1
|
Li Y, Kawamura G, Dong Q, Li Q, Ozawa T. Near-Infrared Bioluminescence Assays for Protein-Protein Interactions and Cellular Membrane Fusion in Deep Tissues Using Split Akaluc Reconstitution. Anal Chem 2025; 97:6182-6191. [PMID: 40062634 DOI: 10.1021/acs.analchem.4c06986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Bioluminescence analysis using luciferase is an essential tool for studying biological processes in different cells. Split luciferase reconstitution is a technique that enables the analysis of biological events through the monitoring of protein-protein interactions. However, effective detection of cellular events in vivo remains challenging due to the limitation of light penetration into deep tissues and optical sensitivity. To address this, we developed a novel split luciferase reconstitution method using a near-infrared-emitting luciferase, Akaluc, and applied it to monitor two important biological events: G protein-coupled receptor (GPCR)/β-arrestin interactions and myogenic cell fusion in vivo. The developed split Akaluc reconstitution system demonstrated high sensitivity in detecting GPCR/β-arrestin interactions as well as myogenic cell fusion in vitro, enabling real-time insights into their temporal dynamics. Moreover, in vivo bioluminescence imaging successfully monitored GPCR/β-arrestin interactions in the mouse lung and the progression of myogenesis during mouse leg muscle regeneration. The split Akaluc reconstitution method will be a versatile tool for both in vitro and in vivo analyses of protein-protein interactions and cell fusion events. This system holds significant potential for advancing drug development, especially in the screening of GPCR-targeted therapeutic and myogenesis-promoting compounds in animal models.
Collapse
Affiliation(s)
- Yiling Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Genki Kawamura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Qi Dong
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Qiaojing Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Blaszczak E, Lazarewicz N, Sudevan A, Wysocki R, Rabut G. Protein-fragment complementation assays for large-scale analysis of protein-protein interactions. Biochem Soc Trans 2021; 49:1337-1348. [PMID: 34156434 PMCID: PMC8286835 DOI: 10.1042/bst20201058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
Protein-protein interactions (PPIs) orchestrate nearly all biological processes. They are also considered attractive drug targets for treating many human diseases, including cancers and neurodegenerative disorders. Protein-fragment complementation assays (PCAs) provide a direct and straightforward way to study PPIs in living cells or multicellular organisms. Importantly, PCAs can be used to detect the interaction of proteins expressed at endogenous levels in their native cellular environment. In this review, we present the principle of PCAs and discuss some of their advantages and limitations. We describe their application in large-scale experiments to investigate PPI networks and to screen or profile PPI targeting compounds.
Collapse
Affiliation(s)
- Ewa Blaszczak
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Natalia Lazarewicz
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) – UMR 6290, F-35000 Rennes, France
| | - Aswani Sudevan
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) – UMR 6290, F-35000 Rennes, France
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Gwenaël Rabut
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) – UMR 6290, F-35000 Rennes, France
| |
Collapse
|
3
|
David F, Davis AM, Gossing M, Hayes MA, Romero E, Scott LH, Wigglesworth MJ. A Perspective on Synthetic Biology in Drug Discovery and Development-Current Impact and Future Opportunities. SLAS DISCOVERY 2021; 26:581-603. [PMID: 33834873 DOI: 10.1177/24725552211000669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The global impact of synthetic biology has been accelerating, because of the plummeting cost of DNA synthesis, advances in genetic engineering, growing understanding of genome organization, and explosion in data science. However, much of the discipline's application in the pharmaceutical industry remains enigmatic. In this review, we highlight recent examples of the impact of synthetic biology on target validation, assay development, hit finding, lead optimization, and chemical synthesis, through to the development of cellular therapeutics. We also highlight the availability of tools and technologies driving the discipline. Synthetic biology is certainly impacting all stages of drug discovery and development, and the recognition of the discipline's contribution can further enhance the opportunities for the drug discovery and development value chain.
Collapse
Affiliation(s)
- Florian David
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew M Davis
- Discovery Sciences, Biopharmaceutical R&D, AstraZeneca, Cambridge, UK
| | - Michael Gossing
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Martin A Hayes
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elvira Romero
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Louis H Scott
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
4
|
Li P, Wang L, Di LJ. Applications of Protein Fragment Complementation Assays for Analyzing Biomolecular Interactions and Biochemical Networks in Living Cells. J Proteome Res 2019; 18:2987-2998. [PMID: 31274323 DOI: 10.1021/acs.jproteome.9b00154] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) are indispensable for the dynamic assembly of multiprotein complexes that are central players of nearly all of the intracellular biological processes, such as signaling pathways, metabolic pathways, formation of intracellular organelles, establishment of cytoplasmic skeletons, etc. Numerous approaches have been invented to study PPIs both in vivo and in vitro, including the protein-fragment complementation assay (PCA), which is a widely applied technology to study PPIs and biomolecular interactions. PCA is a technology based on the expression of the bait and prey proteins in fusion with two complementary reporter protein fragments, respectively, that will reassemble when in close proximity. The reporter protein can be the enzymes or fluorescent proteins. Recovery of the enzymatic activity or fluorescent signal can be the indicator of PPI between the bait and prey proteins. Significant effort has been invested in developing many derivatives of PCA, along with various applications, in order to address specific questions. Therefore, a prompt review of these applications is important. In this review, we will categorize these applications according to the scenarios that the PCAs were applied and expect to provide a reference guideline for the future selection of PCA methods in solving a specific problem.
Collapse
Affiliation(s)
- Peipei Li
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| | - Li Wang
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China.,Metabolomics Core, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences , University of Macau , Macau , SAR of China
| |
Collapse
|
5
|
Stynen B, Abd-Rabbo D, Kowarzyk J, Miller-Fleming L, Aulakh SK, Garneau P, Ralser M, Michnick SW. Changes of Cell Biochemical States Are Revealed in Protein Homomeric Complex Dynamics. Cell 2018; 175:1418-1429.e9. [PMID: 30454649 PMCID: PMC6242466 DOI: 10.1016/j.cell.2018.09.050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023]
Abstract
We report here a simple and global strategy to map out gene functions and target pathways of drugs, toxins, or other small molecules based on "homomer dynamics" protein-fragment complementation assays (hdPCA). hdPCA measures changes in self-association (homomerization) of over 3,500 yeast proteins in yeast grown under different conditions. hdPCA complements genetic interaction measurements while eliminating the confounding effects of gene ablation. We demonstrate that hdPCA accurately predicts the effects of two longevity and health span-affecting drugs, the immunosuppressant rapamycin and the type 2 diabetes drug metformin, on cellular pathways. We also discovered an unsuspected global cellular response to metformin that resembles iron deficiency and includes a change in protein-bound iron levels. This discovery opens a new avenue to investigate molecular mechanisms for the prevention or treatment of diabetes, cancers, and other chronic diseases of aging.
