependent and independent regulation of ion channels and receptors, as well as global regulation of protein synthesis. Here, we discussed recent literature uncovering novel mechanisms that may drive the progressive onset of hyperexcitability in the FXS brain. We discussed in detail how recent publications have highlighted defects in homeostatic plasticity, providing new insight on the FXS brain and suggest pharmacotherapeutic strategies in FXS and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Pernille Bülow
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| | - Menahem Segal
- Department of Brain Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| |
Collapse
|
19
|
Yang J, Shakil H, Ratté S, Prescott SA. Minimal requirements for a neuron to co-regulate many properties and the implications for ion channel correlations and robustness. eLife 2022; 11:72875. [PMID: 35293858 PMCID: PMC8986315 DOI: 10.7554/elife.72875] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Neurons regulate their excitability by adjusting their ion channel levels. Degeneracy – achieving equivalent outcomes (excitability) using different solutions (channel combinations) – facilitates this regulation by enabling a disruptive change in one channel to be offset by compensatory changes in other channels. But neurons must coregulate many properties. Pleiotropy – the impact of one channel on more than one property – complicates regulation because a compensatory ion channel change that restores one property to its target value often disrupts other properties. How then does a neuron simultaneously regulate multiple properties? Here, we demonstrate that of the many channel combinations producing the target value for one property (the single-output solution set), few combinations produce the target value for other properties. Combinations producing the target value for two or more properties (the multioutput solution set) correspond to the intersection between single-output solution sets. Properties can be effectively coregulated only if the number of adjustable channels (nin) exceeds the number of regulated properties (nout). Ion channel correlations emerge during homeostatic regulation when the dimensionality of solution space (nin − nout) is low. Even if each property can be regulated to its target value when considered in isolation, regulation as a whole fails if single-output solution sets do not intersect. Our results also highlight that ion channels must be coadjusted with different ratios to regulate different properties, which suggests that each error signal drives modulatory changes independently, despite those changes ultimately affecting the same ion channels.
Collapse
Affiliation(s)
- Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Husain Shakil
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Steven Alec Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
20
|
Tsukahara T, Brann DH, Pashkovski SL, Guitchounts G, Bozza T, Datta SR. A transcriptional rheostat couples past activity to future sensory responses. Cell 2021; 184:6326-6343.e32. [PMID: 34879231 PMCID: PMC8758202 DOI: 10.1016/j.cell.2021.11.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
Animals traversing different environments encounter both stable background stimuli and novel cues, which are thought to be detected by primary sensory neurons and then distinguished by downstream brain circuits. Here, we show that each of the ∼1,000 olfactory sensory neuron (OSN) subtypes in the mouse harbors a distinct transcriptome whose content is precisely determined by interactions between its odorant receptor and the environment. This transcriptional variation is systematically organized to support sensory adaptation: expression levels of more than 70 genes relevant to transforming odors into spikes continuously vary across OSN subtypes, dynamically adjust to new environments over hours, and accurately predict acute OSN-specific odor responses. The sensory periphery therefore separates salient signals from predictable background via a transcriptional rheostat whose moment-to-moment state reflects the past and constrains the future; these findings suggest a general model in which structured transcriptional variation within a cell type reflects individual experience.
Collapse
Affiliation(s)
- Tatsuya Tsukahara
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David H Brann
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stan L Pashkovski
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
21
|
Marder E, Rue MCP. From the Neuroscience of Individual Variability to Climate Change. J Neurosci 2021; 41:10213-10221. [PMID: 34753741 PMCID: PMC8672684 DOI: 10.1523/jneurosci.1261-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Years of basic neuroscience on the modulation of the small circuits found in the crustacean stomatogastric ganglion have led us to study the effects of temperature on the motor patterns produced by the stomatogastric ganglion. While the impetus for this work was the study of individual variability in the parameters determining intrinsic and synaptic conductances, we are confronting substantial fluctuations in the stability of the networks to extreme temperature; these may correlate with changes in ocean temperature. Interestingly, when studied under control conditions, these wild-caught animals appear to be unchanged, but it is only when challenged by extreme temperatures that we reveal the consequences of warming oceans.
Collapse
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454
| | - Mara C P Rue
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454
| |
Collapse
|
22
|
Kamaleddin MA. Degeneracy in the nervous system: from neuronal excitability to neural coding. Bioessays 2021; 44:e2100148. [PMID: 34791666 DOI: 10.1002/bies.202100148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 02/04/2023]
Abstract
Degeneracy is ubiquitous across biological systems where structurally different elements can yield a similar outcome. Degeneracy is of particular interest in neuroscience too. On the one hand, degeneracy confers robustness to the nervous system and facilitates evolvability: Different elements provide a backup plan for the system in response to any perturbation or disturbance. On the other, a difficulty in the treatment of some neurological disorders such as chronic pain is explained in light of different elements all of which contribute to the pathological behavior of the system. Under these circumstances, targeting a specific element is ineffective because other elements can compensate for this modulation. Understanding degeneracy in the physiological context explains its beneficial role in the robustness of neural circuits. Likewise, understanding degeneracy in the pathological context opens new avenues of discovery to find more effective therapies.
Collapse
Affiliation(s)
- Mohammad Amin Kamaleddin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Vercruysse F, Naud R, Sprekeler H. Self-organization of a doubly asynchronous irregular network state for spikes and bursts. PLoS Comput Biol 2021; 17:e1009478. [PMID: 34748532 PMCID: PMC8575278 DOI: 10.1371/journal.pcbi.1009478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022] Open
Abstract
Cortical pyramidal cells (PCs) have a specialized dendritic mechanism for the generation of bursts, suggesting that these events play a special role in cortical information processing. In vivo, bursts occur at a low, but consistent rate. Theory suggests that this network state increases the amount of information they convey. However, because burst activity relies on a threshold mechanism, it is rather sensitive to dendritic input levels. In spiking network models, network states in which bursts occur rarely are therefore typically not robust, but require fine-tuning. Here, we show that this issue can be solved by a homeostatic inhibitory plasticity rule in dendrite-targeting interneurons that is consistent with experimental data. The suggested learning rule can be combined with other forms of inhibitory plasticity to self-organize a network state in which both spikes and bursts occur asynchronously and irregularly at low rate. Finally, we show that this network state creates the network conditions for a recently suggested multiplexed code and thereby indeed increases the amount of information encoded in bursts.
