1
|
Mise K, Masuda Y, Senoo K, Itoh H. Betaproteobacterial clade II nosZ activated under high N2O concentrations in paddy soil microcosms. J Appl Microbiol 2025; 136:lxaf055. [PMID: 40052378 DOI: 10.1093/jambio/lxaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
AIMS Microbial communities in paddy soils act as potential sinks of nitrous oxide (N2O), a notorious greenhouse gas, but their potential to reduce external N2O is unclear. The direct observation of N2O reduction in submerged field soils is technically difficult. Here, we aimed to identify soil microbial clades that underpin the strong N2O mitigation capacity. METHODS AND RESULTS We constructed paddy soil microcosms with external N2O amendment that enabled the simultaneous evaluation of N2O reductase gene (nosZ) transcripts and N2O consumption. Although the amount of N2O amended was large, it was mostly consumed after 6-8 days of microcosm incubation. Metatranscriptomic sequencing revealed that betaproteobacterial nosZ, especially those classified as clade II nosZ belonging to the orders Rhodocyclales or Nitrosomonadales, occupied >50% of the nosZ transcripts in three of the five paddy soils used. On the other hand, publicly available shotgun metagenomic sequences of 46 paddy soils were not dominated by betaproteobacterial clade II nosZ sequences, although they were ubiquitous. The same applied to the 16S rRNA sequences of Rhodocyclales or Nitrosomonadales. CONCLUSIONS The results indicated that betaproteobacterial N2O reducers potentially serve as powerful N2O sinks. Betaproteobacteria holding clade II nosZ can be targets of biostimulation, although further studies are required to understand their ecophysiology.
Collapse
Affiliation(s)
- Kazumori Mise
- National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Yoko Masuda
- Department of Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keishi Senoo
- Department of Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideomi Itoh
- National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| |
Collapse
|
2
|
Kellermann R, Kumar S, Gates AJ, Bakken L, Spiro S, Bergaust L. The Flavohemoglobin Hmp and Nitric Oxide Reductase Restrict Initial nir Expression in the Bet-Hedging Denitrifier Paracoccus denitrificans by Curtailing Hypoxic NO Signalling. Environ Microbiol 2025; 27:e70079. [PMID: 40102690 DOI: 10.1111/1462-2920.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
In denitrifying bacteria, nitric oxide (NO) is an electron acceptor and a free intermediate produced during anaerobic respiration. NO is also a signal for transcriptional regulation of the genes encoding nitrite (Nir), nitric oxide (Nor) and nitrous oxide reductases (N2OR). We hypothesise that the timing and strength of the NO signal necessary for full nir expression are key factors in the bet-hedging strategy of Paracoccus denitrificans, and that systems scavenging NO under hypoxia reduce the probability of nir induction. We show that the flavohemoglobin Hmp scavenges NO in aerobic cultures and that hmp is regulated by an NsrR-type repressor. Using a strain with an mCherry-nirS fusion, we found a clear, negative effect of Hmp on initial nir expression. Deletion of norCB eliminated bet-hedging, but the elevated NO levels in co-cultures with the wild type did not abolish bet-hedging in the wild type cells. Our results demonstrate clear roles for Hmp and Nor in regulating the expression of nirS through NO scavenging, while suggesting that the trigger for nir induction is not NO itself, but rather an intracellularly generated derivative. Our findings have important implications for understanding the regulatory network controlling the transition to anaerobic respiration.
Collapse
Affiliation(s)
- Ricarda Kellermann
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Santosh Kumar
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Andrew J Gates
- Centre for Advanced Microbiology, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Lars Bakken
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Stephen Spiro
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Linda Bergaust
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
3
|
Beattie GA, Edlund A, Esiobu N, Gilbert J, Nicolaisen MH, Jansson JK, Jensen P, Keiluweit M, Lennon JT, Martiny J, Minnis VR, Newman D, Peixoto R, Schadt C, van der Meer JR. Soil microbiome interventions for carbon sequestration and climate mitigation. mSystems 2025; 10:e0112924. [PMID: 39692482 PMCID: PMC11748500 DOI: 10.1128/msystems.01129-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Mitigating climate change in soil ecosystems involves complex plant and microbial processes regulating carbon pools and flows. Here, we advocate for the use of soil microbiome interventions to help increase soil carbon stocks and curb greenhouse gas emissions from managed soils. Direct interventions include the introduction of microbial strains, consortia, phage, and soil transplants, whereas indirect interventions include managing soil conditions or additives to modulate community composition or its activities. Approaches to increase soil carbon stocks using microbially catalyzed processes include increasing carbon inputs from plants, promoting soil organic matter (SOM) formation, and reducing SOM turnover and production of diverse greenhouse gases. Marginal or degraded soils may provide the greatest opportunities for enhancing global soil carbon stocks. Among the many knowledge gaps in this field, crucial gaps include the processes influencing the transformation of plant-derived soil carbon inputs into SOM and the identity of the microbes and microbial activities impacting this transformation. As a critical step forward, we encourage broadening the current widespread screening of potentially beneficial soil microorganisms to encompass functions relevant to stimulating soil carbon stocks. Moreover, in developing these interventions, we must consider the potential ecological ramifications and uncertainties, such as incurred by the widespread introduction of homogenous inoculants and consortia, and the need for site-specificity given the extreme variation among soil habitats. Incentivization and implementation at large spatial scales could effectively harness increases in soil carbon stocks, helping to mitigate the impacts of climate change.
Collapse
Affiliation(s)
- Gwyn A. Beattie
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | | | - Nwadiuto Esiobu
- Department of Biological Sciences, Microbiome Innovation Cluster, Florida Atlantic University, Boca Raton, Florida, USA
| | - Jack Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, UC San Diego School of Medicine, La Jolla, California, USA
| | | | - Janet K. Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Paul Jensen
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Marco Keiluweit
- Soil Biogeochemistry Group, Faculty of Geosciences and the Environment, University of Lausanne, Lausanne, Switzerland
| | - Jay T. Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Jennifer Martiny
- School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Vanessa R. Minnis
- Department of Pediatrics and Scripps Institution of Oceanography, UC San Diego School of Medicine, La Jolla, California, USA
| | - Dianne Newman
- Division of Biology & Biological Engineering and Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | - Raquel Peixoto
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Christopher Schadt
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | |
Collapse
|
4
|
Roothans N, van Loosdrecht MCM, Laureni M. Metabolic labour division trade-offs in denitrifying microbiomes. THE ISME JOURNAL 2025; 19:wraf020. [PMID: 39903699 PMCID: PMC11844250 DOI: 10.1093/ismejo/wraf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/19/2024] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Division of metabolic labour is a defining trait of natural and engineered microbiomes. Denitrification-the stepwise reduction of nitrate and nitrite to nitrogenous gases-is inherently modular, catalysed either by a single microorganism (termed complete denitrifier) or by consortia of partial denitrifiers. Despite the pivotal role of denitrification in biogeochemical cycles and environmental biotechnologies, the ecological factors selecting for complete versus partial denitrifiers remain poorly understood. In this perspective, we critically review over 1500 published metagenome-assembled genomes of denitrifiers from diverse and globally relevant ecosystems. Our findings highlight the widespread occurrence of labour division and the dominance of partial denitrifiers in complex ecosystems, contrasting with the prevalence of complete denitrifiers only in simple laboratory cultures. We challenge current labour division theories centred around catabolic pathways, and discuss their limits in explaining the observed niche partitioning. Instead, we propose that labour division benefits partial denitrifiers by minimising resource allocation to denitrification, enabling broader metabolic adaptability to oligotrophic and dynamic environments. Conversely, stable, nutrient-rich laboratory cultures seem to favour complete denitrifiers, which maximise energy generation through denitrification. To resolve the ecological significance of metabolic trade-offs in denitrifying microbiomes, we advocate for mechanistic studies that integrate mixed-culture enrichments mimicking natural environments, multi-meta-omics, and targeted physiological characterisations. These undertakings will greatly advance our understanding of global nitrogen turnover and nitrogenous greenhouse gases emissions.
Collapse
Affiliation(s)
- Nina Roothans
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7K, Aalborg East 9220, Denmark
| | - Michele Laureni
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, the Netherlands
- Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628 CN, the Netherlands
| |
Collapse
|
5
|
Laureni M, Corbera-Rubio F, Kim DD, Browne S, Roothans N, Weissbrodt DG, Olavaria K, de Jonge N, Yoon S, Pabst M, van Loosdrecht MCM. Selective enrichment of high-affinity clade II N 2O-reducers in a mixed culture. ISME COMMUNICATIONS 2025; 5:ycaf022. [PMID: 40092579 PMCID: PMC11906303 DOI: 10.1093/ismeco/ycaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/28/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025]
Abstract
Microorganisms encoding for the N2O reductase (NosZ) are the only known biological sink of the potent greenhouse gas N2O and are central to global N2O mitigation efforts. Clade II NosZ populations are of particular biotechnological interest as they usually feature high N2O affinities and often lack other denitrification genes. We focus on the yet-unresolved ecological constraints selecting for different N2O-reducers strains and controlling the assembly of N2O-respiring communities. Two planktonic N2O-respiring mixed cultures were enriched at low dilution rates under limiting and excess dissolved N2O availability to assess the impact of substrate affinity and N2O cytotoxicity, respectively. Genome-resolved metaproteomics was used to infer the metabolism of the enriched populations. Under N2O limitation, clade II N2O-reducers fully outcompeted clade I affiliates, a scenario previously only theorized based on pure-cultures. All enriched N2O-reducers encoded and expressed the sole clade II NosZ, while also possessing other denitrification genes. Two Azonexus and Thauera genera affiliates dominated the culture, and we hypothesize their coexistence to be explained by the genome-inferred metabolic exchange of cobalamin intermediates. Under excess N2O, clade I and II populations coexisted; yet, proteomic evidence suggests that clade II affiliates respired most of the N2O, de facto outcompeting clade I affiliates. The single dominant N2O-reducer (genus Azonexus) notably expressed most cobalamin biosynthesis marker genes, likely to contrast the continuous cobalamin inactivation by dissolved cytotoxic N2O concentrations (400 μM). Ultimately, our results strongly suggest the solids dilution rate to play a pivotal role in controlling the selection among NosZ clades, albeit the conditions selecting for genomes possessing the sole nosZ remain elusive. We furthermore highlight the potential significance of N2O-cobalamin interactions in shaping the composition of N2O-respiring microbiomes.