Collapse
Affiliation(s)
- Bram Stynen
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Diala Abd-Rabbo
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada; Centre Robert-Cedergren, Bio-Informatique et Génomique, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jacqueline Kowarzyk
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Leonor Miller-Fleming
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Philippe Garneau
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Biochemistry, Charité University Medicine, Berlin, Germany
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada; Centre Robert-Cedergren, Bio-Informatique et Génomique, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
6
|
Schlecht U, Liu Z, Blundell JR, St Onge RP, Levy SF. A scalable double-barcode sequencing platform for characterization of dynamic protein-protein interactions. Nat Commun 2017; 8:15586. [PMID: 28541284 PMCID: PMC5458509 DOI: 10.1038/ncomms15586] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/07/2017] [Indexed: 11/09/2022] Open
Abstract
Several large-scale efforts have systematically catalogued protein-protein interactions (PPIs) of a cell in a single environment. However, little is known about how the protein interactome changes across environmental perturbations. Current technologies, which assay one PPI at a time, are too low throughput to make it practical to study protein interactome dynamics. Here, we develop a highly parallel protein-protein interaction sequencing (PPiSeq) platform that uses a novel double barcoding system in conjunction with the dihydrofolate reductase protein-fragment complementation assay in Saccharomyces cerevisiae. PPiSeq detects PPIs at a rate that is on par with current assays and, in contrast with current methods, quantitatively scores PPIs with enough accuracy and sensitivity to detect changes across environments. Both PPI scoring and the bulk of strain construction can be performed with cell pools, making the assay scalable and easily reproduced across environments. PPiSeq is therefore a powerful new tool for large-scale investigations of dynamic PPIs.
Collapse
Affiliation(s)
- Ulrich Schlecht
- Stanford Genome Technology Center, Stanford University, 3165 Porter Drive, Palo Alto, Calfornia 94304, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Zhimin Liu
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-5252, USA.,Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| | - Jamie R Blundell
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-5252, USA.,Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA.,Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Robert P St Onge
- Stanford Genome Technology Center, Stanford University, 3165 Porter Drive, Palo Alto, Calfornia 94304, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sasha F Levy
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-5252, USA.,Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, New York 11794-5215, USA
| |
Collapse
|
7
|
Michnick SW, Landry CR, Levy ED, Diss G, Ear PH, Kowarzyk J, Malleshaiah MK, Messier V, Tchekanda E. Protein-Fragment Complementation Assays for Large-Scale Analysis, Functional Dissection, and Spatiotemporal Dynamic Studies of Protein-Protein Interactions in Living Cells. Cold Spring Harb Protoc 2016; 2016:2016/11/pdb.top083543. [PMID: 27803260 DOI: 10.1101/pdb.top083543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protein-fragment complementation assays (PCAs) comprise a family of assays that can be used to study protein-protein interactions (PPIs), conformation changes, and protein complex dimensions. We developed PCAs to provide simple and direct methods for the study of PPIs in any living cell, subcellular compartments or membranes, multicellular organisms, or in vitro. Because they are complete assays, requiring no cell-specific components other than reporter fragments, they can be applied in any context. PCAs provide a general strategy for the detection of proteins expressed at endogenous levels within appropriate subcellular compartments and with normal posttranslational modifications, in virtually any cell type or organism under any conditions. Here we introduce a number of applications of PCAs in budding yeast, Saccharomyces cerevisiae These applications represent the full range of PPI characteristics that might be studied, from simple detection on a large scale to visualization of spatiotemporal dynamics.
Collapse
Affiliation(s)
- Stephen W Michnick
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Christian R Landry
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, PROTEO-Québec Research Network on Protein Function, Structure and Engineering, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Emmanuel D Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Guillaume Diss
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, PROTEO-Québec Research Network on Protein Function, Structure and Engineering, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Po Hien Ear
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Jacqueline Kowarzyk
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Mohan K Malleshaiah
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Vincent Messier
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada.,Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Emmanuelle Tchekanda
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
8
|
Tapping RI, Tobias PS. Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090040801] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mycobacteria and their cell wall component lipoarabinomannan (LAM) have recently been established as agonists for TLR2. Our transfection studies with single and pairwise combinations of TLRs 1, 2, 6 and 10 reveal that only TLR1 and TLR2 together mediate strong activation of NF-KB-driven luciferase activity in response to LAM. Co-operative signaling by TLR1 and TLR2 is observed using either non-capped or mannose-capped LAM as a stimulus. Moreover, we have found that phosphatidylinositol mannosides, simple biosynthetic precursors of LAM, also activate cells through the combined actions of TLR1 and TLR2. Co-immunoprecipitation studies show that TLR1 and TLR2 are physically associated, independently of the presence of LAM. To address the mechanism of LAM-induced TLR activation we have used TLR fusion proteins in a protein fragment complementation assay. The results of this assay suggest that LAM alters the physical interaction between the intracellular signaling domains of TLR1 and TLR2. Together, these results identify LAM as an agonist for TLR1 and TLR2 and support the idea that LAM initiates transmembrane signaling by altering the physical association between TLR1 and TLR2.
Collapse
Affiliation(s)
- Richard I. Tapping
- Department of Microbiology, College of Medicine, University of Illinois, Urbana, Illinois, USA
| | - Peter S. Tobias
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA,
| |
Collapse
|
9
|
Zhou M, Li Q, Wang R. Current Experimental Methods for Characterizing Protein-Protein Interactions. ChemMedChem 2016; 11:738-56. [PMID: 26864455 PMCID: PMC7162211 DOI: 10.1002/cmdc.201500495] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/08/2016] [Indexed: 12/14/2022]
Abstract
Protein molecules often interact with other partner protein molecules in order to execute their vital functions in living organisms. Characterization of protein-protein interactions thus plays a central role in understanding the molecular mechanism of relevant protein molecules, elucidating the cellular processes and pathways relevant to health or disease for drug discovery, and charting large-scale interaction networks in systems biology research. A whole spectrum of methods, based on biophysical, biochemical, or genetic principles, have been developed to detect the time, space, and functional relevance of protein-protein interactions at various degrees of affinity and specificity. This article presents an overview of these experimental methods, outlining the principles, strengths and limitations, and recent developments of each type of method.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China
| | - Qing Li
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macau, 999078, People's Republic of China.
| |
Collapse
|
10
|
Zhou M, Li Q, Wang R. Current Experimental Methods for Characterizing Protein-Protein Interactions. ChemMedChem 2016. [PMID: 26864455 DOI: 10.1002/cmdc.201500495.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein molecules often interact with other partner protein molecules in order to execute their vital functions in living organisms. Characterization of protein-protein interactions thus plays a central role in understanding the molecular mechanism of relevant protein molecules, elucidating the cellular processes and pathways relevant to health or disease for drug discovery, and charting large-scale interaction networks in systems biology research. A whole spectrum of methods, based on biophysical, biochemical, or genetic principles, have been developed to detect the time, space, and functional relevance of protein-protein interactions at various degrees of affinity and specificity. This article presents an overview of these experimental methods, outlining the principles, strengths and limitations, and recent developments of each type of method.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China
| | - Qing Li
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macau, 999078, People's Republic of China.
| |
Collapse
|
11
|
Remy I, Michnick SW. Mapping biochemical networks with protein fragment complementation assays. Methods Mol Biol 2015; 1278:467-81. [PMID: 25859970 DOI: 10.1007/978-1-4939-2425-7_31] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cellular biochemical machineries, what we call pathways, consist of dynamically assembling and disassembling macromolecular complexes. Although our models for the organization of biochemical machines are derived largely from in vitro experiments, do they reflect their organization in intact, living cells? We have developed a general experimental strategy that addresses this question by allowing the quantitative probing of molecular interactions in intact, living cells. The experimental strategy is based on Protein fragment Complementation Assays (PCA), a method whereby protein interactions are coupled to refolding of enzymes from cognate fragments where reconstitution of enzyme activity acts as the detector of a protein interaction. A biochemical machine or pathway is defined by grouping interacting proteins into those that are perturbed in the same way by common factors (hormones, metabolites, enzyme inhibitors, etc.). In this chapter we review some of the essential principles of PCA and provide details and protocols for applications of PCA, particularly in mammalian cells, based on three PCA reporters, dihydrofolate reductase, green fluorescent protein, and β-lactamase.
