1
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Mechanism of ferroptosis in heart failure: The role of the RAGE/TLR4-JNK1/2 pathway in cardiomyocyte ferroptosis and intervention strategies. Ageing Res Rev 2025; 109:102770. [PMID: 40360081 DOI: 10.1016/j.arr.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
The ferroptosis of cardiomyocytes has been recognized as the core pathological mechanism of heart failure. During the evolution of cardiovascular diseases, the accumulation of angiotensin II and advanced glycation end products can lead to the excessive activation of the RAGE/TLR4-JNK1/2 pathway, which subsequently triggers ferritinophagy, clockophagy, and enhanced p53 activity, ultimately leading to cardiomyocyte ferroptosis. It is evident that deeply unraveling the specific mechanisms in this field and comprehensively evaluating potential drugs and therapeutic strategies targeting this pathway is crucial for improving the status of cardiomyocyte ferroptosis. However, our current understanding of this pathway's specific molecular biological mechanisms in the process of cardiomyocyte ferroptosis remains limited. In light of this, this paper first comprehensively reviews the historical context of ferroptosis research, compares the similarities and differences between ferroptosis and other standard modes of cell death, elucidates the core mechanisms of ferroptosis and its close connection with heart failure, aiming to establish a basic cognitive framework for readers on ferroptosis and its role in heart failure. Subsequently, the paper delves into the pivotal role of the RAGE/TLR4-JNK1/2 pathway in cardiomyocyte ferroptosis and its intricate molecular biological regulatory network. Furthermore, it systematically integrates various therapeutic approaches aimed at inhibiting RAGE, TLR4, and JNK1/2 activity to alleviate cardiomyocyte ferroptosis, encompassing RNA interference technology, gene knockout techniques, small molecule inhibitors, natural active ingredients, as well as traditional Chinese and Western medicines, with the ultimate goal of forging new avenues and strategies for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| |
Collapse
|
2
|
Bradley J, Bugg Z, Moore GR, Hemmings AM, Le Brun NE. Observation of the Assembly of the Nascent Mineral Core at the Nucleation Site of Human Mitochondrial Ferritin. J Am Chem Soc 2025; 147:13699-13710. [PMID: 40223208 PMCID: PMC12022971 DOI: 10.1021/jacs.5c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Ferritins play a crucial role in iron homeostasis and detoxification in organisms from all kingdoms of life. They are composed of 24 α-helical subunits arranged around an interior cavity where an iron-containing mineral core can be reversibly stored. Despite decades of study, leading to significant progress in defining the routes of Fe2+ uptake and the mechanism of its subsequent oxidation to Fe3+ at diiron catalytic sites termed ferroxidase centers, the process of core synthesis from the product of ferroxidase center activity remains poorly understood. In large part, this is due to the lack of high-resolution structural data on ferritin cores anchored to their nucleation sites on the inner surface of the protein. Mitochondrial ferritins are atypical of those found in higher eukaryotes in that they are homopolymers in which all subunits contain both a ferroxidase center and a presumed but undefined core nucleation site. Here, in conjunction with a novel method for producing iron-enriched ferritin crystals, we exploit these unusual features to structurally characterize both the nucleation site of mitochondrial ferritin and a pentanuclear, ferrihydrite-like iron-oxo cluster formed there. Kinetic data for wild-type and variant proteins confirmed the functional importance of this site, indicating a critical role for E61 in the transfer of Fe3+ from the ferroxidase center to the nascent mineral core.
