1
|
Yang Y, Duan Z, Liu XL, Li Z, Shen Z, Gong S, Lu Q, Hu Y, Song L, Wang Z, Cao X, Dang Y, Wang L, He Q, Liu X. Checkpoint kinases regulate the circadian clock after DNA damage by influencing chromatin dynamics. Nucleic Acids Res 2025; 53:gkaf162. [PMID: 40052820 PMCID: PMC11886795 DOI: 10.1093/nar/gkaf162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/10/2025] Open
Abstract
The interplay between circadian clocks, the cell cycle, and DNA repair has been extensively documented, yet the epigenetic control of circadian clocks by DNA damage responses remains relatively unexplored. Here, we showed that checkpoint kinases CHK1/2 regulate chromatin structure during DNA damage in Neurospora crassa to maintain robust circadian rhythms. Under DNA damage stress, deletion of chk1/2 disrupted the rhythmic transcription of the clock gene frq by suppressing the rhythmic binding of the transcription activator White Collar complex (WCC) at the frq promoter, as the chromatin structure remained condensed. Mechanistically, CHK1/2 interacted with WC-2 and were recruited by WCC to bind at the frq promoter to phosphorylate H3T11, promoting H3 acetylation, especially H3K56 acetylation, to counteract the histone variant H2A.Z deposition, thereby establishing a suitable chromatin state to maintain robust circadian rhythms despite DNA damage. Additionally, a genome-wide correlation was discovered between H3T11 phosphorylation and H3K56 acetylation, showing a specific function at the frq promoter that is dependent on CHK1/2. Furthermore, transcriptome analysis revealed that CHK1/2 are responsible for robust rhythmic transcription of metabolic and DNA repair genes during DNA damage. These findings highlight the essential role of checkpoint kinases in maintaining robust circadian rhythms under DNA damage stress.
Collapse
Affiliation(s)
- Yulin Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zeyu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Lan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhanbiao Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Zhenghao Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shimin Gong
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Qiaojia Lu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linhao Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zeyu Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuemei Cao
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yunkun Dang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qun He
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Liu XL, Duan Z, Yu M, Liu X. Epigenetic control of circadian clocks by environmental signals. Trends Cell Biol 2024; 34:992-1006. [PMID: 38423855 DOI: 10.1016/j.tcb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Circadian clocks have evolved to enable organisms to respond to daily environmental changes. Maintaining a robust circadian rhythm under various perturbations and stresses is essential for the fitness of an organism. In the core circadian oscillator conserved in eukaryotes (from fungi to mammals), a negative feedback loop based on both transcription and translation drives circadian rhythms. The expression of circadian clock genes depends both on the binding of transcription activators at the promoter and on the chromatin state of the clock genes, and epigenetic modifications of chromatin are crucial for transcriptional regulation of circadian clock genes. Herein we review current knowledge of epigenetic regulation of circadian clock mechanisms and discuss how environmental cues can control clock gene expression by affecting chromatin states.
Collapse
Affiliation(s)
- Xiao-Lan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeyu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Muqun Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Miao Z, Wang H, Tu X, Huang Z, Huang S, Zhang X, Wang F, Huang Z, Li H, Jiao Y, Gao S, Zhou Z, Shan CM, Li J, Yue JX. GetPrimers: A generalized PCR-based genetic targeting primer designer enabling easy and standardized targeted gene modification across multiple systems. Yeast 2024; 41:19-34. [PMID: 38041528 DOI: 10.1002/yea.3916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
Genetic targeting (e.g., gene knockout and tagging) based on polymerase chain reaction (PCR) is a simple yet powerful approach for studying gene functions. Although originally developed in classic budding and fission yeast models, the same principle applies to other eukaryotic systems with efficient homologous recombination. One-step PCR-based genetic targeting is conventionally used but the sizes of the homologous arms that it generates for recombination-mediated genetic targeting are usually limited. Alternatively, gene targeting can also be performed via fusion PCR, which can create homologous arms that are orders of magnitude larger, therefore substantially increasing the efficiency of recombination-mediated genetic targeting. Here, we present GetPrimers (https://www.evomicslab.org/app/getprimers/), a generalized computational framework and web tool to assist automatic targeting and verification primer design for both one-step PCR-based and fusion PCR-based genetic targeting experiments. Moreover, GetPrimers by design runs for any given genetic background of any species with full genome scalability. Therefore, GetPrimers is capable of empowering high-throughput functional genomic assays at multipopulation and multispecies levels. Comprehensive experimental validations have been performed for targeting and verification primers designed by GetPrimers across multiple organism systems and experimental setups. We anticipate GetPrimers to become a highly useful and popular tool to facilitate easy and standardized gene modification across multiple systems.
Collapse
Affiliation(s)
- Zepu Miao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haiting Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinyu Tu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhengshen Huang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shujing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinxin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fan Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhishen Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huihui Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yue Jiao
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhipeng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chun-Min Shan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
4
|
Nagel A, Leonard M, Maurus I, Starke J, Schmitt K, Valerius O, Harting R, Braus GH. The Frq-Frh Complex Light-Dependently Delays Sfl1-Induced Microsclerotia Formation in Verticillium dahliae. J Fungi (Basel) 2023; 9:725. [PMID: 37504714 PMCID: PMC10381341 DOI: 10.3390/jof9070725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
The vascular plant pathogenic fungus Verticillium dahliae has to adapt to environmental changes outside and inside its host. V. dahliae harbors homologs of Neurospora crassa clock genes. The molecular functions and interactions of Frequency (Frq) and Frq-interacting RNA helicase (Frh) in controlling conidia or microsclerotia development were investigated in V. dahliae JR2. Fungal mutant strains carrying clock gene deletions, an FRH point mutation, or GFP gene fusions were analyzed on transcript, protein, and phenotypic levels as well as in pathogenicity assays on tomato plants. Our results support that the Frq-Frh complex is formed and that it promotes conidiation, but also that it suppresses and therefore delays V. dahliae microsclerotia formation in response to light. We investigated a possible link between the negative element Frq and positive regulator Suppressor of flocculation 1 (Sfl1) in microsclerotia formation to elucidate the regulatory molecular mechanism. Both Frq and Sfl1 are mainly present during the onset of microsclerotia formation with decreasing protein levels during further development. Induction of microsclerotia formation requires Sfl1 and can be delayed at early time points in the light through the Frq-Frh complex. Gaining further molecular knowledge on V. dahliae development will improve control of fungal growth and Verticillium wilt disease.