Collapse
Affiliation(s)
- Ingrid Remy
- Département de Biochimie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, QC, Canada, H3C 3J7
| | | |
Collapse
|
12
|
Gilad Y, Shiloh R, Ber Y, Bialik S, Kimchi A. Discovering protein-protein interactions within the programmed cell death network using a protein-fragment complementation screen. Cell Rep 2014; 8:909-21. [PMID: 25066129 DOI: 10.1016/j.celrep.2014.06.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/08/2014] [Accepted: 06/25/2014] [Indexed: 12/22/2022] Open
Abstract
Apoptosis and autophagy are distinct biological processes, each driven by a different set of protein-protein interactions, with significant crosstalk via direct interactions among apoptotic and autophagic proteins. To measure the global profile of these interactions, we adapted the Gaussia luciferase protein-fragment complementation assay (GLuc PCA), which monitors binding between proteins fused to complementary fragments of a luciferase reporter. A library encompassing 63 apoptotic and autophagic proteins was constructed for the analysis of ∼3,600 protein-pair combinations. This generated a detailed landscape of the apoptotic and autophagic modules and points of interface between them, identifying 46 previously unknown interactions. One of these interactions, between DAPK2, a Ser/Thr kinase that promotes autophagy, and 14-3-3τ, was further investigated. We mapped the region responsible for 14-3-3τ binding and proved that this interaction inhibits DAPK2 dimerization and activity. This proof of concept underscores the power of the GLuc PCA platform for the discovery of biochemical pathways within the cell death network.
Collapse
Affiliation(s)
- Yuval Gilad
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ruth Shiloh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaara Ber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shani Bialik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
13
|
Azad T, Tashakor A, Hosseinkhani S. Split-luciferase complementary assay: applications, recent developments, and future perspectives. Anal Bioanal Chem 2014; 406:5541-60. [DOI: 10.1007/s00216-014-7980-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/22/2014] [Accepted: 06/16/2014] [Indexed: 12/19/2022]
|
14
|
Prosser GA, Larrouy-Maumus G, de Carvalho LPS. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. EMBO Rep 2014; 15:657-69. [PMID: 24829223 PMCID: PMC4197876 DOI: 10.15252/embr.201338283] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent technological advances in accurate mass spectrometry and data analysis have revolutionized
metabolomics experimentation. Activity-based and global metabolomic profiling methods allow
simultaneous and rapid screening of hundreds of metabolites from a variety of chemical classes,
making them useful tools for the discovery of novel enzymatic activities and metabolic pathways. By
using the metabolome of the relevant organism or close species, these methods capitalize on
biological relevance, avoiding the assignment of artificial and non-physiological functions. This
review discusses state-of-the-art metabolomic approaches and highlights recent examples of their use
for enzyme annotation, discovery of new metabolic pathways, and gene assignment of orphan metabolic
activities across diverse biological sources.
Collapse
Affiliation(s)
- Gareth A Prosser
- Mycobacterial Research Division, MRC National Institute for Medical Research, London, UK
| | - Gerald Larrouy-Maumus
- Mycobacterial Research Division, MRC National Institute for Medical Research, London, UK
| | | |
Collapse
|
15
|
Diss G, Dubé AK, Boutin J, Gagnon-Arsenault I, Landry CR. A systematic approach for the genetic dissection of protein complexes in living cells. Cell Rep 2013; 3:2155-67. [PMID: 23746448 DOI: 10.1016/j.celrep.2013.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/11/2013] [Accepted: 05/04/2013] [Indexed: 01/23/2023] Open
Abstract
Cells contain many important protein complexes involved in performing and regulating structural, metabolic, and signaling functions. One major challenge in cell biology is to elucidate the organization and mechanisms of robustness of these complexes in vivo. We developed a systematic approach to study structural dependencies within complexes in living cells by deleting subunits and measuring pairwise interactions among other components. We used our methodology to perturb two conserved eukaryotic complexes: the retromer and the nuclear pore complex. Our results identify subunits that are critical for the assembly of these complexes, reveal their structural architecture, and uncover mechanisms by which protein interactions are modulated. Our results also show that paralogous proteins play a key role in the robustness of protein complexes and shape their assembly landscape. Our approach paves the way for studying the response of protein interactomes to mutations and enhances our understanding of genotype-phenotype maps.
Collapse
Affiliation(s)
- Guillaume Diss
- Département de Biologie, PROTEO and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada
| | | | | | | | | |
Collapse
|
16
|
Choi Y, Kim M, Cho Y, Yun E, Song R. Synthesis, characterization and target protein binding of drug-conjugated quantum dots in vitro and in living cells. NANOTECHNOLOGY 2013; 24:075101. [PMID: 23358444 DOI: 10.1088/0957-4484/24/7/075101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Elucidation of unknown target proteins of a drug is of great importance in understanding cell biology and drug discovery. There have been extensive studies to discover and identify target proteins in the cell. Visualization of targets using drug-conjugated probes has been an important approach to gathering mechanistic information of drug action at the cellular level. As quantum dot (QD) nanocrystals have attracted much attention as a fluorescent probe in the bioimaging area, we prepared drug-conjugated QD to explore the potential of target discovery. As a model drug, we selected a well-known anticancer drug, methotrexate (MTX), which has been known to target dihydrofolate reductase (DHFR) with high affinity binding (K(d) = 0.54 nM). MTX molecules were covalently attached to amino-PEG-polymer-coated QDs. Specific interactions of MTX-conjugated QDs with DHFR were identified using agarose gel electrophoresis and fluorescence microscopy. Cellular uptake of the MTX-conjugated QDs in living CHO cells was investigated with regard to their localization and distribution pattern. MTX-QD was found to be internalized into the cells via caveolae-medicated endocytosis without significant sequestration in endosomes. A colocalization experiment of the MTX-QD conjugate with antiDHFR-TAT-QD also confirmed that MTX-QD binds to the target DHFR. This study showed the potential of the drug-QD conjugate to identify or visualize drug-target interactions in the cell, which is currently of great importance in the area of drug discovery and chemical biology.
Collapse
Affiliation(s)
- Youngseon Choi
- Medicinal Chemistry Laboratory, Institut Pasteur Korea (IP-K), 696 Sampyeong-dong, Bundang-gu,Seongnam-Si, Gyeonggi-Do, Korea
| | | | | | | | | |
Collapse
|
17
|
Lam MHY, Stagljar I. Strategies for membrane interaction proteomics: no mass spectrometry required. Proteomics 2012; 12:1519-26. [PMID: 22610515 DOI: 10.1002/pmic.201100471] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Membrane-bound proteins are one of the most important protein types in the cell, and are involved in many major cell processes and signaling pathways. Most proteins, including those at membranes, must interact with other proteins to form complexes, which are essential for their function(s). In this review, we describe some of the major non-mass spectrometry-based methods and technologies used for the investigation of intracellular membrane protein complexes including Tango, fluorescence/bioluminescence resonance energy transfer (F/BRET), luminescence-based mammalian interactome mapping (LUMIER), protein-fragment complementation assay (PCA), and membrane yeast two-hybrid assay (MYTH). We highlight the advantages and drawbacks of these methods, describe recent studies utilizing these methods, and discuss some of the major findings in the study of membrane protein-based cell pathways.