Collapse
Affiliation(s)
- Justin
M. Bradley
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy
and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Zinnia Bugg
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy
and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Geoffrey R. Moore
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy
and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Andrew M. Hemmings
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy
and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- Centre
for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- International
Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Nanhui New City, Shanghai 201306, China
| | - Nick E. Le Brun
- Centre
for Molecular and Structural Biochemistry, School of Chemistry, Pharmacy
and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| |
Collapse
|
3
|
Parida A, Bhattacharyya G, Mallik S, Behera RK. Rational pore engineering reveals the relative contribution of enzymatic sites and self-assembly towards rapid ferroxidase activity and mineralization: impact of electrostatic guiding and cage-confinement in bacterioferritin. Chem Sci 2025; 16:3978-3997. [PMID: 39886445 PMCID: PMC11776510 DOI: 10.1039/d4sc07021f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/18/2025] [Indexed: 02/01/2025] Open
Abstract
The self-assembled ferritin protein nanocage plays a pivotal role during oxidative stress, iron metabolism, and host-pathogen interaction by executing rapid iron uptake, oxidation and its safe-storage. Self-assembly creates a nanocompartment and various pores/channels for the uptake of charged substrates (Fe2+) and develops a concentration gradient across the protein shell. This phenomenon fuels rapid ferroxidase activity by an upsurge in the substrate concentration at the catalytic sites. However, it is difficult to segregate the relative contributions of the catalytic sites and self-assembly towards rapid ferroxidase/mineralization activity owing to the inherent self-assembly propensity of ferritins. In the current work, 3-fold pore electrostatics of bacterioferritin from Mycobacterium tuberculosis were rationally altered by site-directed mutagenesis to generate self-assembled (E121A and E121Q) and assembly-defective (E121K and E121F) variants. In comparison to the autoxidation of Fe2+ in buffer, the assembly-defective variants exhibited significantly faster ferroxidase/mineralization activity and O2 consumption kinetics due to their functional catalytic sites, but failed to level-up with the self-assembled variants even at 100-fold higher Fe2+ concentration. Only the self-assembled variants exhibited cooperativity in iron oxidation, maintained biomineral solubility, and protected DNA against the Fenton reaction. This report highlights the concerted effect of self-assembly and ferroxidase sites that propels the rapid Fe2+ uptake, its oxidation and biomineralization in bacterioferritin. The findings also establish the importance of electrostatic guiding and nanoconfinement offered by ferritin self-assembly towards its enzymatic activity and antioxidative properties. Moreover, this work identifies the key electrostatic interactions ("hot-spots") at the subunit contact points that control the cage/pore formation, impart cage stability and influence ferritin's natural functions. Manipulation of hot-spot residues can be further extended towards the encapsulation of cargo, for various bio-medical applications, by strategically inducing its disassembly and subsequent reassembly through adjustments in ionic strength. This would bypass the need for extreme/harsh reaction conditions and minimize the loss of cargo/protein.
Collapse
Affiliation(s)
- Akankshika Parida
- Department of Chemistry, National Institute of Technology Rourkela - 769008 Odisha India +91-661-2462651 +91-661-2462980
| | - Gargee Bhattacharyya
- Department of Chemistry, National Institute of Technology Rourkela - 769008 Odisha India +91-661-2462651 +91-661-2462980
| | - Swagatika Mallik
- Department of Chemistry, National Institute of Technology Rourkela - 769008 Odisha India +91-661-2462651 +91-661-2462980
| | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology Rourkela - 769008 Odisha India +91-661-2462651 +91-661-2462980
| |
Collapse
|
4
|
Guo T, Hayat MA, Hu J. Ferritin nanoparticles: new strategies for the diagnosis and treatment of central nervous system diseases. Biomed Mater 2025; 20:022005. [PMID: 39820046 DOI: 10.1088/1748-605x/adab5a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Ferritin nanoparticles, which can penetrate the blood-brain barrier (BBB), have gained significant research interest for the diagnosis and treatment of central nervous system (CNS) diseases, including gliomas, Alzheimer's disease, and brain metastases. In recent years, ferritin has been proved as a candidate to cross the BBB using receptor-mediated transport (RMT) mechanism through transferrin receptor 1 (TfR1) which is overexpressed in the cells of the BBB. Various types of cargo molecules, including therapeutics, imaging agents, nucleic acids, and metal nanoparticles, have been incorporated into ferritin nanocages for the diagnosis and treatment of CNS diseases. In particular, low immunogenicity of ferritin implies safety for its usage in clinical practices, and high biocompatibility add to the perspectives of its applications. Furthermore, contemporary strides in molecular biology have enabled some alteration in the configuration of the ferritin outer layers and surface characters so as to enhance the drug encapsulation capacity and conjugation affinity. Such modifications not only enhance the property of ferritin in crossing the BBB, but also enhance its efficacy when applied to CNS diseases. In summary, ferritin, as a drug delivery system, shows great potential for the treatment and diagnosis of CNS diseases.