Collapse
Affiliation(s)
- Filip Vercruysse
- Department for Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Richard Naud
- Department of Physics, University of Ottawa, Ottawa, Canada
- uOttawa Brain Mind Institute, Center for Neural Dynamics, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Henning Sprekeler
- Department for Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
24
|
Ellingson PJ, Barnett WH, Kueh D, Vargas A, Calabrese RL, Cymbalyuk GS. Comodulation of h- and Na +/K + Pump Currents Expands the Range of Functional Bursting in a Central Pattern Generator by Navigating between Dysfunctional Regimes. J Neurosci 2021; 41:6468-6483. [PMID: 34103361 PMCID: PMC8318076 DOI: 10.1523/jneurosci.0158-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
Central pattern generators (CPGs), specialized oscillatory neuronal networks controlling rhythmic motor behaviors such as breathing and locomotion, must adjust their patterns of activity to a variable environment and changing behavioral goals. Neuromodulation adjusts these patterns by orchestrating changes in multiple ionic currents. In the medicinal leech, the endogenous neuromodulator myomodulin speeds up the heartbeat CPG by reducing the electrogenic Na+/K+ pump current and increasing h-current in pairs of mutually inhibitory leech heart interneurons (HNs), which form half-center oscillators (HN HCOs). Here we investigate whether the comodulation of two currents could have advantages over a single current in the control of functional bursting patterns of a CPG. We use a conductance-based biophysical model of an HN HCO to explain the experimental effects of myomodulin. We demonstrate that, in the model, comodulation of the Na+/K+ pump current and h-current expands the range of functional bursting activity by avoiding transitions into nonfunctional regimes, such as asymmetric bursting and plateau-containing seizure-like activity. We validate the model by finding parameters that reproduce temporal bursting characteristics matching experimental recordings from HN HCOs under control, three different myomodulin concentrations, and Cs+ treated conditions. The matching cases are located along the border of an asymmetric regime away from the border with more dangerous seizure-like activity. We found a simple comodulation mechanism with an inverse relation between the pump and h-currents makes a good fit of the matching cases and comprises a general mechanism for the robust and flexible control of oscillatory neuronal networks.SIGNIFICANCE STATEMENT Rhythm-generating neuronal circuits adjust their oscillatory patterns to accommodate a changing environment through neuromodulation. In different species, chemical messengers participating in such processes may target two or more membrane currents. In medicinal leeches, the neuromodulator myomodulin speeds up the heartbeat central pattern generator by reducing Na+/K+ pump current and increasing h-current. In a computational model, we show that this comodulation expands the range of central pattern generator's functional activity by navigating the circuit between dysfunctional regimes resulting in a much wider range of cycle period. This control would not be attainable by modulating only one current, emphasizing the synergy of combined effects. Given the prevalence of h-current and Na+/K+ pump current in neurons, similar comodulation mechanisms may exist across species.
Collapse
Affiliation(s)
- Parker J Ellingson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - William H Barnett
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Daniel Kueh
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Alex Vargas
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | | | | |
Collapse
|
25
|
Boeri J, Meunier C, Le Corronc H, Branchereau P, Timofeeva Y, Lejeune FX, Mouffle C, Arulkandarajah H, Mangin JM, Legendre P, Czarnecki A. Two opposite voltage-dependent currents control the unusual early development pattern of embryonic Renshaw cell electrical activity. eLife 2021; 10:62639. [PMID: 33899737 PMCID: PMC8139835 DOI: 10.7554/elife.62639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/24/2021] [Indexed: 11/25/2022] Open
Abstract
Renshaw cells (V1R) are excitable as soon as they reach their final location next to the spinal motoneurons and are functionally heterogeneous. Using multiple experimental approaches, in combination with biophysical modeling and dynamical systems theory, we analyzed, for the first time, the mechanisms underlying the electrophysiological properties of V1R during early embryonic development of the mouse spinal cord locomotor networks (E11.5–E16.5). We found that these interneurons are subdivided into several functional clusters from E11.5 and then display an unexpected transitory involution process during which they lose their ability to sustain tonic firing. We demonstrated that the essential factor controlling the diversity of the discharge pattern of embryonic V1R is the ratio of a persistent sodium conductance to a delayed rectifier potassium conductance. Taken together, our results reveal how a simple mechanism, based on the synergy of two voltage-dependent conductances that are ubiquitous in neurons, can produce functional diversity in embryonic V1R and control their early developmental trajectory.
Collapse
Affiliation(s)
- Juliette Boeri
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France
| | - Claude Meunier
- Centre de Neurosciences Intégratives et Cognition, CNRS UMR 8002, Institut Neurosciences et Cognition, Université de Paris, Paris, France
| | - Hervé Le Corronc
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France.,Univ Angers, Angers, France
| | | | - Yulia Timofeeva
- Department of Computer Science and Centre for Complexity Science, University of Warwick, Coventry, United Kingdom.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - François-Xavier Lejeune
- Institut du Cerveau et de la Moelle Epinière, Centre de Recherche CHU Pitié-Salpétrière, INSERM, U975, CNRS, UMR 7225, Sorbonne Univ, Paris, France
| | - Christine Mouffle
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France
| | - Hervé Arulkandarajah
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France
| | - Jean Marie Mangin
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France
| | - Pascal Legendre
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France
| | - Antonny Czarnecki
- INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne Univ, Paris, France.,Univ. Bordeaux, CNRS, EPHE, INCIA, Bordeaux, France
| |
Collapse
|
26
|
Goaillard JM, Marder E. Ion Channel Degeneracy, Variability, and Covariation in Neuron and Circuit Resilience. Annu Rev Neurosci 2021; 44:335-357. [PMID: 33770451 DOI: 10.1146/annurev-neuro-092920-121538] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The large number of ion channels found in all nervous systems poses fundamental questions concerning how the characteristic intrinsic properties of single neurons are determined by the specific subsets of channels they express. All neurons display many different ion channels with overlapping voltage- and time-dependent properties. We speculate that these overlapping properties promote resilience in neuronal function. Individual neurons of the same cell type show variability in ion channel conductance densities even though they can generate reliable and similar behavior. This complicates a simple assignment of function to any conductance and is associated with variable responses of neurons of the same cell type to perturbations, deletions, and pharmacological manipulation. Ion channel genes often show strong positively correlated expression, which may result from the molecular and developmental rules that determine which ion channels are expressed in a given cell type.