Collapse
Affiliation(s)
- Mandy H Y Lam
- Donnelly Centre for Cellular and Biomolecular Research, Department of Biochemistry and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
18
|
Ataei F, Torkzadeh-Mahani M, Hosseinkhani S. A novel luminescent biosensor for rapid monitoring of IP3 by split-luciferase complementary assay. Biosens Bioelectron 2012; 41:642-8. [PMID: 23122229 DOI: 10.1016/j.bios.2012.09.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/17/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is a crucial second messenger that regulates complicated signaling processes in various physiological events. Alteration in its content has been observed in many diseases. Hence, development of a high-throughput screening system to monitor temporal changes of IP(3) is essential for screening of new potential therapeutic compounds. Toward a simple, sensitive and rapid method for measuring IP(3), we describe the development and application of a novel biosensor based on luciferase fragment assisted complementation strategy, which converts the ligand-induced conformational changes to light. Designed sensor comprising the IP(3)-binding core domain of IP(3)-receptor fused between complementary non-functional fragments of firefly luciferase allows direct detection of IP(3) in presence of luciferin substrate both in cell lysate and in living cells. According to the result presented in this manuscript, the screening time was very fast and maximum response was obtained up to 11-fold higher than untreated cells. Moreover, the designed biosensor was able to monitor release of IP(3) upon induction by different inducers like Bradykinin and ATP. The current biosensor not only provides a specific IP(3) detector in vitro but also facilitates monitoring of the response of IP(3) in living organisms.
Collapse
Affiliation(s)
- Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | |
Collapse
|
19
|
Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 2012; 76:331-82. [PMID: 22688816 DOI: 10.1128/mmbr.05021-11] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays.
Collapse
|
20
|
Lowder MA, Appelbaum JS, Hobert EM, Schepartz A. Visualizing protein partnerships in living cells and organisms. Curr Opin Chem Biol 2011; 15:781-8. [PMID: 22104179 DOI: 10.1016/j.cbpa.2011.10.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022]
Abstract
In recent years, scientists have expanded their focus from cataloging genes to characterizing the multiple states of their translated products. One anticipated result is a dynamic map of the protein association networks and activities that occur within the cellular environment. While in vitro-derived network maps can illustrate which of a multitude of possible protein-protein associations could exist, they supply a falsely static picture lacking the subtleties of subcellular location (where) or cellular state (when). Generating protein association network maps that are informed by both subcellular location and cell state requires novel approaches that accurately characterize the state of protein associations in living cells and provide precise spatiotemporal resolution. In this review, we highlight recent advances in visualizing protein associations and networks under increasingly native conditions. These advances include second generation protein complementation assays (PCAs), chemical and photo-crosslinking techniques, and proximity-induced ligation approaches. The advances described focus on background reduction, signal optimization, rapid and reversible reporter assembly, decreased cytotoxicity, and minimal functional perturbation. Key breakthroughs have addressed many challenges and should expand the repertoire of tools useful for generating maps of protein interactions resolved in both time and space.
Collapse
Affiliation(s)
- Melissa A Lowder
- Yale University, Department of Molecular Biophysics and Biochemistry, 60 Whitney Ave., New Haven, CT 06520-8114, USA
| | | | | | | |
Collapse
|
21
|
Cadima-Couto I, Saraiva N, Santos ACC, Goncalves J. HIV-1 Vif interaction with APOBEC3 deaminases and its characterization by a new sensitive assay. J Neuroimmune Pharmacol 2011; 6:296-307. [PMID: 21279453 DOI: 10.1007/s11481-011-9258-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 01/12/2011] [Indexed: 02/01/2023]
Abstract
The human APOBEC3 (A3) cytidine deaminases, such as APOBEC3G (A3G) and APOBEC3F (A3F), are potent inhibitors of Vif-deficient human immunodeficiency virus type 1 (HIV-1). HIV-1 Vif (viral infectivity factor) binds A3 proteins and targets these proteins for ubiquitination and proteasomal degradation. As such, the therapeutic blockage of Vif-A3 interaction is predicted to stimulate natural antiviral activity by rescuing APOBEC expression and virion packaging. In this study, we describe a successful application of the Protein Fragment Complementation Assay (PCA) based on the enzyme TEM-1 β-lactamase to study Vif-A3 interactions. PCA is based on the interaction between two protein binding partners (e.g., Vif and A3G), which are fused to the two halves of a dissected marker protein (β-lactamase). Binding of the two partners reassembles β-lactamase and hence reconstitutes its activity. To validate our assay, we studied the effect of well-described Vif (DRMR, YRHHY) and A3G (D128K) mutations on the interaction between the two proteins. Additionally, we studied the interaction of human Vif with other members of the A3 family: A3F and APOBEC3C (A3C). Our results demonstrate the applicability of PCA as a simple and reliable technique for the assessment of Vif-A3 interactions. Furthermore, when compared with co-immunoprecipitation assays, PCA appeared to be a more sensitive technique for the quantitative assessment of Vif-A3 interactions. Thus, with our results, we conclude that PCA could be used to quantitatively study specific domains that may be involved in the interaction between Vif and APOBEC proteins.
Collapse
Affiliation(s)
- Iris Cadima-Couto
- URIA-IMM, Faculdade de Farmácia da Universidade Lisboa, Av. Das Forças Armadas, 1649-059 Lisbon, Portugal
| | | | | | | |
Collapse
|
22
|
Michnick SW, Ear PH, Landry C, Malleshaiah MK, Messier V. Protein-fragment complementation assays for large-scale analysis, functional dissection and dynamic studies of protein-protein interactions in living cells. Methods Mol Biol 2011; 756:395-425. [PMID: 21870242 DOI: 10.1007/978-1-61779-160-4_25] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein-fragment Complementation Assays (PCAs) are a family of assays for detecting protein-protein interactions (PPIs) that have been developed to provide simple and direct ways to study PPIs in any living cell, multicellular organism, or in vitro. PCAs can be used to detect PPI between proteins of any molecular weight and expressed at their endogenous levels. Proteins are expressed in their appropriate cellular compartments and can undergo any posttranslational modification or degradation that, barring effects of the PCA fragment fusion, they would normally undergo. Assays can be performed in any cell type or model organism that can be transformed or transfected with gene expression DNA constructs. Here we focus on recent applications of PCA in the budding yeast, Saccharomyces cerevisiae, that cover the gamut of applications one could envision for studying any aspect of PPIs. We present detailed protocols for large-scale analysis of PPIs with the survival-selection dihydrofolate reductase (DHFR), reporter PCA, and a new PCA based on a yeast cytosine deaminase reporter that allows for both survival and death selection. This PCA should prove a powerful way to dissect PPIs. We then present methods to study spatial localization and dynamics of PPIs based on fluorescent protein reporter PCAs.