Collapse
Affiliation(s)
- Tao Guo
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
| | - Muhammad Abid Hayat
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
- Zhenjiang Blood Center, Zhenjiang, Jiangsu 212013, People's Republic of China
| |
Collapse
|
5
|
Raut RK, Bhattacharyya G, Behera RK. Gastric stability of bare and chitosan-fabricated ferritin and its bio-mineral: implication for potential dietary iron supplements. Dalton Trans 2024; 53:13815-13830. [PMID: 39109655 DOI: 10.1039/d4dt01839g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Iron deficiency anaemia (IDA), the most widespread nutritional disorder, is a persistent global health issue affecting millions, especially in resource-limited geographies. Oral iron supplementation is usually the first choice for exogenous iron administration owing to its convenience, effectiveness and low cost. However, commercially available iron supplementations are often associated with oxidative stress, gastrointestinal side effects, infections and solubility issues. Herein, we aim to address these limitations by employing ferritin proteins-self-assembled nanocaged architectures functioning as a soluble cellular iron repository-as a non-toxic and biocompatible alternative. Our in vitro studies based on PAGE and TEM indicate that bare ferritin proteins are resistant to gastric conditions but their cage integrity is compromised under longer incubation periods and at higher concentrations of pepsin, which is a critical component of gastric juice. To ensure the safe delivery of encapsulated iron cargo, with minimal cage disintegration/degradation and iron leakage along the gastrointestinal tract, we fabricated the surface of ferritin with chitosan. Further, the stoichiometry and absorptivity of iron-chelator complexes at both gastric and circumneutral pH were estimated using Job's plot. Unlike bipyridyl, deferiprone exhibited pH dependency. In vitro kinetics was studied to evaluate iron release from bare and chitosan-fabricated ferritins employing both reductive (in the presence of ascorbate and bipyridyl) and non-reductive (direct chelation by deferiprone) pathways to determine their bio-mineral stabilities. Chitosan-decorated ferritin displayed superior cage integrity and iron retention capability over bare ferritin in simulated gastric fluid. The ability of ferritins to naturally facilitate controlled iron release in conjugation with enteric coating provided by chitosan may mitigate the aforementioned side effects and enhance iron absorption in the intestine. The results of the current study could pave the way for the development of an oral formulation based on ferritin-caged iron bio-mineral that can be a promising alternative for the treatment of IDA, offering better therapeutic outcomes.
Collapse
Affiliation(s)
- Rohit Kumar Raut
- Department of Chemistry, National Institute of Technology, Rourkela - 769008, Odisha, India.
| | - Gargee Bhattacharyya
- Department of Chemistry, National Institute of Technology, Rourkela - 769008, Odisha, India.
| | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela - 769008, Odisha, India.
| |
Collapse
|
6
|
Behera N, Bhattacharyya G, Behera S, Behera RK. Iron mobilization from intact ferritin: effect of differential redox activity of quinone derivatives with NADH/O 2 and in situ-generated ROS. J Biol Inorg Chem 2024; 29:455-475. [PMID: 38780762 DOI: 10.1007/s00775-024-02058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Ferritins are multimeric nanocage proteins that sequester/concentrate excess of free iron and catalytically synthesize a hydrated ferric oxyhydroxide bio-mineral. Besides functioning as the primary intracellular iron storehouses, these supramolecular assemblies also oversee the controlled release of iron to meet physiologic demands. By virtue of the reducing nature of the cytosol, reductive dissolution of ferritin-iron bio-mineral by physiologic reducing agents might be a probable pathway operating in vivo. Herein, to explore this reductive iron-release pathway, a series of quinone analogs differing in size, position/nature of substituents and redox potentials were employed to relay electrons from physiologic reducing agent, NADH, to the ferritin core. Quinones are well known natural electron/proton mediators capable of facilitating both 1/2 electron transfer processes and have been implicated in iron/nutrient acquisition in plants and energy transduction. Our findings on the structure-reactivity of quinone mediators highlight that iron release from ferritin is dictated by electron-relay capability (dependent on E1/2 values) of quinones, their molecular structure (i.e., the presence of iron-chelation sites and the propensity for H-bonding) and the type/amount of reactive oxygen species (ROS) they generate in situ. Juglone/Plumbagin released maximum iron due to their intermediate E1/2 values, presence of iron chelation sites, the ability to inhibit in situ generation of H2O2 and form intramolecular H-bonding (possibly promotes semiquinone formation). This study may strengthen our understanding of the ferritin-iron-release process and their significance in bioenergetics/O2-based cellular metabolism/toxicity while providing insights on microbial/plant iron acquisition and the dynamic host-pathogen interactions.