Collapse
Affiliation(s)
| | - Eve Marder
- Volen Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA;
| |
Collapse
|
27
|
Mishra P, Narayanan R. Ion-channel regulation of response decorrelation in a heterogeneous multi-scale model of the dentate gyrus. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100007. [PMID: 33997798 PMCID: PMC7610774 DOI: 10.1016/j.crneur.2021.100007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heterogeneities in biological neural circuits manifest in afferent connectivity as well as in local-circuit components such as neuronal excitability, neural structure and local synaptic strengths. The expression of adult neurogenesis in the dentate gyrus (DG) amplifies local-circuit heterogeneities and guides heterogeneities in afferent connectivity. How do neurons and their networks endowed with these distinct forms of heterogeneities respond to perturbations to individual ion channels, which are known to change under several physiological and pathophysiological conditions? We sequentially traversed the ion channels-neurons-network scales and assessed the impact of eliminating individual ion channels on conductance-based neuronal and network models endowed with disparate local-circuit and afferent heterogeneities. We found that many ion channels differentially contributed to specific neuronal or network measurements, and the elimination of any given ion channel altered several functional measurements. We then quantified the impact of ion-channel elimination on response decorrelation, a well-established metric to assess the ability of neurons in a network to convey complementary information, in DG networks endowed with different forms of heterogeneities. Notably, we found that networks constructed with structurally immature neurons exhibited functional robustness, manifesting as minimal changes in response decorrelation in the face of ion-channel elimination. Importantly, the average change in output correlation was dependent on the eliminated ion channel but invariant to input correlation. Our analyses suggest that neurogenesis-driven structural heterogeneities could assist the DG network in providing functional resilience to molecular perturbations. Perturbations at one scale result in a cascading impact on physiology across scales. Heterogeneous multi-scale models used to assess the impact of ion-channel deletion. Mapping of structural components to functional outcomes is many-to-many. Differential & variable impact of ion channel deletion on response decorrelation. Neurogenesis-induced structural heterogeneity confers resilience to perturbations.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
28
|
Daou A, Margoliash D. Intrinsic plasticity and birdsong learning. Neurobiol Learn Mem 2021; 180:107407. [PMID: 33631346 DOI: 10.1016/j.nlm.2021.107407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Although information processing and storage in the brain is thought to be primarily orchestrated by synaptic plasticity, other neural mechanisms such as intrinsic plasticity are available. While a number of recent studies have described the plasticity of intrinsic excitability in several types of neurons, the significance of non-synaptic mechanisms in memory and learning remains elusive. After reviewing plasticity of intrinsic excitation in relation to learning and homeostatic mechanisms, we focus on the intrinsic properties of a class of basal-ganglia projecting song system neurons in zebra finch, how these related to each bird's unique learned song, how these properties change over development, and how they are maintained dynamically to rapidly change in response to auditory feedback perturbations. We place these results in the broader theme of learning and changes in intrinsic properties, emphasizing the computational implications of this form of plasticity, which are distinct from synaptic plasticity. The results suggest that exploring reciprocal interactions between intrinsic and network properties will be a fruitful avenue for understanding mechanisms of birdsong learning.
Collapse
Affiliation(s)
- Arij Daou
- University of Chicago, United States
| | | |
Collapse
|
29
|
Ratliff J, Franci A, Marder E, O'Leary T. Neuronal oscillator robustness to multiple global perturbations. Biophys J 2021; 120:1454-1468. [PMID: 33610580 PMCID: PMC8105708 DOI: 10.1016/j.bpj.2021.01.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/07/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
Neuronal activity depends on ion channels and biophysical processes that are strongly and differentially sensitive to physical variables such as temperature and pH. Nonetheless, neuronal oscillators can be surprisingly resilient to perturbations in these variables. We study a three-neuron pacemaker ensemble that drives the pyloric rhythm of the crab, Cancer borealis. These crabs routinely experience a number of global perturbations, including changes in temperature and pH. Although pyloric oscillations are robust to such changes, for sufficiently large deviations the rhythm reversibly breaks down. As temperature increases beyond a tipping point, oscillators transition to silence. Acidic pH deviations also show tipping points, with a reliable transition first to tonic spiking, then to silence. Surprisingly, robustness to perturbations in pH only moderately affects temperature robustness. Consistent with high animal-to-animal variability in biophysical circuit parameters, tipping points in temperature and pH vary across animals. However, the ordering and discrete classes of transitions at critical points are conserved. This implies that qualitative oscillator dynamics are preserved across animals despite high quantitative parameter variability. A universal model of bursting dynamics predicts the existence of these transition types and the order in which they occur.
Collapse
Affiliation(s)
- Jacob Ratliff
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Alessio Franci
- Department of Mathematics, National Autonomous University of Mexico, Mexico City, Mexico
| | - Eve Marder
- Biology Department, Volen Center, Brandeis University, Waltham, Massachusetts.
| | - Timothy O'Leary
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
30
|
Valdes-Aleman J, Fetter RD, Sales EC, Heckman EL, Venkatasubramanian L, Doe CQ, Landgraf M, Cardona A, Zlatic M. Comparative Connectomics Reveals How Partner Identity, Location, and Activity Specify Synaptic Connectivity in Drosophila. Neuron 2020; 109:105-122.e7. [PMID: 33120017 PMCID: PMC7837116 DOI: 10.1016/j.neuron.2020.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 01/30/2023]
Abstract
The mechanisms by which synaptic partners recognize each other and establish appropriate numbers of connections during embryonic development to form functional neural circuits are poorly understood. We combined electron microscopy reconstruction, functional imaging of neural activity, and behavioral experiments to elucidate the roles of (1) partner identity, (2) location, and (3) activity in circuit assembly in the embryonic nerve cord of Drosophila. We found that postsynaptic partners are able to find and connect to their presynaptic partners even when these have been shifted to ectopic locations or silenced. However, orderly positioning of axon terminals by positional cues and synaptic activity is required for appropriate numbers of connections between specific partners, for appropriate balance between excitatory and inhibitory connections, and for appropriate functional connectivity and behavior. Our study reveals with unprecedented resolution the fine connectivity effects of multiple factors that work together to control the assembly of neural circuits.