Collapse
Affiliation(s)
- Michele Laureni
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| | - Francesc Corbera-Rubio
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| | - DaeHyun Daniel Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daehakro 291, KAIST, Daejeon 34141, South Korea
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Savanna Browne
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| | - Nina Roothans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| | - David G Weissbrodt
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Sem Sælands vei 8, Trondheim 7034, Norway
| | - Karel Olavaria
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg DK-9220, Denmark
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daehakro 291, KAIST, Daejeon 34141, South Korea
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| |
Collapse
|
6
|
Yang L, He T, Yuan Y, Xiong Y, Lei H, Zhang M, Chen M, Yang L, Zheng C, Wang C. Enhancement of cold-adapted heterotrophic nitrification and denitrification in Pseudomonas sp. NY1 by cupric ions: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 414:131574. [PMID: 39378533 DOI: 10.1016/j.biortech.2024.131574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Cupric ions can restrain biological nitrogen removal processes, which comprise nitrite reductase and nitric oxide reductase. Here, Pseudomonas sp. NY1 can efficiently perform heterotrophic nitrification and aerobic denitrification with cupric ions at 15 °C. At optimal culturing conditions, low cupric ion levels accelerated nitrogen degradation, and ammonium and nitrite removal efficiencies increased by 2.33%-4.85% and 6.76%-12.30%, respectively. Moreover, the maximum elimination rates for ammonium and nitrite increased from 9.48 to 10.26 mg/L/h and 6.20 to 6.80 mg/L/h upon adding 0.05 mg/L cupric ions. Additionally, low cupric ion concentrations promoted electron transport system activity (ETSA), especially for nitrite reduction. However, high concentrations of cupric ions decreased the ETSA during nitrogen conversion processes. The crucial enzymes ammonia monooxygenase, nitrate reductase, and nitrite reductase possessed similarly trends as ETSA upon exposure to cupric ion. These findings deepen the understanding for the effect of cupric ions on nitrogen consumption and bioremediation in nitrogen-polluted waters.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Yulan Yuan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yufen Xiong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Hongxue Lei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Manman Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mengping Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Li Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chunxia Zheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Cerong Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
7
|
Islam MS, Alatishe A, Lee-Lopez CC, Serrano F, Yukl ET. H-NOX Influences Biofilm Formation, Central Metabolism, and Quorum Sensing in Paracoccus denitrificans. J Proteome Res 2024; 23:4988-5000. [PMID: 39370609 PMCID: PMC11536421 DOI: 10.1021/acs.jproteome.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
The transition from planktonic to biofilm growth in bacteria is often accompanied by greater resistance to antibiotics and other stressors, as well as distinct alterations in physical traits, genetic activity, and metabolic restructuring. In many species, the heme nitric oxide/oxygen binding proteins (H-NOX) play an important role in this process, although the signaling mechanisms and pathways in which they participate are quite diverse and largely unknown. In Paracoccus denitrificans, deletion of the hnox gene results in a severe biofilm-deficient phenotype. Quantitative proteomics was used to assemble a comprehensive data set of P. denitrificans proteins showing altered abundance of those involved in several important metabolic pathways. Further, decreased levels of pyruvate and elevated levels of C16 homoserine lactone were detected for the Δhnox strain, associating the biofilm deficiency with altered central carbon metabolism and quorum sensing, respectively. These results expand our knowledge of the important role of H-NOX signaling in biofilm formation.
Collapse
Affiliation(s)
- Md. Shariful Islam
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
- Department
of Mathematics and Physics, North South
University, Bashundhara
RA, Dhaka 1229, Bangladesh
| | - Aishat Alatishe
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
| | - Cameron C. Lee-Lopez
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
| | - Fred Serrano
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
| | - Erik T. Yukl
- Department
of Chemistry and Biochemistry, New Mexico
State University, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
8
|
Gui M. Effect of humic acid on aerobic denitrification by Achromobacter sp. strain GAD-3. J Biosci Bioeng 2024; 138:338-344. [PMID: 39030116 DOI: 10.1016/j.jbiosc.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024]
Abstract
Humic acid (HA), a common natural organic matter, could affect conventional anoxic denitrification. Aim of this study was to investigate effect of HA on the process of aerobic denitrification in Achromobacter sp. GAD-3, an aerobic denitrifying strain. The findings demonstrated that an increase in HA concentrations (≥5 mg L-1) promoted the aerobic denitrification process (excluding N2O reduction), manifesting as higher rates of nitrate removal (6.67-11.1 mg L-1 h-1) and lower levels of nitrite accumulation (30.2-20.7 mg L-1). This was attributed to the increased electron transfer activities and denitrifying reductase activities (including NAR, NIR and NOR) facilitated by HA. Accordingly, the expression of denitrification genes such as napA, cnorB, and nirS was enhanced by HA. Nonetheless, the nosZ gene and N2OR activity underwent suppression by HA, which was accountable for N2O emission. It is crucial to understand the HA mechanism towards aerobic denitrifiers for wastewater treatment plants to enhance nitrogen removal.
Collapse
Affiliation(s)
- Mengyao Gui
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang 330031, China.
| |
Collapse
|
9
|
Wang Y, Zhong W, Zhang X, Cao M, Ni Z, Zhang M, Li J, Duan Y, Wu L. Copper pyrazole addition regulates soil mineral nitrogen turnover by mediating microbial traits. Front Microbiol 2024; 15:1433816. [PMID: 39411444 PMCID: PMC11473427 DOI: 10.3389/fmicb.2024.1433816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
The huge amount of urea applied has necessitated best-developed practices to slow down the release of nitrogen (N) fertilizer while minimizing nitrate loss. However, the impact of nitrification inhibitors on mineral-N turnover and the associated microbial mechanisms at different stages remains unknown. A 60-day incubation experiment was conducted with four treatments: no fertilizer (CK), urea (U), urea with copper pyrazole (UC), and urea coated with copper pyrazole (SUC), to evaluate the changes about soil ammonia N (N H 4 + -N) and nitrate N ( NO 3 - -N) levels as well as in soil microbial community throughout the whole incubation period. The results showed that copper pyrazole exhibited significantly higher inhibition rates on urease compared to other metal-pyrazole coordination compounds. The soilN H 4 + -N content peaked on the 10th day and was significantly greater in UC compared to U, while the NO 3 - -N content was significantly greater in U compared to UC on the 60th day. Copper pyrazole mainly decreased the expression of nitrifying (AOB-amoA) and denitrifying (nirK) genes, impacting the soil microbial community. Co-occurrence network suggested that Mycobacterium and Cronobacter sakazakii-driven Cluster 4 community potentially affected the nitrification process in the initial phase, convertingN H 4 + -N to NO 3 - -N. Fusarium-driven Cluster 3 community likely facilitated the denitrification of NO 3 - -N and caused N loss to the atmosphere in the late stage. The application of copper pyrazole may influence the process of nitrification and denitrification by regulating soil microbial traits (module community and functional genes). Our research indicates that the addition of copper pyrazole alters the community function driven by keystone taxa, altering mineral-N turnover and supporting the use of nitrification inhibitors in sustainable agriculture.
Collapse
Affiliation(s)
- Yuming Wang
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of USTC, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Wenling Zhong
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of USTC, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Xiwen Zhang
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of USTC, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Minghui Cao
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Zheng Ni
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of USTC, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Mengxia Zhang
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jiangye Li
- Institute of Agricultural Resources and Environment, Academy of Agricultural Sciences, Nanjing, China
| | - Yan Duan
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Lifang Wu
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| |
Collapse
|
10
|
Schacksen PS, Nielsen JL. Unraveling the genetic potential of nitrous oxide reduction in wastewater treatment: insights from metagenome-assembled genomes. Appl Environ Microbiol 2024; 90:e0217723. [PMID: 39136491 PMCID: PMC11409646 DOI: 10.1128/aem.02177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/22/2024] [Indexed: 09/19/2024] Open
Abstract
This study explores the genetic landscape of nitrous oxide (N2O) reduction in wastewater treatment plants (WWTPs) by profiling 1,083 high-quality metagenome-assembled genomes (HQ MAGs) from 23 Danish full-scale WWTPs. The focus is on the distribution and diversity of nitrous oxide reductase (nosZ) genes and their association with other nitrogen metabolism pathways. A custom pipeline for clade-specific nosZ gene identification with higher sensitivity revealed 503 nosZ sequences in 489 of these HQ MAGs, outperforming existing Kyoto Encyclopedia of Genes and Genomes (KEGG) module-based methods. Notably, 48.7% of the total 1,083 HQ MAGs harbored nosZ genes, with clade II being predominant, accounting for 93.7% of these genes. Taxonomic profiling highlighted the prevalence of nosZ-containing taxa within Bacteroidota and Pseudomonadota. Chloroflexota exhibited unexpected affiliations with both the sec and tat secretory pathways, and all were found to contain the accessory nosB gene, underscoring the importance of investigating the secretory pathway. The majority of non-denitrifying N2O reducers were found within Bacteroidota and Chloroflexota. Additionally, HQ MAGs with genes for dissimilatory nitrate reduction to ammonium and assimilatory nitrate reduction frequently co-occurred with the nosZ gene. Traditional primers targeting nosZ often focus on short-length amplicons. Therefore, we introduced custom-designed primer sets targeting near-full-length nosZ sequences. These new primers demonstrate efficacy in capturing diverse and well-characterized sequences, providing a valuable tool with higher resolution for future research. In conclusion, this comprehensive analysis enhances our understanding of N2O-reducing organisms in WWTPs, highlighting their potential as N2O sinks with the potential for optimizing wastewater treatment processes and mitigating greenhouse gas emissions. IMPORTANCE This study provides critical insights into the genetic diversity of nitrous oxide reductase (nosZ) genes and the microorganisms harboring them in wastewater treatment plants (WWTPs) by exploring 1,083 high-quality metagenome-assembled genomes (MAGs) from 23 Danish full-scale WWTPs. Despite the pivotal role of nosZ-containing organisms, their diversity remains largely unexplored in WWTPs. Our custom pipeline for detecting nosZ provides near-full-length genes with detailed information on secretory pathways and accessory nos genes. Using these genes as templates, we developed taxonomically diverse clade-specific primers that generate nosZ amplicons for phylogenetic annotation and gene-to-MAG linkage. This approach improves detection and expands the discovery of novel sequences, highlighting the prevalence of non-denitrifying N2O reducers and their potential as N2O sinks. These findings have the potential to optimize nitrogen removal processes and mitigate greenhouse gas emissions from WWTPs by fully harnessing the capabilities of the microbial communities.
Collapse
Affiliation(s)
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
11
|
He G, Chen G, Xie Y, Swift CM, Ramirez D, Cha G, Konstantinidis KT, Radosevich M, Löffler FE. Sustained bacterial N 2O reduction at acidic pH. Nat Commun 2024; 15:4092. [PMID: 38750010 PMCID: PMC11096178 DOI: 10.1038/s41467-024-48236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Nitrous oxide (N2O) is a climate-active gas with emissions predicted to increase due to agricultural intensification. Microbial reduction of N2O to dinitrogen (N2) is the major consumption process but microbial N2O reduction under acidic conditions is considered negligible, albeit strongly acidic soils harbor nosZ genes encoding N2O reductase. Here, we study a co-culture derived from acidic tropical forest soil that reduces N2O at pH 4.5. The co-culture exhibits bimodal growth with a Serratia sp. fermenting pyruvate followed by hydrogenotrophic N2O reduction by a Desulfosporosinus sp. Integrated omics and physiological characterization revealed interspecies nutritional interactions, with the pyruvate fermenting Serratia sp. supplying amino acids as essential growth factors to the N2O-reducing Desulfosporosinus sp. Thus, we demonstrate growth-linked N2O reduction between pH 4.5 and 6, highlighting microbial N2O reduction potential in acidic soils.
