1
|
Wang Y, Zhang Q, Fei F, Hu K, Wang F, Cheng H, Xu C, Xu L, Wu J, Parpura V, Chen Z, Wang Y. Septo-subicular cholinergic circuit promotes seizure development via astrocytic inflammation. Cell Rep 2025; 44:115712. [PMID: 40372911 DOI: 10.1016/j.celrep.2025.115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/29/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025] Open
Abstract
The central dogma explaining epileptic seizures largely revolves around the classic theory of "excitability-inhibition" imbalance between glutamatergic and GABAergic transmission. Cholinergic neurons play a significant role in epilepsy; however, these neuronal populations are molecularly and structurally heterogeneous. Here, we show a subpopulation of subiculum-projecting septal cholinergic neurons that promote seizure development. Functionally, this subpopulation is suppressed during seizures. Selective manipulation of the septo-subicular cholinergic circuit bidirectionally regulates the development of hippocampal seizures. Notably, cholinergic signaling enhances subicular astrocytic caspase-1-mediated neuroinflammation via M3 muscarinic receptors, increasing excitatory synaptic transmission and promoting seizure development. Together, these results demonstrate that activation of the septo-subicular cholinergic circuits facilitates seizure development via astrocytic inflammation. Our findings provide insight into the cholinergic mechanism involved in epilepsy and suggest targeted therapeutic strategies for epilepsy treatment, focusing on the specific cholinergic neuronal subpopulation.
Collapse
Affiliation(s)
- Yu Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qingyang Zhang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fan Fei
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Keyu Hu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Fei Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Heming Cheng
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cenglin Xu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lingyu Xu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiannong Wu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China; Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Wang J, Kuang S, Wei Z, Liang S. Research progress of connexins in epileptogensis. ACTA EPILEPTOLOGICA 2025; 7:14. [PMID: 40217413 PMCID: PMC11960343 DOI: 10.1186/s42494-025-00203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/12/2025] [Indexed: 04/15/2025] Open
Abstract
Epilepsy, a chronic neurological disorder, is characterized by dysfunction in neural networks. Gap junctions and hemichannels, which are integral to the astrocyte connection network, play a critical role in epilepsy. Connexins, the components of astrocyte gap junctions and hemichannels, can be activated to transfer glutamate, adenosine triphosphate, and other chemicals, potentially leading to seizures. Connexins therefore hold significant potential for epilepsy treatment. This review focuses on connexin 43 and provides a brief overview of other connexins and pannexin 1. Understanding the relationship between connexins and epilepsy offers theoretical support for developing new antiseizure medications.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Functional Neurosurgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, No. 56, South Lishi Road, Xicheng District, Beijing, 100045, China
| | - Suhui Kuang
- Department of Functional Neurosurgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, No. 56, South Lishi Road, Xicheng District, Beijing, 100045, China
| | - Zhirong Wei
- Department of Functional Neurosurgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, No. 56, South Lishi Road, Xicheng District, Beijing, 100045, China
| | - Shuli Liang
- Department of Functional Neurosurgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, No. 56, South Lishi Road, Xicheng District, Beijing, 100045, China.
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, 100045, China.
| |
Collapse
|
3
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Hetta HF, Saad HM, Batiha GES. A Mutual Nexus Between Epilepsy and α-Synuclein: A Puzzle Pathway. Mol Neurobiol 2024; 61:10198-10215. [PMID: 38703341 DOI: 10.1007/s12035-024-04204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Alpha-synuclein (α-Syn) is a specific neuronal protein that regulates neurotransmitter release and trafficking of synaptic vesicles. Exosome-associated α-Syn which is specific to the central nervous system (CNS) is involved in the pathogenesis of epilepsy. Therefore, this review aimed to elucidate the possible link between α-Syn and epilepsy, and how it affects the pathophysiology of epilepsy. A neurodegenerative protein such as α-Syn is implicated in the pathogenesis of epilepsy. Evidence from preclinical and clinical studies revealed that upregulation of α-Syn induces progressive neuronal dysfunctions through induction of oxidative stress, neuroinflammation, and inhibition of autophagy in a vicious cycle with subsequent development of severe epilepsy. In addition, accumulation of α-Syn in epilepsy could be secondary to the different cellular alterations including oxidative stress, neuroinflammation, reduction of brain-derived neurotrophic factor (BDNF) and progranulin (PGN), and failure of the autophagy pathway. However, the mechanism of α-Syn-induced-epileptogenesis is not well elucidated. Therefore, α-Syn could be a secondary consequence of epilepsy. Preclinical and clinical studies are warranted to confirm this causal relationship.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, M.B.Ch.B, FRCP, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, P.O. Box 13, Kufa, Najaf, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
4
|
Liu S, Cheng H, Cui L, Jin L, Li Y, Zhu C, Ji Q, Tang J. Astrocytic purinergic signalling contributes to the development and maintenance of neuropathic pain via modulation of glutamate release. J Neurochem 2024; 168:3727-3744. [PMID: 36869630 DOI: 10.1111/jnc.15800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023]
Abstract
Although activation of astrocytes is critical in developing neuropathic pain (NP) following nerve injury, the underlying mechanisms of NP and therapeutic management for NP are still vague. Importantly, the decreases in the levels of astrocytic glutamate transporter-1 (GLT-1) in the spinal dorsal horn result in enhanced excitatory transmission and cause persistent pain. P2Y1 purinergic receptor (P2Y1R) has been shown to enhance many inflammatory processes. The up-regulated expression of astrocytic P2Y1R is crucial to participate in pain transduction under conditions of nerve injury and peripheral inflammation considering that P2Y1R is potentially involved in glutamate release and synaptic transmission. This study indicates that the expression of P2Y1R in the spinal cord was increased accompanied by the activation of A1 phenotype astrocytes in the rat model of spinal nerve ligation (SNL). Astrocyte-specific knockdown of P2Y1R alleviated SNL-induced nociceptive responses and mitigated A1 reactive astrocytes, which subsequently increased GLT-1 expression. Conversely, in naïve rats, P2Y1R over-expression induced a canonical NP-like phenotype and spontaneous hypernociceptive responses and increased the concentration of glutamate in the spinal dorsal horn. Besides, our in vitro data showed that the proinflammatory cytokine tumour necrosis factor-alpha contributes to A1/A2 astrocyte reactivity and Ca2+-dependent release of glutamate. Conclusively, our results provide novel insights that as a significant regulator of astrocytic A1/A2 polarization and neuroinflammation, P2Y1R may represent a potential target for the treatment of SNL-induced NP.
Collapse
Affiliation(s)
- Suting Liu
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Hao Cheng
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Liying Cui
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Li Jin
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Yunzi Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Chao Zhu
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qing Ji
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Jun Tang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| |
Collapse
|
5
|
Yu X, Yang H, Lv H, Lu H, Zhao H, Xu Z. Age-Dependent Phenomena of 6-Hz Corneal Kindling Model in Mice. Mol Neurobiol 2024; 61:5601-5613. [PMID: 38214837 DOI: 10.1007/s12035-024-03934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Although numerous studies have acknowledged disparities in epilepsy-related disease processes between young and aged animals, little is known about how epilepsy changes from young adulthood to middle age. This study investigates the impact of aging on 6-Hz corneal kindling in young-adult mice and middle-aged mice. We found that the kindling acquisition of the 6-Hz corneal kindling model was delayed in middle-aged mice when compared to young-adult mice. While the seizure stage and incidence of generalized seizures (GS) were similar between the two age groups, the duration of GS in the kindled middle-aged mice was shorter than that in the kindled young-adult mice. Besides, all kindled mice, regardless of age, were resistant to phenytoin sodium (PHT), valproate sodium (VPA), and lamotrigine (LGT), whereas middle-aged mice exhibited higher levetiracetam (LEV) resistance compared to young-adult mice. Both age groups of kindled mice displayed hyperactivity and impaired memory, which are common behavioral characteristics associated with epilepsy. Furthermore, middle-aged mice displayed more pronounced astrogliosis in the hippocampus. Additionally, the expression of Brain-Derived Neurotrophic Factor (BDNF) was lower in middle-aged mice than in young-adult mice prior to kindling. These data demonstrate that both the acquisition and expression of 6-Hz corneal kindling are attenuated in middle-aged mice, while hippocampal astrogliosis and pharmacological resistance are more pronounced in this age group. These results underscore the importance of considering age-related factors when utilizing the 6-Hz corneal kindling model in mice of varying age groups.