Collapse
Affiliation(s)
- Javier Valdes-Aleman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Emily C Sales
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Emily L Heckman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | | | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
31
|
Activity-dependent compensation of cell size is vulnerable to targeted deletion of ion channels. Sci Rep 2020; 10:15989. [PMID: 32994529 PMCID: PMC7524806 DOI: 10.1038/s41598-020-72977-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/25/2020] [Indexed: 01/13/2023] Open
Abstract
In many species, excitable cells preserve their physiological properties despite significant variation in physical size across time and in a population. For example, neurons in crustacean central pattern generators generate similar firing patterns despite several-fold increases in size between juveniles and adults. This presents a biophysical problem because the electrical properties of cells are highly sensitive to membrane area and channel density. It is not known whether specific mechanisms exist to sense membrane area and adjust channel expression to keep a consistent channel density, or whether regulation mechanisms that sense activity alone are capable of compensating cell size. We show that destabilising effects of growth can be specifically compensated by feedback mechanism that senses average calcium influx and jointly regulate multiple conductances. However, we further show that this class of growth-compensating regulation schemes is necessarily sensitive to perturbations that alter the expression of subsets of ion channel types. Targeted perturbations of specific ion channels can trigger a pathological response of the regulation mechanism and a failure of homeostasis. Our findings suggest that physiological regulation mechanisms that confer robustness to growth may be specifically vulnerable to deletions or mutations that affect subsets of ion channels.
Collapse
|
32
|
Ruffolo JA, McClellan AD. Modeling of lamprey reticulospinal neurons: multiple distinct parameter sets yield realistic simulations. J Neurophysiol 2020; 124:895-913. [PMID: 32697608 DOI: 10.1152/jn.00070.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For the lamprey and other vertebrates, reticulospinal (RS) neurons project descending axons to the spinal cord and activate motor networks to initiate locomotion and other behaviors. In the present study, a biophysically detailed computer model of lamprey RS neurons was constructed consisting of three compartments: dendritic, somatic, and axon initial segment (AIS). All compartments included passive channels. In addition, the soma and AIS had fast potassium and sodium channels. The soma included three additional voltage-gated ion channels (slow sodium and high- and low-voltage-activated calcium) and calcium-activated potassium channels. An initial manually adjusted default parameter set, which was based, in part, on modified parameters from models of lamprey spinal neurons, generated simulations of single action potentials and repetitive firing that scored favorably (0.658; maximum = 0.964) compared with experimentally derived properties of lamprey RS neurons. Subsequently, a dual-annealing search paradigm identified 4,302 viable parameter sets at local maxima within parameter space that yielded higher scores than the default parameter set, including many with much higher scores of approximately 0.85-0.87 (i.e., ~30% improvement). In addition, 5- and 2-conductance grid searches identified a relatively large number of viable parameters sets for which significant correlations were present between maximum conductances for pairs of ion channels. The present results indicated that multiple model parameter sets ("solutions") generated action potentials and repetitive firing that mimicked many of the properties of lamprey RS neurons. To our knowledge, this is the first study to systematically explore parameter space for a biophysically detailed model of lamprey RS neurons.NEW & NOTEWORTHY A computer model of lamprey reticulospinal neurons with a default parameter set produced simulations of action potentials and repetitive firing that scored favorably compared with the properties of these neurons. A dual-annealing search algorithm explored ~50 million parameter sets and identified 4,302 distinct viable parameter sets within parameter space that yielded higher/much higher scores than the default parameter set. In addition, 5- and 2-conductance grid searches identified significant correlations between maximum conductances for pairs of ion channels.
Collapse
Affiliation(s)
- Jeffrey A Ruffolo
- Division of Biological Science, University of Missouri, Columbia, Missouri
| | - Andrew D McClellan
- Division of Biological Science, University of Missouri, Columbia, Missouri.,Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri
| |
Collapse
|
33
|
Booker SA, Simões de Oliveira L, Anstey NJ, Kozic Z, Dando OR, Jackson AD, Baxter PS, Isom LL, Sherman DL, Hardingham GE, Brophy PJ, Wyllie DJ, Kind PC. Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome. Cell Rep 2020; 32:107988. [PMID: 32783927 PMCID: PMC7435362 DOI: 10.1016/j.celrep.2020.107988] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/01/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1-/y mouse hippocampus, with increased cellular excitability. This change in length does not result from reduced AIS plasticity, as prolonged depolarization induces changes in AIS length independent of genotype. However, depolarization does reduce cellular excitability, the magnitude of which is greater in Fmr1-/y neurons. Finally, we observe reduced functional inputs from the entorhinal cortex, with no genotypic difference in the firing rates of CA1 pyramidal neurons. This suggests that AIS-dependent hyperexcitability in Fmr1-/y mice may result from adaptive or homeostatic regulation induced by reduced functional synaptic connectivity. Thus, while AIS length and intrinsic excitability contribute to cellular hyperexcitability, they may reflect a homeostatic mechanism for reduced synaptic input onto CA1 neurons.