Collapse
Affiliation(s)
- Alexandra Nagel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Jessica Starke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| |
Collapse
|
5
|
Huang Z, Lou J, Gao Y, Noman M, Li D, Song F. FonTup1 functions in growth, conidiogenesis and pathogenicity of Fusarium oxysporum f. sp. niveum through modulating the expression of the tricarboxylic acid cycle genes. Microbiol Res 2023; 272:127389. [PMID: 37099956 DOI: 10.1016/j.micres.2023.127389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
The Tup1-Cyc8 complex is a highly conserved transcriptional corepressor that regulates intricate genetic network associated with various biological processes in fungi. Here, we report the role and mechanism of FonTup1 in regulating physiological processes and pathogenicity in watermelon Fusarium wilt fungus, Fusarium oxysporum f. sp. niveum (Fon). FonTup1 deletion impairs mycelial growth, asexual reproduction, and macroconidia morphology, but not macroconidial germination in Fon. The ΔFontup1 mutant exhibits altered tolerance to cell wall perturbing agent (congo red) and osmotic stressors (sorbitol or NaCl), but unchanged sensitivity to paraquat. The deletion of FonTup1 significantly decreases the pathogenicity of Fon toward watermelon plants through attenuating the ability to colonize and grow within the host. Transcriptome analysis revealed that FonTup1 regulates primary metabolic pathways, including the tricarboxylic acid (TCA) cycle, via altering the expression of corresponding genes. Downregulation of three malate dehydrogenase genes, FonMDH1-3, occurs in ΔFontup1, and disruption of FonMDH2 causes significant abnormalities in mycelial growth, conidiation, and virulence of Fon. These findings demonstrate that FonTup1, as a global transcriptional corepressor, plays crucial roles in different biological processes and pathogenicity of Fon through regulating various primary metabolic processes, including the TCA cycle. This study highlights the importance and molecular mechanism of the Tup1-Cyc8 complex in multiple basic biological processes and pathogenicity of phytopathogenic fungi.
Collapse
Affiliation(s)
- Ziling Huang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiajun Lou
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Gao
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Noman
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dayong Li
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Fengming Song
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Kelliher CM, Stevenson EL, Loros JJ, Dunlap JC. Nutritional compensation of the circadian clock is a conserved process influenced by gene expression regulation and mRNA stability. PLoS Biol 2023; 21:e3001961. [PMID: 36603054 PMCID: PMC9848017 DOI: 10.1371/journal.pbio.3001961] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/18/2023] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Compensation is a defining principle of a true circadian clock, where its approximately 24-hour period length is relatively unchanged across environmental conditions. Known compensation effectors directly regulate core clock factors to buffer the oscillator's period length from variables in the environment. Temperature Compensation mechanisms have been experimentally addressed across circadian model systems, but much less is known about the related process of Nutritional Compensation, where circadian period length is maintained across physiologically relevant nutrient levels. Using the filamentous fungus Neurospora crassa, we performed a genetic screen under glucose and amino acid starvation conditions to identify new regulators of Nutritional Compensation. Our screen uncovered 16 novel mutants, and together with 4 mutants characterized in prior work, a model emerges where Nutritional Compensation of the fungal clock is achieved at the levels of transcription, chromatin regulation, and mRNA stability. However, eukaryotic circadian Nutritional Compensation is completely unstudied outside of Neurospora. To test for conservation in cultured human cells, we selected top hits from our fungal genetic screen, performed siRNA knockdown experiments of the mammalian orthologs, and characterized the cell lines with respect to compensation. We find that the wild-type mammalian clock is also compensated across a large range of external glucose concentrations, as observed in Neurospora, and that knocking down the mammalian orthologs of the Neurospora compensation-associated genes CPSF6 or SETD2 in human cells also results in nutrient-dependent period length changes. We conclude that, like Temperature Compensation, Nutritional Compensation is a conserved circadian process in fungal and mammalian clocks and that it may share common molecular determinants.
Collapse
Affiliation(s)
- Christina M. Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Elizabeth-Lauren Stevenson
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
7
|
HDA-2-Containing Complex Is Required for Activation of Catalase-3 Expression in Neurospora crassa. mBio 2022; 13:e0135122. [PMID: 35699373 PMCID: PMC9426557 DOI: 10.1128/mbio.01351-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is essential for aerobic organisms to maintain the homeostasis of intracellular reactive oxygen species (ROS) for survival and adaptation to the environment. In line with other eukaryotes, the catalase of Neurospora crassa is an important enzyme for clearing ROS, and its expression is tightly regulated by the growth phase and various oxidative stresses. Our study reveals that, in N. crassa, histone deacetylase 2 (HDA-2) and its catalytic activity positively regulate the expression of the catalase-3 (cat-3) gene. HDA-2, SIF-2, and SNT-1 may form a subcomplex with such a regulation role. As expected, deletion of HDA-2 or SIF-2 subunit increased acetylation levels of histone H4, indicating that loss of HDA-2 complex fails to deacetylate H4 at the cat-3 locus. Furthermore, loss of HDA-2 or its catalytic activity led to dramatic decreases of TFIIB and RNA polymerase II (RNAP II) recruitment at the cat-3 locus and also resulted in high deposition of H2A.Z at the promoter and transcription start site (TSS) regions of the cat-3 gene. Collectively, this study strongly demonstrates that the HDA-2-containing complex activates the transcription of the cat-3 gene by facilitating preinitiation complex (PIC) assembly and antagonizing the inhibition of H2A.Z at the cat-3 locus through H4 acetylation. IMPORTANCE Clearance of reactive oxygen species (ROS) is critical to the survival of aerobic organisms. In the model filamentous fungus Neurospora crassa, catalase-3 (cat-3) expression is activated in response to H2O2-induced ROS stress. We found that histone deacetylase 2 (HDA-2) positively regulates cat-3 transcription in N. crassa; this is widely divergent from the classical repressive role of most histone deacetylases. Like HDA-2, the SIF-2 or SNT-1 subunit of HDA-2-containing complex plays a positive role in cat-3 transcription. Furthermore, we also found that HDA-2-containing complex provides an appropriate chromatin environment to facilitate PIC assembly and to antagonize the inhibition role of H2A.Z at the cat-3 locus through H4 acetylation. Taken together, our results establish a mechanism for how the HDA-2-containing complex regulates transcription of the cat-3 gene in N. crassa.
