1
|
Coticchio G, Marchio L, Bartolacci A, Cimadomo D, Zacà C, Lagalla C, Tarozzi N, Borini A, Rienzi L. Delays in the final stages of fertilization are strongly associated with trichotomous cytokinesis and cleavage arrest. J Assist Reprod Genet 2025; 42:107-114. [PMID: 39607653 PMCID: PMC11806123 DOI: 10.1007/s10815-024-03330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
PURPOSE Recent evidence showed that the phase between pronuclear fading and the first cleavage is a perilous bridge connecting the zygote and the embryo. Indeed, delay in the short interval between pronuclear breakdown (PNBD) and the first cytokinesis may result in chromosome segregation errors. We tested the hypothesis that delays in this final phase of fertilization are associated with a detrimental impact on embryo development. METHODS This is a retrospective study of 1315 zygotes cultured using time lapse technologies generated in 205 first ICSI-cycles. RESULTS We observed an association between increasing times of the pronuclear fading-first cleavage interval (t2-tPNf) and the rates of trichotomous/direct unequal cleavage at the first (DUC-1) and second (DUC-2) mitotic cycle. Moreover, we observed a reduced blastulation rate. No significant associations were observed between rates of direct unequal cleavage at the third mitotic cycle (DUC-3) and top-quality blastocysts, euploidy, and live births. To evaluate whether the interval t2-tPNf could have a predictive value for the onset of DUC-1 and DUC-2, ROC curve analyses were performed. The area under the curve values obtained for DUC-1 showed a significant prediction accuracy. The best cut-offs to identify zygotes with a high risk of DUC-1 and DUC-2 occurrence were t2-tPNf > 2.78 (hours) and t2-tPNf > 2.50 (hours), respectively. CONCLUSION Delay in the short interval between PNBD and the first cytokinesis result in trichotomous cleavage and early developmental arrest. However, if the embryos reach the blastocyst stage, rates of euploidy and live birth do not appear to be compromised.
Collapse
Affiliation(s)
| | | | - Alessandro Bartolacci
- IVIRMA Global Research Alliance, 9.Baby, Bologna, Italy
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Carlotta Zacà
- IVIRMA Global Research Alliance, 9.Baby, Bologna, Italy
| | | | | | - Andrea Borini
- IVIRMA Global Research Alliance, 9.Baby, Bologna, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| |
Collapse
|
2
|
Carrothers E, Appleby M, Lai V, Kozbenko T, Alomar D, Smith BJ, Hamada N, Hinton P, Ainsbury EA, Hocking R, Yauk C, Wilkins RC, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to cataracts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:31-56. [PMID: 38644659 DOI: 10.1002/em.22594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
Cataracts are one of the leading causes of blindness, with an estimated 95 million people affected worldwide. A hallmark of cataract development is lens opacification, typically associated not only with aging but also radiation exposure as encountered by interventional radiologists and astronauts during the long-term space mission. To better understand radiation-induced cataracts, the adverse outcome pathway (AOP) framework was used to structure and evaluate knowledge across biological levels of organization (e.g., macromolecular, cell, tissue, organ, organism and population). AOPs identify a sequence of key events (KEs) causally connected by key event relationships (KERs) beginning with a molecular initiating event to an adverse outcome (AO) of relevance to regulatory decision-making. To construct the cataract AO and retrieve evidence to support it, a scoping review methodology was used to filter, screen, and review studies based on the modified Bradford Hill criteria. Eight KEs were identified that were moderately supported by empirical evidence (e.g., dose-, time-, incidence-concordance) across the adjacent (directly linked) relationships using well-established endpoints. Over half of the evidence to justify the KER linkages was derived from the evidence stream of biological plausibility. Early KEs of oxidative stress and protein modifications had strong linkages to downstream KEs and could be the focus of countermeasure development. Several identified knowledge gaps and inconsistencies related to the quantitative understanding of KERs which could be the basis of future research, most notably directed to experiments in the range of low or moderate doses and dose-rates, relevant to radiation workers and other occupational exposures.
Collapse
Affiliation(s)
- Emma Carrothers
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Meghan Appleby
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vita Lai
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Dalya Alomar
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Patricia Hinton
- Defense Research & Development Canada, Canadian Forces Environmental Medicine Establishment, Toronto, Ontario, Canada
| | - Elizabeth A Ainsbury
- Radiation, Chemical and Environmental Hazards Division, UK Health Security Agency, Birmingham, UK
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Robyn Hocking
- Learning and Knowledge and Library Services, Health Canada, Ottawa, Ontario, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Dixit S, Nagraj T, Bhattacharya D, Saxena S, Sahoo S, Chittela RK, Somyajit K, Nagaraju G. RTEL1 helicase counteracts RAD51-mediated homologous recombination and fork reversal to safeguard replicating genomes. Cell Rep 2024; 43:114594. [PMID: 39116203 DOI: 10.1016/j.celrep.2024.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Homologous recombination (HR) plays an essential role in the repair of DNA double-strand breaks (DSBs), replication stress responses, and genome maintenance. However, unregulated HR during replication can impair genome duplication and compromise genome stability. The mechanisms underlying HR regulation during DNA replication are obscure. Here, we find that RTEL1 helicase, RAD51, and RAD51 paralogs are enriched at stalled replication sites. The absence of RTEL1 leads to an increase in the RAD51-mediated HR and fork reversal during replication and affects genome-wide replication, which can be rescued by co-depleting RAD51 and RAD51 paralogs. Interestingly, co-depletion of fork remodelers such as SMARCAL1/ZRANB3/HLTF/FBH1 and expression of HR-defective RAD51 mutants also rescues replication defects in RTEL1-deficient cells. The anti-recombinase function of RTEL1 during replication depends on its interaction with PCNA and helicase activity. Together, our data identify the role of RTEL1 helicase in restricting RAD51-mediated fork reversal and HR activity to facilitate error-free genome duplication.
Collapse
Affiliation(s)
- Suruchi Dixit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Tarun Nagraj
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | | | - Sneha Saxena
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Satyaranjan Sahoo
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Kumar Somyajit
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India; Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.
| | - Ganesh Nagaraju
- Department of Biochemistry Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
4
|
La Torre M, Burla R, Saggio I. Preserving Genome Integrity: Unveiling the Roles of ESCRT Machinery. Cells 2024; 13:1307. [PMID: 39120335 PMCID: PMC11311930 DOI: 10.3390/cells13151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.
Collapse
Affiliation(s)
- Mattia La Torre
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, 00185 Rome, Italy; (M.L.T.); (R.B.)
| |
Collapse
|
5
|
Bulanova D, Akimov Y, Senkowski W, Oikkonen J, Gall-Mas L, Timonen S, Elmadani M, Hynninen J, Hautaniemi S, Aittokallio T, Wennerberg K. A synthetic lethal dependency on casein kinase 2 in response to replication-perturbing therapeutics in RB1-deficient cancer cells. SCIENCE ADVANCES 2024; 10:eadj1564. [PMID: 38781347 PMCID: PMC11114247 DOI: 10.1126/sciadv.adj1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Resistance to therapy commonly develops in patients with high-grade serous ovarian carcinoma (HGSC) and triple-negative breast cancer (TNBC), urging the search for improved therapeutic combinations and their predictive biomarkers. Starting from a CRISPR knockout screen, we identified that loss of RB1 in TNBC or HGSC cells generates a synthetic lethal dependency on casein kinase 2 (CK2) for surviving the treatment with replication-perturbing therapeutics such as carboplatin, gemcitabine, or PARP inhibitors. CK2 inhibition in RB1-deficient cells resulted in the degradation of another RB family cell cycle regulator, p130, which led to S phase accumulation, micronuclei formation, and accelerated PARP inhibition-induced aneuploidy and mitotic cell death. CK2 inhibition was also effective in primary patient-derived cells. It selectively prevented the regrowth of RB1-deficient patient HGSC organoids after treatment with carboplatin or niraparib. As about 25% of HGSCs and 40% of TNBCs have lost RB1 expression, CK2 inhibition is a promising approach to overcome resistance to standard therapeutics in large strata of patients.