Collapse
Affiliation(s)
- Xiu Yu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Han Yang
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - HongJie Lv
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haimei Lu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huawei Zhao
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Zhenghao Xu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Clasadonte J, Deprez T, Stephens GS, Mairet-Coello G, Cortin PY, Boutier M, Frey A, Chin J, Rajman M. ΔFosB is part of a homeostatic mechanism that protects the epileptic brain from further deterioration. Front Mol Neurosci 2024; 16:1324922. [PMID: 38283700 PMCID: PMC10810990 DOI: 10.3389/fnmol.2023.1324922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Activity induced transcription factor ΔFosB plays a key role in different CNS disorders including epilepsy, Alzheimer's disease, and addiction. Recent findings suggest that ΔFosB drives cognitive deficits in epilepsy and together with the emergence of small molecule inhibitors of ΔFosB activity makes it an interesting therapeutic target. However, whether ΔFosB contributes to pathophysiology or provides protection in drug-resistant epilepsy is still unclear. In this study, ΔFosB was specifically downregulated by delivering AAV-shRNA into the hippocampus of chronically epileptic mice using the drug-resistant pilocarpine model of mesial temporal epilepsy (mTLE). Immunohistochemistry analyses showed that prolonged downregulation of ΔFosB led to exacerbation of neuroinflammatory markers of astrogliosis and microgliosis, loss of mossy fibers, and hippocampal granule cell dispersion. Furthermore, prolonged inhibition of ΔFosB using a ΔJunD construct to block ΔFosB signaling in a mouse model of Alzheimer's disease, that exhibits spontaneous recurrent seizures, led to similar findings, with increased neuroinflammation and decreased NPY expression in mossy fibers. Together, these data suggest that seizure-induced ΔFosB, regardless of seizure-etiology, is part of a homeostatic mechanism that protects the epileptic brain from further deterioration.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Tania Deprez
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | | | | | - Pierre-Yves Cortin
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Maxime Boutier
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Aurore Frey
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| | - Jeannie Chin
- Baylor College of Medicine, Houston, TX, United States
| | - Marek Rajman
- Epilepsy Discovery Research, UCB Biopharma SRL, Braine-l’Alleud, Belgium
| |
Collapse
|
7
|
Altas B, Rhee HJ, Ju A, Solís HC, Karaca S, Winchenbach J, Kaplan-Arabaci O, Schwark M, Ambrozkiewicz MC, Lee C, Spieth L, Wieser GL, Chaugule VK, Majoul I, Hassan MA, Goel R, Wojcik SM, Koganezawa N, Hanamura K, Rotin D, Pichler A, Mitkovski M, de Hoz L, Poulopoulos A, Urlaub H, Jahn O, Saher G, Brose N, Rhee J, Kawabe H. Nedd4-2-dependent regulation of astrocytic Kir4.1 and Connexin43 controls neuronal network activity. J Cell Biol 2024; 223:e201902050. [PMID: 38032389 PMCID: PMC10689203 DOI: 10.1083/jcb.201902050] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/21/2021] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Nedd4-2 is an E3 ubiquitin ligase in which missense mutation is related to familial epilepsy, indicating its critical role in regulating neuronal network activity. However, Nedd4-2 substrates involved in neuronal network function have yet to be identified. Using mouse lines lacking Nedd4-1 and Nedd4-2, we identified astrocytic channel proteins inwardly rectifying K+ channel 4.1 (Kir4.1) and Connexin43 as Nedd4-2 substrates. We found that the expression of Kir4.1 and Connexin43 is increased upon conditional deletion of Nedd4-2 in astrocytes, leading to an elevation of astrocytic membrane ion permeability and gap junction activity, with a consequent reduction of γ-oscillatory neuronal network activity. Interestingly, our biochemical data demonstrate that missense mutations found in familial epileptic patients produce gain-of-function of the Nedd4-2 gene product. Our data reveal a process of coordinated astrocytic ion channel proteostasis that controls astrocyte function and astrocyte-dependent neuronal network activity and elucidate a potential mechanism by which aberrant Nedd4-2 function leads to epilepsy.
Collapse
Affiliation(s)
- Bekir Altas
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Systems Neuroscience, University of Göttingen, Göttingen, Germany
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hong-Jun Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anes Ju
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Systems Neuroscience, University of Göttingen, Göttingen, Germany
| | - Hugo Cruces Solís
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Samir Karaca
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jan Winchenbach
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Systems Neuroscience, University of Göttingen, Göttingen, Germany
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Oykum Kaplan-Arabaci
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- The Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, PhD Program Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Manuela Schwark
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mateusz C. Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- International Max Planck Research School and the Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, Göttingen, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - ChungKu Lee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Georg L. Wieser
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Viduth K. Chaugule
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Irina Majoul
- Institute of Biology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Mohamed A. Hassan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Rashi Goel
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sonja M. Wojcik
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noriko Koganezawa
- Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kenji Hanamura
- Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Daniela Rotin
- The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Miso Mitkovski
- City Campus Light Microscopy Facility, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandros Poulopoulos
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Olaf Jahn
- Department of Molecular Neurobiology, Neuroproteomics Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, Translational Neuroproteomics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
8
|
Yeon GB, Jeon BM, Yoo SH, Kim D, Oh SS, Park S, Shin WH, Kim HW, Na D, Kim DW, Kim DS. Differentiation of astrocytes with characteristics of ventral midbrain from human embryonic stem cells. Stem Cell Rev Rep 2023; 19:1890-1906. [PMID: 37067644 DOI: 10.1007/s12015-023-10536-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/18/2023]
Abstract
Molecular and functional diversity among region-specific astrocytes is of great interest in basic neuroscience and the study of neurological diseases. In this study, we present the generation and characterization of astrocytes from human embryonic stem cells with the characteristics of the ventral midbrain (VM). Fine modulation of WNT and SHH signaling during neural differentiation induced neural precursor cells (NPCs) with high expression of EN1 and NKX6.1, but less expression of FOXA2. Overexpression of nuclear factor IB in NPCs induced astrocytes, thereby maintaining the expression of region-specific genes acquired in the NPC stage. When cocultured with dopaminergic (DA) precursors or DA neurons, astrocytes with VM characteristics (VM-iASTs) promoted the differentiation and survival of DA neurons better than those that were not regionally specified. Transcriptomic analysis showed that VM-iASTs were more closely related to human primary midbrain astrocytes than to cortical astrocytes, and revealed the upregulation of WNT1 and WNT5A, which supports their VM identity and explains their superior activity in DA neurons. Taken together, we hope that VM-iASTs can serve to improve ongoing DA precursor transplantation for Parkinson's disease, and that their transcriptomic data provide a valuable resource for investigating regional diversity in human astrocyte populations.
Collapse
Affiliation(s)
- Gyu-Bum Yeon
- Department of Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Byeong-Min Jeon
- Department of Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Seo Hyun Yoo
- Department of Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Dongyun Kim
- Department of Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Seung Soo Oh
- Department of Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Sanghyun Park
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon, 34114, Republic of Korea
| | - Hyung Wook Kim
- Department of Bio-Integrated Science and Technology, College of Life Sciences, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
- Severance Biomedical Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| | - Dae-Sung Kim
- Department of Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
- Department of Pediatrics, Korea University College of Medicine, Guro Hospital, 97 Gurodong-Gil, Guro-Gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
9
|
Xin W, Pan Y, Wei W, Tatenhorst L, Graf I, Popa-Wagner A, Gerner ST, Huber S, Kilic E, Hermann DM, Bähr M, Huttner HB, Doeppner TR. Preconditioned extracellular vesicles from hypoxic microglia reduce poststroke AQP4 depolarization, disturbed cerebrospinal fluid flow, astrogliosis, and neuroinflammation. Theranostics 2023; 13:4197-4216. [PMID: 37554272 PMCID: PMC10405850 DOI: 10.7150/thno.84059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/06/2023] [Indexed: 08/10/2023] Open
Abstract
Background: Stroke stimulates reactive astrogliosis, aquaporin 4 (AQP4) depolarization and neuroinflammation. Preconditioned extracellular vesicles (EVs) from microglia exposed to hypoxia, in turn, reduce poststroke brain injury. Nevertheless, the underlying mechanisms of such effects are elusive, especially with regards to inflammation, AQP4 polarization, and cerebrospinal fluid (CSF) flow. Methods: Primary microglia and astrocytes were exposed to oxygen-glucose deprivation (OGD) injury. For analyzing the role of AQP4 expression patterns under hypoxic conditions, a co-culture model of astrocytes and microglia was established. Further studies applied a stroke model, where some mice also received an intracisternal tracer infusion of rhodamine B. As such, these in vivo studies involved the analysis of AQP4 polarization, CSF flow, astrogliosis, and neuroinflammation as well as ischemia-induced brain injury. Results: Preconditioned EVs decreased periinfarct AQP4 depolarization, brain edema, astrogliosis, and inflammation in stroke mice. Likewise, EVs promoted postischemic CSF flow and cerebral blood perfusion, and neurological recovery. Under in vitro conditions, hypoxia stimulated M2 microglia polarization, whereas EVs augmented M2 microglia polarization and repressed M1 microglia polarization even further. In line with this, astrocytes displayed upregulated AQP4 clustering and proinflammatory cytokine levels when exposed to OGD, which was reversed by preconditioned EVs. Reduced AQP4 depolarization due to EVs, however, was not a consequence of unspecific inflammatory regulation, since LPS-induced inflammation in co-culture models of astrocytes and microglia did not result in altered AQP4 expression patterns in astrocytes. Conclusions: These findings show that hypoxic microglia may participate in protecting against stroke-induced brain damage by regulating poststroke inflammation, astrogliosis, AQP4 depolarization, and CSF flow due to EV release.
Collapse
Affiliation(s)
- Wenqiang Xin
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Yongli Pan
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Irina Graf
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan T Gerner
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Sabine Huber
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Ertugrul Kilic
- Department of Physiology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mathias Bähr
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Hagen B Huttner
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
- Department of Anatomy and Cell Biology, Medical University of Varna, Varna, Bulgaria
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
- Research Institute for Health Sciences and Technologies (SABITA), Medipol University, Istanbul, Turkey
| |
Collapse
|
10
|
Horino-Shimizu A, Moriyama K, Mori T, Kohyama K, Nishito Y, Sakuma H. Lipocalin-2 production by astrocytes in response to high concentrations of glutamate. Brain Res 2023; 1815:148463. [PMID: 37328088 DOI: 10.1016/j.brainres.2023.148463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
AIMS Glutamate-induced excitotoxicity is mainly mediated by neuronal NMDA receptors; however, it is unclear how astrocytes are involved in this phenomenon. This study aimed to explore the effects of excess glutamate on astrocytes both in vitro and in vivo. METHODS We used astrocyte-enriched cultures (AECs), in which microglia were removed from mixed glial cultures, to investigate the effects of extracellular glutamate on these cells by microarray, quantitative PCR, ELISA, and immunostaining. We also examined the production of lipocalin-2 (Lcn2) by immunohistochemistry in the brains of mice after status epilepticus induced by pilocarpine and by ELISA in the cerebrospinal fluid (CSF) of patients characterised by status epilepticus. RESULTS Microarray analysis identified Lcn2 as a factor upregulated in AECs by excess glutamate; glutamate addition increased Lcn2 in the cytoplasm of astrocytes and AECs released Lcn2 in a concentration-dependent manner. Lcn2 production was reduced by chemical inhibition of metabotropic glutamate receptor 3 or siRNA knockdown. Furthermore, Lcn2 was increased in the astrocytes of a status epilepticus mouse model and in the CSF of human patients. CONCLUSION These results indicate that astrocytes stimulate Lcn2 production via metabotropic glutamate receptor 3 in response to high concentrations of glutamate.