Collapse
|
8
|
Zhang X, Hu Y, Liu G, Liu M, Li Z, Zhao J, Song X, Zhong Y, Qu Y, Wang L, Qin Y. The complex Tup1-Cyc8 bridges transcription factor ClrB and putative histone methyltransferase LaeA to activate the expression of cellulolytic genes. Mol Microbiol 2022; 117:1002-1022. [PMID: 35072962 DOI: 10.1111/mmi.14885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
The degradation of lignocellulosic biomass by cellulolytic enzymes is involved in the global carbon cycle. The hydrolysis of lignocellulosic biomass into fermentable sugars is potential as excellent industrial resource to produce a variety of chemical products. The production of cellulolytic enzymes is regulated mainly at the transcriptional level in filamentous fungi. Transcription factor ClrB and the putative histone methyltransferase LaeA, are both necessary for the expression of cellulolytic genes. However, the mechanism by which transcription factors and methyltransferase coordinately regulate cellulolytic genes is still unknown. Here, we reveal a transcriptional regulatory mechanism involving Penicillium oxalicum transcription factor ClrB (PoClrB), complex Tup1-Cyc8, and putative histone methyltransferase LaeA (PoLaeA). As the transcription factor, PoClrB binds the targeted promoters of cellulolytic genes, recruits PoTup1-Cyc8 complex via direct interaction with PoTup1. PoTup1 interacts with PoCyc8 to form the coactivator complex PoTup1-Cyc8. Then, PoTup1 recruits putative histone methyltransferase PoLaeA to modify the chromatin structure of the upstream region of cellulolytic genes, thereby facilitating the binding of transcription machinery to activating the corresponding cellulolytic gene expression. Our results contribute to a better understanding of complex transcriptional regulation mechanisms of cellulolytic genes and will be valuable for lignocellulosic biorefining.
Collapse
Affiliation(s)
- Xiujun Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.,School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yueyan Hu
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Guodong Liu
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Meng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zhonghai Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xin Song
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yinbo Qu
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, Qingdao, China.,State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Muñoz-Guzmán F, Caballero V, Larrondo LF. A global search for novel transcription factors impacting the Neurospora crassa circadian clock. G3 (BETHESDA, MD.) 2021; 11:jkab100. [PMID: 33792687 PMCID: PMC8495738 DOI: 10.1093/g3journal/jkab100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/16/2021] [Indexed: 01/15/2023]
Abstract
Eukaryotic circadian oscillators share a common circuit architecture, a negative feedback loop in which a positive element activates the transcription of a negative one that then represses the action of the former, inhibiting its own expression. While studies in mammals and insects have revealed additional transcriptional inputs modulating the expression of core clock components, this has been less characterized in the model Neurospora crassa, where the participation of other transcriptional components impacting circadian clock dynamics remains rather unexplored. Thus, we sought to identify additional transcriptional regulators modulating the N. crassa clock, following a reverse genetic screen based on luminescent circadian reporters and a collection of transcription factors (TFs) knockouts, successfully covering close to 60% of them. Besides the canonical core clock components WC-1 and -2, none of the tested transcriptional regulators proved to be essential for rhythmicity. Nevertheless, we identified a set of 23 TFs that when absent lead to discrete, but significant, changes in circadian period. While the current level of analysis does not provide mechanistic information about how these new players modulate circadian parameters, the results of this screen reveal that an important number of light and clock-regulated TFs, involved in a plethora of processes, are capable of modulating the clockworks. This partial reverse genetic clock screen also exemplifies how the N. crassa knockout collection continues to serve as an expedite platform to address broad biological questions.
Collapse
Affiliation(s)
- Felipe Muñoz-Guzmán
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Valeria Caballero
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Luis F Larrondo
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
10
|
Wang L, Zhang W, Cao Y, Zheng F, Zhao G, Lv X, Meng X, Liu W. Interdependent recruitment of CYC8/TUP1 and the transcriptional activator XYR1 at target promoters is required for induced cellulase gene expression in Trichoderma reesei. PLoS Genet 2021; 17:e1009351. [PMID: 33606681 PMCID: PMC7894907 DOI: 10.1371/journal.pgen.1009351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
Cellulase production in filamentous fungus Trichoderma reesei is highly responsive to various environmental cues involving multiple positive and negative regulators. XYR1 (Xylanase regulator 1) has been identified as the key transcriptional activator of cellulase gene expression in T. reesei. However, the precise mechanism by which XYR1 achieves transcriptional activation of cellulase genes is still not fully understood. Here, we identified the TrCYC8/TUP1 complex as a novel coactivator for XYR1 in T. reesei. CYC8/TUP1 is the first identified transcriptional corepressor complex mediating repression of diverse genes in Saccharomyces cerevisiae. Knockdown of Trcyc8 or Trtup1 resulted in markedly impaired cellulase gene expression in T. reesei. We found that TrCYC8/TUP1 was recruited to cellulase gene promoters upon cellulose induction and this recruitment is dependent on XYR1. We further observed that repressed Trtup1 or Trcyc8 expression caused a strong defect in XYR1 occupancy and loss of histone H4 at cellulase gene promoters. The defects in XYR1 binding and transcriptional activation of target genes in Trtup1 or Trcyc8 repressed cells could not be overcome by XYR1 overexpression. Our results reveal a novel coactivator function for TrCYC8/TUP1 at the level of activator binding, and suggest a mechanism in which interdependent recruitment of XYR1 and TrCYC8/TUP1 to cellulase gene promoters represents an important regulatory circuit in ensuring the induced cellulase gene expression. These findings thus contribute to unveiling the intricate regulatory mechanism underlying XYR1-mediated cellulase gene activation and also provide an important clue that will help further improve cellulase production by T. reesei.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Yanli Cao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Fanglin Zheng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Guolei Zhao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Xinxing Lv
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
11
|
Molecular Regulation of Circadian Chromatin. J Mol Biol 2020; 432:3466-3482. [PMID: 31954735 DOI: 10.1016/j.jmb.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
Collapse
|
12
|
Duan J, Liu Q, Su S, Cha J, Zhou Y, Tang R, Liu X, Wang Y, Liu Y, He Q. The Neurospora RNA polymerase II kinase CTK negatively regulates catalase expression in a chromatin context-dependent manner. Environ Microbiol 2019; 22:76-90. [PMID: 31599077 DOI: 10.1111/1462-2920.14821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 01/15/2023]
Abstract
Clearance and adaptation to reactive oxygen species (ROS) are crucial for cell survival. As in other eukaryotes, the Neurospora catalases are the main enzymes responsible for ROS clearance and their expression are tightly regulated by the growth and environmental conditions. The RNA polymerase II carboxyl terminal domain (RNAPII CTD) kinase complex (CTK complex) is known as a positive elongation factor for many inducible genes by releasing paused RNAPII near the transcription start site and promoting transcription elongation. However, here we show that deletion of CTK complex components in Neurospora led to high CAT-3 expression level and resistance to H2 O2 -induced ROS stress. The catalytic activity of CTK-1 is required for such a response. On the other hand, CTK-1 overexpression led to decreased expression of CAT-3. ChIP assays shows that CTK-1 phosphorylates the RNAPII CTD at Ser2 residues in the cat-3 ORF region during transcription elongation and deletion of CTK-1 led to dramatic decreases of SET-2 recruitment and H3K36me3 modification. As a result, histones at the cat-3 locus become hyperacetylated to promote its transcription. Together, these results demonstrate that the CTK complex is negative regulator of cat-3 expression by affecting its chromatin structure.