Collapse
Affiliation(s)
- Guang He
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Gao Chen
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Yongchao Xie
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Cynthia M Swift
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Diana Ramirez
- Department of Microbiology, The University of Tennessee Knoxville, Knoxville, TN, 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gyuhyon Cha
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Frank E Löffler
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
- Department of Microbiology, The University of Tennessee Knoxville, Knoxville, TN, 37996, USA.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
12
|
Goff JL, Szink EG, Durrence KL, Lui LM, Nielsen TN, Kuehl JV, Hunt KA, Chandonia JM, Huang J, Thorgersen MP, Poole FL, Stahl DA, Chakraborty R, Deutschbauer AM, Arkin AP, Adams MWW. Genomic and environmental controls on Castellaniella biogeography in an anthropogenically disturbed subsurface. ENVIRONMENTAL MICROBIOME 2024; 19:26. [PMID: 38671539 PMCID: PMC11046850 DOI: 10.1186/s40793-024-00570-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Castellaniella species have been isolated from a variety of mixed-waste environments including the nitrate and multiple metal-contaminated subsurface at the Oak Ridge Reservation (ORR). Previous studies examining microbial community composition and nitrate removal at ORR during biostimulation efforts reported increased abundances of members of the Castellaniella genus concurrent with increased denitrification rates. Thus, we asked how genomic and abiotic factors control the Castellaniella biogeography at the site to understand how these factors may influence nitrate transformation in an anthropogenically impacted setting. We report the isolation and characterization of several Castellaniella strains from the ORR subsurface. Five of these isolates match at 100% identity (at the 16S rRNA gene V4 region) to two Castellaniella amplicon sequence variants (ASVs), ASV1 and ASV2, that have persisted in the ORR subsurface for at least 2 decades. However, ASV2 has consistently higher relative abundance in samples taken from the site and was also the dominant blooming denitrifier population during a prior biostimulation effort. We found that the ASV2 representative strain has greater resistance to mixed metal stress than the ASV1 representative strains. We attribute this resistance, in part, to the large number of unique heavy metal resistance genes identified on a genomic island in the ASV2 representative genome. Additionally, we suggest that the relatively lower fitness of ASV1 may be connected to the loss of the nitrous oxide reductase (nos) operon (and associated nitrous oxide reductase activity) due to the insertion at this genomic locus of a mobile genetic element carrying copper resistance genes. This study demonstrates the value of integrating genomic, environmental, and phenotypic data to characterize the biogeography of key microorganisms in contaminated sites.
Collapse
Affiliation(s)
- Jennifer L Goff
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
- State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Elizabeth G Szink
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Konnor L Durrence
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Lauren M Lui
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jennifer V Kuehl
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - John-Marc Chandonia
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jiawen Huang
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael P Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Romy Chakraborty
- Earth and Environmental Science Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California-Berkeley, Berkeley, CA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
13
|
Parekh T, Tsai M, Spiro S. Choline degradation in Paracoccus denitrificans: identification of sources of formaldehyde. J Bacteriol 2024; 206:e0008124. [PMID: 38501746 PMCID: PMC11025334 DOI: 10.1128/jb.00081-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Paracoccus denitrificans is a facultative methylotroph that can grow on methanol and methylamine as sole sources of carbon and energy. Both are oxidized to formaldehyde and then to formate, so growth on C1 substrates induces the expression of genes encoding enzymes required for the oxidation of formaldehyde and formate. This induction involves a histidine kinase response regulator pair (FlhSR) that is likely triggered by formaldehyde. Catabolism of some complex organic substrates (e.g., choline and L-proline betaine) also generates formaldehyde. Thus, flhS and flhR mutants that fail to induce expression of the formaldehyde catabolic enzymes cannot grow on methanol, methylamine, and choline. Choline is oxidized to glycine via glycine betaine, dimethylglycine, and sarcosine. By exploring flhSR growth phenotypes and the activities of a promoter and enzyme known to be upregulated by formaldehyde, we identify the oxidative demethylations of glycine betaine, dimethylglycine, and sarcosine as sources of formaldehyde. Growth on glycine betaine, dimethylglycine, and sarcosine is accompanied by the production of up to three, two, and one equivalents of formaldehyde, respectively. Genetic evidence implicates two orthologous monooxygenases in the oxidation of glycine betaine. Interestingly, one of these appears to be a bifunctional enzyme that also oxidizes L-proline betaine (stachydrine). We present preliminary evidence to suggest that growth on L-proline betaine induces expression of a formaldehyde dehydrogenase distinct from the enzyme induced during growth on other formaldehyde-generating substrates.IMPORTANCEThe bacterial degradation of one-carbon compounds (methanol and methylamine) and some complex multi-carbon compounds (e.g., choline) generates formaldehyde. Formaldehyde is toxic and must be removed, which can be done by oxidation to formate and then to carbon dioxide. These oxidations provide a source of energy; in some species, the CO2 thus generated can be assimilated into biomass. Using the Gram-negative bacterium Paracoccus denitrificans as the experimental model, we infer that oxidation of choline to glycine generates up to three equivalents of formaldehyde, and we identify the three steps in the catabolic pathway that are responsible. Our work sheds further light on metabolic pathways that are likely important in a variety of environmental contexts.
Collapse
Affiliation(s)
- Trusha Parekh
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Marcus Tsai
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Stephen Spiro
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
14
|
Jiang L, Liu S, Wang S, Sun L, Zhu G. Effect of tillage state of paddy soils with heavy metal pollution on the nosZ gene of N 2O reductase. J Environ Sci (China) 2024; 137:469-477. [PMID: 37980031 DOI: 10.1016/j.jes.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 11/20/2023]
Abstract
Paddy soils are an important source of atmospheric nitrous oxide (N2O). However, numerous studies have focused on N2O production during the soil tillage period, neglecting the N2O production during the dry fallow period. In this study, we conducted an incubation experiment using the acetylene inhibition technique to investigate N2O emission and reduction rates of paddy soil profiles (0-1 m) from Guangdong Province and Jinlin Province in China, with different heavy-metal pollution levels. The abundance and community structures of denitrifying bacteria were determined via quantitative-PCR and Illumina MiSeq sequencing of nosZ, nirK, and nirS genes. Our results showed that the potential N2O emission rate, N2O production rate, and denitrification rate have decreased with increasing soil vertical depth and heavy-metal pollution. More importantly, we found that the functional gene type of N2O reductase switched with the tillage state of paddy soils, which clade Ⅱ nosZ genes were the dominant gene during the tillage period, while clade Ⅰ nosZ genes were the dominant gene during the dry fallow period. The heavy-metal pollution has less effect on the niche differentiation of the nosZ gene. The N2O emission rate was significantly regulated by the genus Bradyhizobium, which contains both N2O reductase and nitrite reductase genes. Our findings suggests that the nosZ gene of N2O reductase can significantly impact the N2O emission from paddy soils.
Collapse
Affiliation(s)
- Liping Jiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiguang Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libo Sun
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Yang S, Hou LJ, Dong HP, Zhang JW, Gao DZ, Li XF, Zheng YL, Liang X, Liu M. Natural chalcopyrite mitigates nitrous oxide emissions in sediment from coastal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168766. [PMID: 38008310 DOI: 10.1016/j.scitotenv.2023.168766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/29/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Coastal wetlands are one of the most important natural sources of nitrous oxide (N2O). Previous studies have shown that copper-containing chemicals are able to reduce N2O emissions from these ecosystems. However, these chemicals may harm organisms present in coastal waters and sediment, and disturb the ecological balance of these areas. Here, we first investigated the physiological characteristics and genetic potential of denitrifying bacteria isolated from coastal wetlands. Based on an isolated denitrifier carrying a complete denitrification pathway, we tested the effect of the natural mineral chalcopyrite on N2O production by the bacteria. The results demonstrated that chalcopyrite addition lowers N2O emissions from the bacteria while increasing its N2 production rate. Among the four denitrification genes of the isolate, only nosZ gene expression was significantly upregulated following the addition of 2 mg L-1 chalcopyrite. Furthermore, chalcopyrite was applied to coastal wetland sediments. The N2O flux was significantly reduced in 50-100 mg L-1 chalcopyrite-amended sets relative to the controls. Notably, the dissolved Cu concentration in chalcopyrite-amended sediment remained within the limit set by the National Sewage Treatment Discharge Standard. qPCR and metagenomic analysis revealed that the abundance of N2O-reducing bacteria with the nosZ or nirK + nosZ genotype increased significantly in the chalcopyrite-amended groups relative to the controls, suggesting their active involvement in the reduction of N2O emissions. Our findings offer valuable insights for the use of natural chalcopyrite in large-scale field applications to reduce N2O emissions.
Collapse
Affiliation(s)
- Sai Yang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Hong-Po Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Jia-Wei Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Deng-Zhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xiao-Fei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yan-Ling Zheng
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| |
Collapse
|
16
|
Sun Y, Yin Y, He G, Cha G, Ayala-del-Río HL, González G, Konstantinidis KT, Löffler FE. pH selects for distinct N 2O-reducing microbiomes in tropical soil microcosms. ISME COMMUNICATIONS 2024; 4:ycae070. [PMID: 38808123 PMCID: PMC11131594 DOI: 10.1093/ismeco/ycae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
Nitrous oxide (N2O), a greenhouse gas with ozone destruction potential, is mitigated by the microbial reduction to dinitrogen catalyzed by N2O reductase (NosZ). Bacteria with NosZ activity have been studied at circumneutral pH but the microbiology of low pH N2O reduction has remained elusive. Acidic (pH < 5) tropical forest soils were collected in the Luquillo Experimental Forest in Puerto Rico, and microcosms maintained with low (0.02 mM) and high (2 mM) N2O assessed N2O reduction at pH 4.5 and 7.3. All microcosms consumed N2O, with lag times of up to 7 months observed in microcosms with 2 mM N2O. Comparative metagenome analysis revealed that Rhodocyclaceae dominated in circumneutral microcosms under both N2O feeding regimes. At pH 4.5, Peptococcaceae dominated in high-N2O, and Hyphomicrobiaceae in low-N2O microcosms. Seventeen high-quality metagenome-assembled genomes (MAGs) recovered from the N2O-reducing microcosms harbored nos operons, with all eight MAGs derived from acidic microcosms carrying the Clade II type nosZ and lacking nitrite reductase genes (nirS/K). Five of the eight MAGs recovered from pH 4.5 microcosms represent novel taxa indicating an unexplored N2O-reducing diversity exists in acidic tropical soils. A survey of pH 3.5-5.7 soil metagenome datasets revealed that nosZ genes commonly occur, suggesting broad distribution of N2O reduction potential in acidic soils.
Collapse
Affiliation(s)
- Yanchen Sun
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Present address: Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Yongchao Yin
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Present address: Department of Biology, Antimicrobial Discovery Center, Northeastern University, Boston, MA 02148, United States
| | - Guang He
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
| | - Gyuhyon Cha
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | | | - Grizelle González
- USDA Forest Service, International Institute of Tropical Forestry, San Juan 00926, Puerto Rico
| | | | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
| |
Collapse
|
17
|
Oba K, Suenaga T, Yasuda S, Kuroiwa M, Hori T, Lackner S, Terada A. Quest for Nitrous Oxide-reducing Bacteria Present in an Anammox Biofilm Fed with Nitrous Oxide. Microbes Environ 2024; 39:ME23106. [PMID: 38538312 PMCID: PMC10982107 DOI: 10.1264/jsme2.me23106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
N2O-reducing bacteria have been examined and harnessed to develop technologies that reduce the emission of N2O, a greenhouse gas produced by biological nitrogen removal. Recent investigations using omics and physiological activity approaches have revealed the ecophysiologies of these bacteria during nitrogen removal. Nevertheless, their involvement in anammox processes remain unclear. Therefore, the present study investigated the identity, genetic potential, and activity of N2O reducers in an anammox reactor. We hypothesized that N2O is limiting for N2O-reducing bacteria and an exogeneous N2O supply enriches as-yet-uncultured N2O-reducing bacteria. We conducted a 1200-day incubation of N2O-reducing bacteria in an anammox consortium using gas-permeable membrane biofilm reactors (MBfRs), which efficiently supply N2O in a bubbleless form directly to a biofilm grown on a gas-permeable membrane. A 15N tracer test indicated that the supply of N2O resulted in an enriched biomass with a higher N2O sink potential. Quantitative PCR and 16S rRNA amplicon sequencing revealed Clade II nosZ type-carrying N2O-reducing bacteria as protagonists of N2O sinks. Shotgun metagenomics showed the genetic potentials of the predominant Clade II nosZ-carrying bacteria, Anaerolineae and Ignavibacteria in MBfRs. Gemmatimonadota and non-anammox Planctomycetota increased their abundance in MBfRs despite their overall lower abundance. The implication of N2O as an inhibitory compound scavenging vitamin B12, which is essential for the synthesis of methionine, suggested its limited suppressive effect on the growth of B12-dependent bacteria, including N2O reducers. We identified Dehalococcoidia and Clostridia as predominant N2O sinks in an anammox consortium fed exogenous N2O because of the higher metabolic potential of vitamin B12-dependent biosynthesis.