Collapse
Affiliation(s)
- Asako Horino-Shimizu
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Division of Pediatric Neurology, Course of Molecular and Cellular Medicine, Niigata University Faculty of Medicine, Graduate School of Medical and Dental Science, Niigata, Japan
| | - Kengo Moriyama
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Mori
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kuniko Kohyama
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Sakuma
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Division of Pediatric Neurology, Course of Molecular and Cellular Medicine, Niigata University Faculty of Medicine, Graduate School of Medical and Dental Science, Niigata, Japan.
| |
Collapse
|
11
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
12
|
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol 2022; 18:707-722. [PMID: 36280704 PMCID: PMC10368155 DOI: 10.1038/s41582-022-00727-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Epilepsy affects ~65 million people worldwide. First-line treatment options include >20 antiseizure medications, but seizure control is not achieved in approximately one-third of patients. Antiseizure medications act primarily on neurons and can provide symptomatic control of seizures, but do not alter the onset and progression of epilepsy and can cause serious adverse effects. Therefore, medications with new cellular and molecular targets and mechanisms of action are needed. Accumulating evidence indicates that astrocytes are crucial to the pathophysiological mechanisms of epilepsy, raising the possibility that these cells could be novel therapeutic targets. In this Review, we discuss how dysregulation of key astrocyte functions - gliotransmission, cell metabolism and immune function - contribute to the development and progression of hyperexcitability in epilepsy. We consider strategies to mitigate astrocyte dysfunction in each of these areas, and provide an overview of how astrocyte activation states can be monitored in vivo not only to assess their contribution to disease but also to identify markers of disease processes and treatment effects. Improved understanding of the roles of astrocytes in epilepsy has the potential to lead to novel therapies to prevent the initiation and progression of epilepsy.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
13
|
Zhao J, Sun J, Zheng Y, Zheng Y, Shao Y, Li Y, Fei F, Xu C, Liu X, Wang S, Ruan Y, Liu J, Duan S, Chen Z, Wang Y. Activated astrocytes attenuate neocortical seizures in rodent models through driving Na +-K +-ATPase. Nat Commun 2022; 13:7136. [PMID: 36414629 PMCID: PMC9681834 DOI: 10.1038/s41467-022-34662-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Epileptic seizures are widely regarded to occur as a result of the excitation-inhibition imbalance from a neuro-centric view. Although astrocyte-neuron interactions are increasingly recognized in seizure, elementary questions about the causal role of astrocytes in seizure remain unanswered. Here we show that optogenetic activation of channelrhodopsin-2-expressing astrocytes effectively attenuates neocortical seizures in rodent models. This anti-seizure effect is independent from classical calcium signaling, and instead related to astrocytic Na+-K+-ATPase-mediated buffering K+, which activity-dependently inhibits firing in highly active pyramidal neurons during seizure. Compared with inhibition of pyramidal neurons, astrocyte stimulation exhibits anti-seizure effects with several advantages, including a wider therapeutic window, large-space efficacy, and minimal side effects. Finally, optogenetic-driven astrocytic Na+-K+-ATPase shows promising therapeutic effects in a chronic focal cortical dysplasia epilepsy model. Together, we uncover a promising anti-seizure strategy with optogenetic control of astrocytic Na+-K+-ATPase activity, providing alternative ideas and a potential target for the treatment of intractable epilepsy.
Collapse
Affiliation(s)
- Junli Zhao
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jinyi Sun
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuying Shao
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yulan Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuxiu Liu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinggen Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shumin Duan
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Salamone A, Terrone G, Di Sapia R, Balosso S, Ravizza T, Beltrame L, Craparotta I, Mannarino L, Cominesi SR, Rizzi M, Pauletti A, Marchini S, Porcu L, Zimmer TS, Aronica E, During M, Abrahams B, Kondo S, Nishi T, Vezzani A. Cholesterol 24-hydroxylase is a novel pharmacological target for anti-ictogenic and disease modification effects in epilepsy. Neurobiol Dis 2022; 173:105835. [PMID: 35932989 DOI: 10.1016/j.nbd.2022.105835] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022] Open
Abstract
Therapies for epilepsy mainly provide symptomatic control of seizures since most of the available drugs do not target disease mechanisms. Moreover, about one-third of patients fail to achieve seizure control. To address the clinical need for disease-modifying therapies, research should focus on targets which permit interventions finely balanced between optimal efficacy and safety. One potential candidate is the brain-specific enzyme cholesterol 24-hydroxylase. This enzyme converts cholesterol to 24S-hydroxycholesterol, a metabolite which among its biological roles modulates neuronal functions relevant for hyperexcitability underlying seizures. To study the role of cholesterol 24-hydroxylase in epileptogenesis, we administered soticlestat (TAK-935/OV935), a potent and selective brain-penetrant inhibitor of the enzyme, during the early disease phase in a mouse model of acquired epilepsy using a clinically relevant dose. During soticlestat treatment, the onset of epilepsy was delayed and the number of ensuing seizures was decreased by about 3-fold compared to vehicle-treated mice, as assessed by EEG monitoring. Notably, the therapeutic effect was maintained 6.5 weeks after drug wash-out when seizure number was reduced by about 4-fold and their duration by 2-fold. Soticlestat-treated mice showed neuroprotection of hippocampal CA1 neurons and hilar mossy cells as assessed by post-mortem brain histology. High throughput RNA-sequencing of hippocampal neurons and glia in mice treated with soticlestat during epileptogenesis showed that inhibition of cholesterol 24-hydroxylase did not directly affect the epileptogenic transcriptional network, but rather modulated a non-overlapping set of genes that might oppose the pathogenic mechanisms of the disease. In human temporal lobe epileptic foci, we determined that cholesterol 24-hydroxylase expression trends higher in neurons, similarly to epileptic mice, while the enzyme is ectopically induced in astrocytes compared to control specimens. Soticlestat reduced significantly the number of spontaneous seizures in chronic epileptic mice when was administered during established epilepsy. Data show that cholesterol 24-hydroxylase contributes to spontaneous seizures and is involved in disease progression, thus it represents a novel target for chronic seizures inhibition and disease-modification therapy in epilepsy.
Collapse
Affiliation(s)
- Alessia Salamone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Gaetano Terrone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Rossella Di Sapia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Luca Beltrame
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Ilaria Craparotta
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Laura Mannarino
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Sara Raimondi Cominesi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Massimo Rizzi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Alberto Pauletti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Sergio Marchini
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Luca Porcu
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Till S Zimmer
- Department of Neuropathology, Amsterdam UMC, 1105 Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam UMC, 1105 Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), 2103 Heemstede, the Netherlands
| | | | - Brett Abrahams
- Ovid Therapeutics, 10036 New York, NY, USA; Departments of Genetics and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 10461 Bronx, USA
| | - Shinichi Kondo
- Takeda Pharmaceutical Company Limited, 251-8555 Fujisawa, Japan
| | - Toshiya Nishi
- Takeda Pharmaceutical Company Limited, 251-8555 Fujisawa, Japan
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.
| |
Collapse
|
15
|
Temizyürek A, Yılmaz CU, Emik S, Akcan U, Atış M, Orhan N, Arıcan N, Ahishali B, Tüzün E, Küçük M, Gürses C, Kaya M. Blood-brain barrier targeted delivery of lacosamide-conjugated gold nanoparticles: Improving outcomes in absence seizures. Epilepsy Res 2022; 184:106939. [PMID: 35785634 DOI: 10.1016/j.eplepsyres.2022.106939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 04/06/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Most currently available antiepileptics are not fully effective in the prevention of seizures in absence epilepsy owing to the presence of blood-brain barrier (BBB). We aimed to test whether binding an antiepileptic drug, lacosamide (LCM), to glucose-coated gold nanoparticles (GNPs) enables efficient brain drug delivery to suppress the epileptic activity in WAG/Rij rats with absence epilepsy. METHODS In these animals, intracranial-EEG recording, behavioral test, in vivo imaging of LCM and LCM-GNP conjugate distribution in the brain, inductively coupled plasma mass spectrometry analysis, immunofluorescence staining of glucose transporter (Glut)- 1, glial fibrillary acidic protein (GFAP), and p-glycoprotein (P-gp) and electron microscopy were performed. RESULTS Lacosamide-GNP conjugates decreased the amplitude and frequency of spike-wave-like discharges (SWDs) and alleviated the anxiety-like behavior as assessed by EEG and elevated plus-maze test, respectively (p < 0.01). The in vivo imaging system results showed higher levels of fluorescein dye tagged to LCM-GNP in the brain during the 5-day injection period (p < 0.01). Immunofluorescence staining displayed decreased P-gp, Glut-1, and GFAP expression by LCM-GNP conjugate treatment predominantly in the cerebral cortex suggesting a potential functionality of this brain region in the modulation of neuronal activity in our experimental setting (p < 0.01). SIGNIFICANCE We suggest that the conjugation of LCM to GNPs may provide a novel approach for efficient brain drug delivery in light of the effectiveness of our strategy not only in suppressing the seizure activity but also in decreasing the need to use high dosages of the antiepileptics to reduce the frequently encountered side effects in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Arzu Temizyürek
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Canan Uğur Yılmaz
- Department of Pharmaceutical Biosciences, Biomedical Centrum, Uppsala University, Uppsala, Sweden.
| | - Serkan Emik
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Uğur Akcan
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Müge Atış
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Nurcan Orhan
- Department of Neuroscience, Aziz Sancar Experimental Medicine Research Institute, Istanbul University, Istanbul, Turkey
| | - Nadir Arıcan
- Department of Forensic Science, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Bulent Ahishali
- Department of Histology and Embryology, School of Medicine, Koç University, Istanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Experimental Medicine Research Institute, Istanbul University, Istanbul, Turkey
| | - Mutlu Küçük
- Department of Laboratory Animal Science, Aziz Sancar Experimental Medicine Research Institute, Istanbul University, Istanbul, Turkey
| | - Candan Gürses
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| | - Mehmet Kaya
- Department of Physiology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
16
|
Matsuo T, Komori R, Nakatani M, Ochi S, Yokota-Nakatsuma A, Matsumoto J, Takata F, Dohgu S, Ishihara Y, Itoh K. Levetiracetam Suppresses the Infiltration of Neutrophils and Monocytes and Downregulates Many Inflammatory Cytokines during Epileptogenesis in Pilocarpine-Induced Status Epilepticus Mice. Int J Mol Sci 2022; 23:7671. [PMID: 35887020 PMCID: PMC9319101 DOI: 10.3390/ijms23147671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acute brain inflammation after status epilepticus (SE) is involved in blood-brain barrier (BBB) dysfunction and brain edema, which cause the development of post-SE symptomatic epilepsy. Using pilocarpine-induced SE mice, we previously reported that treatment with levetiracetam (LEV) after SE suppresses increased expression levels of proinflammatory mediators during epileptogenesis and prevents the development of spontaneous recurrent seizures. However, it remains unclear how LEV suppresses neuroinflammation after SE. In this study, we demonstrated that LEV suppressed the infiltration of CD11b+CD45high cells into the brain after SE. CD11b+CD45high cells appeared in the hippocampus between 1 and 4 days after SE and contained Ly6G+Ly6C+ and Ly6G-Ly6C+ cells. Ly6G+Ly6C+ cells expressed higher levels of proinflammatory cytokines such as IL-1β and TNFα suggesting that these cells were inflammatory neutrophils. Depletion of peripheral Ly6G+Ly6C+ cells prior to SE by anti-Ly6G antibody (NIMP-R14) treatment completely suppressed the infiltration of Ly6G+Ly6C+ cells into the brain. Proteome analysis revealed the downregulation of a variety of inflammatory cytokines, which exhibited increased expression in the post-SE hippocampus. These results suggest that Ly6G+Ly6C+ neutrophils are involved in the induction of acute brain inflammation after SE. The proteome expression profile of the hippocampus treated with LEV after SE was similar to that after NIMP-R14 treatment. Therefore, LEV may prevent acute brain inflammation after SE by suppressing inflammatory neutrophil infiltration.