Collapse
Affiliation(s)
- Sam A. Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Corresponding author
| | - Laura Simões de Oliveira
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK
| | - Natasha J. Anstey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Zrinko Kozic
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Owen R. Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Adam D. Jackson
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Paul S. Baxter
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632, USA
| | - Diane L. Sherman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Giles E. Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Peter J. Brophy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David J.A. Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India
| | - Peter C. Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK,Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK,Centre for Brain Development and Repair, InStem, GKVK Campus, Bangalore 560065, India,Corresponding author
| |
Collapse
|
34
|
Peterson EJ, Voytek B. Homeostatic mechanisms may shape the type and duration of oscillatory modulation. J Neurophysiol 2020; 124:168-177. [PMID: 32490710 DOI: 10.1152/jn.00119.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural oscillations are observed ubiquitously in the mammalian brain, but their stability is known to be rather variable. Some oscillations are tonic and last for seconds or even minutes. Other oscillations appear as unstable bursts. Likewise, some oscillations rely on excitatory AMPAergic synapses, but others are GABAergic and inhibitory. Why this diversity exists is not clear. We hypothesized Ca2+-dependent homeostasis could be important in finding an explanation. We tested this hypothesis in a highly simplified model of hippocampal neurons. In this model homeostasis profoundly alters the modulatory effect of neural oscillations. Under homeostasis, tonic AMPAergic oscillations actually decrease excitability and desynchronize firing. Tonic oscillations that are synaptically GABAergic-like those in real hippocampus-don't provoke a homeostatic response, however. If our simple model is correct, homeostasis can explain why the theta rhythm in the hippocampus is synaptically inhibitory: GABA has little to no intrinsic homeostatic response and so can preserve the pyramidal cell's natural dynamic range. Based on these results we speculate that homeostasis may explain why AMPAergic oscillations in cortex, and in hippocampus, often appear as bursts. Bursts do not interact with the slow homeostatic time constant and so retain their normal excitatory effect.NEW & NOTEWORTHY The intricate interplay of neuromodulators, like acetylcholine, with homeostasis is well known. The interplay between oscillatory modulation and homeostasis is not. We studied oscillatory modulation and homeostasis for the first time using a simplified model of hippocampus. We report a paradoxical result: Ca-mediated homeostasis causes AMPAergic oscillations to become effectively inhibitory. This result, along with other new observations, means homeostasis might be just as complex and important for oscillations as it is for other neuromodulators.
Collapse
Affiliation(s)
- Erik J Peterson
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Department of Cognitive Science, University of California, San Diego, California
| | - Bradley Voytek
- Department of Cognitive Science, University of California, San Diego, California.,Neurosciences Graduate Program, University of California, San Diego, California.,Halıcıoğlu Data Science Institute, University of California, San Diego, California
| |
Collapse
|
35
|
Alonso LM, Marder E. Temperature compensation in a small rhythmic circuit. eLife 2020; 9:e55470. [PMID: 32484437 PMCID: PMC7332291 DOI: 10.7554/elife.55470] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/31/2020] [Indexed: 12/28/2022] Open
Abstract
Temperature affects the conductances and kinetics of the ionic channels that underlie neuronal activity. Each membrane conductance has a different characteristic temperature sensitivity, which raises the question of how neurons and neuronal circuits can operate robustly over wide temperature ranges. To address this, we employed computational models of the pyloric network of crabs and lobsters. We produced multiple different models that exhibit a triphasic pyloric rhythm over a range of temperatures and explored the dynamics of their currents and how they change with temperature. Temperature can produce smooth changes in the relative contributions of the currents to neural activity so that neurons and networks undergo graceful transitions in the mechanisms that give rise to their activity patterns. Moreover, responses of the models to deletions of a current can be different at high and low temperatures, indicating that even a well-defined genetic or pharmacological manipulation may produce qualitatively distinct effects depending on the temperature.
Collapse
Affiliation(s)
- Leandro M Alonso
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| | - Eve Marder
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| |
Collapse
|
36
|
Cervera J, Levin M, Mafe S. Bioelectrical Coupling of Single-Cell States in Multicellular Systems. J Phys Chem Lett 2020; 11:3234-3241. [PMID: 32243754 DOI: 10.1021/acs.jpclett.0c00641] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The spatiotemporal distributions of signaling ions and molecules that modulate biochemical pathways in nonexcitable cells are influenced by multicellular electric potentials. These potentials act as distributed controllers encoding instructive spatial patterns in development and regeneration. We review experimental facts and discuss recent bioelectrical models that provide new physical insights and complement biochemical approaches. Single-cell states are modulated at the multicellular level because of the coupling between neighboring cells, thus allowing memories and multicellular patterns. The model is based on (i) two generic voltage-gated ion channels that promote the polarized and depolarized cell states, (ii) a feedback mechanism for the transcriptional and bioelectrical regulations, and (iii) voltage-gated intercellular conductances that allow a dynamic intercellular connectivity. The simulations provide steady-state and oscillatory multicellular states that help explain aspects of development and guide experimental procedures attempting to establish instructive bioelectrical patterns based on electric potentials and currents to regulate cell behavior and morphogenesis.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| | - Michael Levin
- Dept. of Biology and Allen Discovery Center at Tufts University, Medford, Massachusetts 02155-4243, United States
| | - Salvador Mafe
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
37
|
Abstract
Neurons generate consistent patterns of activity combining a large set of ionic currents and variable conductance levels. How they regulate this variability so that it does not run out of control seems to depend most prominently on neuronal activity itself.
Collapse
Affiliation(s)
- Jorge Golowasch
- Federated Department of Biological Sciences, New Jersey Institute of Technology & Rutgers University-Newark, Institute for Brain and Neuroscience Research, Newark, NJ 07102, USA.
| |
Collapse
|
38
|
Navarro MA, Salari A, Lin JL, Cowan LM, Penington NJ, Milescu M, Milescu LS. Sodium channels implement a molecular leaky integrator that detects action potentials and regulates neuronal firing. eLife 2020; 9:54940. [PMID: 32101161 PMCID: PMC7043890 DOI: 10.7554/elife.54940] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated sodium channels play a critical role in cellular excitability, amplifying small membrane depolarizations into action potentials. Interactions with auxiliary subunits and other factors modify the intrinsic kinetic mechanism to result in new molecular and cellular functionality. We show here that sodium channels can implement a molecular leaky integrator, where the input signal is the membrane potential and the output is the occupancy of a long-term inactivated state. Through this mechanism, sodium channels effectively measure the frequency of action potentials and convert it into Na+ current availability. In turn, the Na+ current can control neuronal firing frequency in a negative feedback loop. Consequently, neurons become less sensitive to changes in excitatory input and maintain a lower firing rate. We present these ideas in the context of rat serotonergic raphe neurons, which fire spontaneously at low frequency and provide critical neuromodulation to many autonomous and cognitive brain functions.