Collapse
Affiliation(s)
- Kohei Oba
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
| | - Toshikazu Suenaga
- Department of Chemical Engineering, Hiroshima University, 1–4–1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739–8527, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
| | - Shohei Yasuda
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Megumi Kuroiwa
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16–1 Onogawa, Tsukuba, Ibaraki, 305–8569, Japan
| | - Susanne Lackner
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
- Department of Civil and Environmental Engineering Science, Institute IWAR, Chair of Water and Environmental Biotechnology Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
| |
Collapse
|
18
|
Freddi L, de la Garza-García JA, Al Dahouk S, Occhialini A, Köhler S. Brucella spp. are facultative anaerobic bacteria under denitrifying conditions. Microbiol Spectr 2023; 11:e0276723. [PMID: 37882559 PMCID: PMC10714718 DOI: 10.1128/spectrum.02767-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/06/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Respiration is a fundamental and complex process that bacteria use to produce energy. Despite aerobic respiration being the most common, some bacteria make use of a mode of respiration in the absence of oxygen, called anaerobic respiration, which can yield advantages in adaptation to various environmental conditions. Denitrification is part of this respiratory process ensuring higher respiratory flexibility under oxygen depletion. Here, we report for the first time the evidence of anaerobic growth of Brucella spp. under denitrifying conditions, which implies that this genus should be reconsidered as facultative anaerobic. Our study further describes that efficient denitrification is not equally found within the Brucella genus, with atypical species showing a greater ability to denitrify, correlated with higher expression of the genes involved, as compared to classical species.
Collapse
Affiliation(s)
- Luca Freddi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University of Montpellier, INSERM, Montpellier, France
| | - Jorge A. de la Garza-García
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University of Montpellier, INSERM, Montpellier, France
| | - Sascha Al Dahouk
- German Federal Institute for Risk Assessment, Berlin, Germany
- German Environment Agency, Berlin, Germany
| | - Alessandra Occhialini
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University of Montpellier, INSERM, Montpellier, France
| | - Stephan Köhler
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
19
|
Shaaban M, Wang XL, Song P, Hou X, Wu Y, Hu R. Ascription of nosZ gene, pH and copper for mitigating N 2O emissions in acidic soils. ENVIRONMENTAL RESEARCH 2023; 237:117059. [PMID: 37659639 DOI: 10.1016/j.envres.2023.117059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023]
Abstract
Soil nitrous oxide (N2O) emissions are alarming for global warming and climate change. N2O reduction is carried out only by nosZ gene encoded N2O-reductase, which is highly sensitive to acidic pH and copper (Cu) contents. Therefore, a microcosm study was conducted to examine the attribution of soil pH management, Cu supply and nosZ gene abundance for N2O emission mitigation. Cu was applied at the dose of 0, 10, 25 and 50 mg kg-1 to three acidic soils (Soil 1, 2 and 3) without and with dolomite (0 and 5 g kg-1). Cu application and soil pH increment substantially enlarged the abundance of nosZ gene, and consequently mitigated soil N2O emissions; highest reduction with 25 Cu mg kg-1. Decline in NH4+ and subsequently accumulation of NO3-, and large contents of MBC and DOC in dolomite treated soils led to a substantial N2O reduction. The cumulative N2O emissions were lowest in the treatment of 25 Cu mg kg-1 with dolomite application for each soil. Results suggest that soil pH increment, an adequate Cu supply, and nosZ gene abundance can potentially lower soil N2O emissions in acidic soils.
Collapse
Affiliation(s)
- Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Xiao-Ling Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China
| | - Peng Song
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiaogai Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yupeng Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
20
|
Yoon S, Heo H, Han H, Song DU, Bakken LR, Frostegård Å, Yoon S. Suggested role of NosZ in preventing N 2O inhibition of dissimilatory nitrite reduction to ammonium. mBio 2023; 14:e0154023. [PMID: 37737639 PMCID: PMC10653820 DOI: 10.1128/mbio.01540-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) is a microbial energy-conserving process that reduces NO3 - and/or NO2 - to NH4 +. Interestingly, DNRA-catalyzing microorganisms possessing nrfA genes are occasionally found harboring nosZ genes encoding nitrous oxide reductases, i.e., the only group of enzymes capable of removing the potent greenhouse gas N2O. Here, through a series of physiological experiments examining DNRA metabolism in one of such microorganisms, Bacillus sp. DNRA2, we have discovered that N2O may delay the transition to DNRA upon an oxic-to-anoxic transition, unless timely removed by the nitrous oxide reductases. These observations suggest a novel explanation as to why some nrfA-possessing microorganisms have retained nosZ genes: to remove N2O that may otherwise interfere with the transition from O2 respiration to DNRA.
Collapse
Affiliation(s)
- Sojung Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hokwan Heo
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heejoo Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dong-Uk Song
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Lars R. Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
21
|
Zhang L, Ma X, Li Q, Cui H, Shi K, Wang H, Zhang Y, Gao S, Li Z, Wang AJ, Liang B. Complementary Biotransformation of Antimicrobial Triclocarban Obviously Mitigates Nitrous Oxide Emission toward Sustainable Microbial Denitrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7490-7502. [PMID: 37053517 DOI: 10.1021/acs.est.2c08732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sustainable nitrogen cycle is an essential biogeochemical process that ensures ecosystem safety and byproduct greenhouse gas nitrous oxide reduction. Antimicrobials are always co-occurring with anthropogenic reactive nitrogen sources. However, their impacts on the ecological safety of microbial nitrogen cycle remain poorly understood. Here, a denitrifying bacterial strain Paracoccus denitrificans PD1222 was exposed to a widespread broad-spectrum antimicrobial triclocarban (TCC) at environmental concentrations. The denitrification was hindered by TCC at 25 μg L-1 and was completely inhibited once the TCC concentration exceeded 50 μg L-1. Importantly, the accumulation of N2O at 25 μg L-1 of TCC was 813 times as much as the control group without TCC, which attributed to the significantly downregulated expression of nitrous oxide reductase and the genes related to electron transfer, iron, and sulfur metabolism under TCC stress. Interestingly, combining TCC-degrading denitrifying Ochrobactrum sp. TCC-2 with strain PD1222 promoted the denitrification process and mitigated N2O emission by 2 orders of magnitude. We further consolidated the importance of complementary detoxification by introducing a TCC-hydrolyzing amidase gene tccA from strain TCC-2 into strain PD1222, which successfully protected strain PD1222 against the TCC stress. This study highlights an important link between TCC detoxification and sustainable denitrification and suggests a necessity to assess the ecological risks of antimicrobials in the context of climate change and ecosystem safety.
Collapse
Affiliation(s)
- Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Qian Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
22
|
Ray A, Spiro S. DksA, ppGpp, and RegAB Regulate Nitrate Respiration in Paracoccus denitrificans. J Bacteriol 2023; 205:e0002723. [PMID: 36920204 PMCID: PMC10127633 DOI: 10.1128/jb.00027-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
The periplasmic (NAP) and membrane-associated (Nar) nitrate reductases of Paracoccus denitrificans are responsible for nitrate reduction under aerobic and anaerobic conditions, respectively. Expression of NAP is elevated in cells grown on a relatively reduced carbon and energy source (such as butyrate); it is believed that NAP contributes to redox homeostasis by coupling nitrate reduction to the disposal of excess reducing equivalents. Here, we show that deletion of either dksA1 (one of two dksA homologs in the P. denitrificans genome) or relA/spoT (encoding a bifunctional ppGpp synthetase and hydrolase) eliminates the butyrate-dependent increase in nap promoter and NAP enzyme activity. We conclude that ppGpp likely signals growth on a reduced substrate and, together with DksA1, mediates increased expression of the genes encoding NAP. Support for this model comes from the observation that nap promoter activity is increased in cultures exposed to a protein synthesis inhibitor that is known to trigger ppGpp synthesis in other organisms. We also show that, under anaerobic growth conditions, the redox-sensing RegAB two-component pair acts as a negative regulator of NAP expression and as a positive regulator of expression of the membrane-associated nitrate reductase Nar. The dksA1 and relA/spoT genes are conditionally synthetically lethal; the double mutant has a null phenotype for growth on butyrate and other reduced substrates while growing normally on succinate and citrate. We also show that the second dksA homolog (dksA2) and relA/spoT have roles in regulation of expression of the flavohemoglobin Hmp and in biofilm formation. IMPORTANCE Paracoccus denitrificans is a metabolically versatile Gram-negative bacterium that is used as a model for studies of respiratory metabolism. The organism can utilize nitrate as an electron acceptor for anaerobic respiration, reducing it to dinitrogen via nitrite, nitric oxide, and nitrous oxide. This pathway (known as denitrification) is important as a route for loss of fixed nitrogen from soil and as a source of the greenhouse gas nitrous oxide. Thus, it is important to understand those environmental and genetic factors that govern flux through the denitrification pathway. Here, we identify four proteins and a small molecule (ppGpp) which function as previously unknown regulators of expression of enzymes that reduce nitrate and oxidize nitric oxide.
Collapse
Affiliation(s)
- Ashvini Ray
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Stephen Spiro
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
23
|
Zhang L, Yin Y, Sun Y, Liang X, Graham DE, Pierce EM, Löffler FE, Gu B. Inhibition of Methylmercury and Methane Formation by Nitrous Oxide in Arctic Tundra Soil Microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5655-5665. [PMID: 36976621 PMCID: PMC10100821 DOI: 10.1021/acs.est.2c09457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Climate warming causes permafrost thaw predicted to increase toxic methylmercury (MeHg) and greenhouse gas [i.e., methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O)] formation. A microcosm incubation study with Arctic tundra soil over 145 days demonstrates that N2O at 0.1 and 1 mM markedly inhibited microbial MeHg formation, methanogenesis, and sulfate reduction, while it slightly promoted CO2 production. Microbial community analyses indicate that N2O decreased the relative abundances of methanogenic archaea and microbial clades implicated in sulfate reduction and MeHg formation. Following depletion of N2O, both MeHg formation and sulfate reduction rapidly resumed, whereas CH4 production remained low, suggesting that N2O affected susceptible microbial guilds differently. MeHg formation strongly coincided with sulfate reduction, supporting prior reports linking sulfate-reducing bacteria to MeHg formation in the Arctic soil. This research highlights complex biogeochemical interactions in governing MeHg and CH4 formation and lays the foundation for future mechanistic studies for improved predictive understanding of MeHg and greenhouse gas fluxes from thawing permafrost ecosystems.