Collapse
Affiliation(s)
- Taira Matsuo
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (T.M.); (R.K.); (M.N.); (S.O.)
| | - Rie Komori
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (T.M.); (R.K.); (M.N.); (S.O.)
| | - Minami Nakatani
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (T.M.); (R.K.); (M.N.); (S.O.)
| | - Shiori Ochi
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (T.M.); (R.K.); (M.N.); (S.O.)
| | - Aya Yokota-Nakatsuma
- Laboratory of Immunology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan;
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan; (J.M.); (F.T.); (S.D.)
| | - Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan; (J.M.); (F.T.); (S.D.)
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan; (J.M.); (F.T.); (S.D.)
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan;
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan; (T.M.); (R.K.); (M.N.); (S.O.)
| |
Collapse
|
17
|
Lee KS, Clennell B, Steward TGJ, Gialeli A, Cordero-Llana O, Whitcomb DJ. Focused Ultrasound Stimulation as a Neuromodulatory Tool for Parkinson's Disease: A Scoping Review. Brain Sci 2022; 12:289. [PMID: 35204052 PMCID: PMC8869888 DOI: 10.3390/brainsci12020289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Non-invasive focused ultrasound stimulation (FUS) is a non-ionising neuromodulatory technique that employs acoustic energy to acutely and reversibly modulate brain activity of deep-brain structures. It is currently being investigated as a potential novel treatment for Parkinson's disease (PD). This scoping review was carried out to map available evidence pertaining to the provision of FUS as a PD neuromodulatory tool. In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews, a search was applied to Ovid MEDLINE, Embase, Web of Science and Cochrane Central Register of Controlled Trials on 13 January 2022, with no limits applied. In total, 11 studies were included: 8 were from China and 1 each from Belgium, South Korea and Taiwan. All 11 studies were preclinical (6 in vivo, 2 in vitro, 2 mix of in vivo and in vitro and 1 in silico). The preclinical evidence indicates that FUS is safe and has beneficial neuromodulatory effects on motor behaviour in PD. FUS appears to have a therapeutic role in influencing the disease processes of PD, and therefore holds great promise as an attractive and powerful neuromodulatory tool for PD. Though these initial studies are encouraging, further study to understand the underlying cellular and molecular mechanisms is required before FUS can be routinely used in PD.
Collapse
Affiliation(s)
- Keng Siang Lee
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Benjamin Clennell
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Tom G. J. Steward
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Andriana Gialeli
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Oscar Cordero-Llana
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Daniel J. Whitcomb
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK; (K.S.L.); (B.C.); (T.G.J.S.); (A.G.); (O.C.-L.)
- Institute of Clinical Neurosciences, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
18
|
Ozgur M, Özyurt MG, Arkan S, Cavdar S. The Effects of Optogenetic Activation of Astrocytes on Spike-and-Wave Discharges in Genetic Absence Epileptic Rats. Ann Neurosci 2022; 29:53-61. [PMID: 35875425 PMCID: PMC9305907 DOI: 10.1177/09727531211072423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Background Absence seizures (petit mal seizures) are characterized by a brief loss of consciousness without loss of postural tone. The disease is diagnosed by an electroencephalogram (EEG) showing spike-wave discharges (SWD) caused by hypersynchronous thalamocortical (TC) oscillations. There has been an explosion of research highlighting the role of astrocytes in supporting and modulating neuronal activity. Despite established in vitro evidence, astrocytes' influence on the TC network remains to be elucidated in vivo in the absence epilepsy (AE). Purpose In this study, we investigated the role of astrocytes in the generation and modulation of SWDs. We hypothesize that disturbances in astrocytes' function may affect the pathomechanism of AE. Methods To direct the expression of channelrhodopsin-2 (ChR2) rAAV8-GFAP-ChR2(H134R)-EYFP or to control the effect of surgical intervention, AAV-CaMKIIa-EYFP was injected into the ventrobasal nucleus (VB) of the thalamus of 18 animals. After four weeks following the injection, rats were stimulated using blue light (~473 nm) and, simultaneously, the electrophysiological activity of the frontal cortical neurons was recorded for three consecutive days. The animals were then perfused, and the brain tissue was analyzed by confocal microscopy. Results A significant increase in the duration of SWD without affecting the number of SWD in genetic absence epileptic rats from Strasbourg (GAERS) compared to control injections was observed. The duration of the SWD was increased from 12.50 ± 4.41 s to 17.44 ± 6.07 following optogenetic stimulation in GAERS. The excitation of the astrocytes in Wistar Albino Glaxo Rijswijk (WAG-Rij) did not change the duration of SWD; however, stimulation resulted in a significant increase in the number of SWD from 18.52 ± 11.46 bursts/30 min to 30.17 ± 18.43 bursts/30 min. Whereas in control injection, the duration and the number of SWDs were similar at pre- and poststimulus. Both the background and poststimulus average firing rates of the SWD in WAG-Rij were significantly higher than the firing recorded in GAERS. Conclusion These findings suggest that VB astrocytes play a role in modulating the SWD generation in both rat models with distinct mechanisms and can present an essential target for the possible therapeutic approach for AE.
Collapse
Affiliation(s)
- Merve Ozgur
- Graduate School of Health Sciences, Division of Neuroscience, Koc University, Istanbul Turkey
- Department of Anatomy, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| | - Mustafa Görkem Özyurt
- Graduate School of Sciences and Engineering, Koç University, Istanbul, Turkey
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sertan Arkan
- Department of Experimental Medical Science, Molecular Neurobiology Unit, Lund University, Lund, Sweden
| | - Safiye Cavdar
- Department of Anatomy, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
19
|
Marissal T. An inventory of basic research in temporal lobe epilepsy. Rev Neurol (Paris) 2021; 177:1069-1081. [PMID: 34176659 DOI: 10.1016/j.neurol.2021.02.390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022]
Abstract
Temporal lobe epilepsy is a severe neurological disease, characterized by seizure occurrence and invalidating cognitive co-morbidities, which affects up to 1% of the adults. Roughly one third of the patients are resistant to any conventional pharmacological treatments. The last option in that case is the surgical removal of the epileptic focus, with no guarantee for clinical symptom alleviation. This state of affairs requests the identification of cellular or molecular targets for novel therapeutic approaches with limited side effects. Here we review some generalities about the disease as well as some of the most recent discoveries about the cellular and molecular mechanisms of TLE, and the latest perspectives for novel treatments.
Collapse
Affiliation(s)
- T Marissal
- INMED, Inserm UMR1249, Aix-Marseille université, Marseille, France.
| |
Collapse
|
20
|
Dossi E, Rouach N. Pannexin 1 channels and ATP release in epilepsy: two sides of the same coin : The contribution of pannexin-1, connexins, and CALHM ATP-release channels to purinergic signaling. Purinergic Signal 2021; 17:533-548. [PMID: 34495463 DOI: 10.1007/s11302-021-09818-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022] Open
Abstract
Purinergic signaling mediated by ATP and its metabolites contributes to various brain physiological processes as well as to several pathological conditions, including neurodegenerative and neurological disorders, such as epilepsy. Among the different ATP release pathways, pannexin 1 channels represent one of the major conduits being primarily activated in pathological contexts. Investigations on in vitro and in vivo models of epileptiform activity and seizures in mice and human tissues revealed pannexin 1 involvement in aberrant network activity and epilepsy, and highlighted that pannexin 1 exerts a complex role. Pannexin 1 can indeed either sustain seizures through release of ATP that can directly activate purinergic receptors, or tune down epileptic activity via ATP-derived adenosine that decreases neuronal excitability. Interestingly, in-depth analysis of the literature unveils that this dichotomy is only apparent, as it depends on the model of seizure induction and the type of evoked epileptiform activity, two factors that can differentially activate pannexin 1 channels and trigger distinct intracellular signaling cascades. Here, we review the general properties and ATP permeability of pannexin 1 channels, and discuss their impact on acute epileptiform activity and chronic epilepsy according to the regime of activity and disease state. These data pave the way for the development of new antiepileptic strategies selectively targeting pannexin 1 channels in a context-dependent manner.
Collapse
Affiliation(s)
- Elena Dossi
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé Et de la Recherche Médicale U1050, Collège de France, Labex Memolife, Université PSL, Paris, France.
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé Et de la Recherche Médicale U1050, Collège de France, Labex Memolife, Université PSL, Paris, France.
| |
Collapse
|
21
|
Sano F, Shigetomi E, Shinozaki Y, Tsuzukiyama H, Saito K, Mikoshiba K, Horiuchi H, Cheung DL, Nabekura J, Sugita K, Aihara M, Koizumi S. Reactive astrocyte-driven epileptogenesis is induced by microglia initially activated following status epilepticus. JCI Insight 2021; 6:135391. [PMID: 33830944 PMCID: PMC8262323 DOI: 10.1172/jci.insight.135391] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/25/2021] [Indexed: 12/22/2022] Open
Abstract
Extensive activation of glial cells during a latent period has been well documented in various animal models of epilepsy. However, it remains unclear whether activated glial cells contribute to epileptogenesis, i.e., the chronically persistent process leading to epilepsy. Particularly, it is not clear whether interglial communication between different types of glial cells contributes to epileptogenesis, because past literature has mainly focused on one type of glial cell. Here, we show that temporally distinct activation profiles of microglia and astrocytes collaboratively contributed to epileptogenesis in a drug-induced status epilepticus model. We found that reactive microglia appeared first, followed by reactive astrocytes and increased susceptibility to seizures. Reactive astrocytes exhibited larger Ca2+ signals mediated by IP3R2, whereas deletion of this type of Ca2+ signaling reduced seizure susceptibility after status epilepticus. Immediate, but not late, pharmacological inhibition of microglial activation prevented subsequent reactive astrocytes, aberrant astrocyte Ca2+ signaling, and the enhanced seizure susceptibility. These findings indicate that the sequential activation of glial cells constituted a cause of epileptogenesis after status epilepticus. Thus, our findings suggest that the therapeutic target to prevent epilepsy after status epilepticus should be shifted from microglia (early phase) to astrocytes (late phase).