Collapse
Affiliation(s)
- Marco A Navarro
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Autoosa Salari
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jenna L Lin
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Luke M Cowan
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Nicholas J Penington
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, United States
| | - Mirela Milescu
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Lorin S Milescu
- Division of Biological Sciences, University of Missouri, Columbia, United States.,Department of Biology, University of Maryland, College Park, United States
| |
Collapse
|
39
|
Jain A, Narayanan R. Degeneracy in the emergence of spike-triggered average of hippocampal pyramidal neurons. Sci Rep 2020; 10:374. [PMID: 31941985 PMCID: PMC6962224 DOI: 10.1038/s41598-019-57243-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/26/2019] [Indexed: 12/15/2022] Open
Abstract
Hippocampal pyramidal neurons are endowed with signature excitability characteristics, exhibit theta-frequency selectivity - manifesting as impedance resonance and as a band-pass structure in the spike-triggered average (STA) - and coincidence detection tuned for gamma-frequency inputs. Are there specific constraints on molecular-scale (ion channel) properties in the concomitant emergence of cellular-scale encoding (feature detection and selectivity) and excitability characteristics? Here, we employed a biophysically-constrained unbiased stochastic search strategy involving thousands of conductance-based models, spanning 11 active ion channels, to assess the concomitant emergence of 14 different electrophysiological measurements. Despite the strong biophysical and physiological constraints, we found models that were similar in terms of their spectral selectivity, operating mode along the integrator-coincidence detection continuum and intrinsic excitability characteristics. The parametric combinations that resulted in these functionally similar models were non-unique with weak pair-wise correlations. Employing virtual knockout of individual ion channels in these functionally similar models, we found a many-to-many relationship between channels and physiological characteristics to mediate this degeneracy, and predicted a dominant role for HCN and transient potassium channels in regulating hippocampal neuronal STA. Our analyses reveals the expression of degeneracy, that results from synergistic interactions among disparate channel components, in the concomitant emergence of neuronal excitability and encoding characteristics.
Collapse
Affiliation(s)
- Abha Jain
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.,Undergraduate program, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
40
|
Northcutt AJ, Schulz DJ. Molecular mechanisms of homeostatic plasticity in central pattern generator networks. Dev Neurobiol 2019; 80:58-69. [PMID: 31778295 DOI: 10.1002/dneu.22727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/09/2019] [Accepted: 11/22/2019] [Indexed: 01/27/2023]
Abstract
Central pattern generator (CPG) networks rely on a balance of intrinsic and network properties to produce reliable, repeatable activity patterns. This balance is maintained by homeostatic plasticity where alterations in neuronal properties dynamically maintain appropriate neural output in the face of changing environmental conditions and perturbations. However, it remains unclear just how these neurons and networks can both monitor their ongoing activity and use this information to elicit homeostatic physiological responses to ensure robustness of output over time. Evidence exists that CPG networks use a mixed strategy of activity-dependent, activity-independent, modulator-dependent, and synaptically regulated homeostatic plasticity to achieve this critical stability. In this review, we focus on some of the current understanding of the molecular pathways and mechanisms responsible for this homeostatic plasticity in the context of central pattern generator function, with a special emphasis on some of the smaller invertebrate networks that have allowed for extensive cellular-level analyses that have brought recent insights to these questions.
Collapse
Affiliation(s)
- Adam J Northcutt
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri
| | - David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri
| |
Collapse
|
41
|
Molecular profiling of single neurons of known identity in two ganglia from the crab Cancer borealis. Proc Natl Acad Sci U S A 2019; 116:26980-26990. [PMID: 31806754 PMCID: PMC6936480 DOI: 10.1073/pnas.1911413116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Single-cell transcriptional profiling has become a widespread tool in cell identification, particularly in the nervous system, based on the notion that genomic information determines cell identity. However, many cell-type classification studies are unconstrained by other cellular attributes (e.g., morphology, physiology). Here, we systematically test how accurately transcriptional profiling can assign cell identity to well-studied anatomically and functionally identified neurons in 2 small neuronal networks. While these neurons clearly possess distinct patterns of gene expression across cell types, their expression profiles are not sufficient to unambiguously confirm their identity. We suggest that true cell identity can only be determined by combining gene expression data with other cellular attributes such as innervation pattern, morphology, or physiology. Understanding circuit organization depends on identification of cell types. Recent advances in transcriptional profiling methods have enabled classification of cell types by their gene expression. While exceptionally powerful and high throughput, the ground-truth validation of these methods is difficult: If cell type is unknown, how does one assess whether a given analysis accurately captures neuronal identity? To shed light on the capabilities and limitations of solely using transcriptional profiling for cell-type classification, we performed 2 forms of transcriptional profiling—RNA-seq and quantitative RT-PCR, in single, unambiguously identified neurons from 2 small crustacean neuronal networks: The stomatogastric and cardiac ganglia. We then combined our knowledge of cell type with unbiased clustering analyses and supervised machine learning to determine how accurately functionally defined neuron types can be classified by expression profile alone. The results demonstrate that expression profile is able to capture neuronal identity most accurately when combined with multimodal information that allows for post hoc grouping, so analysis can proceed from a supervised perspective. Solely unsupervised clustering can lead to misidentification and an inability to distinguish between 2 or more cell types. Therefore, this study supports the general utility of cell identification by transcriptional profiling, but adds a caution: It is difficult or impossible to know under what conditions transcriptional profiling alone is capable of assigning cell identity. Only by combining multiple modalities of information such as physiology, morphology, or innervation target can neuronal identity be unambiguously determined.
Collapse
|
42
|
Zhan Y, Raza MU, Yuan L, Zhu MY. Critical Role of Oxidatively Damaged DNA in Selective Noradrenergic Vulnerability. Neuroscience 2019; 422:184-201. [PMID: 31698021 DOI: 10.1016/j.neuroscience.2019.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022]
Abstract
An important pathology in Parkinson's disease (PD) is the earlier and more severe degeneration of noradrenergic neurons in the locus coeruleus (LC) than dopaminergic neurons in the substantia nigra. However, the basis of such selective vulnerability to insults remains obscure. Using noradrenergic and dopaminergic cell lines, as well as primary neuronal cultures from rat LC and ventral mesencephalon (VM), the present study compared oxidative DNA damage response markers after exposure of these cells to hydrogen peroxide (H2O2). The results showed that H2O2 treatment resulted in more severe cell death in noradrenergic cell lines SK-N-BE(2)-M17 and PC12 than dopaminergic MN9D cells. Furthermore, there were higher levels of oxidative DNA damage response markers in noradrenergic cells and primary neuronal cultures from the LC than dopaminergic cells and primary cultures from the VM. It included increased tail moments and tail lengths in Comet assay, and increased protein levels of phosphor-p53 and γ-H2AX after treatments with H2O2. Consistent with these measurements, exposure of SK-N-BE(2)-M17 cells to H2O2 resulted in higher levels of reactive oxygen species (ROS). Further experiments showed that exposure of SK-N-BE(2)-M17 cells to H2O2 caused an increased level of noradrenergic transporter, reduced protein levels of copper transporter (Ctr1) and 8-oxoGua DNA glycosylase, as well as amplified levels of Cav1.2 and Cav1.3 expression. Taken together, these experiments indicated that noradrenergic neuronal cells seem to be more vulnerable to oxidative damage than dopaminergic neurons, which may be related to the intrinsic characteristics of noradrenergic neuronal cells.