Collapse
Affiliation(s)
- Narmada Behera
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Gargee Bhattacharyya
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Satyabrat Behera
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
7
|
Wu J, Li Y, Wu H, Zhang H, Sha X, Ma J, Yang R. The application of ferritin in transporting and binding diverse metal ions. Food Chem 2024; 439:138132. [PMID: 38081094 DOI: 10.1016/j.foodchem.2023.138132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
The ferritin cage can not only load iron ions in its inner cavity, but also has the capacity to carry other metal ions, thus constructing a new biological nano-transport system. The nanoparticles formed by ferritin and minerals can be used as ingredients of mineral supplements, which overcome the shortcomings of traditional mineral ingredients such as low bioavailability. Moreover, ferritin can be used to remove heavy metal ions from contaminated food. Silver and palladium nanoparticles formed by ferritin are also applied as anticancer agents. Ferritin combined with metal ions can be also used to detect harmful substances. This review aims to provide a comprehensive overview of ferritin's function in transporting and binding metal ions, and discusses the limitations and future prospects, which offers valuable insights for the application of ferritin in mineral supplements, food detoxifiers, anticancer agents, and food detections.
Collapse
Affiliation(s)
- Jincan Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Huimin Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haotong Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinmei Sha
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
8
|
Hu J, Sha X, Li Y, Wu J, Ma J, Zhang Y, Yang R. Multifaceted Applications of Ferritin Nanocages in Delivering Metal Ions, Bioactive Compounds, and Enzymes: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19903-19919. [PMID: 37955969 DOI: 10.1021/acs.jafc.3c05510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Ferritin, a distinctive iron-storage protein, possesses a unique cage-like nanoscale structure that enables it to encapsulate and deliver a wide range of biomolecules. Recent advances prove that ferritin can serve as an efficient 8 nm diameter carrier for various bioinorganic nutrients, such as minerals, bioactive polyphenols, and enzymes. This review offers a comprehensive summary of ferritin's structural features from different sources and emphasizes its functions in iron supplementation, calcium delivery, single- and coencapsulation of polyphenols, and enzyme package. Additionally, the influence of innovative food processing technologies, including manothermosonication, pulsed electric field, and atmospheric cold plasma, on the structure and function of ferritin are examined. Furthermore, the limitations and prospects of ferritin in food and nutritional applications are discussed. The exploration of ferritin as a multifunctional protein with the capacity to load various biomolecules is crucial to fully harnessing its potential in food applications.