Collapse
Affiliation(s)
- Jiabin Duan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qingqing Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sodgerel Su
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Joonseok Cha
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Yike Zhou
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruiqi Tang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
FRQ-CK1 interaction determines the period of circadian rhythms in Neurospora. Nat Commun 2019; 10:4352. [PMID: 31554810 PMCID: PMC6761100 DOI: 10.1038/s41467-019-12239-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/28/2019] [Indexed: 01/25/2023] Open
Abstract
Circadian clock mechanisms have been extensively investigated but the main rate-limiting step that determines circadian period remains unclear. Formation of a stable complex between clock proteins and CK1 is a conserved feature in eukaryotic circadian mechanisms. Here we show that the FRQ-CK1 interaction, but not FRQ stability, correlates with circadian period in Neurospora circadian clock mutants. Mutations that specifically affect the FRQ-CK1 interaction lead to severe alterations in circadian period. The FRQ-CK1 interaction has two roles in the circadian negative feedback loop. First, it determines the FRQ phosphorylation profile, which regulates FRQ stability and also feeds back to either promote or reduce the interaction itself. Second, it determines the efficiency of circadian negative feedback process by mediating FRQ-dependent WC phosphorylation. Our conclusions are further supported by mathematical modeling and in silico experiments. Together, these results suggest that the FRQ-CK1 interaction is a major rate-limiting step in circadian period determination. Circadian clocks control daily rhythms of molecular and physiological activities. Here, the authors show that the interaction between proteins FRQ and CK1, rather than FRQ stability, is a major rate-limiting step in circadian period determination in the model fungus Neurospora.
Collapse
|
14
|
Cao X, Liu X, Li H, Fan Y, Duan J, Liu Y, He Q. Transcription factor CBF-1 is critical for circadian gene expression by modulating WHITE COLLAR complex recruitment to the frq locus. PLoS Genet 2018; 14:e1007570. [PMID: 30208021 PMCID: PMC6152987 DOI: 10.1371/journal.pgen.1007570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/24/2018] [Accepted: 07/16/2018] [Indexed: 01/24/2023] Open
Abstract
Transcription of the Neurospora crassa circadian clock gene frequency (frq) is an essential process in the negative feedback loop that controls circadian rhythms. WHITE COLLAR 1 (WC-1) and WHITE COLLAR 2 (WC-2) forms the WC complex (WCC) that is the main activator of frq transcription by binding to its promoter. Here, we show that Centromere Binding Factor 1 (CBF-1) is a critical component of the N. crassa circadian clock by regulating frq transcription. Deletion of cbf-1 resulted in long period and low amplitude rhythms, whereas overexpression of CBF-1 abolished the circadian rhythms. Loss of CBF-1 resulted in WC-independent FRQ expression and suppression of WCC activity. As WCC, CBF-1 also binds to the C-box at the frq promoter. Overexpression of CBF-1 impaired WCC binding to the C-box to suppress frq transcription. Together, our results suggest that the proper level of CBF-1 is critical for circadian clock function by suppressing WC-independent FRQ expression and by regulating WCC binding to the frq promoter. Circadian clocks, which measure time on a scale of approximately 24 hours, are generated by a cell-autonomous circadian oscillator comprised of autoregulatory feedback loops. In the Neurospora crassa circadian oscillator, WHITE COLLAR complex (WCC) actives transcription of the frequency (frq) gene. FRQ inhibits the activity of WCC to close the negative feedback loop. Here, we showed that the transcription factor CBF-1 functions as a repressor to modulate WCC recruitment to the C-box of frq promoter. Our data showed that deletion or overexpression of CBF-1 dampened circadian rhythm due to impaired WCC binding at the frq promoter. As CBF-1 is conserved in eukaryotes, our data provide novel insights into the negative feedback mechanism that controls the biological clocks in other organisms.
Collapse
Affiliation(s)
- Xuemei Cao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Hongda Li
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yumeng Fan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiabin Duan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Olmedo M, Roenneberg T, Merrow M, Corrochano LM. Glucose sensing and light regulation: A mutation in the glucose sensor RCO-3 modifies photoadaptation in Neurospora crassa. Fungal Biol 2018; 122:497-504. [DOI: 10.1016/j.funbio.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/24/2023]
|
16
|
Zhou Z, Dang Y, Zhou M, Yuan H, Liu Y. Codon usage biases co-evolve with transcription termination machinery to suppress premature cleavage and polyadenylation. eLife 2018; 7:33569. [PMID: 29547124 PMCID: PMC5869017 DOI: 10.7554/elife.33569] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022] Open
Abstract
Codon usage biases are found in all genomes and influence protein expression levels. The codon usage effect on protein expression was thought to be mainly due to its impact on translation. Here, we show that transcription termination is an important driving force for codon usage bias in eukaryotes. Using Neurospora crassa as a model organism, we demonstrated that introduction of rare codons results in premature transcription termination (PTT) within open reading frames and abolishment of full-length mRNA. PTT is a wide-spread phenomenon in Neurospora, and there is a strong negative correlation between codon usage bias and PTT events. Rare codons lead to the formation of putative poly(A) signals and PTT. A similar role for codon usage bias was also observed in mouse cells. Together, these results suggest that codon usage biases co-evolve with the transcription termination machinery to suppress premature termination of transcription and thus allow for optimal gene expression.