Collapse
Affiliation(s)
- Daria Bulanova
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences, University of Helsinki, Helsinki, Finland
| | - Yevhen Akimov
- Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences, University of Helsinki, Helsinki, Finland
| | - Wojciech Senkowski
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jaana Oikkonen
- Research Program in Systems Oncology (ONCOSYS), University of Helsinki, Helsinki, Finland
| | - Laura Gall-Mas
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Sanna Timonen
- Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences, University of Helsinki, Helsinki, Finland
| | | | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology (ONCOSYS), University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway
| | - Krister Wennerberg
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Petsalaki E, Balafouti S, Kyriazi AA, Zachos G. The abscission checkpoint senses chromatin bridges through Top2α recruitment to DNA knots. J Cell Biol 2023; 222:e202303123. [PMID: 37638884 PMCID: PMC10461104 DOI: 10.1083/jcb.202303123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
In response to chromatin bridges, the abscission checkpoint delays completion of cytokinesis to prevent chromosome breakage or tetraploidization. Here, we show that spontaneous or replication stress-induced chromatin bridges exhibit "knots" of catenated and overtwisted DNA next to the midbody. Topoisomerase IIα (Top2α) forms abortive Top2-DNA cleavage complexes (Top2ccs) on DNA knots; furthermore, impaired Top2α-DNA cleavage activity correlates with chromatin bridge breakage in cytokinesis. Proteasomal degradation of Top2ccs is required for Rad17 localization to Top2-generated double-strand DNA ends on DNA knots; in turn, Rad17 promotes local recruitment of the MRN complex and downstream ATM-Chk2-INCENP signaling to delay abscission and prevent chromatin breakage. In contrast, dicentric chromosomes that do not exhibit knotted DNA fail to activate the abscission checkpoint in human cells. These findings are the first to describe a mechanism by which the abscission checkpoint detects chromatin bridges, through generation of abortive Top2ccs on DNA knots, to preserve genome integrity.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Heraklion, Greece
| | - Sofia Balafouti
- Department of Biology, University of Crete, Heraklion, Greece
| | | | - George Zachos
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
7
|
Li J, Stenberg S, Yue JX, Mikhalev E, Thompson D, Warringer J, Liti G. Genome instability footprint under rapamycin and hydroxyurea treatments. PLoS Genet 2023; 19:e1011012. [PMID: 37931001 PMCID: PMC10653606 DOI: 10.1371/journal.pgen.1011012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
The mutational processes dictating the accumulation of mutations in genomes are shaped by genetic background, environment and their interactions. Accurate quantification of mutation rates and spectra under drugs has important implications in disease treatment. Here, we used whole-genome sequencing and time-resolved growth phenotyping of yeast mutation accumulation lines to give a detailed view of the mutagenic effects of rapamycin and hydroxyurea on the genome and cell growth. Mutation rates depended on the genetic backgrounds but were only marginally affected by rapamycin. As a remarkable exception, rapamycin treatment was associated with frequent chromosome XII amplifications, which compensated for rapamycin induced rDNA repeat contraction on this chromosome and served to maintain rDNA content homeostasis and fitness. In hydroxyurea, a wide range of mutation rates were elevated regardless of the genetic backgrounds, with a particularly high occurrence of aneuploidy that associated with dramatic fitness loss. Hydroxyurea also induced a high T-to-G and low C-to-A transversion rate that reversed the common G/C-to-A/T bias in yeast and gave rise to a broad range of structural variants, including mtDNA deletions. The hydroxyurea mutation footprint was consistent with the activation of error-prone DNA polymerase activities and non-homologues end joining repair pathways. Taken together, our study provides an in-depth view of mutation rates and signatures in rapamycin and hydroxyurea and their impact on cell fitness, which brings insights for assessing their chronic effects on genome integrity.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Simon Stenberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | | | - Dawn Thompson
- Ginkgo Bioworks, Boston, Massachusetts, United States of America
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| |
Collapse
|
8
|
Harada T, Hata S, Takagi R, Komori T, Fukuyama M, Chinen T, Kitagawa D. An antioxidant screen identifies ascorbic acid for prevention of light-induced mitotic prolongation in live cell imaging. Commun Biol 2023; 6:1107. [PMID: 37914777 PMCID: PMC10620154 DOI: 10.1038/s42003-023-05479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Phototoxicity is an important issue in fluorescence live imaging of light-sensitive cellular processes such as mitosis. Among several approaches to reduce phototoxicity, the addition of antioxidants to the media has been used as a simple method. Here, we analyzed the impact of phototoxicity on the mitotic progression in fluorescence live imaging of human cells and performed a screen to identify the most efficient antioxidative agents that reduce it. Quantitative analysis shows that high amounts of light illumination cause various mitotic defects such as prolonged mitosis and delays of chromosome alignment and centrosome separation. Among several antioxidants, our screen reveals that ascorbic acid significantly alleviates these phototoxic effects in mitosis. Furthermore, we demonstrate that adding ascorbic acid to the media enables fluorescence imaging of mitotic events at very high temporal resolution without obvious photodamage. Thus, this study provides an optimal method to effectively reduce the phototoxic effects in fluorescence live cell imaging.
Collapse
Affiliation(s)
- Tomoki Harada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shoji Hata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Honcho Kawaguchi, Saitama, Japan.
| | - Rioka Takagi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Takuma Komori
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Masamitsu Fukuyama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
9
|
Matos‐Rodrigues G, Barroca V, Muhammad A, Dardillac E, Allouch A, Koundrioukoff S, Lewandowski D, Despras E, Guirouilh‐Barbat J, Frappart L, Kannouche P, Dupaigne P, Le Cam E, Perfettini J, Romeo P, Debatisse M, Jasin M, Livera G, Martini E, Lopez BS. In vivo reduction of RAD51-mediated homologous recombination triggers aging but impairs oncogenesis. EMBO J 2023; 42:e110844. [PMID: 37661798 PMCID: PMC10577633 DOI: 10.15252/embj.2022110844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Homologous recombination (HR) is a prominent DNA repair pathway maintaining genome integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the implication of the pivotal HR factor RAD51 on cancer development remains puzzling. Particularly, no RAD51 mouse models are available to address the role of RAD51 in aging and carcinogenesis in vivo. We engineered a mouse model with an inducible dominant-negative form of RAD51 (SMRad51) that suppresses RAD51-mediated HR without stimulating alternative mutagenic repair pathways. We found that in vivo expression of SMRad51 led to replicative stress, systemic inflammation, progenitor exhaustion, premature aging and reduced lifespan, but did not trigger tumorigenesis. Expressing SMRAD51 in a breast cancer predisposition mouse model (PyMT) decreased the number and the size of tumors, revealing an anti-tumor activity of SMRAD51. We propose that these in vivo phenotypes result from chronic endogenous replication stress caused by HR decrease, which preferentially targets progenitors and tumor cells. Our work underlines the importance of RAD51 activity for progenitor cell homeostasis, preventing aging and more generally for the balance between cancer and aging.
Collapse
Affiliation(s)
- Gabriel Matos‐Rodrigues
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
- Université de Paris and Université Paris‐Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Vilma Barroca
- Université de Paris and Université Paris‐Saclay, Inserm, IRCM/IBFJ CEAUMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Ali‐Akbar Muhammad
- Genome Maintenance and Molecular Microscopy UMR8126 CNRSUniversité Paris‐Sud, Université Paris‐Saclay, Gustave RoussyVillejuif CedexFrance
| | - Elodie Dardillac
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
| | - Awatef Allouch
- Cell Death and Aging Team, INSERM U1030, Laboratory of Molecular RadiotherapyUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Stephane Koundrioukoff
- CNRS UMR8200 Sorbonne UniversitésUPMC UniversityParisFrance
- Institut Gustave RoussyVillejuifFrance
| | - Daniel Lewandowski
- Université de Paris and Université Paris‐Saclay, Inserm, IRCM/IBFJ CEAUMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Emmanuelle Despras
- CNRS UMR8200, Laboratory of Genetic Instability and OncogenesisUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Josée Guirouilh‐Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
| | - Lucien Frappart
- Leibniz Institute on Aging‐Fritz Lipmann InstituteJenaGermany
| | - Patricia Kannouche
- CNRS UMR8200, Laboratory of Genetic Instability and OncogenesisUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR8126 CNRSUniversité Paris‐Sud, Université Paris‐Saclay, Gustave RoussyVillejuif CedexFrance
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR8126 CNRSUniversité Paris‐Sud, Université Paris‐Saclay, Gustave RoussyVillejuif CedexFrance
| | - Jean‐Luc Perfettini
- Cell Death and Aging Team, INSERM U1030, Laboratory of Molecular RadiotherapyUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Paul‐Henri Romeo
- Université de Paris and Université Paris‐Saclay, Inserm, IRCM/IBFJ CEAUMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Michelle Debatisse
- CNRS UMR8200 Sorbonne UniversitésUPMC UniversityParisFrance
- Institut Gustave RoussyVillejuifFrance
| | - Maria Jasin
- Developmental Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Gabriel Livera
- Université de Paris and Université Paris‐Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Emmanuelle Martini
- Université de Paris and Université Paris‐Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
| |
Collapse
|
10
|
Moritz L, Schon SB, Rabbani M, Sheng Y, Agrawal R, Glass-Klaiber J, Sultan C, Camarillo JM, Clements J, Baldwin MR, Diehl AG, Boyle AP, O'Brien PJ, Ragunathan K, Hu YC, Kelleher NL, Nandakumar J, Li JZ, Orwig KE, Redding S, Hammoud SS. Sperm chromatin structure and reproductive fitness are altered by substitution of a single amino acid in mouse protamine 1. Nat Struct Mol Biol 2023; 30:1077-1091. [PMID: 37460896 PMCID: PMC10833441 DOI: 10.1038/s41594-023-01033-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/12/2023] [Indexed: 08/11/2023]
Abstract
Conventional dogma presumes that protamine-mediated DNA compaction in sperm is achieved by electrostatic interactions between DNA and the arginine-rich core of protamines. Phylogenetic analysis reveals several non-arginine residues conserved within, but not across species. The significance of these residues and their post-translational modifications are poorly understood. Here, we investigated the role of K49, a rodent-specific lysine residue in protamine 1 (P1) that is acetylated early in spermiogenesis and retained in sperm. In sperm, alanine substitution (P1(K49A)) decreases sperm motility and male fertility-defects that are not rescued by arginine substitution (P1(K49R)). In zygotes, P1(K49A) leads to premature male pronuclear decompaction, altered DNA replication, and embryonic arrest. In vitro, P1(K49A) decreases protamine-DNA binding and alters DNA compaction and decompaction kinetics. Hence, a single amino acid substitution outside the P1 arginine core is sufficient to profoundly alter protein function and developmental outcomes, suggesting that protamine non-arginine residues are essential for reproductive fitness.
Collapse
Affiliation(s)
- Lindsay Moritz
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Samantha B Schon
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ritvija Agrawal
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Juniper Glass-Klaiber
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Caleb Sultan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jeannie M Camarillo
- Departments of Chemistry, Molecular Biosciences, and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Jourdan Clements
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael R Baldwin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Adam G Diehl
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences, and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sy Redding
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Saher Sue Hammoud
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
A noncanonical response to replication stress protects genome stability through ROS production, in an adaptive manner. Cell Death Differ 2023; 30:1349-1365. [PMID: 36869180 PMCID: PMC10154342 DOI: 10.1038/s41418-023-01141-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Cells are inevitably challenged by low-level/endogenous stresses that do not arrest DNA replication. Here, in human primary cells, we discovered and characterized a noncanonical cellular response that is specific to nonblocking replication stress. Although this response generates reactive oxygen species (ROS), it induces a program that prevents the accumulation of premutagenic 8-oxoguanine in an adaptive way. Indeed, replication stress-induced ROS (RIR) activate FOXO1-controlled detoxification genes such as SEPP1, catalase, GPX1, and SOD2. Primary cells tightly control the production of RIR: They are excluded from the nucleus and are produced by the cellular NADPH oxidases DUOX1/DUOX2, whose expression is controlled by NF-κB, which is activated by PARP1 upon replication stress. In parallel, inflammatory cytokine gene expression is induced through the NF-κB-PARP1 axis upon nonblocking replication stress. Increasing replication stress intensity accumulates DNA double-strand breaks and triggers the suppression of RIR by p53 and ATM. These data underline the fine-tuning of the cellular response to stress that protects genome stability maintenance, showing that primary cells adapt their responses to replication stress severity.