Collapse
Affiliation(s)
- Jiangnan Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinmei Sha
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jincan Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
9
|
Li N, Wang P, Xie Y, Wang B, Zhu C, Xue L, Han X, Gu N, Sun J. Expression of clMagR/clCry4 protein in mBMSCs provides T 2-contrast enhancement of MRI. Acta Biomater 2023; 172:309-320. [PMID: 37778484 DOI: 10.1016/j.actbio.2023.09.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Here, we propose for the first time the evaluation of magnetosensitive clMagR/clCry4 as a magnetic resonance imaging (MRI) reporter gene that imparts sensitivity to endogenous contrast in eukaryotic organisms. Using a lentiviral vector, we introduced clMagR/clCry4 into C57BL/6 mice-derived bone marrow mesenchymal stem cells (mBMSCs), which could specifically bind with iron, significantly affected MRI transverse relaxation, and generated readily detectable contrast without adverse effects in vivo. Specifically, clMagR/clCry4 makes mBMSCs beneficial for enhancing the sensitivity of MRI-R2 for iron-bearing granules, in which cells recruit exogenous iron and convert these stores into an MRI-detectable contrast; this is not achievable with control cells. Additionally, Prussian blue staining was performed together with ultrathin cell slices to provide direct evidence of natural iron-bearing granules being detectable on MRI. Hence, it was inferred that the sensitivity of MRI detection should be correlated with clMagR/clCry4 and exogenous iron. Taken together, the clMagR/clCry4 has great potential as an MRI reporter gene. STATEMENT OF SIGNIFICANCE: In this study, we propose the evaluation of magnetosensitive clMagR/clCry4 as an MRI reporter gene, imparting detection sensitivity to eukaryotic mBMSCs for endogenous contrast. At this point, the clMagR and clCry4 were located within the cytoplasm and possibly influence each other. The clMagR/clCry4 makes mBMSCs beneficial for enhancing the sensitivity of MRI-R2 for iron-bearing granules, in which protein could specifically bind with iron and convert these stores into MRI-detectable contrast; this is not achieved by control cells. The viewpoint was speculated that the clMagR/clCry4 and exogenous iron were complementary to each other. Additionally, Prussian blue staining was performed together with TEM observations to provide direct evidence that the iron-bearing granules were sensitive to MRI.
Collapse
Affiliation(s)
- Nuan Li
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Peng Wang
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China; Department of Sports Medicine and Adult Reconstructive Surgery, the Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210008, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210008, China
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210008, China
| | - Chenzhuo Zhu
- Southeast University-Monash University Joint Graduate School, Southeast University, Suzhou 215123, China
| | - Le Xue
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing 210093, China
| | - Jianfei Sun
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
10
|
Wang C, Liu Q, Huang X, Zhuang J. Ferritin nanocages: a versatile platform for nanozyme design. J Mater Chem B 2023; 11:4153-4170. [PMID: 37158014 DOI: 10.1039/d3tb00192j] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanozymes are a class of nanomaterials with enzyme-like activities and have attracted increasing attention due to their potential applications in biomedicine. However, nanozyme design incorporating the desired properties remains challenging. Natural or genetically engineered protein scaffolds, such as ferritin nanocages, have emerged as a promising platform for nanozyme design due to their unique protein structure, natural biomineralization capacity, self-assembly properties, and high biocompatibility. In this review, we highlight the intrinsic properties of ferritin nanocages, especially for nanozyme design. We also discuss the advantages of genetically engineered ferritin in the versatile design of nanozymes over natural ferritin. Additionally, we summarize the bioapplications of ferritin-based nanozymes based on their enzyme-mimicking activities. In this perspective, we mainly provide potential insights into the utilization of ferritin nanocages for nanozyme design.
Collapse
Affiliation(s)
- Chunyu Wang
- School of Medicine, Nankai University, Tianjin 300071, China.
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
11
|
Yousefi A, Ying C, Parmenter CD, Assadipapari M, Sanderson G, Zheng Z, Xu L, Zargarbashi S, Hickman GJ, Cousins RB, Mellor CJ, Mayer M, Rahmani M. Optical Monitoring of In Situ Iron Loading into Single, Native Ferritin Proteins. NANO LETTERS 2023; 23:3251-3258. [PMID: 37053043 PMCID: PMC10141409 DOI: 10.1021/acs.nanolett.3c00042] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ferritin is a protein that stores and releases iron to prevent diseases associated with iron dysregulation in plants, animals, and bacteria. The conversion between iron-loaded holo-ferritin and empty apo-ferritin is an important process for iron regulation. To date, studies of ferritin have used either ensemble measurements to quantify the characteristics of a large number of proteins or single-molecule approaches to interrogate labeled or modified proteins. Here we demonstrate the first real-time study of the dynamics of iron ion loading and biomineralization within a single, unlabeled ferritin protein. Using optical nanotweezers, we trapped single apo- and holo-ferritins indefinitely, distinguished one from the other, and monitored their structural dynamics in real time. The study presented here deepens the understanding of the iron uptake mechanism of ferritin proteins, which may lead to new therapeutics for iron-related diseases.