Collapse
Affiliation(s)
- Yanqiang Zhan
- Department of Neurology, Remin Hospital of the Wuhan University, Wuhan, China
| | - Muhammad U Raza
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Lian Yuan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
43
|
Santin JM. Motor inactivity in hibernating frogs: Linking plasticity that stabilizes neuronal function to behavior in the natural environment. Dev Neurobiol 2019; 79:880-891. [DOI: 10.1002/dneu.22721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/07/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Joseph M. Santin
- Department of BiologyUniversity of North Carolina at Greensboro Greensboro North Carolina
| |
Collapse
|
44
|
Rathour RK, Narayanan R. Degeneracy in hippocampal physiology and plasticity. Hippocampus 2019; 29:980-1022. [PMID: 31301166 PMCID: PMC6771840 DOI: 10.1002/hipo.23139] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Degeneracy, defined as the ability of structurally disparate elements to perform analogous function, has largely been assessed from the perspective of maintaining robustness of physiology or plasticity. How does the framework of degeneracy assimilate into an encoding system where the ability to change is an essential ingredient for storing new incoming information? Could degeneracy maintain the balance between the apparently contradictory goals of the need to change for encoding and the need to resist change towards maintaining homeostasis? In this review, we explore these fundamental questions with the mammalian hippocampus as an example encoding system. We systematically catalog lines of evidence, spanning multiple scales of analysis that point to the expression of degeneracy in hippocampal physiology and plasticity. We assess the potential of degeneracy as a framework to achieve the conjoint goals of encoding and homeostasis without cross-interferences. We postulate that biological complexity, involving interactions among the numerous parameters spanning different scales of analysis, could establish disparate routes towards accomplishing these conjoint goals. These disparate routes then provide several degrees of freedom to the encoding-homeostasis system in accomplishing its tasks in an input- and state-dependent manner. Finally, the expression of degeneracy spanning multiple scales offers an ideal reconciliation to several outstanding controversies, through the recognition that the seemingly contradictory disparate observations are merely alternate routes that the system might recruit towards accomplishment of its goals.
Collapse
Affiliation(s)
- Rahul K. Rathour
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
45
|
Busch SE, Khakhalin AS. Intrinsic temporal tuning of neurons in the optic tectum is shaped by multisensory experience. J Neurophysiol 2019; 122:1084-1096. [PMID: 31291161 DOI: 10.1152/jn.00099.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a biological neural network to be functional, its neurons need to be connected with synapses of appropriate strength, and each neuron needs to appropriately respond to its synaptic inputs. This second aspect of network tuning is maintained by intrinsic plasticity; yet it is often considered secondary to changes in connectivity and mostly limited to adjustments of overall excitability of each neuron. Here we argue that even nonoscillatory neurons can be tuned to inputs of different temporal dynamics and that they can routinely adjust this tuning to match the statistics of their synaptic activation. Using the dynamic clamp technique, we show that, in the tectum of Xenopus tadpole, neurons become selective for faster inputs when animals are exposed to fast visual stimuli but remain responsive to longer inputs in animals exposed to slower, looming, or multisensory stimulation. We also report a homeostatic cotuning between synaptic and intrinsic temporal properties of individual tectal cells. These results expand our understanding of intrinsic plasticity in the brain and suggest that there may exist an additional dimension of network tuning that has been so far overlooked.NEW & NOTEWORTHY We use dynamic clamp to show that individual neurons in the tectum of Xenopus tadpoles are selectively tuned to either shorter (more synchronous) or longer (less synchronous) synaptic inputs. We also demonstrate that this intrinsic temporal tuning is strongly shaped by sensory experiences. This new phenomenon, which is likely to be mediated by changes in sodium channel inactivation, is bound to have important consequences for signal processing and the development of local recurrent connections.
Collapse
Affiliation(s)
- Silas E Busch
- Biology Program, Bard College, Annandale-on-Hudson, New York
| | | |
Collapse
|
46
|
Hill AS, Jain P, Folan NE, Ben-Shahar Y. The Drosophila ERG channel seizure plays a role in the neuronal homeostatic stress response. PLoS Genet 2019; 15:e1008288. [PMID: 31393878 PMCID: PMC6687100 DOI: 10.1371/journal.pgen.1008288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/04/2019] [Indexed: 11/24/2022] Open
Abstract
Neuronal physiology is particularly sensitive to acute stressors that affect excitability, many of which can trigger seizures and epilepsies. Although intrinsic neuronal homeostasis plays an important role in maintaining overall nervous system robustness and its resistance to stressors, the specific genetic and molecular mechanisms that underlie these processes are not well understood. Here we used a reverse genetic approach in Drosophila to test the hypothesis that specific voltage-gated ion channels contribute to neuronal homeostasis, robustness, and stress resistance. We found that the activity of the voltage-gated potassium channel seizure (sei), an ortholog of the mammalian ERG channel family, is essential for protecting flies from acute heat-induced seizures. Although sei is broadly expressed in the nervous system, our data indicate that its impact on the organismal robustness to acute environmental stress is primarily mediated via its action in excitatory neurons, the octopaminergic system, as well as neuropile ensheathing and perineurial glia. Furthermore, our studies suggest that human mutations in the human ERG channel (hERG), which have been primarily implicated in the cardiac Long QT Syndrome (LQTS), may also contribute to the high incidence of seizures in LQTS patients via a cardiovascular-independent neurogenic pathway.