Collapse
Affiliation(s)
- Lijie Zhang
- Environmental
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department
of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yongchao Yin
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center
for Environmental Biotechnology, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yanchen Sun
- Center
for Environmental Biotechnology, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xujun Liang
- Environmental
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David E. Graham
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eric M. Pierce
- Environmental
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Frank E. Löffler
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center
for Environmental Biotechnology, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department
of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Baohua Gu
- Environmental
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department
of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
24
|
Wang M, Liang Y, Li F, Shen S, Huang X, Sun Y. Enhancement of biological denitrification by the addition of novel sRNA Pda200 under antibiotic pressure. BIORESOURCE TECHNOLOGY 2022; 365:128113. [PMID: 36252762 DOI: 10.1016/j.biortech.2022.128113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Paracoccus denitrificans can adapt to complex environmental changes and sRNAs play crucial roles during this process. This work aim to identify antibiotic-induced sRNA that regulated denitrification and explored its potential for functional enhancement of this process. Target prediction indicated complementary base pairing between the denitrifying gene nosZ and the sRNA Pda200. Anaerobic culture of P. denitrificans ATCC 19367 in the presence of florfenicol (FF) resulted in significant decreases in nosZ and Pda200 gene expression (p < 0.01). Two additional denitrifiers isolated from contaminated sediment were co-cultured with ATCC 19367 to generate a consortium. And an inducible Pda200 expression strain was also added. The results revealed that Pda200 significantly enhanced napA, napB and norB expression in different types of denitrifiers under FF condition (p < 0.05 ∼ 0.001). This study identified the sRNA Pda200 as a novel positive regulator of denitrification, which may realize the efficient treatment of antibiotic-contaminated wastewater by microbial agents.
Collapse
Affiliation(s)
- Mei Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, PR China; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yi Liang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, PR China
| | - Fulin Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, PR China
| | - Shuqing Shen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, PR China
| | - Xinyu Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, PR China
| | - Yongxue Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, PR China.
| |
Collapse
|
25
|
Behrendt U, Spanner T, Augustin J, Zak DH, Horn MA, Kolb S, Ulrich A. Consumption of N2O by Flavobacterium azooxidireducens sp. nov. Isolated from Decomposing Leaf Litter of Phragmites australis (Cav.). Microorganisms 2022; 10:microorganisms10112304. [PMID: 36422374 PMCID: PMC9697520 DOI: 10.3390/microorganisms10112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
Microorganisms acting as sinks for the greenhouse gas nitrous oxide (N2O) are gaining increasing attention in the development of strategies to control N2O emissions. Non-denitrifying N2O reducers are of particular interest because they can provide a real sink without contributing to N2O release. The bacterial strain under investigation (IGB 4-14T), isolated in a mesocosm experiment to study the litter decomposition of Phragmites australis (Cav.), is such an organism. It carries only a nos gene cluster with the sec-dependent Clade II nosZ and is able to consume significant amounts of N2O under anoxic conditions. However, consumption activity is considerably affected by the O2 level. The reduction of N2O was not associated with cell growth, suggesting that no energy is conserved by anaerobic respiration. Therefore, the N2O consumption of strain IGB 4-14T rather serves as an electron sink for metabolism to sustain viability during transient anoxia and/or to detoxify high N2O concentrations. Phylogenetic analysis of 16S rRNA gene similarity revealed that the strain belongs to the genus Flavobacterium. It shares a high similarity in the nos gene cluster composition and the amino acid similarity of the nosZ gene with various type strains of the genus. However, phylogenomic analysis and comparison of overall genome relatedness indices clearly demonstrated a novel species status of strain IGB 4-14T, with Flavobacterium lacus being the most closely related species. Various phenotypic differences supported a demarcation from this species. Based on these results, we proposed a novel species Flavobacterium azooxidireducens sp. nov. (type strain IGB 4-14T = LMG 29709T = DSM 103580T).
Collapse
Affiliation(s)
- Undine Behrendt
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
- Correspondence: (U.B.); (A.U.); Tel.: +49-33432-82460 (U.B.); +49-33432-82345 (A.U.)
| | - Tobias Spanner
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Jürgen Augustin
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Dominik H. Zak
- Institute for Ecoscience, Aarhus University, C.F. Møllersvej, Bygning 1331, 8000 Aarhus, Denmark
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Müggelseedamm 301, D-12587 Berlin, Germany
| | - Marcus A. Horn
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Steffen Kolb
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Andreas Ulrich
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
- Correspondence: (U.B.); (A.U.); Tel.: +49-33432-82460 (U.B.); +49-33432-82345 (A.U.)
| |
Collapse
|
26
|
Pettersen R, Ormaasen I, Angell IL, Keeley NB, Lindseth A, Snipen L, Rudi K. Bimodal distribution of seafloor microbiota diversity and function are associated with marine aquaculture. Mar Genomics 2022; 66:100991. [PMID: 36116403 DOI: 10.1016/j.margen.2022.100991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022]
Abstract
The aim of the current work was to investigate the impact of marine aquaculture on seafloor biogeochemistry and diversity from pristine environments in the northern part of Norway. Our analytical approach included analyses of 182 samples from 16 aquaculture sites using 16S and 18S rRNA, shotgun analyses, visual examination of macro-organisms, in addition to chemical measurements. We observed a clear bimodal distribution of the prokaryote composition and richness, determined by analyses of 16S rRNA gene operational taxonomic units (OTUs). The high OTU richness cluster was associated with non-perturbed environments and farness from the aquaculture sites, while the low OTU richness cluster was associated with perturbed environments and proximity to the aquaculture sites. Similar patterns were also observed for eukaryotes using 18S rRNA gene analyses and visual examination, but without a bimodal distribution of OTU richness. Shotgun sequencing showed the archaeum Nitrosopumilus as dominant for the high OTU richness cluster, and the epsilon protobacterium Sulfurovum as dominant for the low OTU richness cluster. Metabolic reconstruction of Nitrosopumilus indicates nitrification as the main metabolic pathway. Sulfurovum, on the other hand, was associated with sulfur oxidation and denitrification. Changes in nitrogen and sulfur metabolism is proposed as a potential explanation for the difference between the high and low OTU richness clusters. In conclusion, these findings suggest that pollution from elevated loads of organic waste drives the microbiota towards a complete alteration of respiratory routes and species composition, in addition to a collapse in prokaryote OTU richness.
Collapse
Affiliation(s)
| | - I Ormaasen
- Norwegian University of Life Sciences, Ås, Norway
| | - I L Angell
- Norwegian University of Life Sciences, Ås, Norway
| | - N B Keeley
- Institute of Marine Research, Tromsø, Norway
| | | | - L Snipen
- Norwegian University of Life Sciences, Ås, Norway
| | - K Rudi
- Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
27
|
Liu H, Li Y, Pan B, Zheng X, Yu J, Ding H, Zhang Y. Pathways of soil N 2O uptake, consumption, and its driving factors: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30850-30864. [PMID: 35092587 DOI: 10.1007/s11356-022-18619-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas that plays a significant role in atmospheric photochemical reactions and contributes to stratospheric ozone depletion. Soils are the main sources of N2O emissions. In recent years, it has been demonstrated that soil is not only a source but also a sink of N2O uptake and consumption. N2O emissions at the soil surface are the result of gross N2O production, uptake, and consumption, which are co-occurring processes. Soil N2O uptake and consumption are complex biological processes, and their mechanisms are still worth an in-depth systematic study. This paper aimed to systematically address the current research progress on soil N2O uptake and consumption. Based on a bibliometric perspective, this study has highlighted the pathways of soil N2O uptake and consumption and their driving factors and measurement techniques. This systematic review of N2O uptake and consumption will help to further understand N transformations and soil N2O emissions.
Collapse
Affiliation(s)
- Hongshan Liu
- College of Earth Sciences, Jilin University, Chao'yang, Changchun, 130061, Jilin, People's Republic of China
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Yuefen Li
- College of Earth Sciences, Jilin University, Chao'yang, Changchun, 130061, Jilin, People's Republic of China.
| | - Baobao Pan
- School of Agriculture and Food, The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Xiangzhou Zheng
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Juhua Yu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Hong Ding
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China
| | - Yushu Zhang
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences/ Fujian Key Laboratory of Plant Nutrition and Fertilizer, Jin'an, Fuzhou, 350013, Fujian, People's Republic of China.
| |
Collapse
|
28
|
Crack JC, Balasiny BK, Bennett SP, Rolfe MD, Froes A, MacMillan F, Green J, Cole JA, Le Brun NE. The Di-Iron Protein YtfE Is a Nitric Oxide-Generating Nitrite Reductase Involved in the Management of Nitrosative Stress. J Am Chem Soc 2022; 144:7129-7145. [PMID: 35416044 PMCID: PMC9052748 DOI: 10.1021/jacs.1c12407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 01/09/2023]
Abstract
Previously characterized nitrite reductases fall into three classes: siroheme-containing enzymes (NirBD), cytochrome c hemoproteins (NrfA and NirS), and copper-containing enzymes (NirK). We show here that the di-iron protein YtfE represents a physiologically relevant new class of nitrite reductases. Several functions have been previously proposed for YtfE, including donating iron for the repair of iron-sulfur clusters that have been damaged by nitrosative stress, releasing nitric oxide (NO) from nitrosylated iron, and reducing NO to nitrous oxide (N2O). Here, in vivo reporter assays confirmed that Escherichia coli YtfE increased cytoplasmic NO production from nitrite. Spectroscopic and mass spectrometric investigations revealed that the di-iron site of YtfE exists in a mixture of forms, including nitrosylated and nitrite-bound, when isolated from nitrite-supplemented, but not nitrate-supplemented, cultures. Addition of nitrite to di-ferrous YtfE resulted in nitrosylated YtfE and the release of NO. Kinetics of nitrite reduction were dependent on the nature of the reductant; the lowest Km, measured for the di-ferrous form, was ∼90 μM, well within the intracellular nitrite concentration range. The vicinal di-cysteine motif, located in the N-terminal domain of YtfE, was shown to function in the delivery of electrons to the di-iron center. Notably, YtfE exhibited very low NO reductase activity and was only able to act as an iron donor for reconstitution of apo-ferredoxin under conditions that damaged its di-iron center. Thus, YtfE is a high-affinity, low-capacity nitrite reductase that we propose functions to relieve nitrosative stress by acting in combination with the co-regulated NO-consuming enzymes Hmp and Hcp.
Collapse
Affiliation(s)
- Jason C. Crack
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Basema K. Balasiny
- Institute
of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sophie P. Bennett
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Matthew D. Rolfe
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Afonso Froes
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Fraser MacMillan
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Jeffrey Green
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jeffrey A. Cole
- Institute
of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Nick E. Le Brun
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
29
|
Pacheco PJ, Cabrera JJ, Jiménez-Leiva A, Bedmar EJ, Mesa S, Tortosa G, Delgado MJ. Effect of Copper on Expression of Functional Genes and Proteins Associated with Bradyrhizobium diazoefficiens Denitrification. Int J Mol Sci 2022; 23:ijms23063386. [PMID: 35328804 PMCID: PMC8951191 DOI: 10.3390/ijms23063386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas that contributes to climate change. Denitrification is one of the largest sources of N2O in soils. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model for rhizobial denitrification studies since, in addition to fixing N2, it has the ability to grow anaerobically under free-living conditions by reducing nitrate from the medium through the complete denitrification pathway. This bacterium contains a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a Cu-dependent nitrous oxide reductase (Nos) encoded by the napEDABC, nirK, norCBQD and nosRZDFYLX genes, respectively. In this work, an integrated study of the role of Cu in B. diazoefficiens denitrification has been performed. A notable reduction in nirK, nor, and nos gene expression observed under Cu limitation was correlated with a significant decrease in NirK, NorC and NosZ protein levels and activities. Meanwhile, nap expression was not affected by Cu, but a remarkable depletion in Nap activity was found, presumably due to an inhibitory effect of nitrite accumulated under Cu-limiting conditions. Interestingly, a post-transcriptional regulation by increasing Nap and NirK activities, as well as NorC and NosZ protein levels, was observed in response to high Cu. Our results demonstrate, for the first time, the role of Cu in transcriptional and post-transcriptional control of B. diazoefficiens denitrification. Thus, this study will contribute by proposing useful strategies for reducing N2O emissions from agricultural soils.