Collapse
Affiliation(s)
- Arman Yousefi
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
| | - Cuifeng Ying
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
- Email
for C.Y.:
| | | | - Mahya Assadipapari
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
| | - Gabriel Sanderson
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
| | - Ze Zheng
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
| | - Lei Xu
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
| | - Saaman Zargarbashi
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
| | - Graham J. Hickman
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United
Kingdom
| | - Richard B. Cousins
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham NG7 2RD, United
Kingdom
| | - Christopher J. Mellor
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, United
Kingdom
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Mohsen Rahmani
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
- Email for M.R.:
| |
Collapse
|
12
|
Huo C, Ming T, Wu Y, Huan H, Qiu X, Lu C, Li Y, Zhang Z, Han J, Su X. Structural and Biochemical Characterization of Silver/Copper Binding by Dendrorhynchus zhejiangensis Ferritin. Polymers (Basel) 2023; 15:1297. [PMID: 36904538 PMCID: PMC10007213 DOI: 10.3390/polym15051297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ferritin with a highly symmetrical cage-like structure is not only key in the reversible storage of iron in efficient ferroxidase activity; it also provides unique coordination environments for the conjugation of heavy metal ions other than those associated with iron. However, research regarding the effect of these bound heavy metal ions on ferritin is scarce. In the present study, we prepared a marine invertebrate ferritin from Dendrorhynchus zhejiangensis (DzFer) and found that it could withstand extreme pH fluctuation. We then demonstrated its capacity to interact with Ag+ or Cu2+ ions using various biochemical and spectroscopic methods and X-ray crystallography. Structural and biochemical analyses revealed that both Ag+ and Cu2+ were able to bind to the DzFer cage via metal-coordination bonds and that their binding sites were mainly located inside the three-fold channel of DzFer. Furthermore, Ag+ was shown to have a higher selectivity for sulfur-containing amino acid residues and appeared to bind preferentially at the ferroxidase site of DzFer as compared with Cu2+. Thus, it is far more likely to inhibit the ferroxidase activity of DzFer. The results provide new insights into the effect of heavy metal ions on the iron-binding capacity of a marine invertebrate ferritin.
Collapse
Affiliation(s)
- Chunheng Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
| | - Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Hengshang Huan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
| |
Collapse
|
13
|
Gehrer CM, Mitterstiller AM, Grubwieser P, Meyron-Holtz EG, Weiss G, Nairz M. Advances in Ferritin Physiology and Possible Implications in Bacterial Infection. Int J Mol Sci 2023; 24:4659. [PMID: 36902088 PMCID: PMC10003477 DOI: 10.3390/ijms24054659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Due to its advantageous redox properties, iron plays an important role in the metabolism of nearly all life. However, these properties are not only a boon but also the bane of such life forms. Since labile iron results in the generation of reactive oxygen species by Fenton chemistry, iron is stored in a relatively safe form inside of ferritin. Despite the fact that the iron storage protein ferritin has been extensively researched, many of its physiological functions are hitherto unresolved. However, research regarding ferritin's functions is gaining momentum. For example, recent major discoveries on its secretion and distribution mechanisms have been made as well as the paradigm-changing finding of intracellular compartmentalization of ferritin via interaction with nuclear receptor coactivator 4 (NCOA4). In this review, we discuss established knowledge as well as these new findings and the implications they may have for host-pathogen interaction during bacterial infection.