Collapse
|
12
|
Rezaeian AH, Inuzuka H, Wei W. Insights into the aberrant CDK4/6 signaling pathway as a therapeutic target in tumorigenesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 135:179-201. [PMID: 37061331 DOI: 10.1016/bs.apcsb.2022.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The recent findings advance our knowledge for the prevention of the premature activation of the major oncogenic pathways including MYC and the cyclin D-cyclin-dependent kinases 4 and 6 (CDK4/6) axis. D-type cyclins are frequently deregulated in human cancer and promote cell division in part through activation of CDK4/6. Therefore, the activation of the cyclin D-CDK4/6 axis stimulates cell proliferation and cancer progression, which represents a unique therapeutic target. However, we have shown that inhibition of CDK4/6 upregulates protein levels of RB1 and CDK6 for acquisition of drug resistance to CDK4/6 inhibitors. Here, we review new progress in the control of cyclin D-dependent cancer cell cycle and proliferation, along with identification of novel E3 ligase for the stability of cyclin D. Cullin4-RING E3 ligase (CRL4)AMBRA1 complex plays a critical role in regulating D-type cyclins through their protein destabilization to control S phase entry and maintain genomic integrity. We also summarize the strategy for inhibition of the cyclin D-associated kinases CDK4/6 and other potential cell cycle regulators for targeting cancer with altered cyclin D expression. We also uncover the function of CK1ɛ as an effective target to potentiate therapeutic efficacy of CDK4/6 inhibitors. Moreover, as the level of PD-L1 is considered in the severe clinical problem in the patients treated with CDK4 inhibitors, we assume that a therapeutic combination using PD-L1 immunotherapy might lower the development of drug resistance and targeting cyclin D will likely inhibit tumor growth and overcome resistance to cyclin D-associated CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
13
|
Safeguarding DNA Replication: A Golden Touch of MiDAS and Other Mechanisms. Int J Mol Sci 2022; 23:ijms231911331. [PMID: 36232633 PMCID: PMC9570362 DOI: 10.3390/ijms231911331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
DNA replication is a tightly regulated fundamental process allowing the correct duplication and transfer of the genetic information from the parental cell to the progeny. It involves the coordinated assembly of several proteins and protein complexes resulting in replication fork licensing, firing and progression. However, the DNA replication pathway is strewn with hurdles that affect replication fork progression during S phase. As a result, cells have adapted several mechanisms ensuring replication completion before entry into mitosis and segregating chromosomes with minimal, if any, abnormalities. In this review, we describe the possible obstacles that a replication fork might encounter and how the cell manages to protect DNA replication from S to the next G1.
Collapse
|
14
|
Palmerola KL, Amrane S, De Los Angeles A, Xu S, Wang N, de Pinho J, Zuccaro MV, Taglialatela A, Massey DJ, Turocy J, Robles A, Subbiah A, Prosser B, Lobo R, Ciccia A, Koren A, Baslan T, Egli D. Replication stress impairs chromosome segregation and preimplantation development in human embryos. Cell 2022; 185:2988-3007.e20. [PMID: 35858625 DOI: 10.1016/j.cell.2022.06.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/03/2021] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Human cleavage-stage embryos frequently acquire chromosomal aneuploidies during mitosis due to unknown mechanisms. Here, we show that S phase at the 1-cell stage shows replication fork stalling, low fork speed, and DNA synthesis extending into G2 phase. DNA damage foci consistent with collapsed replication forks, DSBs, and incomplete replication form in G2 in an ATR- and MRE11-dependent manner, followed by spontaneous chromosome breakage and segmental aneuploidies. Entry into mitosis with incomplete replication results in chromosome breakage, whole and segmental chromosome errors, micronucleation, chromosome fragmentation, and poor embryo quality. Sites of spontaneous chromosome breakage are concordant with sites of DNA synthesis in G2 phase, locating to gene-poor regions with long neural genes, which are transcriptionally silent at this stage of development. Thus, DNA replication stress in mammalian preimplantation embryos predisposes gene-poor regions to fragility, and in particular in the human embryo, to the formation of aneuploidies, impairing developmental potential.
Collapse
Affiliation(s)
- Katherine L Palmerola
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Selma Amrane
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Alejandro De Los Angeles
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Shuangyi Xu
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Masters of Biotechnology Program, Columbia University, New York, NY 10027, USA
| | - Ning Wang
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Joao de Pinho
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Michael V Zuccaro
- Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Dashiell J Massey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jenna Turocy
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Alex Robles
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Anisa Subbiah
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Bob Prosser
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Rogerio Lobo
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dieter Egli
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA; Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
15
|
Li L, Kolinjivadi AM, Ong KH, Young DM, Marini GPL, Chan SH, Chong ST, Chew EL, Lu H, Gole L, Yu W, Ngeow J. Automatic DNA replication tract measurement to assess replication and repair dynamics at the single-molecule level. Bioinformatics 2022; 38:4395-4402. [PMID: 35881697 PMCID: PMC9477523 DOI: 10.1093/bioinformatics/btac533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION DNA fibre assay has a potential application in genomic medicine, cancer and stem cell research at the single-molecule level. A major challenge for the clinical and research implementation of DNA fibre assays is the slow speed in which manual analysis takes place as it limits the clinical actionability. While automatic detection of DNA fibres speeds up this process considerably, current publicly available software have limited features in terms of their user interface for manual correction of results, which in turn limit their accuracy and ability to account for atypical structures that may be important in diagnosis or investigative studies. We recognize that core improvements can be made to the GUI to allow for direct interaction with automatic results to preserve accuracy as well as enhance the versatility of automatic DNA fibre detection for use in variety of situations. RESULTS To address the unmet needs of diverse DNA fibre analysis investigations, we propose DNA Stranding, an open-source software that is able to perform accurate fibre length quantification (13.22% mean relative error) and fibre pattern recognition (R > 0.93) with up to six fibre patterns supported. With the graphical interface, we developed, user can conduct semi-automatic analyses which benefits from the advantages of both automatic and manual processes to improve workflow efficiency without compromising accuracy. AVAILABILITY AND IMPLEMENTATION The software package is available at https://github.com/lgole/DNAStranding. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Kok Haur Ong
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore,Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - David M Young
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore,Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | | | - Sock Hoai Chan
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore 169610, Singapore,Oncology Academic Clinical Program, Duke-NUS Medical School Singapore, Singapore 169857, Singapore
| | - Siao Ting Chong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Ee Ling Chew
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Haoda Lu
- Bioinformatics Institute, A*STAR, Singapore 138671, Singapore
| | - Laurent Gole
- To whom correspondence should be addressed. or or
| | - Weimiao Yu
- To whom correspondence should be addressed. or or
| | - Joanne Ngeow
- To whom correspondence should be addressed. or or
| |
Collapse
|
16
|
Saxena S, Zou L. Hallmarks of DNA replication stress. Mol Cell 2022; 82:2298-2314. [PMID: 35714587 DOI: 10.1016/j.molcel.2022.05.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Faithful DNA replication is critical for the maintenance of genomic integrity. Although DNA replication machinery is highly accurate, the process of DNA replication is constantly challenged by DNA damage and other intrinsic and extrinsic stresses throughout the genome. A variety of cellular stresses interfering with DNA replication, which are collectively termed replication stress, pose a threat to genomic stability in both normal and cancer cells. To cope with replication stress and maintain genomic stability, cells have evolved a complex network of cellular responses to alleviate and tolerate replication problems. This review will focus on the major sources of replication stress, the impacts of replication stress in cells, and the assays to detect replication stress, offering an overview of the hallmarks of DNA replication stress.
Collapse
Affiliation(s)
- Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
17
|
Ma S, Zhang J, Guo Q, Cao C, Bao K, Liu L, Chen CD, Liu Z, Yang J, Yang N, Yao Z, Shi L. Disrupting PHF8-TOPBP1 connection elicits a breast tumor-specific vulnerability to chemotherapeutics. Cancer Lett 2022; 530:29-44. [PMID: 35051531 DOI: 10.1016/j.canlet.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The DNA damage response (DDR) pathway generally protects against genome instability, and defects in DDR have been exploited therapeutically in cancer treatment. We have reported that histone demethylase PHF8 demethylates TOPBP1 K118 mono-methylation (K118me1) to drive the activation of ATR kinase, one of the master regulators of replication stress. However, whether dysregulation of this physiological signalling is involved in tumorigenesis remains unknown. Here, we showed PHF8-promoted TOPBP1 demethylation is clinically associated with breast tumorigenesis and patient survival. Mammary gland tumors from Phf8 knockout mice grow slowly and exhibit higher level of K118me1, lower ATR activity, and increased chromosomal instability. Importantly, we found that disruption of PHF8-TOPBP1 axis suppresses breast tumorigenesis and creates a breast tumor-specific vulnerability to PARP inhibitor (PARPi) and platinum drug. CRISPR/Cas9 mutation modelling of the deleted or truncated mutation of PHF8 in clinical tumor samples demonstrated breast tumor cells expressing the mimetic variants are more vulnerable to PARPi. Together, our study supports the pursuit of PHF8-TOPBP1 signalling pathway as promising avenues for targeted therapies of PHF8-TOPBP1 proficient tumors, and provides proof-of-concept evidence for loss-of-function of PHF8 as a therapeutic indicator of PARPis.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Jieyou Zhang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Qiushi Guo
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Cheng Cao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Kaiwen Bao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Ling Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhe Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, 300353, Tianjin, China.
| | - Zhi Yao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China.