Collapse
|
30
|
Variable Inhibition of Nitrous Oxide Reduction in Denitrifying Bacteria by Different Forms of Methanobactin. Appl Environ Microbiol 2022; 88:e0234621. [PMID: 35285718 DOI: 10.1128/aem.02346-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerobic methanotrophic activity is highly dependent on copper availability, and methanotrophs have developed multiple strategies to collect copper. Specifically, when copper is limiting (ambient concentrations less than 1 μM), some methanotrophs produce and secret a small modified peptide (less than 1,300 Da) termed methanobactin (MB) that binds copper with high affinity. As MB is secreted into the environment, other microbes that require copper for their metabolism may be inhibited as MB may make copper unavailable; e.g., inhibition of denitrifiers as complete conversion nitrate to dinitrogen involves multiple enzymes, some of which are copper-dependent. Of key concern is inhibition of the copper-dependent nitrous oxide reductase (NosZ), the only known enzyme capable of converting nitrous oxide (N2O) to dinitrogen. Herein, we show that different forms of MB differentially affect copper uptake and N2O reduction by Pseudomonas stutzeri strain DCP-Ps1 (that expresses clade I NosZ) and Dechloromonas aromatica strain RCB (that expresses clade II NosZ). Specifically, in the presence of MB from Methylocystis sp. strain SB2 (SB2-MB), copper uptake and nosZ expression were more significantly reduced than in the presence of MB from Methylosinus trichosporium OB3b (OB3b-MB). Further, N2O accumulation increased more significantly for both P. stutzeri strain DCP-Ps1 and D. aromatica strain RCB in the presence of SB2-MB versus OB3b-MB. These data illustrate that copper competition between methanotrophs and denitrifying bacteria can be significant and that the extent of such competition is dependent on the form of MB that methanotrophs produce. IMPORTANCE Herein, it was demonstrated that the different forms of methanobactin differentially enhance N2O emissions from Pseudomonas stutzeri strain DCP-Ps1 (harboring clade I nitrous oxide reductase) and Dechloromonas aromatica strain RCB (harboring clade II nitrous oxide reductase). This work contributes to our understanding of how aerobic methanotrophs compete with denitrifiers for the copper uptake and also suggests how MBs prevent copper collection by denitrifiers, thus downregulating expression of nitrous oxide reductase. This study provides critical information for enhanced understanding of microbe-microbe interactions that are important for the development of better predictive models of net greenhouse gas emissions (i.e., methane and nitrous oxide) that are significantly controlled by microbial activity.
Collapse
|
31
|
Morawska LP, Hernandez-Valdes JA, Kuipers OP. Diversity of bet-hedging strategies in microbial communities-Recent cases and insights. WIREs Mech Dis 2022; 14:e1544. [PMID: 35266649 PMCID: PMC9286555 DOI: 10.1002/wsbm.1544] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Microbial communities are continuously exposed to unpredictable changes in their environment. To thrive in such dynamic habitats, microorganisms have developed the ability to readily switch phenotypes, resulting in a number of differently adapted subpopulations expressing various traits. In evolutionary biology, a particular case of phenotypic heterogeneity that evolved in an unpredictably changing environment has been defined as bet‐hedging. Bet‐hedging is a risk‐spreading strategy where isogenic populations stochastically (randomly) diversify their phenotypes, often resulting in maladapted individuals that suffer lower reproductive success. This fitness trade‐off in a specific environment may have a selective advantage upon the sudden environmental shift. Thus, a bet‐hedging strategy allows populations to persist in very dynamic habitats, but with a particular fitness cost. In recent years, numerous examples of phenotypic heterogeneity in different microorganisms have been observed, some suggesting bet‐hedging. Here, we highlight the latest reports concerning bet‐hedging phenomena in various microorganisms to show how versatile this strategy is within the microbial realms. This article is categorized under:Infectious Diseases > Molecular and Cellular Physiology
Collapse
Affiliation(s)
- Luiza P Morawska
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Jhonatan A Hernandez-Valdes
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| |
Collapse
|
32
|
Olaya-Abril A, Hidalgo-Carrillo J, Luque-Almagro VM, Fuentes-Almagro C, Urbano FJ, Moreno-Vivián C, Richardson DJ, Roldán MD. Effect of pH on the denitrification proteome of the soil bacterium Paracoccus denitrificans PD1222. Sci Rep 2021; 11:17276. [PMID: 34446760 PMCID: PMC8390676 DOI: 10.1038/s41598-021-96559-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
Denitrification is a respiratory process by which nitrate is reduced to dinitrogen. Incomplete denitrification results in the emission of the greenhouse gas nitrous oxide and this is potentiated in acidic soils, which display reduced denitrification rates and high N2O/N2 ratios compared to alkaline soils. In this work, impact of pH on the proteome of the soil denitrifying bacterium Paracoccus denitrificans PD1222 was analysed with nitrate as sole energy and nitrogen source under anaerobic conditions at pH ranging from 6.5 to 7.5. Quantitative proteomic analysis revealed that the highest difference in protein representation was observed when the proteome at pH 6.5 was compared to the reference proteome at pH 7.2. However, this difference in the extracellular pH was not enough to produce modification of intracellular pH, which was maintained at 6.5 ± 0.1. The biosynthetic pathways of several cofactors relevant for denitrification and nitrogen assimilation like cobalamin, riboflavin, molybdopterin and nicotinamide were negatively affected at pH 6.5. In addition, peptide representation of reductases involved in nitrate assimilation and denitrification were reduced at pH 6.5. Data highlight the strong negative impact of pH on NosZ synthesis and intracellular copper content, thus impairing active NosZ assembly and, in turn, leading to elevated nitrous oxide emissions.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, 1ª planta, Campus de Rabanales, 14071, Córdoba, Spain
| | - Jesús Hidalgo-Carrillo
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie, Campus de Rabanales, 14071, Córdoba, Spain
| | - Víctor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, 1ª planta, Campus de Rabanales, 14071, Córdoba, Spain
| | - Carlos Fuentes-Almagro
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Proteómica, Universidad de Córdoba, Campus de Rabanales, 14071, Córdoba, Spain
| | - Francisco J Urbano
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie, Campus de Rabanales, 14071, Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, 1ª planta, Campus de Rabanales, 14071, Córdoba, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, 1ª planta, Campus de Rabanales, 14071, Córdoba, Spain.
| |
Collapse
|
33
|
Wang M, Zhou T, Liang Y, Li G, Sun Y. Response characteristics of nirS-type denitrifier Paracoccus denitrificans under florfenicol stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112355. [PMID: 34049225 DOI: 10.1016/j.ecoenv.2021.112355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/13/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Florfenicol (FF) is widely used in aquaculture and can interfere with denitrification when released into natural ecosystems. The aim of this study was to analyze the response characteristics of nirS-type denitrifier Paracoccus denitrificans under FF stress and further mine antibiotic-responsive factors in aquatic environment. Phenotypic analysis revealed that FF delayed the nitrate removal with a maximum inhibition value of 82.4% at exponential growth phase, leading to nitrite accumulation reached to 21.9-fold and biofilm biomass decreased by ~38.6%, which were due to the lower bacterial population count (P < 0.01). RNA-seq transcriptome analyses indicated that FF treatment decreased the expression of nirS, norB, nosD and nosZ genes that encoded enzymes required for NO2- to N2 conversion from 1.02- to 2.21-fold (P < 0.001). Furthermore, gene associated with the flagellar system FlgL was also down-regulated by 1.03-fold (P < 0.001). Moreover, 10 confirmed sRNAs were significantly induced, which regulated a wide range of metabolic pathways and protein expression. Interestingly, different bacteria contained the same sRNAs means that sRNAs can spread between them. Overall, this study suggests that the denitrification of nirS-type denitrifiers can be hampered widely by FF and the key sRNAs have great potential to be antibiotic-responsive factors.
Collapse
Affiliation(s)
- Mei Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Yi Liang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yongxue Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
34
|
Li Z, Li L, Xia S, Zhang R, Zhang R, Chen P, Pan J, Liu Y. K fertilizer alleviates N 2O emissions by regulating the abundance of nitrifying and denitrifying microbial communities in the soil-plant system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112579. [PMID: 33957419 DOI: 10.1016/j.jenvman.2021.112579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Potassium (K) fertilizer additions can result in high crop yields of good quality and low nitrogen (N) loss; however, the interaction between K and N fertilizer and its effect on N2O emissions and associated microbes remain unclear. We investigated this in a pot experiment with six fertilizer treatments involving K and two sources of N, using agricultural soil from the suburbs of Wuhan, central China. The aim was to determine the effects of the interaction between K and different forms of N on the N2O flux and the abundance of nitrifying and denitrifying microbial communities, using static chamber-gas chromatography and high-throughput sequencing methods. Compared with no fertilizer control (CK), the addition of nitrate fertilizer (NN) or ammonia fertilizer (AN) or K fertilizer significantly increased N2O emissions. However, the combined application (NNK) of K and NN significantly reduced the average N2O emissions by 28.3%, while the combined application (ANK) of K and AN increased N2O emissions by 22.7%. The abundance of nitrifying genes amoA in ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) changed in response to N and/or K fertilization, but the denitrifying genes narG, nirK and norl were strongly correlated with N2O emissions. This suggests that N or K fertilizer and their interaction affect N2O emissions mainly by altering the abundance of functional genes of denitrifying microbes in the soil-plant system. The genera Paracoccus, Rubrivivax and Geobacter as well as Streptomyces and Hyphomicrobium play an important role in N2O emissions during denitrification with the combined application of N and K.
Collapse
Affiliation(s)
- Zhiguo Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Linyang Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Shujie Xia
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Runhua Zhang
- Wuhan Academy of Agriculture Science and Technology, Vegetable Research Institute, Wuhan, 430345, China
| | - Runqin Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Peng Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Junfeng Pan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Conservation Biology / Economic Botany / Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
35
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
36
|
Shan J, Sanford RA, Chee-Sanford J, Ooi SK, Löffler FE, Konstantinidis KT, Yang WH. Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. GLOBAL CHANGE BIOLOGY 2021; 27:2669-2683. [PMID: 33547715 DOI: 10.1111/gcb.15545] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 05/02/2023]
Abstract
Many biotic and abiotic processes contribute to nitrous oxide (N2 O) production in the biosphere, but N2 O consumption in the environment has heretofore been attributed primarily to canonical denitrifying microorganisms. The nosZ genes encoding the N2 O reductase enzyme, NosZ, responsible for N2 O reduction to dinitrogen are now known to include two distinct groups: the well-studied Clade I which denitrifiers typically possess, and the novel Clade II possessed by diverse groups of microorganisms, most of which are non-denitrifiers. Clade II N2 O reducers could play an important, previously unrecognized role in controlling N2 O emissions for several reasons, including: (1) the consumption of N2 O produced by processes other than denitrification, (2) hypothesized non-respiratory functions of NosZ as an electron sink or for N2 O detoxification, (3) possible differing enzyme kinetics of Clade II NosZ compared to Clade I NosZ, and (4) greater nosZ gene abundance for Clade II compared to Clade I in soils of many ecosystems. Despite the potential ecological significance of Clade II NosZ, a census of 800 peer-reviewed original research articles discussing nosZ and published from 2013 to 2019 showed that the percentage of articles evaluating or mentioning Clade II nosZ increased from 5% in 2013 to only 22% in 2019. The census revealed that the slowly spreading awareness of Clade II nosZ may result in part from disciplinary silos, with the percentage of nosZ articles mentioning Clade II nosZ ranging from 0% in Agriculture and Agronomy journals to 32% in Multidisciplinary Sciences journals. In addition, inconsistent nomenclature for Clade I nosZ and Clade II nosZ, with 17 different terminologies used in the literature, may have created confusion about the two distinct groups of N2 O reducers. We provide recommendations to accelerate advances in understanding the role of the diversity of N2 O reducers in regulating soil N2 O emissions.