Collapse
|
23
|
Ozawa T, Umezawa Y. Peptide Assemblies in Living Cells. Methods for Detecting Protein-Protein Interactions†. Supramol Chem 2010. [DOI: 10.1080/10610270290026185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Takeaki Ozawa
- a Department of Chemistry, School of Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo , 113-0033 , Japan
- b Japan Science and Technology Corporation , Tokyo , Japan
| | - Yoshio Umezawa
- a Department of Chemistry, School of Science , The University of Tokyo , Hongo, Bunkyo-ku, Tokyo , 113-0033 , Japan
- b Japan Science and Technology Corporation , Tokyo , Japan
| |
Collapse
|
24
|
Ojida A, Fujishima SH, Honda K, Nonaka H, Uchinomiya SH, Hamachi I. Binuclear Ni(II)-DpaTyr complex as a high affinity probe for an oligo-aspartate Tag tethered to proteins. Chem Asian J 2010; 5:877-86. [PMID: 20143369 DOI: 10.1002/asia.200900362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A complementary recognition pair of a short-peptide tag and a small molecular probe is a versatile molecular tool for protein detection, handling, and purification, and so forth. In this manuscript, we report that the binuclear Ni(II)-DpaTyr (DpaTyr=bis((dipicolylamino)methyl)tyrosine) complex serves as a strong binding probe for an oligo-aspartate tag tethered to a protein. Among various binuclear metal complexes of M-DpaTyr (M=Zn(II), Ni(II), Mn(II), Cu(II), Cd(II), Co(III), and Fe(III)), we have found that Ni(II)-DpaTyr (1-2Ni(II)) displays a strong-binding affinity (apparent binding constant: K(app) approximately 10(5) M(-1)) for an oligo-aspartate peptide under neutral aqueous conditions (50 mM HEPES, 100 mM NaCl, pH 7.2). Detailed isothermal-titration calorimetry (ITC) studies reveal that the tri-aspartate D3-tag (DDD) is an optimal sequence recognized by 1-2Ni(II) in a 1:1 binding stoichiometry. On the other hand, other metal complexes of DpaTyr, except for Ni(II)- and Zn(II)-DpaTyr, show a negligible binding affinity for the oligo-aspartate peptide. The binding affinity was greatly enhanced in the pair between the dimer of Ni(II)-DpaTyr and the repeated D3 tag peptide (D3x2), such as DDDXXDDD, on the basis of the multivalent coordination interaction between them. Most notably, a remarkably high-binding affinity (K(app)=2x10(9) M(-1)) was achieved between the Ni(II)-DpaTyr dimer 4-4Ni(II) and the D3x2 tag peptide (DDDNGDDD). This affinity is approximately 100-fold stronger than that observed in the binding pair of the Zn(II)-DpaTyr (4-4Zn(II)) and the D4x2 tag (DDDDGDDDD), a useful tag-probe pair previously reported by us. The recognition pair of the Ni(II)-DpaTyr probe and the D3x2 tag can also work effectively on a protein surface, that is, 4-4Ni(II) is strongly bound to the FKBP12 protein tethered with the D3x2 tag (DDDNGDDD) with a large K(app) value of 5x10(8) M(-1). Taking advantage of the strong-binding affinity, this pair was successfully applied to the selective inactivation of the tag-fused beta-galactosidase by using the chromophore-assisted light inactivation (CALI) technique under crude conditions, such as cell lysate.
Collapse
Affiliation(s)
- Akio Ojida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Michnick SW, Ear PH, Landry C, Malleshaiah MK, Messier V. A toolkit of protein-fragment complementation assays for studying and dissecting large-scale and dynamic protein-protein interactions in living cells. Methods Enzymol 2010; 470:335-68. [PMID: 20946817 DOI: 10.1016/s0076-6879(10)70014-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-fragment complementation assays (PCAs) are a family of assays for detecting protein-protein interactions (PPIs) that have been developed to provide simple and direct ways to study PPIs in any living cell, multicellular organism or in vitro. PCAs can be used to detect PPI between proteins of any molecular weight and expressed at their endogenous levels. Proteins are expressed in their appropriate cellular compartments and can undergo any posttranslational modification or degradation that, barring effects of the PCA fragment fusion, they would normally undergo. Applications of PCAs in yeast have been limited until recently, simply because appropriate expression plasmids or cassettes had not been developed. However, we have now developed and reported on several PCAs in Saccharomyces cerevisiae that cover the gamut of applications one could envision for studying any aspect of PPIs. Here, we present detailed protocols for large-scale analysis of PPIs with the survival-selection dihydrofolate reductase (DHFR) reporter PCA and a new PCA based on a yeast cytosine deaminase reporter that allows for both survival and death selection. This PCA should prove a powerful way to dissect PPIs. We then present a method to study spatial localization and dynamics of PPIs based on fluorescent protein reporter PCAs and finally, two luciferase reporter PCAs that have proved useful for studies of dynamics of PPIs.
Collapse
Affiliation(s)
- Stephen W Michnick
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
26
|
Lievens S, Lemmens I, Tavernier J. Mammalian two-hybrids come of age. Trends Biochem Sci 2009; 34:579-88. [PMID: 19786350 DOI: 10.1016/j.tibs.2009.06.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 12/22/2022]
Abstract
A diverse series of mammalian two-hybrid technologies for the detection of protein-protein interactions have emerged in the past few years, complementing the established yeast two-hybrid approach. Given the mammalian background in which they operate, these assays open new avenues to study the dynamics of mammalian protein interaction networks, i.e. the temporal, spatial and functional modulation of protein-protein associations. In addition, novel assay formats are available that enable high-throughput mammalian two-hybrid applications, facilitating their use in large-scale interactome mapping projects. Finally, as they can be applied in drug discovery and development programs, these techniques also offer exciting new opportunities for biomedical research.
Collapse
Affiliation(s)
- Sam Lievens
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | | | | |
Collapse
|
27
|
Morell M, Ventura S, Avilés FX. Protein complementation assays: Approaches for the in vivo analysis of protein interactions. FEBS Lett 2009; 583:1684-91. [DOI: 10.1016/j.febslet.2009.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 03/02/2009] [Indexed: 11/28/2022]
|
28
|
Secco P, D'Agostini E, Marzari R, Licciulli M, Di Niro R, D'Angelo S, Bradbury AR, Dianzani U, Santoro C, Sblattero D. Antibody library selection by the β-lactamase protein fragment complementation assay. Protein Eng Des Sel 2008; 22:149-58. [DOI: 10.1093/protein/gzn053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Abstract
Interactive proteomics addresses the physical associations among proteins and establishes global, disease-, and pathway-specific protein interaction networks. The inherent chemical and structural diversity of proteins, their different expression levels, and their distinct subcellular localizations pose unique challenges for the exploration of these networks, necessitating the use of a variety of innovative and ingenious approaches. Consequently, recent years have seen exciting developments in protein interaction mapping and the establishment of very large interaction networks, especially in model organisms. In the near future, attention will shift to the establishment of interaction networks in humans and their application in drug discovery and understanding of diseases. In this review, we present an impressive toolbox of different technologies that we expect to be crucial for interactive proteomics in the coming years.
Collapse
|
30
|
Valencia-Burton M, Broude NE. Visualization of RNA using fluorescence complementation triggered by aptamer-protein interactions (RFAP) in live bacterial cells. ACTA ACUST UNITED AC 2008; Chapter 17:Unit 17.11. [PMID: 18228500 DOI: 10.1002/0471143030.cb1711s37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This unit describes a method allowing RNA visualization in live cells. The method is based on fluorescent protein complementation regulated by RNA-aptamer/RNA-binding protein interactions. Based on these two principles, a fluorescent ribonucleoprotein complex is assembled inside the cell only in response to the presence of the aptamer sequence on the target RNA.