Collapse
Affiliation(s)
- Alexis S. Hill
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Poorva Jain
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Nicole E. Folan
- Department of Biology, College of the Holy Cross, Worcester, Massachusetts, United States of America
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
47
|
Golowasch J. Neuromodulation of central pattern generators and its role in the functional recovery of central pattern generator activity. J Neurophysiol 2019; 122:300-315. [PMID: 31066614 DOI: 10.1152/jn.00784.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neuromodulators play an important role in how the nervous system organizes activity that results in behavior. Disruption of the normal patterns of neuromodulatory release or production is known to be related to the onset of severe pathologies such as Parkinson's disease, Rett syndrome, Alzheimer's disease, and affective disorders. Some of these pathologies involve neuronal structures that are called central pattern generators (CPGs), which are involved in the production of rhythmic activities throughout the nervous system. Here I discuss the interplay between CPGs and neuromodulatory activity, with particular emphasis on the potential role of neuromodulators in the recovery of disrupted neuronal activity. I refer to invertebrate and vertebrate model systems and some of the lessons we have learned from research on these systems and propose a few avenues for future research. I make one suggestion that may guide future research in the field: neuromodulators restrict the parameter landscape in which CPG components operate, and the removal of neuromodulators may enable a perturbed CPG in finding a new set of parameter values that can allow it to regain normal function.
Collapse
Affiliation(s)
- Jorge Golowasch
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark , Newark, New Jersey
| |
Collapse
|
48
|
Abstract
Temperature influences physiological processes and can corrupt nervous system function. A modelling study shows how regulation of ion channel expression can establish an acute temperature invariance of neuronal responses despite temperature-dependent and variable ionic conductances.
Collapse
Affiliation(s)
- Jan-Hendrik Schleimer
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Susanne Schreiber
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany.
| |
Collapse
|
49
|
Santin JM, Schulz DJ. Membrane Voltage Is a Direct Feedback Signal That Influences Correlated Ion Channel Expression in Neurons. Curr Biol 2019; 29:1683-1688.e2. [PMID: 31080077 PMCID: PMC6677403 DOI: 10.1016/j.cub.2019.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/03/2019] [Accepted: 04/03/2019] [Indexed: 11/18/2022]
Abstract
The number and type of ion channels present in the membrane determines the electrophysiological function of every neuron. In many species, stereotyped output of neurons often persists for years [1], and ion channel dysregulation can change these properties to cause severe neurological disorders [2-4]. Thus, a fundamental question is how do neurons coordinate channel expression to uphold their firing patterns over long timescales [1, 5]? One major hypothesis purports that neurons homeostatically regulate their ongoing activity through mechanisms that link membrane voltage to expression relationships among ion channels [6-10]. However, experimentally establishing this feedback loop for the control of expression relationships has been a challenge: manipulations that aim to test for voltage feedback invariably disrupt trophic signaling from synaptic transmission and neuromodulation in addition to activity [9, 11, 12]. Further, neuronal activity often relies critically on these chemical mediators, obscuring the contribution of voltage activity of the membrane per se in forming the channel relationships that determine neuronal output [6, 13]. To resolve this, we isolated an identifiable neuron in crustaceans and then either kept this neuron silent or used a long-term voltage clamp protocol to artificially maintain activity. We found that physiological voltage activity-independent of all known forms of synaptic and neuromodulatory feedback-maintains most channel mRNA relationships, while metabotropic influences may play a relatively smaller role. Thus, ion channel relationships likely needed to maintain neuronal identity are actively and continually regulated at least in part at the level of channel mRNAs through feedback by membrane voltage.
Collapse
Affiliation(s)
- Joseph M Santin
- University of Missouri, Columbia, Division of Biological Sciences, Columbia, MO 65211, USA; The University of North Carolina at Greensboro, Department of Biology, Greensboro, NC 27402, USA
| | - David J Schulz
- University of Missouri, Columbia, Division of Biological Sciences, Columbia, MO 65211, USA.
| |
Collapse
|
50
|
Experimentally-constrained biophysical models of tonic and burst firing modes in thalamocortical neurons. PLoS Comput Biol 2019; 15:e1006753. [PMID: 31095552 PMCID: PMC6541309 DOI: 10.1371/journal.pcbi.1006753] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/29/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023] Open
Abstract
Somatosensory thalamocortical (TC) neurons from the ventrobasal (VB) thalamus are central components in the flow of sensory information between the periphery and the cerebral cortex, and participate in the dynamic regulation of thalamocortical states including wakefulness and sleep. This property is reflected at the cellular level by the ability to generate action potentials in two distinct firing modes, called tonic firing and low-threshold bursting. Although the general properties of TC neurons are known, we still lack a detailed characterization of their morphological and electrical properties in the VB thalamus. The aim of this study was to build biophysically-detailed models of VB TC neurons explicitly constrained with experimental data from rats. We recorded the electrical activity of VB neurons (N = 49) and reconstructed morphologies in 3D (N = 50) by applying standardized protocols. After identifying distinct electrical types, we used a multi-objective optimization to fit single neuron electrical models (e-models), which yielded multiple solutions consistent with the experimental data. The models were tested for generalization using electrical stimuli and neuron morphologies not used during fitting. A local sensitivity analysis revealed that the e-models are robust to small parameter changes and that all the parameters were constrained by one or more features. The e-models, when tested in combination with different morphologies, showed that the electrical behavior is substantially preserved when changing dendritic structure and that the e-models were not overfit to a specific morphology. The models and their analysis show that automatic parameter search can be applied to capture complex firing behavior, such as co-existence of tonic firing and low-threshold bursting over a wide range of parameter sets and in combination with different neuron morphologies. Thalamocortical neurons are one of the main components of the thalamocortical system, which is implicated in key functions including sensory transmission and the transition between brain states. These functions are reflected at the cellular level by the ability to generate action potentials in two distinct modes, called burst and tonic firing. Biophysically-detailed computational modeling of these cells can provide a tool to understand the role of these neurons within thalamocortical circuitry. We started by collecting single cell experimental data by applying standardized experimental procedures in brain slices of the rat. Prior work has demonstrated that biological constraints can be integrated using multi-objective optimization to build biologically realistic models of neurons. Here, we employed similar techniques, but extended them to capture the multiple firing modes of thalamic neurons. We compared the model results with additional experimental data, test their generalization and quantitatively reject those that deviated significantly from the experimental variability. These models can be readily integrated in a data-driven pipeline to reconstruct and simulate circuit activity in the thalamocortical system.
Collapse
|