Collapse
Affiliation(s)
- Clemens M. Gehrer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Maria Mitterstiller
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Esther G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Parida A, Mohanty A, Raut RK, Padhy I, Behera RK. Modification of 4-Fold and B-Pores in Bacterioferritin from Mycobacterium tuberculosis Reveals Their Role in Fe 2+ Entry and Oxidoreductase Activity. Inorg Chem 2023; 62:178-191. [PMID: 36525578 DOI: 10.1021/acs.inorgchem.2c03156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The self-assembled ferritin nanocages, nature's solution to iron toxicity and its low solubility, scavenge free iron to synthesize hydrated ferric oxyhydroxide mineral inside their central cavity by protein-mediated ferroxidase and hydrolytic/nucleation reactions. These complex processes in ferritin commence with the rapid influx of Fe2+ ions via the inter-subunit contact points (i.e., pores/channels). Investigation of these pores as Fe2+ uptake routes in ferritins remains a subject of intense research, in iron metabolism, toxicity, and bacterial pathogenesis, which are yet to be established in the bacterioferritin (BfrA) from Mycobacterium tuberculosis (Mtb). The electrostatic properties of this protein indicate that the 4-fold and B-pores might serve as potential Fe2+ entry routes. Therefore, in the current work, electrostatics at/along these pores was altered by site-directed mutagenesis to establish their role in Fe2+ uptake/oxidation (ferroxidase activity) in Mtb BfrA. Despite forming self-assembled protein nanocompartment, these 4-fold and B-pore variants exhibited partial loss of ferroxidase activity and lower accumulation of transient species, which not only indicated their role in Fe2+ entry but also suggested the existence of multiple pathways. Although the B-pore variants inhibited the rapid ferroxidase activity to a larger extent, they had minimal impact on their cage stability. The current work revealed the relative contribution of these pores toward rapid Fe2+ uptake/oxidation and cage stability, possibly as consequences of their differential symmetry, number of modified residues (at each pore), and heme content. Therefore, these findings may help to understand the role of these pores in iron acquisition and Mtb proliferation under iron-limiting conditions to control its pathogenesis.
Collapse
Affiliation(s)
- Akankshika Parida
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| | - Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| | - Rohit Kumar Raut
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| | - Ipsita Padhy
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela, 769008Odisha, India
| |
Collapse
|
15
|
Parida A, Behera RK. Iron Accumulation in Ferritin. Methods Mol Biol 2023; 2671:121-134. [PMID: 37308642 DOI: 10.1007/978-1-0716-3222-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the iron accumulation process in ferritin protein nanocages has remained a centerpiece in the field of iron biochemistry/biomineralization, which ultimately has implications in health and diseases. Although mechanistic differences of iron acquisition and mineralization exist in the superfamily of ferritins, we describe the techniques that can be used to investigate the accumulation of iron in all the ferritin proteins by in vitro iron mineralization process. In this chapter, we report that the non-denaturing polyacrylamide gel electrophoresis coupled with Prussian blue staining (in-gel assay) can be useful to investigate the iron-loading efficiency in ferritin protein nanocage, by estimating the relative amount of iron incorporated inside it. Similarly, the absolute size of the iron mineral core and the amount of total iron accumulated inside its nanocavity can be determined by using transmission electron microscopy and spectrophotometry, respectively.