Collapse
Affiliation(s)
- Maria Valencia-Burton
- Center for Advanced Biotechnology, College of Engineering, Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | | |
Collapse
|
31
|
A novel genetic screen implicates Elm1 in the inactivation of the yeast transcription factor SBF. PLoS One 2008; 3:e1500. [PMID: 18231587 PMCID: PMC2198942 DOI: 10.1371/journal.pone.0001500] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 12/21/2007] [Indexed: 11/19/2022] Open
Abstract
Background Despite extensive large scale analyses of expression and protein-protein interactions (PPI) in the model organism Saccharomyces cerevisiae, over a thousand yeast genes remain uncharacterized. We have developed a novel strategy in yeast that directly combines genetics with proteomics in the same screen to assign function to proteins based on the observation of genetic perturbations of sentinel protein interactions (GePPI). As proof of principle of the GePPI screen, we applied it to identify proteins involved in the regulation of an important yeast cell cycle transcription factor, SBF that activates gene expression during G1 and S phase. Methodology/Principle Findings The principle of GePPI is that if a protein is involved in a pathway of interest, deletion of the corresponding gene will result in perturbation of sentinel PPIs that report on the activity of the pathway. We created a fluorescent protein-fragment complementation assay (PCA) to detect the interaction between Cdc28 and Swi4, which leads to the inactivation of SBF. The PCA signal was quantified by microscopy and image analysis in deletion strains corresponding to 25 candidate genes that are periodically expressed during the cell cycle and are substrates of Cdc28. We showed that the serine-threonine kinase Elm1 plays a role in the inactivation of SBF and that phosphorylation of Elm1 by Cdc28 may be a mechanism to inactivate Elm1 upon completion of mitosis. Conclusions/Significance Our findings demonstrate that GePPI is an effective strategy to directly link proteins of known or unknown function to a specific biological pathway of interest. The ease in generating PCA assays for any protein interaction and the availability of the yeast deletion strain collection allows GePPI to be applied to any cellular network. In addition, the high degree of conservation between yeast and mammalian proteins and pathways suggest GePPI could be used to generate insight into human disease.
Collapse
|
32
|
Remy I, Campbell-Valois FX, Michnick SW. Detection of protein-protein interactions using a simple survival protein-fragment complementation assay based on the enzyme dihydrofolate reductase. Nat Protoc 2007; 2:2120-5. [PMID: 17853867 DOI: 10.1038/nprot.2007.266] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biochemical 'pathways' are systems of dynamically assembling and disassembling protein complexes, and thus, much of modern biological research is concerned with how, when and where proteins interact with other proteins involved in biochemical processes. The demand for simple approaches to study protein-protein interactions, particularly on a large scale, has grown recently with the progress in genome projects, as the association of unknown with known gene products provides one crucial way of establishing the function of a gene. It was with this challenge in mind that our laboratory developed a simple survival protein-fragment complementation assay (PCA) based on the enzyme dihydrofolate reductase (DHFR). In the DHFR PCA strategy, two proteins of interest are fused to complementary fragments of DHFR. If the proteins of interest interact physically, the DHFR complementary fragments are brought together and fold into the native structure of the enzyme, reconstituting its activity, detectable by the survival of cells expressing the fusion proteins and growth in selective medium. Using the protocol described here, the survival selection can be completed in one to several days, depending on the cell type.
Collapse
Affiliation(s)
- Ingrid Remy
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, Canada
| | | | | |
Collapse
|
33
|
Abstract
The ER (endoplasmic reticulum) is a major protein folding and modification organelle. In its lumen, the ER processes a third of all newly synthesized proteins. To accomplish this task, numerous resident proteins capture the nascent and newly synthesized proteins. The underlying luminal protein–protein interactions, however, are inherently difficult to analyse, mainly due to their transient nature and the rather specialized environment of the ER. To overcome these limitations, we developed a PCA (protein fragment complementation assay) based on the citrine variant of YFP (yellow fluorescent protein). YFP PCA was successfully applied to visualize the protein interactions of the cargo transport receptor ERGIC-53 (endoplasmic reticulum–Golgi intermediate compartment protein of 53 kDa) with its luminal interaction partner MCFD2 (multiple coagulation factor deficiency protein 2) and its cargo proteins cathepsin Z and cathepsin C in a specific manner. With the prospect of screening cDNA libraries for novel protein–protein interactions, YFP PCA is a promising emerging technique for mapping protein interactions inside the secretory pathway in a genome-wide setting.
Collapse
|
34
|
Michnick SW, Ear PH, Manderson EN, Remy I, Stefan E. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat Rev Drug Discov 2007; 6:569-82. [PMID: 17599086 DOI: 10.1038/nrd2311] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Changes in the interactions among proteins that participate in a biochemical pathway can reflect the immediate regulatory responses to intrinsic or extrinsic perturbations of the pathway. Thus, methods that allow for the direct detection of the dynamics of protein-protein interactions can be used to probe the effects of any perturbation on any pathway of interest. Here we describe experimental strategies - based on protein-fragment complementation assays (PCAs) - that can achieve this. PCA-based strategies can be used with or instead of traditional target-based drug discovery strategies to identify novel pathway-component proteins of therapeutic interest, to increase the quantity and quality of information about the actions of potential drugs, and to gain insight into the intricate networks that make up the molecular machinery of living cells.
Collapse
Affiliation(s)
- Stephen W Michnick
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada.
| | | | | | | | | |
Collapse
|
35
|
Remy I, Michnick SW. Application of protein-fragment complementation assays in cell biology. Biotechniques 2007; 42:137, 139, 141 passim. [PMID: 17373475 DOI: 10.2144/000112396] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have developed a general experimental strategy that enables the quantitative detection of dynamic protein-protein interactions in intact living cells, based on protein-fragment complementation assays (PCAs). In this method, protein-protein interactions are coupled to refolding of enzymes from cognate fragments where reconstitution of enzyme activity acts as the detector of a protein interaction. Here we discuss the application of PCA to different aspects of cell biology.
Collapse
Affiliation(s)
- Ingrid Remy
- Département de Biochimie, Université de Montréal, Succursale Center-Ville, Montréal, QC, Canada
| | | |
Collapse
|
36
|
Abstract
Protein-protein interactions (or PPIs) are key elements for the normal functioning of a living cell. A large description of the protein interactomics field is given in this review where different aspects will be discussed. We first give an introduction of the different large scale experimental approaches from yeast two-hybrid to mass spectrometry used to discover PPIs and build protein interaction maps. Single PPI validation techniques such as co-immunoprecipitation or fluorescence methods are then presented as they are more and more integrated in global PPI discovery strategy. Data from different experimental sets are compared and an assessment of the different large scale technologies is presented. Bioinformatics tools can also predict with a good accuracy PPIs in silico, PPIs databases are now numerous and topological analysis has led to interesting insights into the nature of network connection. Finally, PPI, as an association of two proteins, has been structurally characterized for many protein complexes and is largely discussed throughout existing examples. The results obtained so far already provide the biologist with a large set of structured data from which knowledge on pathways and associated protein function can be extracted.