Collapse
Affiliation(s)
- Zhipeng Zhou
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haiyan Yuan
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
17
|
Qi S, He L, Zhang Q, Dong Q, Wang Y, Yang Q, Tian C, He Q, Wang Y. Cross-pathway control gene CPC1/GCN4 coordinates with histone acetyltransferase GCN5 to regulate catalase-3 expression under oxidative stress in Neurospora crassa. Free Radic Biol Med 2018; 117:218-227. [PMID: 29421311 DOI: 10.1016/j.freeradbiomed.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/04/2018] [Accepted: 02/02/2018] [Indexed: 12/16/2022]
Abstract
Catalase is an important enzyme found in nearly all aerobic organisms and plays an essential role in protecting cells from oxidative damage by catalyzing the degradation of hydrogen peroxide into water and oxygen. In filamentous fungus Neurospora crassa, the expression levels of catalases are rigorously regulated by morphogenetic transition during growth and development in cells. Our study revealed that catalase-3 transcription is positively regulated by histone acetyltransferase GCN5 and the cross-pathway control gene cpc-1, as the cat-3 expression level is significantly decreased in gcn5KO and cpc-1 (j-5) mutants. Moreover, gcn5KO and cpc-1 (j-5) mutants could not respond to H2O2 treatment due to the inadequate cat-3 transcription, while wild-type strains showed high expression levels of catalase upon H2O2 treatment. The global H3 acetylation and the acetylation of H3 at cat-3 locus dramatically decreased in gcn5KO under normal or oxidative stress conditions. Meanwhile, the expression of CAT-3 is reduced in gcn5E146Q, the catalytically dead mutant, suggesting that the catalytic activity of GCN5 functions in regulation of cat-3 transcription. In addition, GCN5 cannot acetylate histone H3 efficiently at cat-3 locus in cpc-1 (j-5) mutant strains under normal or oxidative stress conditions. Furthermore, ChIP assays data revealed that the CPC1/GCN4 can directly target the cat-3 promoter region, which may recruit GCN5 to modify the histone acetylation of this region. These results disclosed a distinctive function of CPC1/GCN4 in the regulatory pathway of cat-3 transcription, which is mediated by GCN5-dependent acetylation.
Collapse
Affiliation(s)
- Shaohua Qi
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lingaonan He
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qin Zhang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Dong
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yajun Wang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiuying Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaoguang Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qun He
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
18
|
Zhou X, Wang B, Emerson JM, Ringelberg CS, Gerber SA, Loros JJ, Dunlap JC. A HAD family phosphatase CSP-6 regulates the circadian output pathway in Neurospora crassa. PLoS Genet 2018; 14:e1007192. [PMID: 29351294 PMCID: PMC5800702 DOI: 10.1371/journal.pgen.1007192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/06/2018] [Accepted: 01/08/2018] [Indexed: 01/24/2023] Open
Abstract
Circadian clocks are ubiquitous in eukaryotic organisms where they are used to anticipate regularly occurring diurnal and seasonal environmental changes. Nevertheless, little is known regarding pathways connecting the core clock to its output pathways. Here, we report that the HAD family phosphatase CSP-6 is required for overt circadian clock output but not for the core oscillation. The loss of function Δcsp-6 deletion mutant is overtly arrhythmic on race tubes under free running conditions; however, reporter assays confirm that the FREQUENCY-WHITE COLLAR COMPLEX core circadian oscillator is functional, indicating a discrete block between oscillator and output. CSP-6 physically interacts with WHI-2, Δwhi-2 mutant phenotypes resemble Δcsp-6, and the CSP-6/WHI-2 complex physically interacts with WC-1, all suggesting that WC-1 is a direct target for CSP-6/WHI-2-mediated dephosphorylation and consistent with observed WC-1 hyperphosphorylation in Δcsp-6. To identify the source of the block to output, known clock-controlled transcription factors were screened for rhythmicity in Δcsp-6, identifying loss of circadian control of ADV-1, a direct target of WC-1, as responsible for the loss of overt rhythmicity. The CSP-6/WHI-2 complex thus participates in the clock output pathway by regulating WC-1 phosphorylation to promote proper transcriptional/translational activation of adv-1/ADV-1; these data establish an unexpected essential role for post-translational modification parallel to circadian transcriptional regulation in the early steps of circadian output. Though molecules and components in the core circadian oscillator are well studied in Neurospora, the mechanisms through which output pathways are coupled with core components are less well understood. In this study we investigated a HAD phosphatase, CSP-6; loss-of-function Δcsp-6 strains are overtly arrhythmic but have a functional core circadian oscillation. CSP-6 in association with WHI-2 dephosphorylates the core clock component WC-1 to regulate light-responses and development. To dissect the functions of CSP-6 in core clock and output, we screened known WC-1 targets and found that loss of CSP-6 causes misregulation of transcriptional/translational activation of ADV-1, a key regulator of output. Thus, loss of CSP-6-mediated dephosphorylation of WC-1 leads to loss of ADV-1 activation and is responsible for the complete loss of overt developmental rhythmicity in Δcsp-6.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jillian M. Emerson
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Carol S. Ringelberg
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Scott A. Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
19
|
Larrondo LF, Canessa P. The Clock Keeps on Ticking: Emerging Roles for Circadian Regulation in the Control of Fungal Physiology and Pathogenesis. Curr Top Microbiol Immunol 2018; 422:121-156. [PMID: 30255278 DOI: 10.1007/82_2018_143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tic-tac, tic-tac, the sound of time is familiar to us, yet, it also silently shapes daily biological processes conferring 24-hour rhythms in, among others, cellular and systemic signaling, gene expression, and metabolism. Indeed, circadian clocks are molecular machines that permit temporal control of a variety of processes in individuals, with a close to 24-hour period, optimizing cellular dynamics in synchrony with daily environmental cycles. For over three decades, the molecular bases of these clocks have been extensively described in the filamentous fungus Neurospora crassa, yet, there have been few molecular studies in fungi other than Neurospora, despite evidence of rhythmic phenomena in many fungal species, including pathogenic ones. This chapter will revise the mechanisms underlying clock regulation in the model fungus N. crassa, as well as recent findings obtained in several fungi. In particular, this chapter will review the effect of circadian regulation of virulence and organismal interactions, focusing on the phytopathogen Botrytis cinerea, as well as several entomopathogenic fungi, including the behavior-manipulating species Ophiocordyceps kimflemingiae and Entomophthora muscae. Finally, this review will comment current efforts in the study of mammalian pathogenic fungi, while highlighting recent circadian lessons from parasites such as Trypanosoma and Plasmodium. The clock keeps on ticking, whether we can hear it or not.