Collapse
Affiliation(s)
- Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Robert A Sanford
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joanne Chee-Sanford
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture - Agricultural Research Station,, Urbana, IL, USA
| | - Sean K Ooi
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Frank E Löffler
- Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wendy H Yang
- Departments of Plant Biology and Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
37
|
Durand S, Guillier M. Transcriptional and Post-transcriptional Control of the Nitrate Respiration in Bacteria. Front Mol Biosci 2021; 8:667758. [PMID: 34026838 PMCID: PMC8139620 DOI: 10.3389/fmolb.2021.667758] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
In oxygen (O2) limiting environments, numerous aerobic bacteria have the ability to shift from aerobic to anaerobic respiration to release energy. This process requires alternative electron acceptor to replace O2 such as nitrate (NO3 -), which has the next best reduction potential after O2. Depending on the organism, nitrate respiration involves different enzymes to convert NO3 - to ammonium (NH4 +) or dinitrogen (N2). The expression of these enzymes is tightly controlled by transcription factors (TFs). More recently, bacterial small regulatory RNAs (sRNAs), which are important regulators of the rapid adaptation of microorganisms to extremely diverse environments, have also been shown to control the expression of genes encoding enzymes or TFs related to nitrate respiration. In turn, these TFs control the synthesis of multiple sRNAs. These results suggest that sRNAs play a central role in the control of these metabolic pathways. Here we review the complex interplay between the transcriptional and the post-transcriptional regulators to efficiently control the respiration on nitrate.
Collapse
Affiliation(s)
- Sylvain Durand
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Maude Guillier
- CNRS, UMR 8261, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
38
|
Corrochano-Monsalve M, González-Murua C, Bozal-Leorri A, Lezama L, Artetxe B. Mechanism of action of nitrification inhibitors based on dimethylpyrazole: A matter of chelation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141885. [PMID: 32890835 DOI: 10.1016/j.scitotenv.2020.141885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/25/2023]
Abstract
In agriculture, the applied nitrogen (N) can be lost in the environment in different forms because of microbial transformations. It is of special concern the nitrate (NO3-) leaching and the nitrous oxide (N2O) emissions, due to their negative environmental impacts. Nitrification inhibitors (NIs) based on dimethylpyrazole (DMP) are applied worldwide in order to reduce N losses. These compounds delay ammonium (NH4+) oxidation by inhibiting ammonia-oxidizing bacteria (AOB) growth. However, their mechanism of action has not been demonstrated, which represent an important lack of knowledge to use them correctly. In this work, through chemical and biological analysis, we unveil the mechanism of action of the commonly applied 3,4-dimethyl-1H-pyrazole dihydrogen phosphate (DMPP) and the new DMP-based NI, 2-(3,4-dimethyl-1H-pyrazol-1-yl)-succinic acid (DMPSA). Our results show that DMP and DMPSA form complexes with copper (Cu2+) cations, an indispensable cofactor in the nitrification pathway. Three coordination compounds namely [Cu(DMP)4Cl2] (CuDMP1), [Cu(DMP)4SO4]n (CuDMP2) and [Cu(DMPSA)2]·H2O (CuDMPSA) have been synthesized and chemical and structurally characterized. The CuDMPSA complex is more stable than those containing DMP ligands; however, both NIs show the same nitrification inhibition efficiency in soils with different Cu contents, suggesting that the active specie in both cases is DMP. Our soil experiment reveals that the usual application dose is enough to inhibit nitrification within the range of Cu and Zn contents present in agricultural soils, although their effects vary depending on the content of these elements. As a result of AOB inhibition by these NIs, N2O-reducing bacteria seem to be beneficed in Cu-limited soils due to a reduction in the competence. This opens up the possibility to induce N2O reduction to N2 through Cu fertilization. On the other hand, when fertilizing with micronutrients such as Cu and Zn, the use of NIs could be beneficial to counteract the increase of nitrification derived from their application.
Collapse
Affiliation(s)
- Mario Corrochano-Monsalve
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Bozal-Leorri
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Luis Lezama
- Department of Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Beñat Artetxe
- Department of Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
39
|
Enhancement of nitrous oxide emissions in soil microbial consortia via copper competition between proteobacterial methanotrophs and denitrifiers. Appl Environ Microbiol 2020; 87:e0230120. [PMID: 33355098 DOI: 10.1128/aem.02301-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unique means of copper scavenging have been identified in proteobacterial methanotrophs, particularly the use of methanobactin, a novel ribosomally synthesized post-translationally modified polypeptide that binds copper with very high affinity. The possibility that copper sequestration strategies of methanotrophs may interfere with copper uptake of denitrifiers in situ and thereby enhance N2O emissions was examined using a suite of laboratory experiments performed with rice paddy microbial consortia. Addition of purified methanobactin from Methylosinus trichosporium OB3b to denitrifying rice paddy soil microbial consortia resulted in substantially increased N2O production, with more pronounced responses observed for soils with lower copper content. The N2O emission-enhancing effect of the soil's native mbnA-expressing Methylocystaceae methanotrophs on the native denitrifiers was then experimentally verified with a Methylocystaceae-dominant chemostat culture prepared from a rice paddy microbial consortium as the inoculum. Lastly, with microcosms amended with varying cell numbers of methanobactin-producing Methylosinus trichosporium OB3b before CH4 enrichment, microbiomes with different ratios of methanobactin-producing Methylocystaceae to gammaproteobacterial methanotrophs incapable of methanobactin production were simulated. Significant enhancement of N2O production from denitrification was evident in both Methylocystaceae-dominant and Methylococcaceae-dominant enrichments, albeit to a greater extent in the former, signifying the comparative potency of methanobactin-mediated copper sequestration while implying the presence of alternative copper abstraction mechanisms for Methylococcaceae These observations support that copper-mediated methanotrophic enhancement of N2O production from denitrification is plausible where methanotrophs and denitrifiers cohabit.IMPORTANCE Proteobacterial methanotrophs, groups of microorganisms that utilize methane as source of energy and carbon, have been known to utilize unique mechanisms to scavenge copper, namely utilization of methanobactin, a polypeptide that binds copper with high affinity and specificity. Previously the possibility that copper sequestration by methanotrophs may lead to alteration of cuproenzyme-mediated reactions in denitrifiers and consequently increase emission of potent greenhouse gas N2O has been suggested in axenic and co-culture experiments. Here, a suite of experiments with rice paddy soil slurry cultures with complex microbial compositions were performed to corroborate that such copper-mediated interplay may actually take place in environments co-habited by diverse methanotrophs and denitrifiers. As spatial and temporal heterogeneity allow for spatial coexistence of methanotrophy (aerobic) and denitrification (anaerobic) in soils, the results from this study suggest that this previously unidentified mechanism of N2O production may account for significant proportion of N2O efflux from agricultural soils.
Collapse
|
40
|
Giannopoulos G, Hartop KR, Brown BL, Song B, Elsgaard L, Franklin RB. Trace Metal Availability Affects Greenhouse Gas Emissions and Microbial Functional Group Abundance in Freshwater Wetland Sediments. Front Microbiol 2020; 11:560861. [PMID: 33117308 PMCID: PMC7561414 DOI: 10.3389/fmicb.2020.560861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated the effects of trace metal additions on microbial nitrogen (N) and carbon (C) cycling using freshwater wetland sediment microcosms amended with micromolar concentrations of copper (Cu), molybdenum (Mo), iron (Fe), and all combinations thereof. In addition to monitoring inorganic N transformations (NO3 -, NO2 -, N2O, NH4 +) and carbon mineralization (CO2, CH4), we tracked changes in functional gene abundance associated with denitrification (nirS, nirK, nosZ), dissimilatory nitrate reduction to ammonium (DNRA; nrfA), and methanogenesis (mcrA). With regards to N cycling, greater availability of Cu led to more complete denitrification (i.e., less N2O accumulation) and a higher abundance of the nirK and nosZ genes, which encode for Cu-dependent reductases. In contrast, we found sparse biochemical evidence of DNRA activity and no consistent effect of the trace metal additions on nrfA gene abundance. With regards to C mineralization, CO2 production was unaffected, but the amendments stimulated net CH4 production and Mo additions led to increased mcrA gene abundance. These findings demonstrate that trace metal effects on sediment microbial physiology can impact community-level function. We observed direct and indirect effects on both N and C biogeochemistry that resulted in increased production of greenhouse gasses, which may have been mediated through the documented changes in microbial community composition and shifts in functional group abundance. Overall, this work supports a more nuanced consideration of metal effects on environmental microbial communities that recognizes the key role that metal limitation plays in microbial physiology.
Collapse
Affiliation(s)
- Georgios Giannopoulos
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Katherine R Hartop
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Bonnie L Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States
| | - Bongkeun Song
- Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA, United States
| | - Lars Elsgaard
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Rima B Franklin
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
41
|
Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG. Cu Homeostasis in Bacteria: The Ins and Outs. MEMBRANES 2020; 10:E242. [PMID: 32962054 PMCID: PMC7558416 DOI: 10.3390/membranes10090242] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells.
Collapse
Affiliation(s)
- Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
- Fakultät für Biologie, Albert-Ludwigs Universität Freiburg; Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | - Dorian Marckmann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| | | | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs Universität Freiburg; Stefan Meier Str. 17, 79104 Freiburg, Germany; (A.A.); (Y.O.); (J.R.); (D.M.)
| |
Collapse
|
42
|
Bennett SP, Torres MJ, Soriano-Laguna MJ, Richardson DJ, Gates AJ, Le Brun NE. nosX is essential for whole-cell N 2O reduction in Paracoccus denitrificans but not for assembly of copper centres of nitrous oxide reductase. MICROBIOLOGY-SGM 2020; 166:909-917. [PMID: 32886603 PMCID: PMC7660919 DOI: 10.1099/mic.0.000955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas that is produced naturally as an intermediate during the process of denitrification carried out by some soil bacteria. It is consumed by nitrous oxide reductase (N2OR), the terminal enzyme of the denitrification pathway, which catalyses a reduction reaction to generate dinitrogen. N2OR contains two important copper cofactors (CuA and CuZ centres) that are essential for activity, and in copper-limited environments, N2OR fails to function, contributing to rising levels of atmospheric N2O and a major environmental challenge. Here we report studies of nosX, one of eight genes in the nos cluster of the soil dwelling α-proteobaterium Paraccocus denitrificans. A P. denitrificans ΔnosX deletion mutant failed to reduce N2O under both copper-sufficient and copper-limited conditions, demonstrating that NosX plays an essential role in N2OR activity. N2OR isolated from nosX-deficient cells was found to be unaffected in terms of the assembly of its copper cofactors, and to be active in in vitro assays, indicating that NosX is not required for the maturation of the enzyme; in particular, it plays no part in the assembly of either of the CuA and CuZ centres. Furthermore, quantitative Reverse Transcription PCR (qRT-PCR) studies showed that NosX does not significantly affect the expression of the N2OR-encoding nosZ gene. NosX is a homologue of the FAD-binding protein ApbE from Pseudomonas stutzeri, which functions in the flavinylation of another N2OR accessory protein, NosR. Thus, it is likely that NosX is a system-specific maturation factor of NosR, and so is indirectly involved in maintaining the reaction cycle of N2OR and cellular N2O reduction.