Collapse
|
37
|
Jacquier V, Michnick SW. Seeing is believing. ACS Chem Biol 2006; 1:744-6. [PMID: 17240970 DOI: 10.1021/cb600461v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modern visualization techniques are affording a peek into complex cellular processes. A recent paper describes an automated fluorescence microscopy method to map the subcellular localization of up to 100 different proteins in the same sample.
Collapse
Affiliation(s)
- Valérie Jacquier
- Département de Biochimie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
38
|
Dirnberger D, Unsin G, Schlenker S, Reichel C. A small-molecule-protein interaction system with split-ubiquitin as sensor. Chembiochem 2006; 7:936-42. [PMID: 16680785 DOI: 10.1002/cbic.200500544] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The identification of receptors for small molecules is of great pharmaceutical importance for drug-discovery research. Several systems for the identification of protein-small-molecule interactions have been developed in the past. These were modifications of the classical yeast two-hybrid system, relying on a transcriptional read-out following nuclear translocation of the complex. Here we present a novel three-hybrid technology based on the split-ubiquitin system for the analysis of protein-small-molecule interactions independently of a nuclear translocation of the complex. The performance of the system is compared to a method based on the classical yeast two-hybrid system by using a chemical inducer of dimerization (CID) comprised of methotrexate linked to dexamethasone. Steric issues are addressed by varying the linker length of the compounds, as well as by comparing the orientation of fusion proteins. The system is further extended to the analysis of a small-molecule inhibitor of human PCTAIRE protein kinase 3, which is related to cyclin-dependent kinases (CDKs), an important class of pharmaceutical targets.
Collapse
|
39
|
Chiang KP, Niessen S, Saghatelian A, Cravatt BF. An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling. CHEMISTRY & BIOLOGY 2006; 13:1041-50. [PMID: 17052608 DOI: 10.1016/j.chembiol.2006.08.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 08/22/2006] [Indexed: 12/21/2022]
Abstract
Hundreds, if not thousands, of uncharacterized enzymes currently populate the human proteome. Assembly of these proteins into the metabolic and signaling pathways that govern cell physiology and pathology constitutes a grand experimental challenge. Here, we address this problem by using a multidimensional profiling strategy that combines activity-based proteomics and metabolomics. This approach determined that KIAA1363, an uncharacterized enzyme highly elevated in aggressive cancer cells, serves as a central node in an ether lipid signaling network that bridges platelet-activating factor and lysophosphatidic acid. Biochemical studies confirmed that KIAA1363 regulates this pathway by hydrolyzing the metabolic intermediate 2-acetyl monoalkylglycerol. Inactivation of KIAA1363 disrupted ether lipid metabolism in cancer cells and impaired cell migration and tumor growth in vivo. The integrated molecular profiling method described herein should facilitate the functional annotation of metabolic enzymes in any living system.
Collapse
Affiliation(s)
- Kyle P Chiang
- The Skaggs Institute for Chemical Biology and Departments of Cell Biology and Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
40
|
Singh A, Mai D, Kumar A, Steyn AJC. Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. Proc Natl Acad Sci U S A 2006; 103:11346-51. [PMID: 16844784 PMCID: PMC1544089 DOI: 10.1073/pnas.0602817103] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sudden increase in information derived from the completed Mycobacterium tuberculosis (Mtb) genome sequences has revealed the need for approaches capable of converting raw genome sequence data into functional information. To date, an experimental system for studying protein-protein association in mycobacteria is not available. We have developed a simple system, termed mycobacterial protein fragment complementation (M-PFC), that is based upon the functional reconstitution of two small murine dihydrofolate reductase domains independently fused to two interacting proteins. Using M-PFC, we have successfully demonstrated dimerization of yeast GCN4, interaction between Mtb KdpD and KdpE, and association between Esat-6 and Cfp-10. We established the association between the sensor kinase, DevS, and response regulator, DevR, thereby demonstrating the potential of M-PFC to study protein associations in the mycobacterial membrane. To validate our system, we screened an Mtb library for proteins that associate with the secreted antigen Cfp-10 and consistently identified Esat-6 in our screens. Additional proteins that specifically associate with Cfp-10 include Rv0686 and Rv2151c (FtsQ), a component and substrate, respectively, of the evolutionary conserved signal recognition pathway; and Rv3596c (ClpC1), an AAA-ATPase chaperone involved in protein translocation and quality control. Our results provide empirical evidence that directly links the Mtb specialized secretion pathway with the evolutionary conserved signal recognition and SecA/SecYEG pathways, suggesting they share secretory components. We anticipate that M-PFC will be a major contributor to the systematic assembly of mycobacterial protein interaction maps that will lead to the development of better strategies for the control of tuberculosis.
Collapse
Affiliation(s)
- Amit Singh
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - Deborah Mai
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - Ashwani Kumar
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
| | - Adrie J. C. Steyn
- Department of Microbiology, University of Alabama, Birmingham, AL 35294
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
MacDonald ML, Lamerdin J, Owens S, Keon BH, Bilter GK, Shang Z, Huang Z, Yu H, Dias J, Minami T, Michnick SW, Westwick JK. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat Chem Biol 2006; 2:329-37. [PMID: 16680159 DOI: 10.1038/nchembio790] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 04/04/2006] [Indexed: 01/08/2023]
Abstract
We present a strategy for identifying off-target effects and hidden phenotypes of drugs by directly probing biochemical pathways that underlie therapeutic or toxic mechanisms in intact, living cells. High-content protein-fragment complementation assays (PCAs) were constructed with synthetic fragments of a mutant fluorescent protein ('Venus', EYFP or both), allowing us to measure spatial and temporal changes in protein complexes in response to drugs that activate or inhibit particular pathways. One hundred and seven different drugs from six therapeutic areas were screened against 49 different PCA reporters for ten cellular processes. This strategy reproduced known structure-function relationships and also predicted 'hidden,' potent antiproliferative activities for four drugs with novel mechanisms of action, including disruption of mitochondrial membrane potential. A simple algorithm identified a 25-assay panel that was highly predictive of antiproliferative activity, and the predictive power of this approach was confirmed with cross-validation tests. This study suggests a strategy for therapeutic discovery that identifies novel, unpredicted mechanisms of drug action and thereby enhances the productivity of drug-discovery research.
Collapse
Affiliation(s)
- Marnie L MacDonald
- Odyssey Thera, Inc. 4550 Norris Canyon Rd. Suite 140, San Ramon, California 94583, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ozawa T. Designing split reporter proteins for analytical tools. Anal Chim Acta 2006; 556:58-68. [PMID: 17723331 DOI: 10.1016/j.aca.2005.06.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/01/2005] [Accepted: 06/08/2005] [Indexed: 11/25/2022]
Abstract
A current focus of biological research is to quantify and image cellular processes in living cells and animals. To detect such cellular processes, genetically-encoded reporters have been extensively used. The most common reporters include firefly luciferase, renilla luciferase, green fluorescent protein (GFP) and its variants with various spectral properties. This review describes novel design of split-GFP and luciferase reporters based on protein splicing, and highlights some potential applications with the reporters to study protein-protein interactions, protein localization, intracellular protein dynamics, and protein activity in living cells and animals.