Collapse
Affiliation(s)
- Luis F Larrondo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile. .,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Paulo Canessa
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Facultad de Ciencias de la Vida, Centro de Biotecnologia Vegetal, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
20
|
Li HX, Lu ZM, Zhu Q, Gong JS, Geng Y, Shi JS, Xu ZH, Ma YH. Comparative Transcriptomic and Proteomic Analyses Reveal a FluG-Mediated Signaling Pathway Relating to Asexual Sporulation ofAntrodia camphorata. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/25/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Hua-Xiang Li
- National Engineering Laboratory for Cereal Fermentation Technology; School of Pharmaceutical Science; Key Laboratory of Industrial Biotechnology of Ministry of Education; Jiangnan University; Wuxi P.R. China
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology; School of Pharmaceutical Science; Key Laboratory of Industrial Biotechnology of Ministry of Education; Jiangnan University; Wuxi P.R. China
| | - Qing Zhu
- National Engineering Laboratory for Cereal Fermentation Technology; School of Pharmaceutical Science; Key Laboratory of Industrial Biotechnology of Ministry of Education; Jiangnan University; Wuxi P.R. China
| | - Jin-Song Gong
- National Engineering Laboratory for Cereal Fermentation Technology; School of Pharmaceutical Science; Key Laboratory of Industrial Biotechnology of Ministry of Education; Jiangnan University; Wuxi P.R. China
| | - Yan Geng
- National Engineering Laboratory for Cereal Fermentation Technology; School of Pharmaceutical Science; Key Laboratory of Industrial Biotechnology of Ministry of Education; Jiangnan University; Wuxi P.R. China
| | - Jin-Song Shi
- National Engineering Laboratory for Cereal Fermentation Technology; School of Pharmaceutical Science; Key Laboratory of Industrial Biotechnology of Ministry of Education; Jiangnan University; Wuxi P.R. China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology; School of Pharmaceutical Science; Key Laboratory of Industrial Biotechnology of Ministry of Education; Jiangnan University; Wuxi P.R. China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin P.R. China
| | - Yan-He Ma
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin P.R. China
| |
Collapse
|
21
|
Liu X, Dang Y, Matsu-Ura T, He Y, He Q, Hong CI, Liu Y. DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition. Mol Cell 2017. [PMID: 28648778 DOI: 10.1016/j.molcel.2017.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Yunkun Dang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | - Toru Matsu-Ura
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA; Department of Biochemistry and Cell Biology, McMurtry College, Rice University, Houston, TX 77005, USA
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Christian I Hong
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA.
| |
Collapse
|
22
|
Gai K, Cao X, Dong Q, Ding Z, Wei Y, Liu Y, Liu X, He Q. Transcriptional repression of frequency by the IEC-1-INO80 complex is required for normal Neurospora circadian clock function. PLoS Genet 2017; 13:e1006732. [PMID: 28403234 PMCID: PMC5406019 DOI: 10.1371/journal.pgen.1006732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/26/2017] [Accepted: 04/03/2017] [Indexed: 12/02/2022] Open
Abstract
Rhythmic activation and repression of the frequency (frq) gene are essential for normal function of the Neurospora circadian clock. WHITE COLLAR (WC) complex, the positive element of the Neurospora circadian system, is responsible for stimulation of frq transcription. We report that a C2H2 finger domain-containing protein IEC-1 and its associated chromatin remodeling complex INO80 play important roles in normal Neurospora circadian clock function. In iec-1KO strains, circadian rhythms are abolished, and the frq transcript levels are increased compared to that of the wild-type strain. Similar results are observed in mutant strains of the INO80 subunits. Furthermore, ChIP data show that recruitment of the INO80 complex to the frq promoter is IEC-1-dependent. WC-mediated transcription of frq contributes to the rhythmic binding of the INO80 complex at the frq promoter. As demonstrated by ChIP analysis, the INO80 complex is required for the re-establishment of the dense chromatin environment at the frq promoter. In addition, WC-independent frq transcription is present in ino80 mutants. Altogether, our data indicate that the INO80 complex suppresses frq transcription by re-assembling the suppressive mechanisms at the frq promoter after transcription of frq. Circadian clocks organize inner physiology to anticipate changes in the external environment. These clocks are controlled by the oscillation of central clock proteins which form the central oscillator. Transcriptional regulation is a critical step in the regulation of the oscillation of these core proteins. In eukaryotes, chromatin remodeling is a common mechanism to regulate gene transcription by conquering or establishing nucleosomal barriers for the transcription machinery. Here, we showed that a C2H2 finger domain-containing protein IEC-1 and its associated chromatin remodeling complex INO80 are required for transcriptional repression of the core clock gene frq in the Neurospora circadian system. Moreover, the activator WHITE COLLAR (WC) complex is responsible for the transcriptional activation of frq; thus, considering the different timing of the transcriptional activation and suppression of frq, there must be a mechanism that coordinates the two opposite processes. We also demonstrated that the WC-mediated open state of the frq promoter facilitates the binding of INO80 to this region, which prepares for subsequent transcriptional suppression. Collectively, our data provide novel insights into the regulation of the frq gene and the circadian clock.
Collapse
Affiliation(s)
- Kexin Gai
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuemei Cao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qing Dong
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhaolan Ding
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yashang Wei
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingchun Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
23
|
Wang Y, Dong Q, Ding Z, Gai K, Han X, Kaleri FN, He Q, Wang Y. Regulation of Neurospora Catalase-3 by global heterochromatin formation and its proximal heterochromatin region. Free Radic Biol Med 2016; 99:139-152. [PMID: 27458122 DOI: 10.1016/j.freeradbiomed.2016.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 01/05/2023]
Abstract
Catalase-3 (CAT-3) constitutes the main catalase activity in growing hyphae of Neurospora crassa, and its activity increases during exponential growth or is induced under different stress conditions. Although extensive progress has been made to identify catalase regulators, the regulation mechanism of CAT-3 at the chromatin level still remains unclear. Here, we aim at investigating the molecular regulation mechanisms of cat-3 at the chromatin level. We found that CAT-3 protein levels increased in mutants defective in proper global heterochromatin formation. Bioinformatics analysis identified a 5-kb AT-rich sequence adjacent to the cat-3 promoter as a heterochromatin region because of its enrichment of H3K9me3 and HP1. Expression of CAT-3 was induced by H2O2 treatment in wild-type and such change occurred along with the accumulation of histone H3 acetylation at 5-kb heterochromatin boundaries and cat-3 locus, but without alteration of its H3K9me3 repressive modification. Moreover, disruption of 5-kb heterochromatin region results in elevated cat-3 expression, and higher levels of cat-3 expression were promoted by the combination with global heterochromatin defective mutants. Interestingly, the molecular weight and activity bands of CAT-3 protein are different in heterochromatin defective mutants compared with those in wild-type, suggesting that its N-terminal processing and modification may be altered. Our study indicates that the local chromatin structure creates a heterochromatin repressive environment to repress nearby gene expression.
Collapse
Affiliation(s)
- Yajun Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Dong
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaolan Ding
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kexin Gai
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Han
- College of Life Science, Heilongjiang University, Harbin 150080, China
| | - Farah Naz Kaleri
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci U S A 2016; 113:E6117-E6125. [PMID: 27671647 DOI: 10.1073/pnas.1606724113] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Codon usage biases are found in all eukaryotic and prokaryotic genomes, and preferred codons are more frequently used in highly expressed genes. The effects of codon usage on gene expression were previously thought to be mainly mediated by its impacts on translation. Here, we show that codon usage strongly correlates with both protein and mRNA levels genome-wide in the filamentous fungus Neurospora Gene codon optimization also results in strong up-regulation of protein and RNA levels, suggesting that codon usage is an important determinant of gene expression. Surprisingly, we found that the impact of codon usage on gene expression results mainly from effects on transcription and is largely independent of mRNA translation and mRNA stability. Furthermore, we show that histone H3 lysine 9 trimethylation is one of the mechanisms responsible for the codon usage-mediated transcriptional silencing of some genes with nonoptimal codons. Together, these results uncovered an unexpected important role of codon usage in ORF sequences in determining transcription levels and suggest that codon biases are an adaptation of protein coding sequences to both transcription and translation machineries. Therefore, synonymous codons not only specify protein sequences and translation dynamics, but also help determine gene expression levels.