Collapse
Affiliation(s)
- Akankshika Parida
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, India
| | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
16
|
Wu Y, Huo C, Ming T, Liu Y, Su C, Qiu X, Lu C, Zhou J, Li Y, Zhang Z, Han J, Feng Y, Su X. Structural and Functional Insights into the Roles of Potential Metal-Binding Sites in Apostichopus japonicus Ferritin. Polymers (Basel) 2022; 14:5378. [PMID: 36559745 PMCID: PMC9785301 DOI: 10.3390/polym14245378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Ferritin is widely acknowledged as a conservative iron storage protein found in almost all living kingdoms. Apostichopus japonicus (Selenka) is among the oldest echinoderm fauna and has unique regenerative potential, but the catalytic mechanism of iron oxidation in A. japonicus ferritin (AjFER) remains elusive. We previously identified several potential metal-binding sites at the ferroxidase center, the three- and four-fold channels in AjFER. Herein, we prepared AjFER, AjFER-E25A/E60A/E105A, AjFER-D129A/E132A, and AjFER-E168A mutants, investigated their structures, and functionally characterized these ferritins with respect to Fe2+ uptake using X-ray techniques together with biochemical analytical methods. A crystallographic model of the AjFER-D129A/E132A mutant, which was solved to a resolution of 1.98 Å, suggested that the substitutions had a significant influence on the quaternary structure of the three-fold channel compared to that of AjFER. The structures of these ferritins in solution were determined based on the molecular envelopes of AjFER and its variants by small-angle X-ray scattering, and the structures were almost consistent with the characteristics of well-folded and globular-shaped proteins. Comparative biochemical analyses indicated that site-directed mutagenesis of metal-binding sites in AjFER presented relatively low rates of iron oxidation and thermostability, as well as weak iron-binding affinity, suggesting that these potential metal-binding sites play critical roles in the catalytic activity of ferritin. These findings provide profound insight into the structure-function relationships related to marine invertebrate ferritins.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
| | - Chunheng Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Yan Liu
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo 315800, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Ying Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
- College of Life Sciences, Tonghua Normal University, Tonghua 134000, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, China
- School of Marine Science, Ningbo University, Ningbo 315832, China
| |
Collapse
|
17
|
Tasneem N, Szyszka TN, Jenner EN, Lau YH. How Pore Architecture Regulates the Function of Nanoscale Protein Compartments. ACS NANO 2022; 16:8540-8556. [PMID: 35583458 DOI: 10.1021/acsnano.2c02178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembling proteins can form porous compartments that adopt well-defined architectures at the nanoscale. In nature, protein compartments act as semipermeable barriers to enable spatial separation and organization of complex biochemical processes. The compartment pores play a key role in their overall function by selectively controlling the influx and efflux of important biomolecular species. By engineering the pores, the functionality of compartments can be tuned to facilitate non-native applications, such as artificial nanoreactors for catalysis. In this review, we analyze how protein structure determines the porosity and impacts the function of both native and engineered compartments, highlighting the wealth of structural data recently obtained by cryo-EM and X-ray crystallography. Through this analysis, we offer perspectives on how current structural insights can inform future studies into the design of artificial protein compartments as nanoreactors with tunable porosity and function.
Collapse
Affiliation(s)
- Nuren Tasneem
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
| | - Taylor N Szyszka
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
- University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| | - Eric N Jenner
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Eastern Avenue, Camperdown, New South Wales 2006, Australia
- University of Sydney Nano Institute, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
18
|
Mohanty A, Parida A, Raut RK, Behera RK. Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology. ACS BIO & MED CHEM AU 2022; 2:258-281. [PMID: 37101573 PMCID: PMC10114856 DOI: 10.1021/acsbiomedchemau.2c00003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The essence of bionanotechnology lies in the application of nanotechnology/nanomaterials to solve the biological problems. Quantum dots and nanoparticles hold potential biomedical applications, but their inherent problems such as low solubility and associated toxicity due to their interactions at nonspecific target sites is a major concern. The self-assembled, thermostable, ferritin protein nanocages possessing natural iron scavenging ability have emerged as a potential solution to all the above-mentioned problems by acting as nanoreactor and nanocarrier. Ferritins, the cellular iron repositories, are hollow, spherical, symmetric multimeric protein nanocages, which sequester the excess of free Fe(II) and synthesize iron biominerals (Fe2O3·H2O) inside their ∼5-8 nm central cavity. The electrostatics and dynamics of the pore residues not only drives the natural substrate Fe2+ inside ferritin nanocages but also uptakes a set of other metals ions/counterions during in vitro synthesis of nanomaterial. The current review aims to report the recent developments/understanding on ferritin structure (self-assembly, surface/pores electrostatics, metal ion binding sites) and chemistry occurring inside these supramolecular protein cages (protein mediated metal ion uptake and mineralization/nanoparticle formation) along with its surface modification to exploit them for various nanobiotechnological applications. Furthermore, a better understanding of ferritin self-assembly would be highly useful for optimizing the incorporation of nanomaterials via the disassembly/reassembly approach. Several studies have reported the successful engineering of these ferritin protein nanocages in order to utilize them as potential nanoreactor for synthesizing/incorporating nanoparticles and as nanocarrier for delivering imaging agents/drugs at cell specific target sites. