1
|
Dawson LE, Sekar A, Fulford AD, Lambert RI, Burgess HS, Ribeiro PS. The deubiquitylating enzyme Fat facets promotes Fat signalling and restricts tissue growth. Nat Commun 2025; 16:1938. [PMID: 39994229 PMCID: PMC11850632 DOI: 10.1038/s41467-025-57164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Tissue growth is regulated by many signals, including polarity cues. The Hippo signalling pathway restricts tissue growth and receives inputs from the planar cell polarity-controlling Fat signalling pathway. The atypical cadherin Fat restricts growth via several mechanisms that ultimately control the activity of the pro-growth transcriptional co-activator Yorkie. Fat signalling activates the Yorkie inhibitory kinase Warts, and modulates the function of the FERM protein Expanded, which promotes Hippo signalling and also directly inhibits Yorkie. Although several Fat pathway activity modulators are known to be involved in ubiquitylation, the role of this post-translational modification in the pathway remains unclear. Moreover, no deubiquitylating enzymes have been described in this pathway. Here, using in vivo RNAi screening, we identify the deubiquitylating enzyme Fat facets as a positive regulator of Fat signalling with roles in tissue growth control. Fat facets interacts genetically and physically with Fat signalling components and regulates Yorkie target gene expression. Thus, we uncover a role for reversible ubiquitylation in the control of Fat signalling and tissue growth regulation.
Collapse
Affiliation(s)
- Lauren E Dawson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, Fulham Road, London, UK
| | - Aashika Sekar
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London, UK
| | - Alexander D Fulford
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel I Lambert
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Hannah S Burgess
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK.
| |
Collapse
|
2
|
Tokamov SA, Buiter S, Ullyot A, Scepanovic G, Williams AM, Fernandez-Gonzalez R, Horne-Badovinac S, Fehon RG. Cortical tension promotes Kibra degradation via Par-1. Mol Biol Cell 2024; 35:ar2. [PMID: 37903240 PMCID: PMC10881160 DOI: 10.1091/mbc.e23-06-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
The Hippo pathway is an evolutionarily conserved regulator of tissue growth. Multiple Hippo signaling components are regulated via proteolytic degradation. However, how these degradation mechanisms are themselves modulated remains unexplored. Kibra is a key upstream pathway activator that promotes its own ubiquitin-mediated degradation upon assembling a Hippo signaling complex. Here, we demonstrate that Hippo complex-dependent Kibra degradation is modulated by cortical tension. Using classical genetic, osmotic, and pharmacological manipulations of myosin activity and cortical tension, we show that increasing cortical tension leads to Kibra degradation, whereas decreasing cortical tension increases Kibra abundance. Our study also implicates Par-1 in regulating Kib abundance downstream of cortical tension. We demonstrate that Par-1 promotes ubiquitin-mediated Kib degradation in a Hippo complex-dependent manner and is required for tension-induced Kib degradation. Collectively, our results reveal a previously unknown molecular mechanism by which cortical tension affects Hippo signaling and provide novel insights into the role of mechanical forces in growth control.
Collapse
Affiliation(s)
- Sherzod A. Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Stephan Buiter
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Anne Ullyot
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Gordana Scepanovic
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Audrey Miller Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering and Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
3
|
Fiedler J, Moennig T, Hinrichs JH, Weber A, Wagner T, Hemmer T, Schröter R, Weide T, Epting D, Bergmann C, Nedvetsky P, Krahn MP. PATJ inhibits histone deacetylase 7 to control tight junction formation and cell polarity. Cell Mol Life Sci 2023; 80:333. [PMID: 37878054 PMCID: PMC10600057 DOI: 10.1007/s00018-023-04994-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
The conserved multiple PDZ-domain containing protein PATJ stabilizes the Crumbs-Pals1 complex to regulate apical-basal polarity and tight junction formation in epithelial cells. However, the molecular mechanism of PATJ's function in these processes is still unclear. In this study, we demonstrate that knockout of PATJ in epithelial cells results in tight junction defects as well as in a disturbed apical-basal polarity and impaired lumen formation in three-dimensional cyst assays. Mechanistically, we found PATJ to associate with and inhibit histone deacetylase 7 (HDAC7). Inhibition or downregulation of HDAC7 restores polarity and lumen formation. Gene expression analysis of PATJ-deficient cells revealed an impaired expression of genes involved in cell junction assembly and membrane organization, which is rescued by the downregulation of HDAC7. Notably, the function of PATJ regulating HDAC7-dependent cilia formation does not depend on its canonical interaction partner, Pals1, indicating a new role of PATJ, which is distinct from its function in the Crumbs complex. By contrast, polarity and lumen phenotypes observed in Pals1- and PATJ-deficient epithelial cells can be rescued by inhibition of HDAC7, suggesting that the main function of this polarity complex in this process is to modulate the transcriptional profile of epithelial cells by inhibiting HDAC7.
Collapse
Affiliation(s)
- Julia Fiedler
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Moennig
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Johanna H Hinrichs
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Annika Weber
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Wagner
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Tim Hemmer
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Rita Schröter
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Weide
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Daniel Epting
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
- Medizinische Genetik Mainz, Limbach Genetics, 55128, Mainz, Germany
| | - Pavel Nedvetsky
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Michael P Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany.
| |
Collapse
|
4
|
Gou J, Zhang T, Othmer HG. The Interaction of Mechanics and the Hippo Pathway in Drosophila melanogaster. Cancers (Basel) 2023; 15:4840. [PMID: 37835534 PMCID: PMC10571775 DOI: 10.3390/cancers15194840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Drosophila melanogaster has emerged as an ideal system for studying the networks that control tissue development and homeostasis and, given the similarity of the pathways involved, controlled and uncontrolled growth in mammalian systems. The signaling pathways used in patterning the Drosophila wing disc are well known and result in the emergence of interaction of these pathways with the Hippo signaling pathway, which plays a central role in controlling cell proliferation and apoptosis. Mechanical effects are another major factor in the control of growth, but far less is known about how they exert their control. Herein, we develop a mathematical model that integrates the mechanical interactions between cells, which occur via adherens and tight junctions, with the intracellular actin network and the Hippo pathway so as to better understand cell-autonomous and non-autonomous control of growth in response to mechanical forces.
Collapse
Affiliation(s)
- Jia Gou
- Department of Mathematics, University of California, Riverside, CA 92507, USA;
| | - Tianhao Zhang
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
5
|
Song S, Ma X. E2 enzyme Bruce negatively regulates Hippo signaling through POSH-mediated expanded degradation. Cell Death Dis 2023; 14:602. [PMID: 37699871 PMCID: PMC10497580 DOI: 10.1038/s41419-023-06130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
The Hippo pathway is a master regulator of organ growth, stem cell renewal, and tumorigenesis, its activation is tightly controlled by various post-translational modifications, including ubiquitination. While several E3 ubiquitin ligases have been identified as regulators of Hippo pathway, the corresponding E2 ubiquitin-conjugating enzymes (E2s) remain unknown. Here, we performed a screen in Drosophila to identify E2s involved in regulating wing overgrowth caused by the overexpression of Crumbs (Crb) intracellular domain and identified Bruce as a critical regulator. Loss of Bruce downregulates Hippo target gene expression and suppresses Hippo signaling inactivation induced tissue growth. Unexpectedly, our genetic data indicate that Bruce acts upstream of Expanded (Ex) but in parallel with the canonical Hippo (Hpo) -Warts (Wts) cascade to regulate Yorkie (Yki), the downstream effector of Hippo pathway. Mechanistically, Bruce synergizes with E3 ligase POSH to regulate growth and ubiquitination-mediated Ex degradation. Moreover, we demonstrate that Bruce is required for Hippo-mediated malignant tumor progression. Altogether, our findings unveil Bruce as a crucial E2 enzyme that bridges the signal from the cell surface to regulate Hippo pathway activation in Drosophila.
Collapse
Affiliation(s)
- Sha Song
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Xianjue Ma
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
6
|
Fulford AD, Enderle L, Rusch J, Hodzic D, Holder MV, Earl A, Oh RH, Tapon N, McNeill H. Expanded directly binds conserved regions of Fat to restrain growth via the Hippo pathway. J Cell Biol 2023; 222:e202204059. [PMID: 37071483 PMCID: PMC10120405 DOI: 10.1083/jcb.202204059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 04/19/2023] Open
Abstract
The Hippo pathway is a conserved and critical regulator of tissue growth. The FERM protein Expanded is a key signaling hub that promotes activation of the Hippo pathway, thereby inhibiting the transcriptional co-activator Yorkie. Previous work identified the polarity determinant Crumbs as a primary regulator of Expanded. Here, we show that the giant cadherin Fat also regulates Expanded directly and independently of Crumbs. We show that direct binding between Expanded and a highly conserved region of the Fat cytoplasmic domain recruits Expanded to the apicolateral junctional zone and stabilizes Expanded. In vivo deletion of Expanded binding regions in Fat causes loss of apical Expanded and promotes tissue overgrowth. Unexpectedly, we find Fat can bind its ligand Dachsous via interactions of their cytoplasmic domains, in addition to the known extracellular interactions. Importantly, Expanded is stabilized by Fat independently of Dachsous binding. These data provide new mechanistic insights into how Fat regulates Expanded, and how Hippo signaling is regulated during organ growth.
Collapse
Affiliation(s)
- Alexander D. Fulford
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Leonie Enderle
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jannette Rusch
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Didier Hodzic
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Maxine V. Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK
| | - Alex Earl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Robin Hyunseo Oh
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Kim LH, Kim JY, Xu YY, Lim MA, Koo BS, Kim JH, Yoon SE, Kim YJ, Choi KW, Chang JW, Hong ST. Tctp, a unique Ing5-binding partner, inhibits the chromatin binding of Enok in Drosophila. Proc Natl Acad Sci U S A 2023; 120:e2218361120. [PMID: 37014852 PMCID: PMC10104566 DOI: 10.1073/pnas.2218361120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/26/2023] [Indexed: 04/05/2023] Open
Abstract
The MOZ/MORF histone acetyltransferase complex is highly conserved in eukaryotes and controls transcription, development, and tumorigenesis. However, little is known about how its chromatin localization is regulated. Inhibitor of growth 5 (ING5) tumor suppressor is a subunit of the MOZ/MORF complex. Nevertheless, the in vivo function of ING5 remains unclear. Here, we report an antagonistic interaction between Drosophila Translationally controlled tumor protein (TCTP) (Tctp) and ING5 (Ing5) required for chromatin localization of the MOZ/MORF (Enok) complex and H3K23 acetylation. Yeast two-hybrid screening using Tctp identified Ing5 as a unique binding partner. In vivo, Ing5 controlled differentiation and down-regulated epidermal growth factor receptor signaling, whereas it is required in the Yorkie (Yki) pathway to determine organ size. Ing5 and Enok mutants promoted tumor-like tissue overgrowth when combined with uncontrolled Yki activity. Tctp depletion rescued the abnormal phenotypes of the Ing5 mutation and increased the nuclear translocation of Ing5 and chromatin binding of Enok. Nonfunctional Enok promoted the nuclear translocation of Ing5 by reducing Tctp, indicating a feedback mechanism between Tctp, Ing5, and Enok to regulate histone acetylation. Therefore, Tctp is essential for H3K23 acetylation by controlling the nuclear translocation of Ing5 and chromatin localization of Enok, providing insights into the roles of human TCTP and ING5-MOZ/MORF in tumorigenesis.
Collapse
Affiliation(s)
- Lee-Hyang Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Ja-Young Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Yu-Ying Xu
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Jung Hae Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Sung-Eun Yoon
- Korea Drosophila Resource Center, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Daejeon34141, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| |
Collapse
|
8
|
Zhang X, Liu Y, Zhang T, Tan Y, Dai X, Yang YG, Zhang X. Advances in the potential roles of Cullin-RING ligases in regulating autoimmune diseases. Front Immunol 2023; 14:1125224. [PMID: 37006236 PMCID: PMC10064048 DOI: 10.3389/fimmu.2023.1125224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Cullin-RING ligases (CRLs) are the largest class of E3 ubiquitin ligases regulating the stability and subsequent activity of a large number of important proteins responsible for the development and progression of various diseases, including autoimmune diseases (AIDs). However, the detailed mechanisms of the pathogenesis of AIDs are complicated and involve multiple signaling pathways. An in-depth understanding of the underlying regulatory mechanisms of the initiation and progression of AIDs will aid in the development of effective therapeutic strategies. CRLs play critical roles in regulating AIDs, partially by affecting the key inflammation-associated pathways such as NF-κB, JAK/STAT, and TGF-β. In this review, we summarize and discuss the potential roles of CRLs in the inflammatory signaling pathways and pathogenesis of AIDs. Furthermore, advances in the development of novel therapeutic strategies for AIDs through targeting CRLs are also highlighted.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Tong Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Yuying Tan
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Yong-Guang Yang, ; Xiaoling Zhang,
| |
Collapse
|
9
|
Ptp61F integrates Hippo, TOR, and actomyosin pathways to control three-dimensional organ size. Cell Rep 2022; 41:111640. [DOI: 10.1016/j.celrep.2022.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
|
10
|
Wu H, Zhu N, Liu J, Ma J, Jiao R. Shaggy regulates tissue growth through Hippo pathway in Drosophila. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2131-2144. [PMID: 36057002 DOI: 10.1007/s11427-022-2156-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The evolutionarily conserved Hippo pathway coordinates cell proliferation, differentiation and apoptosis to regulate organ growth and tumorigenesis. Hippo signaling activity is tightly controlled by various upstream signals including growth factors and cell polarity, but the full extent to which the pathway is regulated during development remains to be resolved. Here, we report the identification of Shaggy, the homolog of mammalian Gsk3β, as a novel regulator of the Hippo pathway in Drosophila. Our results show that Shaggy promotes the expression of Hippo target genes in a manner that is dependent on its kinase activity. Loss of Shaggy leads to Yorkie inhibition and downregulation of Hippo pathway target genes. Mechanistically, Shaggy acts upstream of the Hippo pathway and negatively regulates the abundance of the FERM domain containing adaptor protein Expanded. Our results reveal that Shaggy is functionally required for Crumbs/Slmb-mediated downregulation of Expanded in vivo, providing a potential molecular link between cellular architecture and the Hippo signaling pathway.
Collapse
Affiliation(s)
- Honggang Wu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Nannan Zhu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiyong Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jun Ma
- Women's Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
11
|
Gridnev A, Misra JR. Emerging Mechanisms of Growth and Patterning Regulation by Dachsous and Fat Protocadherins. Front Cell Dev Biol 2022; 10:842593. [PMID: 35372364 PMCID: PMC8967653 DOI: 10.3389/fcell.2022.842593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Dachsous (Ds) and Fat are evolutionarily conserved cell adhesion molecules that play a critical role in development of multiple organ systems, where they coordinate tissue growth and morphogenesis. Much of our understanding of Ds-Fat signaling pathway comes from studies in Drosophila, where they initiate a signaling pathway that regulate growth by influencing Hippo signaling and morphogenesis by regulating Planar Cell Polarity (PCP). In this review, we discuss recent advances in our understanding of the mechanisms by which Ds-Fat signaling pathway regulates these critical developmental processes. Further, we discuss the progress in our understanding about how they function in mammals.
Collapse
|
12
|
Wang G, Zhai C, Ji X, Wang E, Zhao S, Qian C, Yu D, Wang Y, Wu S. C‐terminal‐mediated homodimerization of Expanded is critical for its ability to promote Hippo signaling in
Drosophila. FEBS Lett 2022; 596:1628-1638. [DOI: 10.1002/1873-3468.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Guiping Wang
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Chaojun Zhai
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Xiaohui Ji
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Enlin Wang
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Shanshan Zhao
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Chenxi Qian
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Dongyue Yu
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Yunfeng Wang
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| | - Shian Wu
- The State Key Laboratory of Medicinal Chemical Biology Tianjin Key Laboratory of Protein Sciences College of Life Sciences Nankai University Tianjin 300071 China
| |
Collapse
|
13
|
Li N, Xiao K, Mi X, Li N, Guo L, Wang X, Sun Y, Li GD, Zhou Y. Ghrelin signaling in dCA1 suppresses neuronal excitability and impairs memory acquisition via PI3K/Akt/GSK-3β cascades. Neuropharmacology 2022; 203:108871. [PMID: 34742928 DOI: 10.1016/j.neuropharm.2021.108871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022]
Abstract
Ghrelin is a circulating peptide hormone that promotes feeding and regulates metabolism in humans and rodents. The action of ghrelin is mediated by the growth hormone secretagogue receptor type 1a (GHSR-1a) that is widely distributed in the brain, including the hippocampus. Studies have demonstrated the critical role of hippocampal ghrelin/GHS-R1a signaling in synaptic physiology and memory. However, those findings are controversial, and the mechanism underlying ghrelin modulation of learning and memory is uncertain. Here, we report that micro-infusion of ghrelin in the CA1 region of the dorsal hippocampus during training specifically impairs memory acquisition. The activation of GHS-R1a and the subsequent PI3K/Akt/GSK3β signaling cascades are involved in this process. Moreover, we report that bath application of ghrelin suppresses the intrinsic excitability of dCA1 pyramidal neurons through activating GHS-R1a, and PI3K inhibitor LY294002 blocks ghrelin's effect. However, LY294002 fails to rescue ghrelin-induced LTP impairment. Our findings support an adverse effect of ghrelin-dependent activation of GHS-R1a on memory acquisition, and suggest that PI3K/Akt/GSK3β signaling-dependent repression of neuronal intrinsic excitability is an important novel mechanism underlying memory inhibition of ghrelin in the hippocampus.
Collapse
Affiliation(s)
- Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Kewei Xiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xue Mi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Na Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Li Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiaorong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, United States
| | - Guo-Dong Li
- Department of Surgery, Valley Presbyterian Hospital, Van Nuys, CA, 91405, United States
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China; Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shangdong, 266000, China.
| |
Collapse
|
14
|
Mok JW, Choi KW. Modulation of Hippo signaling by Mnat9 N-acetyltransferase for normal growth and tumorigenesis in Drosophila. Cell Death Dis 2022; 13:101. [PMID: 35110540 PMCID: PMC8810759 DOI: 10.1038/s41419-022-04532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/25/2021] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Abstract
AbstractHippo signaling is a conserved mechanism for controlling organ growth. Increasing evidence suggests that Hippo signaling is modulated by various cellular factors for normal development and tumorigenesis. Hence, identification of these factors is pivotal for understanding the mechanism for the regulation of Hippo signaling. Drosophila Mnat9 is a putative N-acetyltransferase that is required for cell survival by affecting JNK signaling. Here we show that Mnat9 is involved in the negative regulation of Hippo signaling. RNAi knockdown of Mnat9 in the eye disc suppresses the rough eye phenotype of overexpressing Crumbs (Crb), an upstream factor of the Hippo pathway. Conversely, Mnat9 RNAi enhances the eye phenotype caused by overexpressing Expanded (Ex) or Warts (Wts) that acts downstream to Crb. Similar genetic interactions between Mnat9 and Hippo pathway genes are found in the wing. The reduced wing phenotype of Mnat9 RNAi is suppressed by overexpression of Yorkie (Yki), while it is suppressed by knockdown of Hippo upstream factors like Ex, Merlin, or Kibra. Mnat9 co-immunoprecipitates with Mer, implying their function in a protein complex. Furthermore, Mnat9 overexpression together with Hpo knockdown causes tumorous overgrowth in the abdomen. Our data suggest that Mnat9 is required for organ growth and can induce tumorous growth by negatively regulating the Hippo signaling pathway.
Collapse
|
15
|
Pojer JM, Saiful Hilmi AJ, Kondo S, Harvey KF. Crumbs and the apical spectrin cytoskeleton regulate R8 cell fate in the Drosophila eye. PLoS Genet 2021; 17:e1009146. [PMID: 34097697 PMCID: PMC8211197 DOI: 10.1371/journal.pgen.1009146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/17/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
The Hippo pathway is an important regulator of organ growth and cell fate. In the R8 photoreceptor cells of the Drosophila melanogaster eye, the Hippo pathway controls the fate choice between one of two subtypes that express either the blue light-sensitive Rhodopsin 5 (Hippo inactive R8 subtype) or the green light-sensitive Rhodopsin 6 (Hippo active R8 subtype). The degree to which the mechanism of Hippo signal transduction and the proteins that mediate it are conserved in organ growth and R8 cell fate choice is currently unclear. Here, we identify Crumbs and the apical spectrin cytoskeleton as regulators of R8 cell fate. By contrast, other proteins that influence Hippo-dependent organ growth, such as the basolateral spectrin cytoskeleton and Ajuba, are dispensable for the R8 cell fate choice. Surprisingly, Crumbs promotes the Rhodopsin 5 cell fate, which is driven by Yorkie, rather than the Rhodopsin 6 cell fate, which is driven by Warts and the Hippo pathway, which contrasts with its impact on Hippo activity in organ growth. Furthermore, neither the apical spectrin cytoskeleton nor Crumbs appear to regulate the Hippo pathway through mechanisms that have been observed in growing organs. Together, these results show that only a subset of Hippo pathway proteins regulate the R8 binary cell fate decision and that aspects of Hippo signalling differ between growing organs and post-mitotic R8 cells.
Collapse
Affiliation(s)
- Jonathan M. Pojer
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdul Jabbar Saiful Hilmi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
16
|
Tokamov SA, Su T, Ullyot A, Fehon RG. Negative feedback couples Hippo pathway activation with Kibra degradation independent of Yorkie-mediated transcription. eLife 2021; 10:62326. [PMID: 33555257 PMCID: PMC7895526 DOI: 10.7554/elife.62326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
The Hippo (Hpo) pathway regulates tissue growth in many animals. Multiple upstream components promote Hpo pathway activity, but the organization of these different inputs, the degree of crosstalk between them, and whether they are regulated in a distinct manner is not well understood. Kibra (Kib) activates the Hpo pathway by recruiting the core Hpo kinase cassette to the apical cortex. Here, we show that the Hpo pathway downregulates Drosophila Kib levels independently of Yorkie-mediated transcription. We find that Hpo signaling complex formation promotes Kib degradation via SCFSlimb-mediated ubiquitination, that this effect requires Merlin, Salvador, Hpo, and Warts, and that this mechanism functions independently of other upstream Hpo pathway activators. Moreover, Kib degradation appears patterned by differences in mechanical tension across the wing. We propose that Kib degradation mediated by Hpo pathway components and regulated by cytoskeletal tension serves to control Kib-driven Hpo pathway activation and ensure optimally scaled and patterned tissue growth.
Collapse
Affiliation(s)
- Sherzod A Tokamov
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, United States
| | - Ting Su
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Anne Ullyot
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
17
|
Martin E, Girardello R, Dittmar G, Ludwig A. New insights into the organization and regulation of the apical polarity network in mammalian epithelial cells. FEBS J 2021; 288:7073-7095. [DOI: 10.1111/febs.15710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Rossana Girardello
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Sciences and Medicine University of Luxembourg Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- NTU Institute of Structural Biology (NISB) Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| |
Collapse
|
18
|
Abstract
The Hippo pathway is an evolutionarily conserved regulator of organ growth and tumorigenesis. In Drosophila, oncogenic RasV12 cooperates with loss-of-cell polarity to promote Hippo pathway-dependent tumor growth. To identify additional factors that modulate this signaling, we performed a genetic screen utilizing the Drosophila Ras V12 /lgl -/- in vivo tumor model and identified Rox8, a RNA-binding protein (RBP), as a positive regulator of the Hippo pathway. We found that Rox8 overexpression suppresses whereas Rox8 depletion potentiates Hippo-dependent tissue overgrowth, accompanied by altered Yki protein level and target gene expression. Mechanistically, Rox8 directly binds to a target site located in the yki 3' UTR, recruits and stabilizes the targeting of miR-8-loaded RISC, which accelerates the decay of yki messenger RNA (mRNA). Moreover, TIAR, the human ortholog of Rox8, is able to promote the degradation of yki mRNA when introduced into Drosophila and destabilizes YAP mRNA in human cells. Thus, our study provides in vivo evidence that the Hippo pathway is posttranscriptionally regulated by the collaborative action of RBP and microRNA (miRNA), which may provide an approach for modulating Hippo pathway-mediated tumorigenesis.
Collapse
|
19
|
Zhang B, Binks T, Burke R. The E3 ubiquitin ligase Slimb/β-TrCP is required for normal copper homeostasis in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118768. [DOI: 10.1016/j.bbamcr.2020.118768] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/27/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022]
|
20
|
Mohammadi S, Arefnezhad R, Danaii S, Yousefi M. New insights into the core Hippo signaling and biological macromolecules interactions in the biology of solid tumors. Biofactors 2020; 46:514-530. [PMID: 32445262 DOI: 10.1002/biof.1634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022]
Abstract
As an evolutionarily conserved pathway, Hippo signaling pathway impacts different pathology and physiology processes such as wound healing, tissue repair/size and regeneration. When some components of Hippo signaling dysregulated, it affects cancer cells proliferation. Moreover, the relation Hippo pathway with other signaling including Wnt, TGFβ, Notch, and EGFR signaling leaves effect on the proliferation of cancer cells. Utilizing a number of therapeutic approaches, such as siRNAs and long noncoding RNA (lncRNA) to prevent cancer cells through the targeting of Hippo pathways, can provide new insights into cancer target therapy. The purpose of present review, first of all, is to demonstrate the importance of Hippo signaling and its relation with other signaling pathways in cancer. It also tries to demonstrate targeting Hippo signaling progress in cancer therapy.
Collapse
Affiliation(s)
- Solmaz Mohammadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Depatment of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Hwang JH, Vuong LT, Choi KW. Crumbs, Galla and Xpd are required for Kinesin-5 regulation in mitosis and organ growth in Drosophila. J Cell Sci 2020; 133:jcs246801. [PMID: 32501288 DOI: 10.1242/jcs.246801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Xeroderma Pigmentosum D (XPD, also known as ERCC2) is a multi-functional protein involved in transcription, DNA repair and chromosome segregation. In Drosophila, Xpd interacts with Crumbs (Crb) and Galla to regulate mitosis during embryogenesis. It is unknown how these proteins are linked to mitosis. Here, we show that Crb, Galla-2 and Xpd regulate nuclear division in the syncytial embryo by interacting with Klp61F, the Drosophila mitotic Kinesin-5 associated with bipolar spindles. Crb, Galla-2 and Xpd physically interact with Klp61F and colocalize to mitotic spindles. Knockdown of any of these proteins results in similar mitotic defects. These phenotypes are restored by overexpression of Klp61F, suggesting that Klp61F is a major effector. Mitotic defects of galla-2 RNAi are suppressed by Xpd overexpression but not vice versa. Depletion of Crb, Galla-2 or Xpd results in a reduction of Klp61F levels. Reducing proteasome function restores Klp61F levels and suppresses mitotic defects caused by knockdown of Crb, Galla-2 or Xpd. Furthermore, eye growth is regulated by Xpd and Klp61F. Hence, we propose that Crb, Galla-2 and Xpd interact to maintain the level of Klp61F during mitosis and organ growth.
Collapse
Affiliation(s)
- Ji-Hyun Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Linh Thuong Vuong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
22
|
The extracellular and intracellular regions of Crb2a play distinct roles in guiding the formation of the apical zonula adherens. Biomed Pharmacother 2020; 125:109942. [PMID: 32044715 DOI: 10.1016/j.biopha.2020.109942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/22/2022] Open
Abstract
The transmembrane protein Crumbs (Crb), a key regulator of apical polarity, has a known involvement in establishment of the apical zonula adherens in epithelia, although the precise mechanism remains elusive. The zonula adherens are required to maintain the integrity and orderly arrangement of epithelia. Loss of the zonula adherens leads to morphogenetic defects in the tissues derived from epithelium. In this study, we revealed that the intracellular tail of Crb2a promoted the apical distribution of adherens junctions (AJs) in zebrafish retinal and lens epithelia, but caused assembly into unstable punctum adherens-like adhesion plaques. The extracellular region of Crb2a guided the transformation of AJs from the punctum adherens into stable zonula adherens. Accordingly, a truncated form of Crb2a lacking the extracellular region (Crb2aΔEX) could only partially rescue the retinal patterning defects in crb2a null mutant zebrafish (crb2am289). By contrast, constitutive over-expression of Crb2aΔEX disrupted the integrity of the outer limiting membrane in photoreceptors, which is derived from the zonula adherens of the retinal neuroepithelium. This study demonstrated that both the extracellular region and the intracellular tail of Crb2a are required to guide the formation of the apical zonula adherens.
Collapse
|
23
|
Fat/Dachsous family cadherins in cell and tissue organisation. Curr Opin Cell Biol 2020; 62:96-103. [DOI: 10.1016/j.ceb.2019.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
|
24
|
Fulford AD, Holder MV, Frith D, Snijders AP, Tapon N, Ribeiro PS. Casein kinase 1 family proteins promote Slimb-dependent Expanded degradation. eLife 2019; 8:e46592. [PMID: 31567070 PMCID: PMC6768662 DOI: 10.7554/elife.46592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Hippo signalling integrates diverse stimuli related to epithelial architecture to regulate tissue growth and cell fate decisions. The Hippo kinase cascade represses the growth-promoting transcription co-activator Yorkie. The FERM protein Expanded is one of the main upstream Hippo signalling regulators in Drosophila as it promotes Hippo kinase signalling and directly inhibits Yorkie. To fulfil its function, Expanded is recruited to the plasma membrane by the polarity protein Crumbs. However, Crumbs-mediated recruitment also promotes Expanded turnover via a phosphodegron-mediated interaction with a Slimb/β-TrCP SCF E3 ligase complex. Here, we show that the Casein Kinase 1 (CKI) family is required for Expanded phosphorylation. CKI expression promotes Expanded phosphorylation and interaction with Slimb/β-TrCP. Conversely, CKI depletion in S2 cells impairs Expanded degradation downstream of Crumbs. In wing imaginal discs, CKI loss leads to elevated Expanded and Crumbs levels. Thus, phospho-dependent Expanded turnover ensures a tight coupling of Hippo pathway activity to epithelial architecture.
Collapse
Affiliation(s)
- Alexander D Fulford
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUnited Kingdom
- Department of Developmental BiologyWashington University School of MedicineSt. LouisUnited States
| | - Maxine V Holder
- Apoptosis and Proliferation Control LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - David Frith
- ProteomicsThe Francis Crick InstituteLondonUnited Kingdom
| | | | - Nicolas Tapon
- Apoptosis and Proliferation Control LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
25
|
Usp7 regulates Hippo pathway through deubiquitinating the transcriptional coactivator Yorkie. Nat Commun 2019; 10:411. [PMID: 30679505 PMCID: PMC6345853 DOI: 10.1038/s41467-019-08334-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022] Open
Abstract
The Hippo pathway plays an important role in organ development and adult tissue homeostasis, and its deregulation has been implicated in many cancers. The Hippo signaling relies on a core kinase cascade culminating in phosphorylation of the transcription coactivator Yorkie (Yki). Although Yki is the key effector of Hippo pathway, the regulation of its protein stability is still unclear. Here, we show that Hippo pathway attenuates the binding of a ubiquitin-specific protease Usp7 to Yki, which regulates Hippo signaling through deubiquitinating Yki. Furthermore, the mammalian homolog of Usp7, HAUSP plays a conserved role in regulating Hippo pathway by modulating Yap ubiquitination and degradation. Finally, we find that the expression of HAUSP is positively correlated with that of Yap, both showing upregulated levels in clinical hepatocellular carcinoma (HCC) specimens. In summary, our findings demonstrate that Yki/Yap is stabilized by Usp7/HAUSP, and provide HAUSP as a potential therapeutic target for HCC. Hippo signaling leads to the phosphorylation of the key transcriptional effector, Yap/Yki, although how Yap/Yki stability is regulated has remained unclear. Here, Sun et al. identify HAUSP/Usp7 as a conserved and clinically relevant regulator of the Hippo pathway that increases Yap/Yki stability.
Collapse
|
26
|
Fat-regulated adaptor protein Dlish binds the growth suppressor Expanded and controls its stability and ubiquitination. Proc Natl Acad Sci U S A 2019; 116:1319-1324. [PMID: 30606799 PMCID: PMC6347691 DOI: 10.1073/pnas.1811891116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To regulate the growth and size of organs, cells can use information from their neighbors to modify intracellular mediators of cell proliferation. The intracellular Hippo pathway is a widely utilized nexus for growth control in animals, but its regulation by extracellular signals is not fully understood. We here identify a pathway that regulates organ size in Drosophila, triggered by the transmembrane receptor, the giant protocadherin Fat. We show that the Fat-regulated SH3 domain adaptor protein Dlish binds to and reduces the stability of the growth suppressor Expanded, a known regulator of the Hippo pathway. The destabilization of Expanded by Dlish works in parallel to a previously established pathway in which Dlish increases levels of the growth-stimulating protein Dachs. The Drosophila protocadherin Fat controls organ size through the Hippo pathway, but the biochemical links to the Hippo pathway components are still poorly defined. We previously identified Dlish, an SH3 domain protein that physically interacts with Fat and the type XX myosin Dachs, and showed that Fat’s regulation of Dlish levels and activity helps limit Dachs-mediated inhibition of Hippo pathway activity. We here characterize a parallel growth control pathway downstream of Fat and Dlish. Using immunoprecipitation and mass spectrometry to search for Dlish partners, we find that Dlish binds the FERM domain growth repressor Expanded (Ex); Dlish SH3 domains directly bind sites in the Ex C terminus. We further show that, in vivo, Dlish reduces the subapical accumulation of Ex, and that loss of Dlish blocks the destabilization of Ex caused by loss of Fat. Moreover, Dlish can bind the F-box E3 ubiquitin ligase Slimb and promote Slimb-mediated ubiquitination of Expanded in vitro. Both the in vitro and in vivo effects of Dlish on Ex require Slimb, strongly suggesting that Dlish destabilizes Ex by helping recruit Slimb-containing E3 ubiquitin ligase complexes to Ex.
Collapse
|
27
|
Fahey-Lozano N, La Marca JE, Portela M, Richardson HE. Drosophila Models of Cell Polarity and Cell Competition in Tumourigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:37-64. [PMID: 31520348 DOI: 10.1007/978-3-030-23629-8_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell competition is an important surveillance mechanism that measures relative fitness between cells in a tissue during development, homeostasis, and disease. Specifically, cells that are "less fit" (losers) are actively eliminated by relatively "more fit" (winners) neighbours, despite the less fit cells otherwise being able to survive in a genetically uniform tissue. Originally described in the epithelial tissues of Drosophila larval imaginal discs, cell competition has since been shown to occur in other epithelial and non-epithelial Drosophila tissues, as well as in mammalian model systems. Many genes and signalling pathways have been identified as playing conserved roles in the mechanisms of cell competition. Among them are genes required for the establishment and maintenance of apico-basal cell polarity: the Crumbs/Stardust/Patj (Crb/Sdt/Patj), Bazooka/Par-6/atypical Protein Kinase C (Baz/Par-6/aPKC), and Scribbled/Discs large 1/Lethal (2) giant larvae (Scrib/Dlg1/L(2)gl) modules. In this chapter, we describe the concepts and mechanisms of cell competition, with emphasis on the relationship between cell polarity proteins and cell competition, particularly the Scrib/Dlg1/L(2)gl module, since this is the best described module in this emerging field.
Collapse
Affiliation(s)
- Natasha Fahey-Lozano
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - John E La Marca
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
Abstract
Organ growth is fundamental to animal development. One of major mechanisms for growth control is mediated by the conserved Hippo signaling pathway initially identified in Drosophila. The core of this pathway in Drosophila consists of a cascade of protein kinases Hippo and Warts that negatively regulate transcriptional coactivator Yorkie (Yki). Activation of Yki promotes cell survival and proliferation to induce organ growth. A key issue in Hippo signaling is to understand how core kinase cascade is activated. Activation of Hippo kinase cascade is regulated in the upstream by at least two transmembrane proteins Crumbs and Fat that act in parallel. These membrane proteins interact with additional factors such as FERM-domain proteins Expanded and Merlin to modulate subcellular localization and function of the Hippo kinase cascade. Hippo signaling is also influenced by cytoskeletal networks and cell tension in epithelia of developing organs. These upstream events in the regulation of Hippo signaling are only partially understood. This review focuses on our current understanding of some upstream processes involved in Hippo signaling in developing Drosophila organs.
Collapse
Affiliation(s)
- Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
29
|
Kim Y, Jho EH. Regulation of the Hippo signaling pathway by ubiquitin modification. BMB Rep 2018; 51:143-150. [PMID: 29366444 PMCID: PMC5882221 DOI: 10.5483/bmbrep.2018.51.3.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 12/27/2022] Open
Abstract
The Hippo signaling pathway plays an essential role in adult tissue homeostasis and organ size control. Abnormal regulation of Hippo signaling can be a cause for multiple types of human cancers. Since the awareness of the importance of the Hippo signaling in a wide range of biological fields has been continually grown, it is also understood that a thorough and well-rounded comprehension of the precise dynamics could provide fundamental insights for therapeutic applications. Several components in the Hippo signaling pathway are known to be targeted for proteasomal degradation via ubiquitination by E3 ligases. β-TrCP is a well-known E3 ligase of YAP/TAZ, which leads to the reduction of YAP/TAZ levels. The Hippo signaling pathway can also be inhibited by the E3 ligases (such as ITCH) which target LATS1/2 for degradation. Regulation via ubiquitination involves not only complex network of E3 ligases but also deubiquitinating enzymes (DUBs), which remove ubiquitin from its targets. Interestingly, non-degradative ubiquitin modifications are also known to play important roles in the regulation of Hippo signaling. Although there has been much advanced progress in the investigation of ubiquitin modifications acting as regulators of the Hippo signaling pathway, research done to date still remains inadequate due to the sheer complexity and diversity of the subject. Herein, we review and discuss recent developments that implicate ubiquitin-mediated regulatory mechanisms at multiple steps of the Hippo signaling pathway. [BMB Reports 2018; 51(3): 143-150].
Collapse
Affiliation(s)
- Youngeun Kim
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
30
|
Moon S, Yeon Park S, Woo Park H. Regulation of the Hippo pathway in cancer biology. Cell Mol Life Sci 2018; 75:2303-2319. [PMID: 29602952 PMCID: PMC11105795 DOI: 10.1007/s00018-018-2804-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 01/23/2023]
Abstract
The Hippo tumor suppressor pathway, which is well conserved from Drosophila to humans, has emerged as the master regulator of organ size, as well as major cellular properties, such as cell proliferation, survival, stemness, and tissue homeostasis. The biological significance and deregulation of the Hippo pathway in tumorigenesis have received a surge of interest in the past decade. In the current review, we present the major discoveries that made substantial contributions to our understanding of the Hippo pathway and discuss how Hippo pathway components contribute to cellular signaling, physiology, and their potential implications in anticancer therapeutics.
Collapse
Affiliation(s)
- Sungho Moon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
31
|
Abstract
The Hippo signal transduction pathway is an important regulator of organ growth and cell differentiation, and its deregulation contributes to the development of cancer. The activity of the Hippo pathway is strongly dependent on cell junctions, cellular architecture, and the mechanical properties of the microenvironment. In this review, we discuss recent advances in our understanding of how cell junctions transduce signals from the microenvironment and control the activity of the Hippo pathway. We also discuss how these mechanisms may control organ growth during development and regeneration, and how defects in them deregulate Hippo signaling in cancer cells.
Collapse
Affiliation(s)
- Ruchan Karaman
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| | - Georg Halder
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
32
|
Fulford A, Tapon N, Ribeiro PS. Upstairs, downstairs: spatial regulation of Hippo signalling. Curr Opin Cell Biol 2018; 51:22-32. [PMID: 29154163 DOI: 10.1016/j.ceb.2017.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022]
Abstract
Cellular signalling lies at the heart of every decision involved in the development and homeostasis of multicellular organisms. The Hippo pathway was discovered nearly two decades ago through seminal work in Drosophila and rapidly emerged as a crucial signalling network implicated in developmental and oncogenic growth, tissue regeneration and stem cell biology. Here, we review recent advances in the field relating to the upstream regulation of Hippo signalling and the intracellular tug-of-war that tightly controls its main target, the transcriptional co-activator Yorkie/YAP.
Collapse
Affiliation(s)
- Alexander Fulford
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nicolas Tapon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
33
|
Cheng X, Zheng J, Li G, Göbel V, Zhang H. Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Biol Rev Camb Philos Soc 2018; 93:1438-1460. [PMID: 29493067 DOI: 10.1111/brv.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
As a prevalent post-translational modification, ubiquitination is essential for many developmental processes. Once covalently attached to the small and conserved polypeptide ubiquitin (Ub), a substrate protein can be directed to perform specific biological functions via its Ub-modified form. Three sequential catalytic reactions contribute to this process, among which E3 ligases serve to identify target substrates and promote the activated Ub to conjugate to substrate proteins. Ubiquitination has great plasticity, with diverse numbers, topologies and modifications of Ub chains conjugated at different substrate residues adding a layer of complexity that facilitates a huge range of cellular functions. Herein, we highlight key advances in the understanding of ubiquitination in epithelial morphogenesis, with an emphasis on the latest insights into its roles in cellular events involved in polarized epithelial tissue, including cell adhesion, asymmetric localization of polarity determinants and cytoskeletal organization. In addition, the physiological roles of ubiquitination are discussed for typical examples of epithelial morphogenesis, such as lung branching, vascular development and synaptic formation and plasticity. Our increased understanding of ubiquitination in epithelial morphogenesis may provide novel insights into the molecular mechanisms underlying epithelial regeneration and maintenance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Verena Göbel
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114,, U.S.A
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
34
|
Lin X, Wang F, Li Y, Zhai C, Wang G, Zhang X, Gao Y, Yi T, Sun D, Wu S. The SCF ubiquitin ligase Slimb controls Nerfin-1 turnover in Drosophila. Biochem Biophys Res Commun 2018; 495:629-633. [DOI: 10.1016/j.bbrc.2017.11.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
|
35
|
Su T, Ludwig MZ, Xu J, Fehon RG. Kibra and Merlin Activate the Hippo Pathway Spatially Distinct from and Independent of Expanded. Dev Cell 2017; 40:478-490.e3. [PMID: 28292426 DOI: 10.1016/j.devcel.2017.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/13/2016] [Accepted: 02/08/2017] [Indexed: 12/18/2022]
Abstract
The Hippo pathway is emerging as a key evolutionarily conserved signaling mechanism that controls organ size. Three membrane-associated proteins, Kibra, Merlin, and Expanded, regulate pathway activity, but the precise molecular mechanism by which they function is still poorly understood. Here we provide evidence that Merlin and Kibra activate Hippo signaling in parallel to Expanded at a spatially distinct cellular domain, the medial apical cortex. Merlin and Kibra together recruit the adapter protein Salvador, which in turn recruits the core kinase Hippo. In addition, we show that Crumbs has a dual effect on Hippo signaling. Crumbs promotes the ability of Expanded to activate the pathway but also sequesters Kibra to downregulate Hippo signaling. Together, our findings elucidate the mechanism of Hippo pathway activation by Merlin and Kibra, identify a subcellular domain for Hippo pathway regulation, and demonstrate differential activity of upstream regulators in different subcellular domains.
Collapse
Affiliation(s)
- Ting Su
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael Z Ludwig
- Department of Ecology and Evolutionary Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jiajie Xu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
36
|
Tissue growth and tumorigenesis in Drosophila: cell polarity and the Hippo pathway. Curr Opin Cell Biol 2017; 48:1-9. [PMID: 28364663 DOI: 10.1016/j.ceb.2017.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/17/2022]
Abstract
Cell polarity regulation is critical for defining membrane domains required for the establishment and maintenance of the apical-basal axis in epithelial cells (apico-basal polarity), asymmetric cell divisions, planar organization of tissues (planar cell polarity), and the formation of the front-rear axis in cell migration (front-rear polarity). In the vinegar fly, Drosophila melanogaster, cell polarity regulators also interact with the Hippo tissue growth control signaling pathway. In this review we survey the recent Drosophila literature linking cell polarity regulators with the Hippo pathway in epithelial tissue growth, neural stem cell asymmetric divisions and in cell migration in physiological and tumorigenic settings.
Collapse
|
37
|
Nemetschke L, Knust E. Drosophila Crumbs prevents ectopic Notch activation in developing wings by inhibiting ligand-independent endocytosis. Development 2016; 143:4543-4553. [DOI: 10.1242/dev.141762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
Many signalling components are apically restricted in epithelial cells, and receptor localisation and abundance is key for morphogenesis and tissue homeostasis. Hence, controlling apicobasal epithelial polarity is crucial for proper signalling. Notch is a ubiquitously expressed, apically localised receptor, which performs a plethora of functions; therefore, its activity has to be tightly regulated. Here, we show that Drosophila Crumbs, an evolutionarily conserved polarity determinant, prevents Notch endocytosis in developing wings through direct interaction between the two proteins. Notch endocytosis in the absence of Crumbs results in the activation of the ligand-independent, Deltex-dependent Notch signalling pathway, and does not require the ligands Delta and Serrate or γ-secretase activity. This function of Crumbs is not due to general defects in apicobasal polarity, as localisation of other apical proteins is unaffected. Our data reveal a mechanism to explain how Crumbs directly controls localisation and trafficking of the potent Notch receptor, and adds yet another aspect of Crumbs regulation in Notch pathway activity. Furthermore, our data highlight a close link between the apical determinant Crumbs, receptor trafficking and tissue homeostasis.
Collapse
Affiliation(s)
- Linda Nemetschke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
38
|
Hu L, Wang P, Zhao R, Li S, Wang F, Li C, Cao L, Wu S. The Drosophila F-box protein Slimb controls dSmurf protein turnover to regulate the Hippo pathway. Biochem Biophys Res Commun 2016; 482:317-322. [PMID: 27856247 DOI: 10.1016/j.bbrc.2016.11.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
Abstract
SMAD ubiquitination regulatory factors 1 and 2 (Smurf1/2) are members of the HECT domain E3 ligase family which play crucial roles in the regulation of cell cycle progression, planar cell polarity, cancer metastasis and cell apoptosis. We recently showed that the Drosophila homolog dSmurf controls the stability of Warts kinase to regulate the Hippo pathway. In the current study, we found that the F-box protein Slimb controls dSmurf protein level to regulate the Hippo pathway. Slimb physically associates with dSmurf as revealed by co-immunoprecipitation assay in S2 cells. The C-terminal WD40 repeats of Slimb (188-510 amino acid) and the C-terminal HECT domain of dSmurf (723-1061 amino acid) are necessary for their binding. Interaction with Slimb leads to the ubiquitination and degradation of dSmurf, resulting in negative regulation of dSmurf-mediated Yki phosphorylation and activity in the Hippo pathway. Thus our study revealed a new regulatory mechanism of the Hippo pathway which may provide implications for developing tumor treatment.
Collapse
Affiliation(s)
- Liangchang Hu
- The State Key Laboratory of Medicinal Chemical Biology and College of Life Science; Nankai University; Tianjin, PR China
| | - Ping Wang
- The State Key Laboratory of Medicinal Chemical Biology and College of Life Science; Nankai University; Tianjin, PR China
| | - Runan Zhao
- The State Key Laboratory of Medicinal Chemical Biology and College of Life Science; Nankai University; Tianjin, PR China
| | - Shanshan Li
- The State Key Laboratory of Medicinal Chemical Biology and College of Life Science; Nankai University; Tianjin, PR China
| | - Feng Wang
- The State Key Laboratory of Medicinal Chemical Biology and College of Life Science; Nankai University; Tianjin, PR China
| | - Chaojie Li
- The State Key Laboratory of Medicinal Chemical Biology and College of Life Science; Nankai University; Tianjin, PR China
| | - Lei Cao
- The State Key Laboratory of Medicinal Chemical Biology and College of Life Science; Nankai University; Tianjin, PR China
| | - Shian Wu
- The State Key Laboratory of Medicinal Chemical Biology and College of Life Science; Nankai University; Tianjin, PR China.
| |
Collapse
|
39
|
Zhang Y, Wang X, Matakatsu H, Fehon R, Blair SS. The novel SH3 domain protein Dlish/CG10933 mediates fat signaling in Drosophila by binding and regulating Dachs. eLife 2016; 5. [PMID: 27692068 PMCID: PMC5047748 DOI: 10.7554/elife.16624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
Much of the Hippo and planar cell polarity (PCP) signaling mediated by the Drosophila protocadherin Fat depends on its ability to change the subcellular localization, levels and activity of the unconventional myosin Dachs. To better understand this process, we have performed a structure-function analysis of Dachs, and used this to identify a novel and important mediator of Fat and Dachs activities, a Dachs-binding SH3 protein we have named Dlish. We found that Dlish is regulated by Fat and Dachs, that Dlish also binds Fat and the Dachs regulator Approximated, and that Dlish is required for Dachs localization, levels and activity in both wild type and fat mutant tissue. Our evidence supports dual roles for Dlish. Dlish tethers Dachs to the subapical cell cortex, an effect partly mediated by the palmitoyltransferase Approximated under the control of Fat. Conversely, Dlish promotes the Fat-mediated degradation of Dachs. DOI:http://dx.doi.org/10.7554/eLife.16624.001
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Xing Wang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Hitoshi Matakatsu
- Department of Zoology, University of Wisconsin-Madison, Madison, United States.,Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Richard Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Seth S Blair
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
40
|
Nguyen MB, Vuong LT, Choi KW. Ebi modulates wing growth by ubiquitin-dependent downregulation of Crumbs in Drosophila. Development 2016; 143:3506-3513. [PMID: 27702784 DOI: 10.1242/dev.142059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/12/2016] [Indexed: 12/11/2022]
Abstract
Notch signaling at the dorsoventral (DV) boundary is essential for patterning and growth of wings in Drosophila The WD40 domain protein Ebi has been implicated in the regulation of Notch signaling at the DV boundary. Here we show that Ebi regulates wing growth by antagonizing the function of the transmembrane protein Crumbs (Crb). Ebi physically binds to the extracellular domain of Crb (Crbext), and this interaction is specifically mediated by WD40 repeats 7-8 of Ebi and a laminin G domain of Crbext Wing notching resulting from reduced levels of Ebi is suppressed by decreasing the Crb function. Consistent with this antagonistic genetic relationship, Ebi knockdown in the DV boundary elevates the Crb protein level. Furthermore, we show that Ebi is required for downregulation of Crb by ubiquitylation. Taken together, we propose that the interplay of Crb expression in the DV boundary and ubiquitin-dependent Crb downregulation by Ebi provides a mechanism for the maintenance of Notch signaling during wing development.
Collapse
Affiliation(s)
- Minh Binh Nguyen
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Linh Thuong Vuong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| |
Collapse
|
41
|
Tilston-Lünel AM, Haley KE, Schlecht NF, Wang Y, Chatterton AL, Moleirinho S, Watson A, Hundal HS, Prystowsky MB, Gunn-Moore FJ, Reynolds PA. Crumbs 3b promotes tight junctions in an ezrin-dependent manner in mammalian cells. J Mol Cell Biol 2016; 8:439-455. [PMID: 27190314 PMCID: PMC5055084 DOI: 10.1093/jmcb/mjw020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 01/30/2023] Open
Abstract
Crumbs 3 (CRB3) is a component of epithelial junctions, which has been implicated in apical-basal polarity, apical identity, apical stability, cell adhesion, and cell growth. CRB3 undergoes alternative splicing to yield two variants: CRB3a and CRB3b. Here, we describe novel data demonstrating that, as with previous studies on CRB3a, CRB3b also promotes the formation of tight junctions (TJs). However, significantly we demonstrate that the 4.1-ezrin-radixin-moesin-binding motif of CRB3b is required for CRB3b functionality and that ezrin binds to the FBM of CRB3b. Furthermore, we show that ezrin contributes to CRB3b functionality and the correct distribution of TJ proteins. We demonstrate that both CRB3 isoforms are required for the production of functionally mature TJs and also the localization of ezrin to the plasma membrane. Finally, we demonstrate that reduced CRB3b expression in head and neck squamous cell carcinoma (HNSCC) correlates with cytoplasmic ezrin, a biomarker for aggressive disease, and shows evidence that while CRB3a expression has no effect, low CRB3b and high cytoplasmic ezrin expression combined may be prognostic for HNSCC.
Collapse
Affiliation(s)
- Andrew M. Tilston-Lünel
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews, KY16 9TF, UK
| | - Kathryn E. Haley
- Medical and Biological Sciences Building, School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| | - Nicolas F. Schlecht
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yanhua Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Abigail L.D. Chatterton
- Medical and Biological Sciences Building, School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| | - Susana Moleirinho
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews, KY16 9TF, UK
- Medical and Biological Sciences Building, School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
- Present address: Scripps Research Institute, Jupiter, FL, USA
| | - Ailsa Watson
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Harinder S. Hundal
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | - Frank J. Gunn-Moore
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews, KY16 9TF, UK
| | - Paul A. Reynolds
- Medical and Biological Sciences Building, School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| |
Collapse
|
42
|
Chung HL, Augustine GJ, Choi KW. Drosophila Schip1 Links Expanded and Tao-1 to Regulate Hippo Signaling. Dev Cell 2016; 36:511-24. [PMID: 26954546 DOI: 10.1016/j.devcel.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/26/2016] [Accepted: 02/04/2016] [Indexed: 12/12/2022]
Abstract
Regulation of organ size is essential in animal development, and Hippo (Hpo) signaling is a major conserved mechanism for controlling organ growth. In Drosophila, Hpo and Warts kinases are core components of this pathway and function as tumor suppressors by inhibiting Yorkie (Yki). Expanded (Ex) is a regulator of the Hpo activity, but how they are linked is unknown. Here, we show that Schip1, a Drosophila homolog of the mammalian Schwannomin interacting protein 1 (SCHIP1), provides a link between Ex and Hpo. Ex is required for apical localization of Schip1 in imaginal discs. Schip1 is necessary for promoting membrane localization and phosphorylation of Hpo by recruiting the Hpo kinase Tao-1. Taking these findings together, we conclude that Schip1 directly links Ex to Hpo signaling by recruiting Tao-1. This study provides insights into the mechanism of Tao-1 regulation and a potential growth control function for SCHIP1 in mammals.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea; Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 136-791, South Korea
| | - George J Augustine
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul 136-791, South Korea; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea.