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
18
|
So A, Dardillac E, Muhammad A, Chailleux C, Sesma-Sanz L, Ragu S, Le Cam E, Canitrot Y, Masson J, Dupaigne P, Lopez BS, Guirouilh-Barbat J. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2651-2666. [PMID: 35137208 PMCID: PMC8934640 DOI: 10.1093/nar/gkac073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Selection of the appropriate DNA double-strand break (DSB) repair pathway is decisive for genetic stability. It is proposed to act according to two steps: 1-canonical nonhomologous end-joining (C-NHEJ) versus resection that generates single-stranded DNA (ssDNA) stretches; 2-on ssDNA, gene conversion (GC) versus nonconservative single-strand annealing (SSA) or alternative end-joining (A-EJ). Here, we addressed the mechanisms by which RAD51 regulates this second step, preventing nonconservative repair in human cells. Silencing RAD51 or BRCA2 stimulated both SSA and A-EJ, but not C-NHEJ, validating the two-step model. Three different RAD51 dominant-negative forms (DN-RAD51s) repressed GC and stimulated SSA/A-EJ. However, a fourth DN-RAD51 repressed SSA/A-EJ, although it efficiently represses GC. In living cells, the three DN-RAD51s that stimulate SSA/A-EJ failed to load efficiently onto damaged chromatin and inhibited the binding of endogenous RAD51, while the fourth DN-RAD51, which inhibits SSA/A-EJ, efficiently loads on damaged chromatin. Therefore, the binding of RAD51 to DNA, rather than its ability to promote GC, is required for SSA/A-EJ inhibition by RAD51. We showed that RAD51 did not limit resection of endonuclease-induced DSBs, but prevented spontaneous and RAD52-induced annealing of complementary ssDNA in vitro. Therefore, RAD51 controls the selection of the DSB repair pathway, protecting genome integrity from nonconservative DSB repair through ssDNA occupancy, independently of the promotion of CG.
Collapse
Affiliation(s)
- Ayeong So
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Elodie Dardillac
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Ali Muhammad
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | | | - Laura Sesma-Sanz
- Genome Stability Laboratory, CHU de Québec Research Center (Oncology Division), Quebec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Sandrine Ragu
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Yvan Canitrot
- CBI, CNRS UMR5088, LBCMCP, Toulouse University, Toulouse, France
| | - Jean Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center (Oncology Division), Quebec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Bernard S Lopez
- To whom correspondence should be addressed. Tel: +33 1 53 73 27 40;
| | | |
Collapse
|
19
|
Prado F. Non-Recombinogenic Functions of Rad51, BRCA2, and Rad52 in DNA Damage Tolerance. Genes (Basel) 2021; 12:genes12101550. [PMID: 34680945 PMCID: PMC8535942 DOI: 10.3390/genes12101550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
The DNA damage tolerance (DDT) response is aimed to timely and safely complete DNA replication by facilitating the advance of replication forks through blocking lesions. This process is associated with an accumulation of single-strand DNA (ssDNA), both at the fork and behind the fork. Lesion bypass and ssDNA filling can be performed by translation synthesis (TLS) and template switching mechanisms. TLS uses low-fidelity polymerases to incorporate a dNTP opposite the blocking lesion, whereas template switching uses a Rad51/ssDNA nucleofilament and the sister chromatid to bypass the lesion. Rad51 is loaded at this nucleofilament by two mediator proteins, BRCA2 and Rad52, and these three factors are critical for homologous recombination (HR). Here, we review recent advances showing that Rad51, BRCA2, and Rad52 perform some of these functions through mechanisms that do not require the strand exchange activity of Rad51: the formation and protection of reversed fork structures aimed to bypass blocking lesions, and the promotion of TLS. These findings point to the central HR proteins as potential molecular switches in the choice of the mechanism of DDT.
Collapse
Affiliation(s)
- Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, 41092 Seville, Spain
| |
Collapse
|
20
|
Técher H, Pasero P. The Replication Stress Response on a Narrow Path Between Genomic Instability and Inflammation. Front Cell Dev Biol 2021; 9:702584. [PMID: 34249949 PMCID: PMC8270677 DOI: 10.3389/fcell.2021.702584] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The genome of eukaryotic cells is particularly at risk during the S phase of the cell cycle, when megabases of chromosomal DNA are unwound to generate two identical copies of the genome. This daunting task is executed by thousands of micro-machines called replisomes, acting at fragile structures called replication forks. The correct execution of this replication program depends on the coordinated action of hundreds of different enzymes, from the licensing of replication origins to the termination of DNA replication. This review focuses on the mechanisms that ensure the completion of DNA replication under challenging conditions of endogenous or exogenous origin. It also covers new findings connecting the processing of stalled forks to the release of small DNA fragments into the cytoplasm, activating the cGAS-STING pathway. DNA damage and fork repair comes therefore at a price, which is the activation of an inflammatory response that has both positive and negative impacts on the fate of stressed cells. These new findings have broad implications for the etiology of interferonopathies and for cancer treatment.
Collapse
Affiliation(s)
- Hervé Técher
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| |
Collapse
|
21
|
Matos-Rodrigues G, Guirouilh-Barbat J, Martini E, Lopez BS. Homologous recombination, cancer and the 'RAD51 paradox'. NAR Cancer 2021; 3:zcab016. [PMID: 34316706 PMCID: PMC8209977 DOI: 10.1093/narcan/zcab016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Genetic instability is a hallmark of cancer cells. Homologous recombination (HR) plays key roles in genome stability and variability due to its roles in DNA double-strand break and interstrand crosslink repair, and in the protection and resumption of arrested replication forks. HR deficiency leads to genetic instability, and, as expected, many HR genes are downregulated in cancer cells. The link between HR deficiency and cancer predisposition is exemplified by familial breast and ovarian cancers and by some subgroups of Fanconi anaemia syndromes. Surprisingly, although RAD51 plays a pivotal role in HR, i.e., homology search and in strand exchange with a homologous DNA partner, almost no inactivating mutations of RAD51 have been associated with cancer predisposition; on the contrary, overexpression of RAD51 is associated with a poor prognosis in different types of tumours. Taken together, these data highlight the fact that RAD51 differs from its HR partners with regard to cancer susceptibility and expose what we call the ‘RAD51 paradox’. Here, we catalogue the dysregulations of HR genes in human pathologies, including cancer and Fanconi anaemia or congenital mirror movement syndromes, and we discuss the RAD51 paradox.
Collapse
Affiliation(s)
- Gabriel Matos-Rodrigues
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, F-75014, France
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, F-75014, France
| | - Emmanuelle Martini
- Université de Paris and Université Paris-Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability, Stem Cells and Radiation, F-92265 Fontenay aux Roses, France
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, F-75014, France
| |
Collapse
|
22
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
23
|
Maiani E, Milletti G, Nazio F, Holdgaard SG, Bartkova J, Rizza S, Cianfanelli V, Lorente M, Simoneschi D, Di Marco M, D'Acunzo P, Di Leo L, Rasmussen R, Montagna C, Raciti M, De Stefanis C, Gabicagogeascoa E, Rona G, Salvador N, Pupo E, Merchut-Maya JM, Daniel CJ, Carinci M, Cesarini V, O'sullivan A, Jeong YT, Bordi M, Russo F, Campello S, Gallo A, Filomeni G, Lanzetti L, Sears RC, Hamerlik P, Bartolazzi A, Hynds RE, Pearce DR, Swanton C, Pagano M, Velasco G, Papaleo E, De Zio D, Maya-Mendoza A, Locatelli F, Bartek J, Cecconi F. AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature 2021; 592:799-803. [PMID: 33854232 PMCID: PMC8864551 DOI: 10.1038/s41586-021-03422-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway1,2. Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1-cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis.
Collapse
Affiliation(s)
- Emiliano Maiani
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Giacomo Milletti
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Francesca Nazio
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Søs Grønbæk Holdgaard
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jirina Bartkova
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Valentina Cianfanelli
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Mar Lorente
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Miriam Di Marco
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Luca Di Leo
- Melanoma Research Team, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Rikke Rasmussen
- Brain Tumor Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Costanza Montagna
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Marilena Raciti
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Estibaliz Gabicagogeascoa
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Nélida Salvador
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Emanuela Pupo
- Candiolo Cancer Institute, FPO - IRCCS, Turin, Italy
| | - Joanna Maria Merchut-Maya
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- DNA Replication and Cancer Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Colin J Daniel
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Marianna Carinci
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Valeriana Cesarini
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Biomedical Sciences, Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Alfie O'sullivan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Yeon-Tae Jeong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Matteo Bordi
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Francesco Russo
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Silvia Campello
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Angela Gallo
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giuseppe Filomeni
- Redox Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Letizia Lanzetti
- Candiolo Cancer Institute, FPO - IRCCS, Turin, Italy
- Department of Oncology, University of Torino Medical School, Turin, Italy
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Petra Hamerlik
- Brain Tumor Biology Group, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Copenhagen University, Copenhagen, Denmark
| | - Armando Bartolazzi
- Department of Pathology and Pathology Research Laboratory, Sant'Andrea Hospital, Rome, Italy
| | - Robert E Hynds
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - David R Pearce
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniela De Zio
- Melanoma Research Team, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Apolinar Maya-Mendoza
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
- DNA Replication and Cancer Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Franco Locatelli
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Gynecology-Obstetrics and Pediatrics, Sapienza University, Rome, Italy
| | - Jiri Bartek
- Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark.