Collapse
Affiliation(s)
- Sophie P Bennett
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Maria J Torres
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Manuel J Soriano-Laguna
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - David J Richardson
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew J Gates
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
43
|
Carreira C, Nunes RF, Mestre O, Moura I, Pauleta SR. The effect of pH on Marinobacter hydrocarbonoclasticus denitrification pathway and nitrous oxide reductase. J Biol Inorg Chem 2020; 25:927-940. [PMID: 32851479 DOI: 10.1007/s00775-020-01812-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/12/2020] [Indexed: 11/27/2022]
Abstract
Increasing atmospheric concentration of N2O has been a concern, as it is a potent greenhouse gas and promotes ozone layer destruction. In the N-cycle, release of N2O is boosted upon a drop of pH in the environment. Here, Marinobacter hydrocarbonoclasticus was grown in batch mode in the presence of nitrate, to study the effect of pH in the denitrification pathway by gene expression profiling, quantification of nitrate and nitrite, and evaluating the ability of whole cells to reduce NO and N2O. At pH 6.5, accumulation of nitrite in the medium occurs and the cells were unable to reduce N2O. In addition, the biochemical properties of N2O reductase isolated from cells grown at pH 6.5, 7.5 and 8.5 were compared for the first time. The amount of this enzyme at acidic pH was lower than that at pH 7.5 and 8.5, pinpointing to a post-transcriptional regulation, though pH did not affect gene expression of N2O reductase accessory genes. N2O reductase isolated from cells grown at pH 6.5 has its catalytic center mainly as CuZ(4Cu1S), while that from cells grown at pH 7.5 or 8.5 has it as CuZ(4Cu2S). This study evidences that an in vivo secondary level of regulation is required to maintain N2O reductase in an active state.
Collapse
Affiliation(s)
- Cíntia Carreira
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Rute F Nunes
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Olga Mestre
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Isabel Moura
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
44
|
Stein LY. The Long-Term Relationship between Microbial Metabolism and Greenhouse Gases. Trends Microbiol 2020; 28:500-511. [DOI: 10.1016/j.tim.2020.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 11/26/2022]
|
45
|
Liu S, Wang C, Hou J, Wang P, Miao L. Effects of Ag NPs on denitrification in suspended sediments via inhibiting microbial electron behaviors. WATER RESEARCH 2020; 171:115436. [PMID: 31931376 DOI: 10.1016/j.watres.2019.115436] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/12/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
The wide use of silver nanoparticles (Ag NPs) inevitably leads to their increasing emission into aquatic environments. However, before their final deposition into sediments, the ecological effects of Ag NPs in suspended sediment (SPS) systems have not received much attention. Herein, we investigated the influences of Ag NPs on denitrification in SPS systems, and explored the potential toxicity mechanism through microbial metabolism (electron behaviors) and isotope tracing (added 15NO3-). After exposure to 10 mg/L Ag NPs, electron generation, transport and consumption during denitrification were clearly inhibited, which led to a decrease in the SPS denitrification rate. Specifically, the generation of NADH (electron donor) was significantly decreased to 59.92-86.47% with the Ag NPs treatments by affecting the degradation of glucose, one of the major reasons for the decreased denitrification. It also indicated that Ag NPs could affect nitrogen metabolism by influencing carbon metabolism. In addition, ETSA was clearly inhibited by the affected electron transfer and reception during denitrification; that was the most direct way in the microbial electron transport chain to affect the SPS denitrification rate. Furthermore, the particle size and concentration of SPS affected the toxicity of Ag NPs. The denitrification process in SPS systems with a smaller particle size and lower particle concentration was easily affected by Ag NPs, suggesting that SPS systems dominated by clay (particle size < 3.9 μm) or that less turbulence (having low SPS concentration) might be at greater risk factor when exposed to NPs. Thus, it is important to understand the risks of pollutants, such as Ag NPs, to biogeochemical cycles and ecosystem function in SPS systems.
Collapse
Affiliation(s)
- Songqi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, People's Republic of China.
| |
Collapse
|
46
|
Chee-Sanford J, Tian D, Sanford R. Consumption of N 2O and other N-cycle intermediates by Gemmatimonas aurantiaca strain T-27. MICROBIOLOGY-SGM 2020; 165:1345-1354. [PMID: 31580255 DOI: 10.1099/mic.0.000847] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacteria affiliated with the phylum Gemmatimonadetes are found in high abundance in many terrestrial and aquatic environments, yet little is known about their metabolic capabilities. Difficulty in their cultivation has prompted interest in identifying better growth conditions for metabolic studies, especially related to their ability to reduce N2O, a potent greenhouse gas. T-27 Gemmatimonas aurantiaca is one of few cultivated strains of Gemmatimonadetes available for physiological studies. Our objective was to test this organism's ability to use nitrite, nitrate, and N2O, and mineral forms of assimilable NH4 + at concentrations not typically used in tests for compound utilization. Cultures incubated under anaerobic conditions with nitrate, nitrite or N2O failed to grow or show depletion of these substrates. Nitrate and nitrite (1 mM) were not used even when cells were grown aerobically with the O2 allowed to deplete first. N2O reduction only commenced in the presence of O2 and continued to be depleted when refed to the culture under anaerobic, microaerobic and aerobic atmospheres. Carbon mineralization was coupled to the electron-accepting processes, with higher reducing equivalents needed for N2O utilization under aerobic atmospheres. N2O was reduced to N2 in the presence of 20% O2, however the rate of this reaction is reduced in the presence of high O2 concentration. This study demonstrated that G. aurantiaca T-27 possesses unique characteristics for assimilative and dissimilative N processes with new implications for cultivation strategies to better assess the metabolic abilities of Gemmatimonadetes.
Collapse
Affiliation(s)
| | - David Tian
- Department of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert Sanford
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
47
|
INDISIM-Denitrification, an individual-based model for study the denitrification process. J Ind Microbiol Biotechnol 2019; 47:1-20. [PMID: 31691030 DOI: 10.1007/s10295-019-02245-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022]
Abstract
Denitrification is one of the key processes of the global nitrogen (N) cycle driven by bacteria. It has been widely known for more than 100 years as a process by which the biogeochemical N-cycle is balanced. To study this process, we develop an individual-based model called INDISIM-Denitrification. The model embeds a thermodynamic model for bacterial yield prediction inside the individual-based model INDISIM and is designed to simulate in aerobic and anaerobic conditions the cell growth kinetics of denitrifying bacteria. INDISIM-Denitrification simulates a bioreactor that contains a culture medium with succinate as a carbon source, ammonium as nitrogen source and various electron acceptors. To implement INDISIM-Denitrification, the individual-based model INDISIM was used to give sub-models for nutrient uptake, stirring and reproduction cycle. Using a thermodynamic approach, the denitrification pathway, cellular maintenance and individual mass degradation were modeled using microbial metabolic reactions. These equations are the basis of the sub-models for metabolic maintenance, individual mass synthesis and reducing internal cytotoxic products. The model was implemented in the open-access platform NetLogo. INDISIM-Denitrification is validated using a set of experimental data of two denitrifying bacteria in two different experimental conditions. This provides an interactive tool to study the denitrification process carried out by any denitrifying bacterium since INDISIM-Denitrification allows changes in the microbial empirical formula and in the energy-transfer-efficiency used to represent the metabolic pathways involved in the denitrification process. The simulator can be obtained from the authors on request.
Collapse
|
48
|
Bacterial nitrous oxide respiration: electron transport chains and copper transfer reactions. Adv Microb Physiol 2019; 75:137-175. [PMID: 31655736 DOI: 10.1016/bs.ampbs.2019.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biologically catalyzed nitrous oxide (N2O, laughing gas) reduction to dinitrogen gas (N2) is a desirable process in the light of ever-increasing atmospheric concentrations of this important greenhouse gas and ozone depleting substance. A diverse range of bacterial species produce the copper cluster-containing enzyme N2O reductase (NosZ), which is the only known enzyme that converts N2O to N2. Based on phylogenetic analyses, NosZ enzymes have been classified into clade I or clade II and it has turned out that this differentiation is also applicable to nos gene clusters (NGCs) and some physiological traits of the corresponding microbial cells. The NosZ enzyme is the terminal reductase of anaerobic N2O respiration, in which electrons derived from a donor substrate are transferred to NosZ by means of an electron transport chain (ETC) that conserves energy through proton motive force generation. This chapter presents models of the ETCs involved in clade I and clade II N2O respiration as well as of the respective NosZ maturation and maintenance processes. Despite differences in NGCs and growth yields of N2O-respiring microorganisms, the deduced bioenergetic framework in clade I and clade II N2O respiration is assumed to be equivalent. In both cases proton motive quinol oxidation by N2O is thought to be catalyzed by the Q cycle mechanism of a membrane-bound Rieske/cytochrome bc complex. However, clade I and clade II organisms are expected to differ significantly in terms of auxiliary electron transport processes as well as NosZ active site maintenance and repair.
Collapse
|
49
|
Gaimster H, Alston M, Richardson DJ, Gates AJ, Rowley G. Transcriptional and environmental control of bacterial denitrification and N2O emissions. FEMS Microbiol Lett 2019; 365:4768087. [PMID: 29272423 DOI: 10.1093/femsle/fnx277] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
In oxygen-limited environments, denitrifying bacteria can switch from oxygen-dependent respiration to nitrate (NO3-) respiration in which the NO3- is sequentially reduced via nitrite (NO2-), nitric oxide (NO) and nitrous oxide (N2O) to dinitrogen (N2). However, atmospheric N2O continues to rise, a significant proportion of which is microbial in origin. This implies that the enzyme responsible for N2O reduction, nitrous oxide reductase (NosZ), does not always carry out the final step of denitrification either efficiently or in synchrony with the rest of the pathway. Despite a solid understanding of the biochemistry underpinning denitrification, there is a relatively poor understanding of how environmental signals and respective transcriptional regulators control expression of the denitrification apparatus. This minireview describes the current picture for transcriptional regulation of denitrification in the model bacterium, Paracoccus denitrificans, highlighting differences in other denitrifying bacteria where appropriate, as well as gaps in our understanding. Alongside this, the emerging role of small regulatory RNAs in regulation of denitrification is discussed. We conclude by speculating how this information, aside from providing a better understanding of the denitrification process, can be translated into development of novel greenhouse gas mitigation strategies.
Collapse
Affiliation(s)
- Hannah Gaimster
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Mark Alston
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
50
|
Semrau JD, DiSpirito AA. Methanobactin: A Novel Copper-Binding Compound Produced by Methanotrophs. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-23261-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|