| |
Collapse
|
43
|
Portela M, Parsons LM, Grzeschik NA, Richardson HE. Regulation of Notch signaling and endocytosis by the Lgl neoplastic tumor suppressor. Cell Cycle 2016; 14:1496-506. [PMID: 25789785 DOI: 10.1080/15384101.2015.1026515] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolutionarily conserved neoplastic tumor suppressor protein, Lethal (2) giant larvae (Lgl), plays roles in cell polarity and tissue growth via regulation of the Hippo pathway. In our recent study, we showed that in the developing Drosophila eye epithelium, depletion of Lgl leads to increased ligand-dependent Notch signaling. lgl mutant tissue also exhibits an accumulation of early endosomes, recycling endosomes, early-multivesicular body markers and acidic vesicles. We showed that elevated Notch signaling in lgl(-) tissue can be rescued by feeding larvae the vesicle de-acidifying drug chloroquine, revealing that Lgl attenuates Notch signaling by limiting vesicle acidification. Strikingly, chloroquine also rescued the lgl(-) overgrowth phenotype, suggesting that the Hippo pathway defects were also rescued. In this extraview, we provide additional data on the regulation of Notch signaling and endocytosis by Lgl, and discuss possible mechanisms by which Lgl depletion contributes to signaling pathway defects and tumorigenesis.
Collapse
Affiliation(s)
- Marta Portela
- a Cell Cycle and Development Laboratory; Research Division ; Peter MacCallum Cancer Centre ; Melbourne , Victoria , Australia
| | | | | | | |
Collapse
|
44
|
Atrian F, Lelièvre SA. Mining the epigenetic landscape of tissue polarity in search of new targets for cancer therapy. Epigenomics 2015; 7:1313-25. [PMID: 26646365 DOI: 10.2217/epi.15.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The epigenetic nature of cancer encourages the development of inhibitors of epigenetic pathways. Yet, the clinical use for solid tumors of approved epigenetic drugs is meager. We argue that this situation might improve upon understanding the coinfluence between epigenetic pathways and tissue architecture. We present emerging information on the epigenetic control of the polarity axis, a central feature of epithelial architecture created by the orderly distribution of multiprotein complexes at cell-cell and cell-extracellular matrix contacts and altered upon cancer onset (with apical polarity loss), invasive progression (with basolateral polarity loss) and metastatic development (with basoapical polarity imbalance). This information combined with the impact of polarity-related proteins on epigenetic mechanisms of cancer enables us to envision how to guide the choice of drugs specific for distinct epigenetic modifiers, in order to halt cancer development and counter the consequences of polarity alterations.
Collapse
Affiliation(s)
- Farzaneh Atrian
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, 625 Harrison Street, Lynn Hall, West Lafayette, IN 47906, USA
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, 625 Harrison Street, Lynn Hall, West Lafayette, IN 47906, USA
| |
Collapse
|
45
|
Lin YH, Currinn H, Pocha SM, Rothnie A, Wassmer T, Knust E. AP-2-complex-mediated endocytosis of Drosophila Crumbs regulates polarity by antagonizing Stardust. J Cell Sci 2015; 128:4538-49. [PMID: 26527400 DOI: 10.1242/jcs.174573] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
Abstract
Maintenance of epithelial polarity depends on the correct localization and levels of polarity determinants. The evolutionarily conserved transmembrane protein Crumbs is crucial for the size and identity of the apical membrane, yet little is known about the molecular mechanisms controlling the amount of Crumbs at the surface. Here, we show that Crumbs levels on the apical membrane depend on a well-balanced state of endocytosis and stabilization. The adaptor protein 2 (AP-2) complex binds to a motif in the cytoplasmic tail of Crumbs that overlaps with the binding site of Stardust, a protein known to stabilize Crumbs on the surface. Preventing endocytosis by mutation of AP-2 causes expansion of the Crumbs-positive plasma membrane domain and polarity defects, which can be partially rescued by removing one copy of crumbs. Strikingly, knocking down both AP-2 and Stardust leads to the retention of Crumbs on the membrane. This study provides evidence for a molecular mechanism, based on stabilization and endocytosis, to adjust surface levels of Crumbs, which are essential for maintaining epithelial polarity.
Collapse
Affiliation(s)
- Ya-Huei Lin
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Heather Currinn
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Shirin Meher Pocha
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Alice Rothnie
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Thomas Wassmer
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
46
|
Enomoto M, Vaughen J, Igaki T. Non-autonomous overgrowth by oncogenic niche cells: Cellular cooperation and competition in tumorigenesis. Cancer Sci 2015; 106:1651-8. [PMID: 26362609 PMCID: PMC4714670 DOI: 10.1111/cas.12816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 12/23/2022] Open
Abstract
Tumor progression is classically viewed as the Darwinian evolution of subclones that sequentially acquire genetic mutations and autonomously overproliferate. However, growing evidence suggests that tumor microenvironment and subclone heterogeneity contribute to non‐autonomous tumor progression. Recent Drosophila studies revealed a common mechanism by which clones of genetically altered cells trigger non‐autonomous overgrowth. Such “oncogenic niche cells” (ONCs) do not overgrow but instead stimulate neighbor overgrowth and metastasis. Establishment of ONCs depends on competition and cooperation between heterogeneous cell populations. This review characterizes diverse ONCs identified in Drosophila and describes the genetic basis of non‐autonomous tumor progression. Similar mechanisms may contribute to mammalian cancer progression and recurrence.
Collapse
Affiliation(s)
- Masato Enomoto
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - John Vaughen
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
47
|
Zhang H, Li C, Chen H, Wei C, Dai F, Wu H, Dui W, Deng WM, Jiao R. SCF(Slmb) E3 ligase-mediated degradation of Expanded is inhibited by the Hippo pathway in Drosophila. Cell Res 2014; 25:93-109. [PMID: 25522691 DOI: 10.1038/cr.2014.166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/13/2014] [Accepted: 11/18/2014] [Indexed: 12/12/2022] Open
Abstract
Deregulation of the evolutionarily conserved Hippo pathway has been implicated in abnormal development of animals and in several types of cancer. One mechanism of Hippo pathway regulation is achieved by controlling the stability of its regulatory components. However, the executive E3 ligases that are involved in this process, and how the process is regulated, remain poorly defined. In this study, we identify, through a genetic candidate screen, the SCF(Slmb) E3 ligase as a novel negative regulator of the Hippo pathway in Drosophila imaginal tissues via mediation of the degradation of Expanded (Ex). Mechanistic study shows that Slmb-mediated degradation of Ex is inhibited by the Hippo signaling. Considering the fact that Hippo signaling suppresses the transcription of ex, we propose that the Hippo pathway employs a double security mechanism to ensure fine-tuned homeostasis during development.
Collapse
Affiliation(s)
- Hongtao Zhang
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Changqing Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China
| | - Hanqing Chen
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Chuanxian Wei
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Fei Dai
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Honggang Wu
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Wen Dui
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100080, China
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida 32304-4295, USA
| | - Renjie Jiao
- 1] State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing 100101, China [2] Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou, Guangdong 510182, China
| |
Collapse
|