Collapse
Affiliation(s)
- Fumikazu Sano
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine.,Department of Pediatrics, Faculty of Medicine, and.,Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine.,Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine.,Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Haruka Tsuzukiyama
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine
| | - Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine.,Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsuhiko Mikoshiba
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Hiroshi Horiuchi
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Dennis Lawrence Cheung
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kanji Sugita
- Department of Pediatrics, Faculty of Medicine, and
| | - Masao Aihara
- Department of Pediatrics, Faculty of Medicine, and
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine.,Yamanashi GLIA Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
22
|
Anbalagan S. Endocrine cross-talk between the gut microbiome and glial cells in development and disease. J Neuroendocrinol 2021; 33:e12924. [PMID: 34019340 DOI: 10.1111/jne.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/27/2022]
Abstract
Glial cells make up the major cellular component of the nervous system. Glial development is usually investigated through perturbations of host genetics, although non-host-derived signalling molecules can also regulate glial cells. Indeed, gut microbiome colonisation and the presence of microbiome-derived factors in the blood coincide with glial cell development. Emerging data suggest that the gut microbiome can regulate gliogenesis, myelination and glial epigenetics. Neurodegenerative diseases are characterised by changes in the gut microbiome and glial dysfunction. This perspective discusses the ways in which microbiome-derived molecules can engage in cross-talk with glial cells during development and in dysfunctional glial diseases.
Collapse
Affiliation(s)
- Savani Anbalagan
- ReMedy International Research Agenda Programme, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
23
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
24
|
Longueville S, Nakamura Y, Brami-Cherrier K, Coura R, Hervé D, Girault JA. Long-lasting tagging of neurons activated by seizures or cocaine administration in Egr1-CreER T2 transgenic mice. Eur J Neurosci 2020; 53:1450-1472. [PMID: 33226686 DOI: 10.1111/ejn.15060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Permanent tagging of neuronal ensembles activated in specific experimental situations is an important objective to study their properties and adaptations. In the context of learning and memory, these neurons are referred to as engram neurons. Here, we describe and characterize a novel mouse line, Egr1-CreERT2 , which carries a transgene in which the promoter of the immediate early gene Egr1 drives the expression of the CreERT2 recombinase that is only active in the presence of tamoxifen metabolite, 4-hydroxy-tamoxifen (4-OHT). Egr1-CreERT2 mice were crossed with various reporter mice, Cre-dependently expressing a fluorescent protein. Without tamoxifen or 4-OHT, no or few tagged neurons were observed. Epileptic seizures induced by pilocarpine or pentylenetetrazol in the presence of tamoxifen or 4-OHT elicited the persistent tagging of many neurons and some astrocytes in the dentate gyrus of hippocampus, where Egr1 is transiently induced by seizures. One week after cocaine and 4-OHT administration, these mice displayed a higher number of tagged neurons in the dorsal striatum than saline/4-OHT controls, with differences between reporter lines. Cocaine-induced tagging required ERK activation and tagged neurons were more likely than others to exhibit ERK phosphorylation or Fos induction after a second injection. Interestingly neurons tagged in saline-treated mice also had an increased propensity to express Fos, suggesting the existence of highly responsive striatal neurons susceptible to be re-activated by cocaine repeated administration, which may contribute to the behavioral adaptations. Our report validates a novel transgenic mouse model for permanently tagging activated neurons and studying long-term alterations of Egr1-expressing cells.
Collapse
Affiliation(s)
- Sophie Longueville
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Yuki Nakamura
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Karen Brami-Cherrier
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Renata Coura
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Denis Hervé
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
25
|
King AC, Wood TE, Rodriguez E, Parpura V, Gray M. Differential effects of SNARE-dependent gliotransmission on behavioral phenotypes in a mouse model of Huntington's disease. Exp Neurol 2020; 330:113358. [PMID: 32387649 PMCID: PMC7313419 DOI: 10.1016/j.expneurol.2020.113358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/14/2020] [Accepted: 05/05/2020] [Indexed: 01/31/2023]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by a polyglutamine expansion in the widely expressed huntingtin protein. Multiple studies have indicated the importance of mutant huntingtin (mHTT) in astrocytes to HD pathogenesis. Astrocytes exhibit SNARE-dependent exocytosis and gliotransmission, which can be hampered by transgenic expression of dominant negative SNARE (dnSNARE) in these glial cells. We used BACHD mice and crossed them with the dnSNARE model to determine if pan-astrocytic SNARE-dependent exocytosis plays an important role in vivo in the progression of HD behavioral phenotypes. We assessed motor and neuropsychiatric behaviors in these mice. At 12 months of age there was a significant improvement in motor coordination (rotarod test) in BACHD/dnSNARE mice when compared to BACHD mice. Analyses of open field performance revealed significant worsening of center entry (at 9 and 12 months), but not distance traveled in BACHD/dnSNARE when compared to BACHD mice, and variable/inconclusive results on vertical plane entry. While no differences between BACHD and BACHD/dnSNARE mice at 12 months of age in the forced swim test were found, we did observe a significant decrease in performance of BACHD/dnSNARE mice in the light-dark box paradigm. Thus, reduction of astrocytic SNARE-dependent exocytosis has differential effects on the psychiatric-like and motor phenotypes observed in BACHD mice. These data suggest broadly targeting SNARE-dependent exocytosis in astrocytes throughout the brain as a means to modulate gliotransmission in HD may contribute to worsening of specific behavioral deficits and perhaps a brain-region specific approach would be required.
Collapse
Affiliation(s)
- Annesha C King
- Graduate Biomedical Sciences Neuroscience Theme, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama, Birmingham, AL, USA
| | - Tara E Wood
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama, Birmingham, AL, USA
| | - Efrain Rodriguez
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama, Birmingham, AL, USA
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michelle Gray
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama, Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
26
|
Naumova AA, Oleynik EA, Chernigovskaya EV, Glazova MV. Glutamatergic Fate of Neural Progenitor Cells of Rats with Inherited Audiogenic Epilepsy. Brain Sci 2020; 10:brainsci10050311. [PMID: 32455746 PMCID: PMC7288135 DOI: 10.3390/brainsci10050311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
Epilepsy is associated with aberrant neurogenesis in the hippocampus and may underlie the development of hereditary epilepsy. In the present study, we analyzed the differentiation fate of neural progenitor cells (NPC), which were isolated from the hippocampus of embryos of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic epilepsy. NPCs from embryos of Wistar rats were used as the control. We found principal differences between Wistar and KM NPC in unstimulated controls: Wistar NPC culture contained both gamma-aminobutyric acid (GABA) and glutamatergic neurons; KM NPC culture was mainly represented by glutamatergic cells. The stimulation of glutamatergic differentiation of Wistar NPC resulted in a significant increase in glutamatergic cell number that was accompanied by the activation of protein kinase A. The stimulation of KM NPC led to a decrease in immature glutamatergic cell number and was associated with the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B/ glycogen synthase kinase 3 beta (Akt/GSK3β), which indicates the activation of glutamatergic cell maturation. These results suggest genetically programmed abnormalities in KM rats that determine the glutamatergic fate of NPC and contribute to the development of audiogenic epilepsy.
Collapse
|
27
|
Alteration of Extracellular Matrix Molecules and Perineuronal Nets in the Hippocampus of Pentylenetetrazol-Kindled Mice. Neural Plast 2019; 2019:8924634. [PMID: 31827499 PMCID: PMC6885262 DOI: 10.1155/2019/8924634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023] Open
Abstract
The pathophysiological processes leading to epilepsy are poorly understood. Understanding the molecular and cellular mechanisms involved in the onset of epilepsy is crucial for drug development. Epileptogenicity is thought to be associated with changes in synaptic plasticity; however, whether extracellular matrix molecules—known regulators of synaptic plasticity—are altered during epileptogenesis is unknown. To test this, we used a pentylenetetrazole- (PTZ-) kindling model mouse to investigate changes to hippocampal parvalbumin- (PV-) positive neurons, extracellular matrix molecules, and perineuronal nets (PNNs) after the last kindled seizure. We found an increase in Wisteria floribunda agglutinin- (WFA-) and Cat-315-positive PNNs and a decrease in PV-positive neurons not surrounded by PNNs, in the hippocampus of PTZ-kindled mice compared to control mice. Furthermore, the expression of WFA- and Cat-315-positive molecules increased in the extracellular space of PTZ-kindled mice. In addition, consistent with previous studies, astrocytes were activated in PTZ-kindled mice. We propose that the increase in PNNs after kindling decreases neuroplasticity in the hippocampus and helps maintain the neural circuit for recurrent seizures. This study shows that possibility of changes in extracellular matrix molecules due to astrocyte activation is associated with epilepticus in PTZ-kindled mice.
Collapse
|
28
|
Nikolic L, Nobili P, Shen W, Audinat E. Role of astrocyte purinergic signaling in epilepsy. Glia 2019; 68:1677-1691. [DOI: 10.1002/glia.23747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ljiljana Nikolic
- Institute for Biological Research Siniša Stanković, University of Belgrade Serbia
| | | | - Weida Shen
- Zhejiang University City College Zhejiang Hangzhou China
| | - Etienne Audinat
- Institute for Functional Genomics (IGF), University of Montpellier, CNRS, INSERM Montpellier France
| |
Collapse
|
29
|
Mothet JP, Billard JM, Pollegioni L, Coyle JT, Sweedler JV. Investigating brain d-serine: Advocacy for good practices. Acta Physiol (Oxf) 2019; 226:e13257. [PMID: 30650253 PMCID: PMC6462235 DOI: 10.1111/apha.13257] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022]
Abstract
The last two decades have witnessed remarkable advance in our understanding the role of d-amino acids in the mammalian nervous system: from the unknown, to known molecules with unknown functions, to potential central players in health and disease. d-Amino acids have emerged as an important class of signaling molecules. In particular, the exploration of the roles of d-serine in brain physiopathology is a vibrant field that is growing at an accelerating pace. However, disentangling the functions of a chiral molecule in a complex chemical matrice as the brain requires specific measurement and detection methods but is also a challenging task as many molecular tools and models investigators are using can lead to confounded observations. Thus, study of d-amino acids demands accurate methodologies and specific controls, and these have often been lacking. Here we outline best practices for d-amino acid research, with a special emphasis on d-serine. We hope these concepts help move the field to greater rigor and reproducibility, allowing the field to advance.