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
| |
Collapse
|
24
|
Li Z, Yu DS, Doetsch PW, Werner E. Replication stress and FOXM1 drive radiation induced genomic instability and cell transformation. PLoS One 2020; 15:e0235998. [PMID: 33253193 PMCID: PMC7703902 DOI: 10.1371/journal.pone.0235998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/07/2020] [Indexed: 12/25/2022] Open
Abstract
In contrast to the vast majority of research that has focused on the immediate effects of ionizing radiation, this work concentrates on the molecular mechanism driving delayed effects that emerge in the progeny of the exposed cells. We employed functional protein arrays to identify molecular changes induced in a human bronchial epithelial cell line (HBEC3-KT) and osteosarcoma cell line (U2OS) and evaluated their impact on outcomes associated with radiation induced genomic instability (RIGI) at day 5 and 7 post-exposure to a 2Gy X-ray dose, which revealed replication stress in the context of increased FOXM1b expression. Irradiated cells had reduced DNA replication rate detected by the DNA fiber assay and increased DNA resection detected by RPA foci and phosphorylation. Irradiated cells increased utilization of homologous recombination-dependent repair detected by a gene conversion assay and DNA damage at mitosis reflected by RPA positive chromosomal bridges, micronuclei formation and 53BP1 positive bodies in G1, all known outcomes of replication stress. Interference with the function of FOXM1, a transcription factor widely expressed in cancer, employing an aptamer, decreased radiation-induced micronuclei formation and cell transformation while plasmid-driven overexpression of FOXM1b was sufficient to induce replication stress, micronuclei formation and cell transformation.
Collapse
Affiliation(s)
- Zhentian Li
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - David S. Yu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Paul W. Doetsch
- Laboratory of Genomic Integrity and Structural Biology, NIH, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Erica Werner
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Tamura N, Shaikh N, Muliaditan D, Soliman TN, McGuinness JR, Maniati E, Moralli D, Durin MA, Green CM, Balkwill FR, Wang J, Curtius K, McClelland SE. Specific Mechanisms of Chromosomal Instability Indicate Therapeutic Sensitivities in High-Grade Serous Ovarian Carcinoma. Cancer Res 2020; 80:4946-4959. [PMID: 32998996 DOI: 10.1158/0008-5472.can-19-0852] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/23/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Chromosomal instability (CIN) comprises continual gain and loss of chromosomes or parts of chromosomes and occurs in the majority of cancers, often conferring poor prognosis. Because of a scarcity of functional studies and poor understanding of how genetic or gene expression landscapes connect to specific CIN mechanisms, causes of CIN in most cancer types remain unknown. High-grade serous ovarian carcinoma (HGSC), the most common subtype of ovarian cancer, is the major cause of death due to gynecologic malignancy in the Western world, with chemotherapy resistance developing in almost all patients. HGSC exhibits high rates of chromosomal aberrations and knowledge of causative mechanisms would represent an important step toward combating this disease. Here we perform the first in-depth functional characterization of mechanisms driving CIN in HGSC in seven cell lines that accurately recapitulate HGSC genetics. Multiple mechanisms coexisted to drive CIN in HGSC, including elevated microtubule dynamics and DNA replication stress that can be partially rescued to reduce CIN by low doses of paclitaxel and nucleoside supplementation, respectively. Distinct CIN mechanisms indicated relationships with HGSC-relevant therapy including PARP inhibition and microtubule-targeting agents. Comprehensive genomic and transcriptomic profiling revealed deregulation of various genes involved in genome stability but were not directly predictive of specific CIN mechanisms, underscoring the importance of functional characterization to identify causes of CIN. Overall, we show that HGSC CIN is complex and suggest that specific CIN mechanisms could be used as functional biomarkers to indicate appropriate therapy. SIGNIFICANCE: These findings characterize multiple deregulated mechanisms of genome stability that lead to CIN in ovarian cancer and demonstrate the benefit of integrating analysis of said mechanisms into predictions of therapy response.
Collapse
Affiliation(s)
- Naoka Tamura
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Nadeem Shaikh
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Daniel Muliaditan
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Tanya N Soliman
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Daniela Moralli
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Mary-Anne Durin
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Catherine M Green
- Chromosome Dynamics, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Kit Curtius
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Sarah E McClelland
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
26
|
Wilhelm T, Said M, Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel) 2020; 11:E642. [PMID: 32532049 PMCID: PMC7348713 DOI: 10.3390/genes11060642] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chromosomal instability (CIN) is associated with many human diseases, including neurodevelopmental or neurodegenerative conditions, age-related disorders and cancer, and is a key driver for disease initiation and progression. A major source of structural chromosome instability (s-CIN) leading to structural chromosome aberrations is "replication stress", a condition in which stalled or slowly progressing replication forks interfere with timely and error-free completion of the S phase. On the other hand, mitotic errors that result in chromosome mis-segregation are the cause of numerical chromosome instability (n-CIN) and aneuploidy. In this review, we will discuss recent evidence showing that these two forms of chromosomal instability can be mechanistically interlinked. We first summarize how replication stress causes structural and numerical CIN, focusing on mechanisms such as mitotic rescue of replication stress (MRRS) and centriole disengagement, which prevent or contribute to specific types of structural chromosome aberrations and segregation errors. We describe the main outcomes of segregation errors and how micronucleation and aneuploidy can be the key stimuli promoting inflammation, senescence, or chromothripsis. At the end, we discuss how CIN can reduce cellular fitness and may behave as an anticancer barrier in noncancerous cells or precancerous lesions, whereas it fuels genomic instability in the context of cancer, and how our current knowledge may be exploited for developing cancer therapies.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
- UMR144 Cell Biology and Cancer, Institut Curie, 75005 Paris, France
| | - Maha Said
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| | - Valeria Naim
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris Saclay, Gustave Roussy, 94805 Villejuif, France; (T.W.); (M.S.)
| |
Collapse
|
27
|
Comparative Analysis of the Minimum Number of Replication Origins in Trypanosomatids and Yeasts. Genes (Basel) 2020; 11:genes11050523. [PMID: 32397111 PMCID: PMC7288466 DOI: 10.3390/genes11050523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Single-celled eukaryote genomes predominantly replicate through multiple origins. Although origin usage during the S-phase has been elucidated in some of these organisms, few studies have comparatively approached this dynamic. Here, we developed a user-friendly website able to calculate the length of the cell cycle phases for any organism. Next, using a formula developed by our group, we showed a comparative analysis among the minimum number of replication origins (MO) required to duplicate an entire chromosome within the S-phase duration in trypanosomatids (Trypanosoma cruzi, Leishmania major, and Trypanosoma brucei) and yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe). Using the data obtained by our analysis, it was possible to predict the MO required in a situation of replication stress. Also, our findings allow establishing a threshold for the number of origins, which serves as a parameter for genome approaches that map origins. Moreover, our data suggest that when compared to yeasts, trypanosomatids use much more origins than the minimum needed. This is the first time a comparative analysis of the minimum number of origins has been successfully applied. These data may provide new insight into the understanding of the replication mechanism and a new methodological framework for studying single-celled eukaryote genomes.
Collapse
|
28
|
Ragu S, Matos-Rodrigues G, Lopez BS. Replication Stress, DNA Damage, Inflammatory Cytokines and Innate Immune Response. Genes (Basel) 2020; 11:E409. [PMID: 32283785 PMCID: PMC7230342 DOI: 10.3390/genes11040409] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
Complete and accurate DNA replication is essential to genome stability maintenance during cellular division. However, cells are routinely challenged by endogenous as well as exogenous agents that threaten DNA stability. DNA breaks and the activation of the DNA damage response (DDR) arising from endogenous replication stress have been observed at pre- or early stages of oncogenesis and senescence. Proper detection and signalling of DNA damage are essential for the autonomous cellular response in which the DDR regulates cell cycle progression and controls the repair machinery. In addition to this autonomous cellular response, replicative stress changes the cellular microenvironment, activating the innate immune response that enables the organism to protect itself against the proliferation of damaged cells. Thereby, the recent descriptions of the mechanisms of the pro-inflammatory response activation after replication stress, DNA damage and DDR defects constitute important conceptual novelties. Here, we review the links of replication, DNA damage and DDR defects to innate immunity activation by pro-inflammatory paracrine effects, highlighting the implications for human syndromes and immunotherapies.
Collapse
Affiliation(s)
| | | | - Bernard S. Lopez
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Université de Paris, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France; (S.R.); (G.M.-R.)
| |
Collapse
|
29
|
Vanzo R, Bartkova J, Merchut-Maya JM, Hall A, Bouchal J, Dyrskjøt L, Frankel LB, Gorgoulis V, Maya-Mendoza A, Jäättelä M, Bartek J. Autophagy role(s) in response to oncogenes and DNA replication stress. Cell Death Differ 2020; 27:1134-1153. [PMID: 31409894 PMCID: PMC7206042 DOI: 10.1038/s41418-019-0403-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that captures aberrant intracellular proteins and/or damaged organelles for delivery to lysosomes, with implications for cellular and organismal homeostasis, aging and diverse pathologies, including cancer. During cancer development, autophagy may play both tumour-supporting and tumour-suppressing roles. Any relationships of autophagy to the established oncogene-induced replication stress (RS) and the ensuing DNA damage response (DDR)-mediated anti-cancer barrier in early tumorigenesis remain to be elucidated. Here, assessing potential links between autophagy, RS and DDR, we found that autophagy is enhanced in both early and advanced stages of human urinary bladder and prostate tumorigenesis. Furthermore, a high-content, single-cell-level microscopy analysis of human cellular models exposed to diverse genotoxic insults showed that autophagy is enhanced in cells that experienced robust DNA damage, independently of the cell-cycle position. Oncogene- and drug-induced RS triggered first DDR and later autophagy. Unexpectedly, genetic inactivation of autophagy resulted in RS, despite cellular retention of functional mitochondria and normal ROS levels. Moreover, recovery from experimentally induced RS required autophagy to support DNA synthesis. Consistently, RS due to the absence of autophagy could be partly alleviated by exogenous supply of deoxynucleosides. Our results highlight the importance of autophagy for DNA synthesis, suggesting that autophagy may support cancer progression, at least in part, by facilitating tumour cell survival and fitness under replication stress, a feature shared by most malignancies. These findings have implications for better understanding of the role of autophagy in tumorigenesis, as well as for attempts to manipulate autophagy as an anti-tumour therapeutic strategy.