Collapse
|
25
|
Modulation of Circadian Gene Expression and Metabolic Compensation by the RCO-1 Corepressor of Neurospora crassa. Genetics 2016; 204:163-76. [PMID: 27449058 DOI: 10.1534/genetics.116.191064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/14/2016] [Indexed: 11/18/2022] Open
Abstract
Neurospora crassa is a model organism for the study of circadian clocks, molecular machineries that confer ∼24-hr rhythms to different processes at the cellular and organismal levels. The FREQUENCY (FRQ) protein is a central component of the Neurospora core clock, a transcription/translation negative feedback loop that controls genome-wide rhythmic gene expression. A genetic screen aimed at determining new components involved in the latter process identified regulation of conidiation 1 (rco-1), the ortholog of the Saccharomyces cerevisiae Tup1 corepressor, as affecting period length. By employing bioluminescent transcriptional and translational fusion reporters, we evaluated frq and FRQ expression levels in the rco-1 mutant background observing that, in contrast to prior reports, frq and FRQ expression are robustly rhythmic in the absence of RCO-1, although both amplitude and period length of the core clock are affected. Moreover, we detected a defect in metabolic compensation, such that high-glucose concentrations in the medium result in a significant decrease in period when RCO-1 is absent. Proteins physically interacting with RCO-1 were identified through co-immunoprecipitation and mass spectrometry; these include several components involved in chromatin remodeling and transcription, some of which, when absent, lead to a slight change in period. In the aggregate, these results indicate a dual role for RCO-1: although it is not essential for core-clock function, it regulates proper period and amplitude of core-clock dynamics and is also required for the rhythmic regulation of several clock-controlled genes.
Collapse
|
26
|
Sun G, Zhou Z, Liu X, Gai K, Liu Q, Cha J, Kaleri FN, Wang Y, He Q. Suppression of WHITE COLLAR-independent frequency Transcription by Histone H3 Lysine 36 Methyltransferase SET-2 Is Necessary for Clock Function in Neurospora. J Biol Chem 2016; 291:11055-63. [PMID: 27002152 DOI: 10.1074/jbc.m115.711333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/25/2022] Open
Abstract
The circadian system in Neurospora is based on the transcriptional/translational feedback loops and rhythmic frequency (frq) transcription requires the WHITE COLLAR (WC) complex. Our previous paper has shown that frq could be transcribed in a WC-independent pathway in a strain lacking the histone H3K36 methyltransferase, SET-2 (su(var)3-9-enhancer-of-zeste-trithorax-2) (1), but the mechanism was unclear. Here we disclose that loss of histone H3K36 methylation, due to either deletion of SET-2 or H3K36R mutation, results in arrhythmic frq transcription and loss of overt rhythmicity. Histone acetylation at frq locus increases in set-2(KO) mutant. Consistent with these results, loss of H3K36 methylation readers, histone deacetylase RPD-3 (reduced potassium dependence 3) or EAF-3 (essential SAS-related acetyltransferase-associated factor 3), also leads to hyperacetylation of histone at frq locus and WC-independent frq expression, suggesting that proper chromatin modification at frq locus is required for circadian clock operation. Furthermore, a mutant strain with three amino acid substitutions (histone H3 lysine 9, 14, and 18 to glutamine) was generated to mimic the strain with hyperacetylation state of histone H3. H3K9QK14QK18Q mutant exhibits the same defective clock phenotype as rpd-3(KO) mutant. Our results support a scenario in which H3K36 methylation is required to establish a permissive chromatin state for circadian frq transcription by maintaining proper acetylation status at frq locus.
Collapse
Affiliation(s)
- Guangyan Sun
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhipeng Zhou
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China, College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China, and
| | - Xiao Liu
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kexin Gai
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingqing Liu
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Joonseok Cha
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Farah Naz Kaleri
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qun He
- From the State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China,
| |
Collapse
|
27
|
De-repression of CSP-1 activates adaptive responses to antifungal azoles. Sci Rep 2016; 6:19447. [PMID: 26781458 PMCID: PMC4726075 DOI: 10.1038/srep19447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/14/2015] [Indexed: 01/07/2023] Open
Abstract
Antifungal azoles are the major drugs that are used to treat fungal infections. This study found that in response to antifungal azole stress, Neurospora crassa could activate the transcriptional responses of many genes and increase azole resistance by reducing the level of conidial separation 1 (CSP-1), a global transcription repressor, at azole-responsive genes. The expression of csp-1 was directly activated by the transcription factors WC-1 and WC-2. Upon ketoconazole (KTC) stress, the transcript levels of wc-1 and wc-2 were not changed, but csp-1 transcription rapidly declined. A chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed a rapid reduction in the WC-2 enrichment at the csp-1 promoter upon KTC treatment, which might be responsible for the KTC-induced csp-1 downregulation. Deletion of csp-1 increased resistance to KTC and voriconazole, while csp-1 overexpression increased KTC susceptibility. CSP-1 transcriptionally repressed a number of azole-responsive genes, including genes encoding the azole target ERG11, the azole efflux pump CDR4, and the sterol C-22 desaturase ERG5. Deletion of csp-1 also reduced the KTC-induced accumulation of ergosterol intermediates, eburicol, and 14α-methyl-3,6-diol. CSP-1 orthologs are widely present in filamentous fungi, and an Aspergillus fumigatus mutant in which the csp-1 was deleted was resistant to itraconazole.
Collapse
|
28
|
|
29
|
Role for Protein Kinase A in the Neurospora Circadian Clock by Regulating White Collar-Independent frequency Transcription through Phosphorylation of RCM-1. Mol Cell Biol 2015; 35:2088-102. [PMID: 25848091 DOI: 10.1128/mcb.00709-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 03/30/2015] [Indexed: 01/24/2023] Open
Abstract
Rhythmic activation and repression of clock gene expression is essential for the eukaryotic circadian clock functions. In the Neurospora circadian oscillator, the transcription of the frequency (frq) gene is periodically activated by the White Collar (WC) complex and suppressed by the FRQ-FRH complex. We previously showed that there is WC-independent frq transcription and its repression is required for circadian gene expression. How WC-independent frq transcription is regulated is not known. We show here that elevated protein kinase A (PKA) activity results in WC-independent frq transcription and the loss of clock function. We identified RCM-1 as the protein partner of RCO-1 and an essential component of the clock through its role in suppressing WC-independent frq transcription. RCM-1 is a phosphoprotein and is a substrate of PKA in vivo and in vitro. Mutation of the PKA-dependent phosphorylation sites on RCM-1 results in WC-independent transcription of frq and impaired clock function. Furthermore, we showed that RCM-1 is associated with the chromatin at the frq locus, a process that is inhibited by PKA. Together, our results demonstrate that PKA regulates frq transcription by inhibiting RCM-1 activity through RCM-1 phosphorylation.
Collapse
|
30
|
Wang C. A vision for the innovative study of fungal biology in China: Presidential address. Mycology 2015; 6:1-3. [PMID: 26000193 PMCID: PMC4409049 DOI: 10.1080/21501203.2015.1026112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
I am proud to be elected as the sixth president of the Mycological Society of China, and highly pleased to have a chance to share my personal opinion here with my fellow mycologists and students regarding the innovative performance of fungal biology studies in China. A stepwise buildup of knowledge and sharp scientific vision is the prerequisite for innovative studies. Taken together with the most advanced techniques and elegant experimental designs, the scholars would have a better chance to acquire novel and conceptual results rather than the “me too” stories by focusing on the mechanisms related with fungal unique biology.
Collapse
Affiliation(s)
- Chengshu Wang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
31
|
Montenegro-Montero A, Canessa P, Larrondo LF. Around the Fungal Clock. ADVANCES IN GENETICS 2015; 92:107-84. [DOI: 10.1016/bs.adgen.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Abstract
![]()
Circadian clocks are self-sustaining
timekeepers found in almost
all organisms on earth. The filamentous fungus Neurospora
crassa is a preeminent model for eukaryotic circadian clocks.
Investigations of the Neurospora circadian clock
system have led to elucidation of circadian clock regulatory mechanisms
that are common to all eukaryotes. In this work, we will focus on
the Neurospora circadian oscillator mechanism with
an emphasis on the regulation of the core clock component FREQUENCY.
Collapse
Affiliation(s)
- Joonseok Cha
- Department of Physiology, University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390-9040, United States
| | | | | |
Collapse
|
33
|
Abstract
Eukaryotic circadian clocks are comprised of interlocked autoregulatory feedback loops that control gene expression at the levels of transcription and translation. The filamentous fungus Neurospora crassa is an excellent model for the complex molecular network of regulatory mechanisms that are common to all eukaryotes. At the heart of the network, posttranslational regulation and functions of the core clock elements are of major interest. This chapter discusses the methods used currently to study the regulation of clock molecules in Neurospora. The methods range from assays of gene expression to phosphorylation, nuclear localization, and DNA binding of clock proteins.
Collapse
|
34
|
Xue Z, Ye Q, Anson SR, Yang J, Xiao G, Kowbel D, Glass NL, Crosthwaite SK, Liu Y. Transcriptional interference by antisense RNA is required for circadian clock function. Nature 2014; 514:650-3. [PMID: 25132551 PMCID: PMC4214883 DOI: 10.1038/nature13671] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 07/10/2014] [Indexed: 01/24/2023]
Abstract
Eukaryotic circadian oscillators consist of negative feedback loops that generate endogenous rhythmicities1. Natural antisense RNAs are found in a wide range of eukaryotic organisms2-5. Nevertheless, the physiological importance and mode of action of most antisense RNAs is not clear6-9. frequency (frq) encodes a component of the Neurospora core circadian negative feedback loop which was thought to generate sustained rhythmicity10. Transcription of qrf, the long non-coding frq antisense RNA, is light induced, and its level oscillates in antiphase to frq sense RNA3. Here we show that qrf transcription is regulated by both light-dependent and -independent mechanisms. Light-dependent qrf transcription represses frq expression and regulates clock resetting. qrf expression in the dark, on the other hand, is required for circadian rhythmicity. frq transcription also inhibits qrf expression and surprisingly, drives the antiphasic rhythm of qrf transcripts. The mutual inhibition of frq and qrf transcription thus forms a double negative feedback loop that is interlocked with the core feedback loop. Genetic and mathematical modeling analyses indicate that such an arrangement is required for robust and sustained circadian rhythmicity. Moreover, our results suggest that antisense transcription inhibits sense expression by mediating chromatin modifications and premature transcription termination. Together, our results established antisense transcription as an essential feature in a circadian system and shed light on the importance and mechanism of antisense action.
Collapse
Affiliation(s)
- Zhihong Xue
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Qiaohong Ye
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Simon R Anson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jichen Yang
- Department of Clinical Sciences, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Guanghua Xiao
- Department of Clinical Sciences, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - David Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| |
Collapse
|
35
|
Ruger-Herreros C, Gil-Sánchez MDM, Sancar G, Brunner M, Corrochano LM. Alteration of light-dependent gene regulation by the absence of the RCO-1/RCM-1 repressor complex in the fungus Neurospora crassa. PLoS One 2014; 9:e95069. [PMID: 24747913 PMCID: PMC3991626 DOI: 10.1371/journal.pone.0095069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/23/2014] [Indexed: 12/04/2022] Open
Abstract
The activation of transcription by light in the fungus Neurospora crassa requires the White Collar Complex (WCC), a photoreceptor and transcription factor complex. After light reception two WCCs interact and bind the promoters of light-regulated genes to activate transcription. This process is regulated by VVD, a small photoreceptor that disrupts the interaction between WCCs and leads to a reduction in transcription after long exposures to light. The N. crassa RCO-1/RCM-1 repressor complex is the homolog of the Tup1-Ssn6 repressor complex in yeast, and its absence modifies photoadaptation. We show that the absence of the RCO-1/RCM-1 repressor complex leads to several alterations in transcription that are gene-specific: an increase in the accumulation of mRNAs in the dark, a repression of transcription, and a derepression of transcription after long exposures to light. The absence of the RCO-1/RCM-1 repressor complex leads to lower VVD levels that are available for the regulation of the activity of the WCC. The reduction in the amount of VVD results in increased WCC binding to the promoters of light-regulated genes in the dark and after long exposures to light, leading to the modification of photoadaptation that has been observed in rco-1 and rcm-1 mutants. Our results show that the photoadaptation phenotype of mutants in the RCO-1/RCM-1 repressor complex is, at least in part, an indirect consequence of the reduction of vvd transcription, and the resulting modification in the regulation of transcription by the WCC.
Collapse
Affiliation(s)
| | | | - Gencer Sancar
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Michael Brunner
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|