Collapse
Affiliation(s)
- Jean-Pierre Mothet
- Team Gliotransmission & Synaptopathies, Aix Marseille University, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille UMR7286 CNRS, Marseille, France
| | | | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy
| | - Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
30
|
Ma T, Wu Y, Chen B, Zhang W, Jin L, Shen C, Wang Y, Liu Y. D-Serine Contributes to Seizure Development via ERK Signaling. Front Neurosci 2019; 13:254. [PMID: 30971878 PMCID: PMC6443828 DOI: 10.3389/fnins.2019.00254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
A seizure is one of the leading neurological disorders. NMDA receptor-mediated neuronal excitation has been thought to be essential for epileptogenesis. As an endogenous co-agonist of the NMDA receptor, D-serine has been suggested to play a role in epileptogenesis. However, the underlying mechanisms remain unclear. In the current study, we investigated the effects of antagonizing two key enzymes in D-serine metabolism on the development of seizures and the downstream signaling. Our results showed that serine racemase (SR), a key enzyme in regulating the L-to-D-serine conversion, was significantly up-regulated in hippocampal astrocytes in rats and patients who experienced seizure, in comparison with control rats and patients. L-aspartic acid β-hydroxamate (LaaβH), an inhibitor of SR, significantly prolonged the latencies of seizures, shortened the durations of seizures, and decreased the total EEG power in rats. In contrast, D-amino acid oxidase inhibitor 5-chlorobenzo[d]isoxazol-3-ol (CBIO), which can increase D-serine levels, showed the opposite effects. Furthermore, our data showed that LaaβH and CBIO significantly affected the phosphorylation of Extracellular Signal-regulated Kinase (ERK). Antagonizing or activating ERK could significantly block the effects of LaaβH/CBIO on the occurrence of seizures. In summary, our study revealed that D-serine is involved in the development of epileptic seizures, partially through ERK signaling, indicating that the metabolism of D-serine may be targeted for the treatment of epilepsy.
Collapse
Affiliation(s)
- Tie Ma
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
- Department of Neurology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yin Wu
- Department of Pharmacy, Xi’an High-tech Hospital, Xi’an, China
| | - Beibei Chen
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Wenjuan Zhang
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Lang Jin
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Chenxi Shen
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yazhou Wang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Air Force Medical University, Xi’an, China
| | - Yonghong Liu
- Department of Neurology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| |
Collapse
|
31
|
Gliotransmission: Beyond Black-and-White. J Neurosci 2019; 38:14-25. [PMID: 29298905 DOI: 10.1523/jneurosci.0017-17.2017] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/01/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023] Open
Abstract
Astrocytes are highly complex cells with many emerging putative roles in brain function. Of these, gliotransmission (active information transfer from glia to neurons) has probably the widest implications on our understanding of how the brain works: do astrocytes really contribute to information processing within the neural circuitry? "Positive evidence" for this stems from work of multiple laboratories reporting many examples of modulatory chemical signaling from astrocytes to neurons in the timeframe of hundreds of milliseconds to several minutes. This signaling involves, but is not limited to, Ca2+-dependent vesicular transmitter release, and results in a variety of regulatory effects at synapses in many circuits that are abolished by preventing Ca2+ elevations or blocking exocytosis selectively in astrocytes. In striking contradiction, methodologically advanced studies by a few laboratories produced "negative evidence," triggering a heated debate on the actual existence and properties of gliotransmission. In this context, a skeptics' camp arose, eager to dismiss the whole positive evidence based on a number of assumptions behind the negative data, such as the following: (1) deleting a single Ca2+ release pathway (IP3R2) removes all the sources for Ca2+-dependent gliotransmission; (2) stimulating a transgenically expressed Gq-GPCR (MrgA1) mimics the physiological Ca2+ signaling underlying gliotransmitter release; (3) age-dependent downregulation of an endogenous GPCR (mGluR5) questions gliotransmitter release in adulthood; and (4) failure by transcriptome analysis to detect vGluts or canonical synaptic SNAREs in astrocytes proves inexistence/functional irrelevance of vesicular gliotransmitter release. We here discuss how the above assumptions are likely wrong and oversimplistic. In light of the most recent literature, we argue that gliotransmission is a more complex phenomenon than originally thought, possibly consisting of multiple forms and signaling processes, whose correct study and understanding require more sophisticated tools and finer scientific experiments than done until today. Under this perspective, the opposing camps can be reconciled and the field moved forward. Along the path, a more cautious mindset and an attitude to open discussion and mutual respect between opponent laboratories will be good companions.Dual Perspectives Companion Paper: Multiple Lines of Evidence Indicate That Gliotransmission Does Not Occur under Physiological Conditions, by Todd A. Fiacco and Ken D. McCarthy.
Collapse
|
32
|
Plata A, Lebedeva A, Denisov P, Nosova O, Postnikova TY, Pimashkin A, Brazhe A, Zaitsev AV, Rusakov DA, Semyanov A. Astrocytic Atrophy Following Status Epilepticus Parallels Reduced Ca 2+ Activity and Impaired Synaptic Plasticity in the Rat Hippocampus. Front Mol Neurosci 2018; 11:215. [PMID: 29997475 PMCID: PMC6028739 DOI: 10.3389/fnmol.2018.00215] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a group of neurological disorders commonly associated with the neuronal malfunction leading to generation of seizures. Recent reports point to a possible contribution of astrocytes into this pathology. We used the lithium-pilocarpine model of status epilepticus (SE) in rats to monitor changes in astrocytes. Experiments were performed in acute hippocampal slices 2-4 weeks after SE induction. Nissl staining revealed significant neurodegeneration in the pyramidal cell layers of hippocampal CA1, CA3 areas, and the hilus, but not in the granular cell layer of the dentate gyrus. A significant increase in the density of astrocytes stained with an astrocyte-specific marker, sulforhodamine 101, was observed in CA1 stratum (str.) radiatum. Astrocytes in this area were also whole-cell loaded with a morphological tracer, Alexa Fluor 594, for two-photon excitation imaging. Sholl analyses showed no changes in the size of the astrocytic domain or in the number of primary astrocytic branches, but a significant reduction in the number of distal branches that are resolved with diffraction-limited light microscopy (and are thought to contain Ca2+ stores, such as mitochondria and endoplasmic reticulum). The atrophy of astrocytic branches correlated with the reduced size, but not overall frequency of Ca2+ events. The volume tissue fraction of nanoscopic (beyond the diffraction limit) astrocytic leaflets showed no difference between control and SE animals. The results of spatial entropy-complexity spectrum analysis were also consistent with changes in ratio of astrocytic branches vs. leaflets. In addition, we observed uncoupling of astrocytes through the gap-junctions, which was suggested as a mechanism for reduced K+ buffering. However, no significant difference in time-course of synaptically induced K+ currents in patch-clamped astrocytes argued against possible alterations in K+ clearance by astrocytes. The magnitude of long-term-potentiation (LTP) was reduced after SE. Exogenous D-serine, a co-agonist of NMDA receptors, has rescued the initial phase of LTP. This suggests that the reduced Ca2+-dependent release of D-serine by astrocytes impairs initiation of synaptic plasticity. However, it does not explain the failure of LTP maintenance which may be responsible for cognitive decline associated with epilepsy.
Collapse
Affiliation(s)
- Alex Plata
- UNN Institute of Neuroscience, N. I. Lobachevsky State University of Nizhny Novgorod, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Albina Lebedeva
- UNN Institute of Neuroscience, N. I. Lobachevsky State University of Nizhny Novgorod, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Pavel Denisov
- UNN Institute of Neuroscience, N. I. Lobachevsky State University of Nizhny Novgorod, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga Nosova
- UNN Institute of Neuroscience, N. I. Lobachevsky State University of Nizhny Novgorod, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Tatiana Y. Postnikova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Alexey Pimashkin
- UNN Institute of Neuroscience, N. I. Lobachevsky State University of Nizhny Novgorod, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Brazhe
- Department of Biophysics, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Aleksey V. Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Dmitri A. Rusakov
- UNN Institute of Neuroscience, N. I. Lobachevsky State University of Nizhny Novgorod, University of Nizhny Novgorod, Nizhny Novgorod, Russia
- UCL Institute of Neurology, University College London, London, United Kingdom
| | - Alexey Semyanov
- UNN Institute of Neuroscience, N. I. Lobachevsky State University of Nizhny Novgorod, University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| |
Collapse
|
33
|
Vargas-Sánchez K, Mogilevskaya M, Rodríguez-Pérez J, Rubiano MG, Javela JJ, González-Reyes RE. Astroglial role in the pathophysiology of status epilepticus: an overview. Oncotarget 2018; 9:26954-26976. [PMID: 29928494 PMCID: PMC6003549 DOI: 10.18632/oncotarget.25485] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
Status epilepticus is a medical emergency with elevated morbidity and mortality rates, and represents a leading cause of epilepsy-related deaths. Though status epilepticus can occur at any age, it manifests more likely in children and elderly people. Despite the common prevalence of epileptic disorders, a complete explanation for the mechanisms leading to development of self-limited or long lasting seizures (as in status epilepticus) are still lacking. Apart from neurons, research evidence suggests the involvement of immune and glial cells in epileptogenesis. Among glial cells, astrocytes represent an ideal target for the study of the pathophysiology of status epilepticus, due to their key role in homeostatic balance of the central nervous system. During status epilepticus, astroglial cells are activated by the presence of cytokines, damage associated molecular patterns and reactive oxygen species. The persistent activation of astrocytes leads to a decrease in glutamate clearance with a corresponding accumulation in the synaptic extracellular space, increasing the chance of neuronal excitotoxicity. Moreover, major alterations in astrocytic gap junction coupling, inflammation and receptor expression, facilitate the generation of seizures. Astrocytes are also involved in dysregulation of inhibitory transmission in the central nervous system and directly participate in ionic homeostatic alterations during status epilepticus. In the present review, we focus on the functional and structural changes in astrocytic activity that participate in the development and maintenance of status epilepticus, with special attention on concurrent inflammatory alterations. We also include potential astrocytic treatment targets for status epilepticus.
Collapse
Affiliation(s)
- Karina Vargas-Sánchez
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | | | - John Rodríguez-Pérez
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - María G Rubiano
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - José J Javela
- Grupo de Clínica y Salud Mental, Programa de Psicología, Universidad Católica de Pereira, Pereira, Colombia
| | - Rodrigo E González-Reyes
- Universidad del Rosario, Escuela de Medicina y Ciencias de la Salud, GI en Neurociencias-NeURos, Bogotá, Colombia
| |
Collapse
|
34
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
35
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1070] [Impact Index Per Article: 152.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
36
|
Boison D, Steinhäuser C. Epilepsy and astrocyte energy metabolism. Glia 2017; 66:1235-1243. [PMID: 29044647 DOI: 10.1002/glia.23247] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/29/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K+ and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy.
Collapse
Affiliation(s)
- Detlev Boison
- R.S. Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon
| | | |
Collapse
|
37
|
Bin NR, Song H, Wu C, Lau M, Sugita S, Eubanks JH, Zhang L. Continuous Monitoring via Tethered Electroencephalography of Spontaneous Recurrent Seizures in Mice. Front Behav Neurosci 2017; 11:172. [PMID: 28959196 PMCID: PMC5603658 DOI: 10.3389/fnbeh.2017.00172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
We describe here a simple, cost-effective apparatus for continuous tethered electroencephalographic (EEG) monitoring of spontaneous recurrent seizures in mice. We used a small, low torque slip ring as an EEG commutator, mounted the slip ring onto a standard mouse cage and connected rotary wires of the slip ring directly to animal's implanted headset. Modifications were made in the cage to allow for a convenient installation of the slip ring and accommodation of animal ambient activity. We tested the apparatus for hippocampal EEG recordings in adult C57 black mice. Spontaneous recurrent seizures were induced using extended hippocampal kindling (≥95 daily stimulation). Control animals underwent similar hippocampal electrode implantations but no stimulations were given. Combined EEG and webcam monitoring were performed for 24 h daily for 5–9 consecutive days. During the monitoring periods, the animals moved and accessed water and food freely and showed no apparent restriction in ambient cage activities. Ictal-like hippocampal EEG discharges and concurrent convulsive behaviors that are characteristics of spontaneous recurrent seizures were reliably recorded in a majority of the monitoring experiments in extendedly kindled but not in control animals. However, 1–2 rotary wires were disconnected from the implanted headset in some animals after continuous recordings for ≥5 days. The key features and main limitations of our recording apparatus are discussed.
Collapse
Affiliation(s)
- Na-Ryum Bin
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,Department of Physiology, University of TorontoToronto, ON, Canada
| | - Hongmei Song
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,Department of Neurosurgery, The First Hospital of Jilin UniversityJilin, China
| | - Chiping Wu
- Krembil Research Institute, University Health NetworkToronto, ON, Canada
| | - Marcus Lau
- Krembil Research Institute, University Health NetworkToronto, ON, Canada
| | - Shuzo Sugita
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,Department of Physiology, University of TorontoToronto, ON, Canada
| | - James H Eubanks
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,Department of Physiology, University of TorontoToronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of TorontoToronto, ON, Canada.,The Epilepsy Research Program of Ontario Brain InstituteToronto, ON, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health NetworkToronto, ON, Canada.,The Epilepsy Research Program of Ontario Brain InstituteToronto, ON, Canada.,Division of Neurology, Department of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|
38
|
Tran HQ, Chung YH, Shin EJ, Tran TV, Jeong JH, Jang CG, Nah SY, Yamada K, Nabeshima T, Kim HC. MK-801, but not naloxone, attenuates high-dose dextromethorphan-induced convulsive behavior: Possible involvement of the GluN2B receptor. Toxicol Appl Pharmacol 2017; 334:158-166. [PMID: 28916251 DOI: 10.1016/j.taap.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Dextromethorphan (DM) is a dextrorotatory isomer of levorphanol, a typical morphine-like opioid. When administered at supra-antitussive doses, DM produces psychotoxic and neurotoxic effects in humans. Although DM abuse has been well-documented, few studies have examined the effects of high-dose DM. The present study aimed to explore the effects of a single high dose of DM on mortality and seizure occurrence. After intraperitoneal administration with a high dose of DM (80mg/kg), Sprague-Dawley rats showed increased seizure occurrence and intensity. Hippocampal expression levels of N-methyl-d-aspartate (NMDA) receptor subunits (GluN1<GluN2A<GluN2B), c-Fos and pro-apoptotic factors (Bax and cleaved caspase-3) were upregulated by DM treatment; while levels of anti-apoptotic factors (Bcl-2 and Bcl-xL) were downregulated. Consistently, DM also induced ultrastructural degeneration in the hippocampus. A non-competitive NMDA receptor antagonist, MK-801, attenuated these effects of high-dose DM, whereas an opioid antagonist, naloxone, did not affect DM-induced neurotoxicity. Moreover, pretreatment with a highly specific GluN2B subunit inhibitor, traxoprodil, was selectively effective in preventing DM-induced c-Fos expression and apoptotic changes. These results suggest that high-dose DM produces convulsive behaviors by activating GluN2B/NMDA signaling that leads to pro-apoptotic changes.
Collapse
Affiliation(s)
- Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| | - The-Vinh Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi 470-1192, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
39
|
Shen W, Nikolic L, Meunier C, Pfrieger F, Audinat E. An autocrine purinergic signaling controls astrocyte-induced neuronal excitation. Sci Rep 2017; 7:11280. [PMID: 28900295 PMCID: PMC5595839 DOI: 10.1038/s41598-017-11793-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/29/2017] [Indexed: 12/30/2022] Open
Abstract
Astrocyte-derived gliotransmitters glutamate and ATP modulate neuronal activity. It remains unclear, however, how astrocytes control the release and coordinate the actions of these gliotransmitters. Using transgenic expression of the light-sensitive channelrhodopsin 2 (ChR2) in astrocytes, we observed that photostimulation reliably increases action potential firing of hippocampal pyramidal neurons. This excitation relies primarily on a calcium-dependent glutamate release by astrocytes that activates neuronal extra-synaptic NMDA receptors. Remarkably, our results show that ChR2-induced Ca2+ increase and subsequent glutamate release are amplified by ATP/ADP-mediated autocrine activation of P2Y1 receptors on astrocytes. Thus, neuronal excitation is promoted by a synergistic action of glutamatergic and autocrine purinergic signaling in astrocytes. This new mechanism may be particularly relevant for pathological conditions in which ATP extracellular concentration is increased and acts as a major danger signal.
Collapse
Affiliation(s)
- Weida Shen
- Inserm U1128, Paris Descartes University, 75006, Paris, France
| | | | - Claire Meunier
- Inserm U1128, Paris Descartes University, 75006, Paris, France
| | - Frank Pfrieger
- Institute of Cellular and Integrative Neurosciences, CNRS UPR 3212, University of Strasbourg, 67084, Strasbourg, France
| | - Etienne Audinat
- Inserm U1128, Paris Descartes University, 75006, Paris, France.
| |
Collapse
|
40
|
Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle. Neuron 2017; 95:1365-1380.e5. [PMID: 28867552 DOI: 10.1016/j.neuron.2017.08.022] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/29/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023]
Abstract
Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions.
Collapse
|
41
|
Wang C, Xu Y, Huang Y, Huang Y. Effects of erythropoietin and methylprednisolone on AQP4 expression in astrocytes. Mol Med Rep 2017; 16:5924-5930. [PMID: 28849166 PMCID: PMC5865770 DOI: 10.3892/mmr.2017.7330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 05/18/2017] [Indexed: 12/28/2022] Open
Abstract
Methylprednisolone sodium succinate (MPSS) has been suggested as a treatment for spinal cord injury (SCI), but its use has been limited due to its adverse effects. Erythropoietin (EPO) has been suggested as a promising candidate for limiting SCI in mammals. The aim of the present study was to investigate the effects of EPO in combination with MPSS on astrocytes following ischemic injury in vitro. Astrocytes were isolated from the cerebral cortex of postnatal day 3 Sprague-Dawley rats and cultured in vitro. Astrocyte ischemic injury was induced by oxygen and glucose deprivation for 4 h, and reperfusion was simulated by subsequent culture under normoxic conditions. The effects of EPO and MPSS on the expression of aquaporin-4 (AQP4) were investigated. Ischemic astrocytes were treated with EPO (10 U/ml), MPSS (10 µg/ml), or EPO (10 U/ml) in combination with MPSS (10 µg/ml) during reperfusion. The cell viability of astrocytes was assessed using an MTT assay. The mRNA and protein expression levels of AQP4 were determined using reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. The role of the protein kinase C (PKC) signaling pathway in the molecular mechanisms underlying the effects of EPO and MPSS was also investigated. The present results demonstrated that following treatment with EPO and MPSS, the mRNA expression levels of AQP4 were upregulated and cell viability was enhanced. EPO and MPSS effectively inhibited the oxygen and glucose deprivation-mediated downregulation of AQP4 following reperfusion. In addition, the combined treatment with EPO and MPSS exhibited higher AQP4 expression levels and cell viability compared with each treatment alone. Finally, the effects of EPO and MPSS on AQP4 expression were partially reversed by pretreatment with the PKC inhibitor Ro 31–8220. The present study indicated that EPO and MPSS had a synergistic effect on AQP4 expression following reperfusion, and suggest that they may be combined in the treatment of SCI.
Collapse
Affiliation(s)
- Changchao Wang
- Department of Orthopedics, The Second Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Youjia Xu
- Department of Orthopedics, The Second Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yadong Huang
- Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu 223003, P.R. China
| | - Yan Huang
- Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu 223003, P.R. China
| |
Collapse
|
42
|
Abstract
Regulated exocytosis can be split into a sequence of steps ending with the formation and the dilation of a fusion pore, a neck-like connection between the vesicle and the plasma membrane. Each of these steps is precisely controlled to achieve the optimal spatial and temporal profile of the release of signalling molecules. At the level of the fusion pore, tuning of the exocytosis can be achieved by preventing its formation, by stabilizing the unproductive narrow fusion pore, by altering the speed of fusion pore expansion and by completely closing the fusion pore. The molecular structure and dynamics of fusion pores have become a major focus of cell research, especially as a promising target for therapeutic strategies. Electrophysiological, optical and electrochemical methods have been used extensively to illuminate how cells regulate secretion at the level of a single fusion pore. Here, we describe recent advances in the structure and mechanisms of the initial fusion pore formation and the progress in therapeutic strategies with the focus on exocytosis.
Collapse
|
43
|
Buckmaster PS, Abrams E, Wen X. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. J Comp Neurol 2017; 525:2592-2610. [PMID: 28425097 PMCID: PMC5963263 DOI: 10.1002/cne.24226] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/19/2023]
Abstract
Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31-61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24-36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Paul S. Buckmaster
- Department of Comparative Medicine, Stanford University, Stanford, California
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, California
| | - Emily Abrams
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Xiling Wen
- Department of Comparative Medicine, Stanford University, Stanford, California
| |
Collapse
|
44
|
Pirone A, Alexander J, Lau LA, Hampton D, Zayachkivsky A, Yee A, Yee A, Jacob MH, Dulla CG. APC conditional knock-out mouse is a model of infantile spasms with elevated neuronal β-catenin levels, neonatal spasms, and chronic seizures. Neurobiol Dis 2016; 98:149-157. [PMID: 27852007 DOI: 10.1016/j.nbd.2016.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/24/2016] [Accepted: 11/11/2016] [Indexed: 01/08/2023] Open
Abstract
Infantile spasms (IS) are a catastrophic childhood epilepsy syndrome characterized by flexion-extension spasms during infancy that progress to chronic seizures and cognitive deficits in later life. The molecular causes of IS are poorly defined. Genetic screens of individuals with IS have identified multiple risk genes, several of which are predicted to alter β-catenin pathways. However, evidence linking malfunction of β-catenin pathways and IS is lacking. Here, we show that conditional deletion in mice of the adenomatous polyposis coli gene (APC cKO), the major negative regulator of β-catenin, leads to excessive β-catenin levels and multiple salient features of human IS. Compared with wild-type littermates, neonatal APC cKO mice exhibit flexion-extension motor spasms and abnormal high-amplitude electroencephalographic discharges. Additionally, the frequency of excitatory postsynaptic currents is increased in layer V pyramidal cells, the major output neurons of the cerebral cortex. At adult ages, APC cKOs display spontaneous electroclinical seizures. These data provide the first evidence that malfunctions of APC/β-catenin pathways cause pathophysiological changes consistent with IS. Our findings demonstrate that the APC cKO is a new genetic model of IS, provide novel insights into molecular and functional alterations that can lead to IS, and suggest novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Antonella Pirone
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Jonathan Alexander
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States; Neuroscience Program, Tufts Sackler School of Biomedical Sciences, Boston, MA 02111, United States
| | - Lauren A Lau
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States; Neuroscience Program, Tufts Sackler School of Biomedical Sciences, Boston, MA 02111, United States
| | - David Hampton
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Andrew Zayachkivsky
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Amy Yee
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Audrey Yee
- VA Eastern Colorado Health System, Golden, CO 80401, United States
| | - Michele H Jacob
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States.
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States.
| |
Collapse
|
45
|
Wolosker H, Balu DT, Coyle JT. The Rise and Fall of the d-Serine-Mediated Gliotransmission Hypothesis. Trends Neurosci 2016; 39:712-721. [PMID: 27742076 DOI: 10.1016/j.tins.2016.09.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/26/2023]
Abstract
d-Serine modulates N-methyl d-aspartate receptors (NMDARs) and regulates synaptic plasticity, neurodevelopment, and learning and memory. However, the primary site of d-serine synthesis and release remains controversial, with some arguing that it is a gliotransmitter and others defining it as a neuronal cotransmitter. Results from several laboratories using different strategies now show that the biosynthetic enzyme of d-serine, serine racemase (SR), is expressed almost entirely by neurons, with few astrocytes appearing to contain d-serine. Cell-selective suppression of SR expression demonstrates that neuronal, rather than astrocytic d-serine, modulates synaptic plasticity. Here, we propose an alternative conceptualization whereby astrocytes affect d-serine levels by synthesizing l-serine that shuttles to neurons to fuel the neuronal synthesis of d-serine.
Collapse
Affiliation(s)
- Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Translational Psychiatry Laboratory, McLean Hospital, Belmont, MA 02478, USA.
| | - Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Laboratory of Psychiatric and Molecular Neuroscience, McLean Hospital, Belmont, MA 02478, USA.
| |
Collapse
|
46
|
Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 2016; 144:5-26. [DOI: 10.1016/j.pneurobio.2016.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 06/05/2016] [Indexed: 01/07/2023]
|
47
|
Rasmussen R, Nedergaard M, Petersen NC. Sulforhodamine 101, a widely used astrocyte marker, can induce cortical seizure-like activity at concentrations commonly used. Sci Rep 2016; 6:30433. [PMID: 27457281 PMCID: PMC4960645 DOI: 10.1038/srep30433] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/05/2016] [Indexed: 01/22/2023] Open
Abstract
Sulforhodamine 101 (SR101) is a preferential astrocyte marker widely used in 2-photon microscopy experiments. Here we show, that topical loading of two commonly used SR101 concentrations, 100 μM and 250 μM when incubated for 10 min, can induce seizure-like local field potential (LFP) activity in both anaesthetized and awake mouse sensori-motor cortex. This cortical seizure-like activity develops in less than ten minutes following topical loading, and when applied longer, these neuronal discharges reliably evoke contra-lateral hindlimb muscle contractions. Short duration (<1 min) incubation of 100 μM and 250 μM SR101 or application of lower concentrations 25 μM and 50 μM of SR101, incubated for 30 and 20 min, respectively, did not induce abnormal LFP activity in sensori-motor cortex, but did label astrocytes, and may thus be considered more appropriate concentrations for in vivo astrocyte labeling. In addition to label astrocytes SR101 may, at 100 μM and 250 μM, induce abnormal neuronal activity and interfere with cortical circuit activity. SR101 concentration of 50 μM or lower did not induce abnormal neuronal activity. We advocate that, to label astrocytes with SR101, concentrations no higher than 50 μM should be used for in vivo experiments.
Collapse
Affiliation(s)
- Rune Rasmussen
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA.,Center for Basic and Translational Neuroscience, University of Copenhagen Faculty of Medicine, 2200 Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA.,Center for Basic and Translational Neuroscience, University of Copenhagen Faculty of Medicine, 2200 Copenhagen N, Denmark
| | - Nicolas Caesar Petersen
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA.,Department of Nutrition, Exercise and Sports, University of Copenhagen, 2200 Copenhagen N, Denmark.,Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
48
|
Rassendren F, Audinat E. Purinergic signaling in epilepsy. J Neurosci Res 2016; 94:781-93. [PMID: 27302739 DOI: 10.1002/jnr.23770] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/24/2022]
Abstract
Until recently, analysis of the mechanisms underlying epilepsy was centered on neuron dysfunctions. Accordingly, most of the available pharmacological treatments aim at reducing neuronal excitation or at potentiating neuronal inhibition. These therapeutic options can lead to obvious secondary effects, and, moreover, seizures cannot be controlled by any known medication in one-third of the patients. A purely neurocentric view of brain functions and dysfunctions has been seriously questioned during the past 2 decades because of the accumulation of experimental data showing the functional importance of reciprocal interactions between glial cells and neurons. In the case of epilepsy, our current knowledge of the human disease and analysis of animal models clearly favor the involvement of astrocytes and microglial cells during the progression of the disease, including at very early stages, opening the way to the identification of new therapeutic targets. Purinergic signaling is a fundamental feature of neuron-glia interactions, and increasing evidence indicates that modifications of this pathway contribute to the functional remodeling of the epileptic brain. This Review discusses the recent experimental results indicating the roles of astrocytic and microglial P2X and P2Y receptors in epilepsy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- François Rassendren
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France.,INSERM, U1191, Montpellier, France.,Université de Montpellier, UMR5203, Montpellier, France.,Labex ICST, Montpellier, France
| | - Etienne Audinat
- INSERM, U1128, Paris, France.,Laboratory of Neurophysiology and New Microscopies, Paris Descartes University, Paris, France
| |
Collapse
|
49
|
Henneberger C. Does rapid and physiological astrocyte-neuron signalling amplify epileptic activity? J Physiol 2016; 595:1917-1927. [PMID: 27106234 DOI: 10.1113/jp271958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/26/2016] [Indexed: 12/11/2022] Open
Abstract
The hippocampus is a key brain region in the pathophysiology of mesial temporal lobe epilepsy. Long-term changes of its architecture and function on the network and cellular level are well documented in epilepsy. Astrocytes can control many aspects of neuronal function and their long-term alterations over weeks, months and years play an important role in epilepsy. However, a pathophysiological transformation of astrocytes does not seem to be required for astrocytes to contribute to epileptic activity. Some of the properties of physiological astrocyte-neuron communication could allow these cells to exacerbate or synchronize neuronal firing on shorter time scales of milliseconds to minutes. Therefore, these astrocyte-neuron interactions are increasingly recognized as potential contributors to epileptic activity. Fast and reciprocal communication between astrocytes and neurons is enabled by a diverse set of mechanisms that could both amplify and counteract epileptic activity. They may thus promote or cause development of epileptic activity or inhibit it. Mechanisms of astrocyte-neuron interactions that can quickly increase network excitability involve, for example, astrocyte Ca2+ and Na+ signalling, K+ buffering, gap junction coupling and metabolism. However, rapid changes of astrocyte neurotransmitter uptake and morphology may also underlie or support development of network hyperexcitability. The temporal characteristics of these interactions, their ability to synchronize neuronal activity and their net effect on network activity will determine their contribution to the emergence or maintenance of epileptic activity.
Collapse
Affiliation(s)
- Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,UCL Institute of Neurology, London, UK
| |
Collapse
|
50
|
Crucial role of astrocytes in temporal lobe epilepsy. Neuroscience 2016; 323:157-69. [DOI: 10.1016/j.neuroscience.2014.12.047] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/25/2014] [Accepted: 12/30/2014] [Indexed: 11/30/2022]
|