Collapse
Affiliation(s)
- Riccardo Vanzo
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jirina Bartkova
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | | | - Arnaldur Hall
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lisa B Frankel
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Vassilis Gorgoulis
- Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Marja Jäättelä
- Danish Cancer Society Research Center, Copenhagen, Denmark.
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark.
- Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
30
|
Chauhan V, Sherman S, Said Z, Yauk CL, Stainforth R. A case example of a radiation-relevant adverse outcome pathway to lung cancer. Int J Radiat Biol 2020; 97:68-84. [PMID: 31846388 DOI: 10.1080/09553002.2019.1704913] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Adverse outcome pathways (AOPs) describe how a measurable sequence of key events, beginning from a molecular initiator, can lead to an adverse outcome of relevance to risk assessment. An AOP is modular by design, comprised of four main components: (1) a Molecular Initiating Event (MIE), (2) Key Events (KEs), (3) Key Event Relationships (KERs) and (4) an Adverse Outcome (AO). PURPOSE Here, we illustrate the utility of the AOP concept through a case example in the field of ionizing radiation, using the Organisation for Economic Cooperation and Development (OECD) Users' Handbook. This AOP defines a classic targeted response to a radiation insult with an AO of lung cancer that is relevant to radon gas exposure. MATERIALS AND METHODS To build this AOP, over 500 papers were reviewed and categorized based on the modified Bradford-Hill Criteria. Data-rich key events from the MIE, to several measurable KEs and KERs related to DNA damage response/repair were identified. RESULTS The components for this AOP begin with direct deposition of energy as the MIE. Energy deposited into a cell can lead to multiple ionization events to targets such as DNA. This energy can damage DNA leading to double-strand breaks (DSBs) (KE1), this will initiate repair activation (KE2) in higher eukaryotes through mechanisms that are quick and efficient, but error-prone. If DSBs occur in regions of the DNA transcribing critical genes, then mutations (KE3) generated through faulty repair may alter the function of these genes or may cause chromosomal aberrations (KE4). This can impact cellular pathways such as cell growth, cell cycling and then cellular proliferation (KE5). This will form hyperplasia in lung cells, leading eventually to lung cancer (AO) induction and metastasis. The weight of evidence for the KERs was built using biological plausibility, incidence concordance, dose-response, time-response and essentiality studies. The uncertainties and inconsistencies surrounding this AOP are centered on dose-response relationships associated with dose, dose-rates and radiation quality. CONCLUSION Overall, the AOP framework provided an effective means to organize the scientific knowledge surrounding the KERs and identify those with strong dose-response relationships and those with inconsistencies. This case study is an example of how the AOP methodology can be applied to sources of radiation to help support areas of risk assessment.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Samantha Sherman
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Zakaria Said
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Robert Stainforth
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| |
Collapse
|
31
|
Tsegay PS, Lai Y, Liu Y. Replication Stress and Consequential Instability of the Genome and Epigenome. Molecules 2019; 24:molecules24213870. [PMID: 31717862 PMCID: PMC6864812 DOI: 10.3390/molecules24213870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cells must faithfully duplicate their DNA in the genome to pass their genetic information to the daughter cells. To maintain genomic stability and integrity, double-strand DNA has to be replicated in a strictly regulated manner, ensuring the accuracy of its copy number, integrity and epigenetic modifications. However, DNA is constantly under the attack of DNA damage, among which oxidative DNA damage is the one that most frequently occurs, and can alter the accuracy of DNA replication, integrity and epigenetic features, resulting in DNA replication stress and subsequent genome and epigenome instability. In this review, we summarize DNA damage-induced replication stress, the formation of DNA secondary structures, peculiar epigenetic modifications and cellular responses to the stress and their impact on the instability of the genome and epigenome mainly in eukaryotic cells.
Collapse
Affiliation(s)
- Pawlos S. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
32
|
Abstract
Mitosis ensures accurate segregation of duplicated DNA through tight regulation of chromosome condensation, bipolar spindle assembly, chromosome alignment in the metaphase plate, chromosome segregation and cytokinesis. Poly(ADP-ribose) polymerases (PARPs), in particular PARP1, PARP2, PARP3, PARP5a (TNKS1), as well as poly(ADP-ribose) glycohydrolase (PARG), regulate different mitotic functions, including centrosome function, mitotic spindle assembly, mitotic checkpoints, telomere length and telomere cohesion. PARP depletion or inhibition give rise to various mitotic defects such as centrosome amplification, multipolar spindles, chromosome misalignment, premature loss of cohesion, metaphase arrest, anaphase DNA bridges, lagging chromosomes, and micronuclei. As the mechanisms of PARP1/2 inhibitor-mediated cell death are being progressively elucidated, it is becoming clear that mitotic defects caused by PARP1/2 inhibition arise due to replication stress and DNA damage in S phase. As it stands, entrapment of inactive PARP1/2 on DNA phenocopies replication stress through accumulation of unresolved replication intermediates, double-stranded DNA breaks (DSBs) and incorrectly repaired DSBs, which can be transmitted from S phase to mitosis and instigate various mitotic defects, giving rise to both numerical and structural chromosomal aberrations. Cancer cells have increased levels of replication stress, which makes them particularly susceptible to a combination of agents that compromise replication fork stability. Indeed, combining PARP1/2 inhibitors with genetic deficiencies in DNA repair pathways, DNA-damaging agents, ATR and other cell cycle checkpoint inhibitors has yielded synergistic effects in killing cancer cells. Here I provide a comprehensive overview of the mitotic functions of PARPs and PARG, mitotic phenotypes induced by their depletion or inhibition, as well as the therapeutic relevance of targeting mitotic cells by directly interfering with mitotic functions or indirectly through replication stress.
Collapse
Affiliation(s)
- Dea Slade
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
33
|
Böhly N, Kistner M, Bastians H. Mild replication stress causes aneuploidy by deregulating microtubule dynamics in mitosis. Cell Cycle 2019; 18:2770-2783. [PMID: 31448675 DOI: 10.1080/15384101.2019.1658477] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Chromosomal instability (CIN) causes structural and numerical chromosome aberrations and represents a hallmark of cancer. Replication stress (RS) has emerged as a driver for structural chromosome aberrations while mitotic defects can cause whole chromosome missegregation and aneuploidy. Recently, first evidence indicated that RS can also influence chromosome segregation in cancer cells exhibiting CIN, but the underlying mechanisms remain unknown. Here, we show that chromosomally unstable cancer cells suffer from very mild RS, which allows efficient proliferation and which can be mimicked by treatment with very low concentrations of aphidicolin. Both, endogenous RS and aphidicolin-induced very mild RS cause chromosome missegregation during mitosis leading to the induction of aneuploidy. Moreover, RS triggers an increase in microtubule plus end growth rates in mitosis, an abnormality previously identified to cause chromosome missegregation in cancer cells. In fact, RS-induced chromosome missegregation is mediated by increased mitotic microtubule growth rates and is suppressed after restoration of proper microtubule growth rates and upon rescue of replication stress. Hence, very mild and cancer-relevant RS triggers aneuploidy by deregulating microtubule dynamics in mitosis.
Collapse
Affiliation(s)
- Nicolas Böhly
- Institute of Molecular Oncology, Section for Cellular Oncology, Georg-August University Göttingen, Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG) , Göttingen , Germany
| | - Magdalena Kistner
- Institute of Molecular Oncology, Section for Cellular Oncology, Georg-August University Göttingen, Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG) , Göttingen , Germany
| | - Holger Bastians
- Institute of Molecular Oncology, Section for Cellular Oncology, Georg-August University Göttingen, Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG) , Göttingen , Germany
| |
Collapse
|
34
|
Wilhelm T, Olziersky AM, Harry D, De Sousa F, Vassal H, Eskat A, Meraldi P. Mild replication stress causes chromosome mis-segregation via premature centriole disengagement. Nat Commun 2019; 10:3585. [PMID: 31395887 PMCID: PMC6687892 DOI: 10.1038/s41467-019-11584-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/23/2019] [Indexed: 01/19/2023] Open
Abstract
Replication stress, a hallmark of cancerous and pre-cancerous lesions, is linked to structural chromosomal aberrations. Recent studies demonstrated that it could also lead to numerical chromosomal instability (CIN). The mechanism, however, remains elusive. Here, we show that inducing replication stress in non-cancerous cells stabilizes spindle microtubules and favours premature centriole disengagement, causing transient multipolar spindles that lead to lagging chromosomes and micronuclei. Premature centriole disengagement depends on the G2 activity of the Cdk, Plk1 and ATR kinases, implying a DNA-damage induced deregulation of the centrosome cycle. Premature centriole disengagement also occurs spontaneously in some CIN+ cancer cell lines and can be suppressed by attenuating replication stress. Finally, we show that replication stress potentiates the effect of the chemotherapeutic agent taxol, by increasing the incidence of multipolar cell divisions. We postulate that replication stress in cancer cells induces numerical CIN via transient multipolar spindles caused by premature centriole disengagement. Chromosome instability can be caused by replication stress, although the mechanism is unclear. Here, the authors show that inducing mild replication stress in cancerous and non-cancerous cell lines leads to centriole disengagement and the subsequent formation of lagging chromosomes and micronuclei.
Collapse
Affiliation(s)
- Therese Wilhelm
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland. .,Department of Genetic Stability and Oncogenesis, Institut Gustave Roussy, CNRS UMR8200, 94805, Villejuif, France.
| | - Anna-Maria Olziersky
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland
| | - Daniela Harry
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland
| | - Filipe De Sousa
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland
| | - Helène Vassal
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland.,National Institute of Applied Sciences, Villeurbanne, 69621, France
| | - Anja Eskat
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland.,Clinical Trials Center, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland. .,Translational Research Centre in Onco-hematology, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
35
|
Abstract
Flaws in the DNA replication process have emerged as a leading driver of genome instability in human diseases. Alteration to replication fork progression is a defining feature of replication stress and the consequent failure to maintain fork integrity and complete genome duplication within a single round of S-phase compromises genetic integrity. This includes increased mutation rates, small and large scale genomic rearrangement and deleterious consequences for the subsequent mitosis that result in the transmission of additional DNA damage to the daughter cells. Therefore, preserving fork integrity and replication competence is an important aspect of how cells respond to replication stress and avoid genetic change. Homologous recombination is a pivotal pathway in the maintenance of genome integrity in the face of replication stress. Here we review our recent understanding of the mechanisms by which homologous recombination acts to protect, restart and repair replication forks. We discuss the dynamics of these genetically distinct functions and their contribution to faithful mitoticsegregation.