Collapse
Affiliation(s)
- Takeaki Ozawa
- Department of Molecular Structure, Institute for Molecular Science, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
43
|
Conclusions. Proteomics 2005. [DOI: 10.1007/0-306-46895-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Abstract
Progress in experimental and theoretical biology is likely to provide us with the opportunity to assemble detailed predictive models of mammalian cells. Using a functional format to describe the organization of mammalian cells, we describe current approaches for developing qualitative and quantitative models using data from a variety of experimental sources. Recent developments and applications of graph theory to biological networks are reviewed. The use of these qualitative models to identify the topology of regulatory motifs and functional modules is discussed. Cellular homeostasis and plasticity are interpreted within the framework of balance between regulatory motifs and interactions between modules. From this analysis we identify the need for detailed quantitative models on the basis of the representation of the chemistry underlying the cellular process. The use of deterministic, stochastic, and hybrid models to represent cellular processes is reviewed, and an initial integrated approach for the development of large-scale predictive models of a mammalian cell is presented.
Collapse
|
45
|
Saghatelian A, Cravatt BF. Global strategies to integrate the proteome and metabolome. Curr Opin Chem Biol 2005; 9:62-8. [PMID: 15701455 DOI: 10.1016/j.cbpa.2004.12.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A fundamental goal of proteomics is to assign physiological functions to all proteins encoded by eukaryotic and prokaryotic genomes. Of the many activities performed by proteins, the chemical transformations catalyzed by enzymes form the basis for most, if not all, metabolic and signaling pathways. Elucidation of these pathways and their integration into larger cellular networks require new strategies to rapidly and systematically identify physiological substrates of enzymes. Here, we review emerging technologies that aim to assign endogenous biochemical functions to enzymes by profiling the metabolome.
Collapse
Affiliation(s)
- Alan Saghatelian
- The Skaggs Institute for Chemical Biology, Departments of Cell Biology and Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
46
|
Nyfeler B, Michnick SW, Hauri HP. Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci U S A 2005; 102:6350-5. [PMID: 15849265 PMCID: PMC1084318 DOI: 10.1073/pnas.0501976102] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The secretory pathway is composed of membrane compartments specialized in protein folding, modification, transport, and sorting. Numerous transient protein-protein interactions guide the transport-competent proteins through the secretory pathway. Here we have adapted the yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) to detect protein-protein interactions in the secretory pathway of living cells. Fragments of YFP were fused to the homooligomeric cargo-receptor lectin endoplasmic reticulum Golgi intermediate compartment (ERGIC)-53, to the ERGIC-53-interacting multi-coagulation factor deficiency protein MCFD2, and to ERGIC-53's cargo glycoprotein cathepsin Z. YFP PCA analysis revealed the oligomerization of ERGIC-53 and its interaction with MCFD2, as well as its lectin-mediated interaction with cathepsin Z. Mutation of the lectin domain of ERGIC-53 selectively decreased YFP complementation with cathepsin Z. Using YFP PCA, we discovered a carbohydrate-mediated interaction between ERGIC-53 and cathepsin C. We conclude that YFP PCA can detect weak and transient protein interactions in the secretory pathway and hence is a powerful approach to study luminal processes involved in protein secretion. The study extends the application of PCA to carbohydrate-mediated protein-protein interactions of low affinity.
Collapse
Affiliation(s)
- Beat Nyfeler
- Department of Pharmacology and Neurobiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
47
|
Abstract
Labeling proteins with fluorophores, affinity labels or other chemically or optically active species is immensely useful for studying protein function in living cells or tissue. The use of genetically encoded green fluorescent protein and its variants has been particularly valuable in this regard. In an effort to increase the diversity of available protein labels, various efforts to append small molecules to selected proteins in vivo have been reported. This review discusses recent advances in selective, in vivo protein labeling based on small molecule ligand-receptor interactions, intein-mediated processes, and enzyme-catalyzed protein modifications.
Collapse
Affiliation(s)
- Lawrence W Miller
- Department of Chemistry, Columbia University, Havemeyer Hall, MC 3153, 3000 Broadway, New York, New York 10027, USA.
| | | |
Collapse
|
48
|
Abstract
Systematic studies of the organization of biochemical networks that make up the living cell can be defined by studying the organization and dynamics of protein interaction networks (PINs). Here, we describe recent conceptual and experimental advances that can achieve this aim and how chemical perturbations of interactions can be used to define the organization of biochemical networks. Resulting perturbation profiles and subcellular locations of interactions allow us to 'place' each gene product at its relevant point in a network. We discuss how experimental strategies can be used in conjunction with other genome-wide analyses of physical and genetic protein interactions and gene transcription profiles to determine network dynamic linkage (NDL) in the living cell. It is through such dynamic studies that the intricate networks that make up the chemical machinery of the cell will be revealed.
Collapse
|
49
|
Remy I, Michnick SW. A cDNA library functional screening strategy based on fluorescent protein complementation assays to identify novel components of signaling pathways. Methods 2005; 32:381-8. [PMID: 15003600 DOI: 10.1016/j.ymeth.2003.10.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2003] [Indexed: 12/27/2022] Open
Abstract
Progress towards a deeper understanding of cellular biochemical networks demands the development of methods to both identify and validate component proteins of these networks. Here, we describe a cDNA library screening strategy that achieves these aims, based on a protein-fragment complementation assay (PCA) using green fluorescent protein (GFP) as a reporter. The strategy combines a simple cell-based cDNA-screening approach (interactions of a "bait" protein of interest with "prey" cDNA products) with specific functional assays that use the same system and provide initial validation of the cDNA products as being biologically relevant. We applied this strategy to identify novel interacting partners of the protein kinase PKB/Akt. This method provides very general means of identifying and validating genes involved in any cellular process and is particularly designed for identifying enzyme substrates or regulatory proteins for which the enzyme specificity can only be defined by their interactions with other proteins in cells in which the proteins are normally expressed.
Collapse
Affiliation(s)
- Ingrid Remy
- Département de Biochimie, Université de Montréal, CP 6128, Succursale centre-ville, Montréal, Que, Canada H3C 3J7
| | | |
Collapse
|
50
|
Nord O, Gustrin A, Nygren PA. Fluorescent detection of β-lactamase activity in livingEscherichia colicells via esterase supplementation. FEMS Microbiol Lett 2005; 242:73-9. [PMID: 15621422 DOI: 10.1016/j.femsle.2004.10.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 10/13/2004] [Accepted: 10/21/2004] [Indexed: 11/16/2022] Open
Abstract
The TEM-1 beta-lactamase protein fragment complementation assay was investigated for its applicability in affinity protein-based interaction studies in Escherichia coli, using an affibody-based model system. Results from co-transformation experiments showed that an ampicillin resistant phenotype was specifically associated with cognate affibody-target pairings. Attempts to monitor beta-lactamase complementation in vitro with the fluorescent beta-lactamase substrates CCF2/AM and CCF2 showed that E. coli lacks an esterase activity necessary for activation of the esterified and membrane-permeable CCF2/AM form of the substrate. Interestingly, supplementation of the assay reaction with a purified fungal lipase (cutinase) resulted in efficient activation of CCF2/AM in vitro. Further, periplasmic expression of cutinase allowed for fluorescent discrimination between beta-lactamase positive and negative living E. coli cells using the CCF2/AM substrate, which should open the way for novel applications for this prokaryotic host in protein interaction studies.
Collapse
Affiliation(s)
- Olof Nord
- Department of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden
| | | | | |
Collapse
|