Collapse
|
36
|
Cánovas B, Igea A, Sartori AA, Gomis RR, Paull TT, Isoda M, Pérez-Montoyo H, Serra V, González-Suárez E, Stracker TH, Nebreda AR. Targeting p38α Increases DNA Damage, Chromosome Instability, and the Anti-tumoral Response to Taxanes in Breast Cancer Cells. Cancer Cell 2018; 33:1094-1110.e8. [PMID: 29805078 DOI: 10.1016/j.ccell.2018.04.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 01/18/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022]
Abstract
Breast cancer is the second leading cause of cancer-related death among women. Here we report a role for the protein kinase p38α in coordinating the DNA damage response and limiting chromosome instability during breast tumor progression, and identify the DNA repair regulator CtIP as a p38α substrate. Accordingly, decreased p38α signaling results in impaired ATR activation and homologous recombination repair, with concomitant increases in replication stress, DNA damage, and chromosome instability, leading to cancer cell death and tumor regression. Moreover, we show that pharmacological inhibition of p38α potentiates the effects of taxanes by boosting chromosome instability in murine models and patient-derived xenografts, suggesting the potential interest of combining p38α inhibitors with chemotherapeutic drugs that induce chromosome instability.
Collapse
Affiliation(s)
- Begoña Cánovas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Ana Igea
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Alessandro A Sartori
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland
| | - Roger R Gomis
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain; Universitat de Barcelona and CIBERONC, Barcelona, Spain
| | - Tanya T Paull
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
| | - Michitaka Isoda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Héctor Pérez-Montoyo
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Violeta Serra
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Eva González-Suárez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
37
|
Wangsa D, Quintanilla I, Torabi K, Vila-Casadesús M, Ercilla A, Klus G, Yuce Z, Galofré C, Cuatrecasas M, Lozano JJ, Agell N, Cimini D, Castells A, Ried T, Camps J. Near-tetraploid cancer cells show chromosome instability triggered by replication stress and exhibit enhanced invasiveness. FASEB J 2018; 32:3502-3517. [PMID: 29452566 DOI: 10.1096/fj.201700247rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A considerable proportion of tumors exhibit aneuploid karyotypes, likely resulting from the progressive loss of chromosomes after whole-genome duplication. Here, by using isogenic diploid and near-tetraploid (4N) single-cell-derived clones from the same parental cell lines, we aimed at exploring how polyploidization affects cellular functions and how tetraploidy generates chromosome instability. Gene expression profiling in 4N clones revealed a significant enrichment of transcripts involved in cell cycle and DNA replication. Increased levels of replication stress in 4N cells resulted in DNA damage, impaired proliferation caused by a cell cycle delay during S phase, and higher sensitivity to S phase checkpoint inhibitors. In fact, increased levels of replication stress were also observed in nontransformed, proliferative posttetraploid RPE1 cells. Additionally, replication stress promoted higher levels of intercellular genomic heterogeneity and ongoing genomic instability, which could be explained by high rates of mitotic defects, and was alleviated by the supplementation of exogenous nucleosides. Finally, our data found that 4N cancer cells displayed increased migratory and invasive capacity, both in vitro and in primary colorectal tumors, indicating that tetraploidy can promote aggressive cancer cell behavior.-Wangsa, D., Quintanilla, I., Torabi, K., Vila-Casadesús, M., Ercilla, A., Klus, G., Yuce, Z., Galofré, C., Cuatrecasas, M., Lozano, J. J., Agell, N., Cimini, D., Castells, A., Ried, T., Camps, J. Near-tetraploid cancer cells show chromosome instability triggered by replication stress and exhibit enhanced invasiveness.
Collapse
Affiliation(s)
- Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Isabel Quintanilla
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Keyvan Torabi
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Vila-Casadesús
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain.,Bioinformatics Unit, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Amaia Ercilla
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Gregory Klus
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zeynep Yuce
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Department of Medical Biology and Genetics, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Claudia Galofré
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Miriam Cuatrecasas
- Department of Pathology-Centro de Diagnóstico Biomédico (CDB), Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Juan José Lozano
- Bioinformatics Unit, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Neus Agell
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Daniela Cimini
- Department of Biological Sciences, Biocomplexity Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Antoni Castells
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic de Barcelona, Barcelona, Spain.,Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
38
|
Ait Saada A, Teixeira-Silva A, Iraqui I, Costes A, Hardy J, Paoletti G, Fréon K, Lambert SAE. Unprotected Replication Forks Are Converted into Mitotic Sister Chromatid Bridges. Mol Cell 2017; 66:398-410.e4. [PMID: 28475874 DOI: 10.1016/j.molcel.2017.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 01/23/2023]
Abstract
Replication stress and mitotic abnormalities are key features of cancer cells. Temporarily paused forks are stabilized by the intra-S phase checkpoint and protected by the association of Rad51, which prevents Mre11-dependent resection. However, if a fork becomes dysfunctional and cannot resume, this terminally arrested fork is rescued by a converging fork to avoid unreplicated parental DNA during mitosis. Alternatively, dysfunctional forks are restarted by homologous recombination. Using fission yeast, we report that Rad52 and the DNA binding activity of Rad51, but not its strand-exchange activity, act to protect terminally arrested forks from unrestrained Exo1-nucleolytic activity. In the absence of recombination proteins, large ssDNA gaps, up to 3 kb long, occur behind terminally arrested forks, preventing efficient fork merging and leading to mitotic sister chromatid bridging. Thus, Rad52 and Rad51 prevent temporarily and terminally arrested forks from degrading and, despite the availability of converging forks, converting to anaphase bridges causing aneuploidy and cell death.
Collapse
Affiliation(s)
- Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Ana Teixeira-Silva
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Ismail Iraqui
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Audrey Costes
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Julien Hardy
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Giulia Paoletti
- Institut Curie, PSL Research University, CNRS, UMR144, F-75248 Paris, France
| | - Karine Fréon
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Sarah A E Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France.
| |
Collapse
|
39
|
The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet 2017; 18:535-550. [DOI: 10.1038/nrg.2017.46] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Abstract
Genomic instability plays a key role in driving cancer development. It is already found in precancerous lesions and allows the acquisition of additional cancerous features. A major source of genomic instability in early stages of tumorigenesis is DNA replication stress. Normally, origin licensing and activation, as well as replication fork progression, are tightly regulated to allow faithful duplication of the genome. Aberrant origin usage and/or perturbed replication fork progression leads to DNA damage and genomic instability. Oncogene activation is an endogenous source of replication stress, disrupting replication regulation and inducing DNA damage. Oncogene-induced replication stress and its role in cancer development have been studied comprehensively, however its molecular basis is still unclear. Here, we review the current understanding of replication regulation, its potential disruption and how oncogenes perturb the replication and induce DNA damage leading to genomic instability in cancer.
Collapse
Affiliation(s)
| | - Batsheva Kerem
- Correspondence: ; Tel.: +972-2-658-5678; Fax: +972-2-658-4810
| |
Collapse
|
41
|
Shortage of dNTPs underlies altered replication dynamics and DNA breakage in the absence of the APC/C cofactor Cdh1. Oncogene 2017; 36:5808-5818. [PMID: 28604743 DOI: 10.1038/onc.2017.186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/27/2022]
Abstract
The APC/C-Cdh1 ubiquitin-ligase complex targets cell cycle regulators for proteosomal degradation and helps prevent tumor development and accumulation of chromosomal aberrations. Replication stress has been proposed to be the main driver of genomic instability in the absence of Cdh1, but the real contribution of APC/C-Cdh1 to efficient replication, especially in normal cells, remains unclear. Here we show that, in primary MEFs, acute depletion or permanent ablation of Cdh1 slowed down replication fork movement and increased origin activity. Partial inhibition of origin firing does not accelerate replication forks, suggesting that fork progression is intrinsically limited in the absence of Cdh1. Moreover, exogenous supply of nucleotide precursors, or ectopic overexpression of RRM2, the regulatory subunit of Ribonucleotide Reductase, restore replication efficiency, indicating that dNTP availability could be impaired upon Cdh1 loss. Indeed, we found reduced dNTP levels in Cdh1-deficient MEFs. Importantly, DNA breakage is also significantly alleviated by increasing intracellular dNTP pools, strongly suggesting that genomic instability is the result of aberrant replication. These observations highlight the relevance of APC/C-Cdh1 activity during G1 to ensure an adequate supply of dNTPs to the replisome, prevent replication stress and the resulting chromosomal breaks and, ultimately, suppress tumorigenesis.
Collapse
|
42
|
Blumenfeld B, Ben-Zimra M, Simon I. Perturbations in the Replication Program Contribute to Genomic Instability in Cancer. Int J Mol Sci 2017; 18:E1138. [PMID: 28587102 PMCID: PMC5485962 DOI: 10.3390/ijms18061138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer and genomic instability are highly impacted by the deoxyribonucleic acid (DNA) replication program. Inaccuracies in DNA replication lead to the increased acquisition of mutations and structural variations. These inaccuracies mainly stem from loss of DNA fidelity due to replication stress or due to aberrations in the temporal organization of the replication process. Here we review the mechanisms and impact of these major sources of error to the replication program.
Collapse
Affiliation(s)
- Britny Blumenfeld
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Micha Ben-Zimra
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
- Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
43
|
So A, Le Guen T, Lopez BS, Guirouilh-Barbat J. Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells. FEBS J 2017; 284:2324-2344. [PMID: 28244221 DOI: 10.1111/febs.14053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/02/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can lead to profound genome rearrangements and/or cell death. They routinely occur in genomes due to endogenous or exogenous stresses. Efficient repair systems, canonical non-homologous end-joining and homologous recombination exist in the cell and not only ensure the maintenance of genome integrity but also, via specific programmed DNA double-strand breaks, permit its diversity and plasticity. However, these repair systems need to be tightly controlled because they can also generate genomic rearrangements. Thus, when DSB repair is not properly regulated, genome integrity is no longer guaranteed. In this review, we will focus on non-programmed genome rearrangements generated by DSB repair, in somatic cells. We first discuss genome rearrangements induced by homologous recombination and end-joining. We then discuss recently described rearrangement mechanisms, driven by microhomologies, that do not involve the joining of DNA ends but rather initiate DNA synthesis (microhomology-mediated break-induced replication, fork stalling and template switching and microhomology-mediated template switching). Finally, we discuss chromothripsis, which is the shattering of a localized region of the genome followed by erratic rejoining.
Collapse
Affiliation(s)
- Ayeong So
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Tangui Le Guen
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Bernard S Lopez
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Josée Guirouilh-Barbat
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| |
Collapse
|
44
|
Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies. Biomolecules 2017; 7:biom7010019. [PMID: 28230817 PMCID: PMC5372731 DOI: 10.3390/biom7010019] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses.
Collapse
|
45
|
Abstract
Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.
Collapse
Affiliation(s)
- Michalis Fragkos
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| | - Valeria Naim
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| |
Collapse
|
46
|
RETRACTED: USP1 Regulates Cellular Senescence by Controlling Genomic Integrity. Cell Rep 2016; 15:1401-1411. [PMID: 27160904 DOI: 10.1016/j.celrep.2016.04.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/26/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of the authors.
We, the authors, were made aware of irregularities associated in western blots shown in our article. We have further investigated the matter and found that the paper contains multiple examples of incorrect data use and image flipping in four figures, including the vertical flipping and reuse of the panel in Figures 1B and 3D, similar flipping and incorrect blot image in Figure 2C, and incorrect data use in Figure 4A. All of these figures were assembled by the corresponding author (O.B.) who takes full responsibility for the inaccuracies. Under these circumstances, we believe that the most responsible course of action is to retract the paper. We sincerely apologize to the scientific community for any inconvenience resulting from the publication and retraction of this manuscript.
Collapse
|
47
|
Wilhelm T, Ragu S, Magdalou I, Machon C, Dardillac E, Técher H, Guitton J, Debatisse M, Lopez BS. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress. PLoS Genet 2016; 12:e1006007. [PMID: 27135742 PMCID: PMC4852921 DOI: 10.1371/journal.pgen.1006007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/05/2016] [Indexed: 01/01/2023] Open
Abstract
Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation, and emphasize the importance of homologous recombination as a barrier against spontaneous genetic instability triggered by the endogenous oxidative/replication stress axis. Endogenous stress is an important stress because it challenges cells daily. However, endogenous stress is difficult to apprehend. Replication forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Here we identify endogenous oxidative stress among the different potential endogenous stresses as being responsible for spontaneous replication defects in homologous recombination-defective cells. Therefore, oxidative and replication stresses, which are both evoked during tumorigenesis and senescence initiation, are linked, and homologous recombination acts as a barrier against spontaneous genetic instability triggered by endogenous oxidative/replication stress.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Sandrine Ragu
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Indiana Magdalou
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Christelle Machon
- Laboratoire de Biochimie et Toxicologie, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
- Laboratoire de Chimie Analytique, Université de Lyon, Université Lyon 1, ISPB Faculté de Pharmacie, Lyon, France
| | - Elodie Dardillac
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Hervé Técher
- Institut Curie, Centre de Recherche, Paris, France, UPMC Université Paris 06, Paris, France, CNRS UMR 3244, Paris, France
| | - Jérôme Guitton
- Laboratoire de Biochimie et Toxicologie, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
- Laboratoire de Toxicologie, Université Lyon 1, ISPB, Faculté de Pharmacie, Lyon, France
| | - Michelle Debatisse
- Institut Curie, Centre de Recherche, Paris, France, UPMC Université Paris 06, Paris, France, CNRS UMR 3244, Paris, France
| | - Bernard S. Lopez
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
- * E-mail:
| |
Collapse
|
48
|
Técher H, Koundrioukoff S, Carignon S, Wilhelm T, Millot GA, Lopez BS, Brison O, Debatisse M. Signaling from Mus81-Eme2-Dependent DNA Damage Elicited by Chk1 Deficiency Modulates Replication Fork Speed and Origin Usage. Cell Rep 2016; 14:1114-1127. [PMID: 26804904 DOI: 10.1016/j.celrep.2015.12.093] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 11/10/2015] [Accepted: 12/19/2015] [Indexed: 11/20/2022] Open
Abstract
Mammalian cells deficient in ATR or Chk1 display moderate replication fork slowing and increased initiation density, but the underlying mechanisms have remained unclear. We show that exogenous deoxyribonucleosides suppress both replication phenotypes in Chk1-deficient, but not ATR-deficient, cells. Thus, in the absence of exogenous stress, depletion of either protein impacts the replication dynamics through different mechanisms. In addition, Chk1 deficiency, but not ATR deficiency, triggers nuclease-dependent DNA damage. Avoiding damage formation through invalidation of Mus81-Eme2 and Mre11, or preventing damage signaling by turning off the ATM pathway, suppresses the replication phenotypes of Chk1-deficient cells. Damage and resulting DDR activation are therefore the cause, not the consequence, of replication dynamics modulation in these cells. Together, we identify moderate reduction of precursors available for replication as an additional outcome of DDR activation. We propose that resulting fork slowing, and subsequent firing of backup origins, helps replication to proceed along damaged templates.
Collapse
Affiliation(s)
- Hervé Técher
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France
| | - Stéphane Koundrioukoff
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France
| | - Sandra Carignon
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France
| | - Therese Wilhelm
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France
| | - Gaël A Millot
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France
| | - Bernard S Lopez
- Institut de Cancérologie Gustave Roussy, CNRS UMR 8200 and Université Paris Sud, 94805 Villejuif, France
| | - Olivier Brison
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France
| | - Michelle Debatisse
- Institut Curie, PSL Research University, CNRS UMR 3244, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris Cedex 05, France.
| |
Collapse
|
49
|
Liu C, Srihari S, Lal S, Gautier B, Simpson PT, Khanna KK, Ragan MA, Lê Cao KA. Personalised pathway analysis reveals association between DNA repair pathway dysregulation and chromosomal instability in sporadic breast cancer. Mol Oncol 2016; 10:179-93. [PMID: 26456802 PMCID: PMC5528935 DOI: 10.1016/j.molonc.2015.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/19/2015] [Accepted: 09/04/2015] [Indexed: 01/05/2023] Open
Abstract
The Homologous Recombination (HR) pathway is crucial for the repair of DNA double-strand breaks (DSBs) generated during DNA replication. Defects in HR repair have been linked to the initiation and development of a wide variety of human malignancies, and exploited in chemical, radiological and targeted therapies. In this study, we performed a personalised pathway analysis independently for four large sporadic breast cancer cohorts to investigate the status of HR pathway dysregulation in individual sporadic breast tumours, its association with HR repair deficiency and its impact on tumour characteristics. Specifically, we first manually curated a list of HR genes according to our recent review on this pathway (Liu et al., 2014), and then applied a personalised pathway analysis method named Pathifier (Drier et al., 2013) on the expression levels of the curated genes to obtain an HR score quantifying HR pathway dysregulation in individual tumours. Based on the score, we observed a great diversity in HR dysregulation between and within gene expression-based breast cancer subtypes, and by using two published HR-defect signatures, we found HR pathway dysregulation reflects HR repair deficiency. Furthermore, we identified a novel association between HR pathway dysregulation and chromosomal instability (CIN) in sporadic breast cancer. Although CIN has long been considered as a hallmark of most solid tumours, with recent extensive studies highlighting its importance in tumour evolution and drug resistance, the molecular basis of CIN in sporadic cancers remains poorly understood. Our results imply that HR pathway dysregulation might contribute to CIN in sporadic breast cancer.
Collapse
Affiliation(s)
- Chao Liu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4067, Australia
| | - Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4067, Australia
| | - Samir Lal
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD 4029, Australia
| | - Benoît Gautier
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Peter T Simpson
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD 4029, Australia; School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Kum Kum Khanna
- QIMR-Berghofer Medical Research Institute, Herston, Brisbane, QLD 4029, Australia
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4067, Australia.
| | - Kim-Anh Lê Cao
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
50
|
Abstract
ATRX was identified over 20 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability. Similarities to the sucrose nonfermentable SNF2 type chromatin remodelers initially suggested a role in transcriptional regulation. However, over the last years, our knowledge of the epigenetic activities of ATRX has expanded steadily. Recent exciting discoveries have propelled ATRX into the limelight of chromatin and telomere biology, development and cancer research. This review summarizes recent breakthroughs in understanding ATRX function in heterochromatin structure, genome stability and its frequent dysregulation in a variety of cancers.
Collapse
Affiliation(s)
- L Ashley Watson
- Departments of Paediatrics, Biochemistry & Oncology, University of Western Ontario, Victoria Research Laboratories, 800 Commissioners Road East, London, Canada.,Children's Health Research Institute, London, Canada.,Lawson Health Research Institute, London, Canada
| | - Hannah Goldberg
- Departments of Paediatrics, Biochemistry & Oncology, University of Western Ontario, Victoria Research Laboratories, 800 Commissioners Road East, London, Canada.,Children's Health Research Institute, London, Canada.,Lawson Health Research Institute, London, Canada
| | - Nathalie G Bérubé
- Departments of Paediatrics, Biochemistry & Oncology, University of Western Ontario, Victoria Research Laboratories, 800 Commissioners Road East, London, Canada.,Children's Health Research Institute, London, Canada.,Lawson Health Research Institute, London, Canada
| |
Collapse
|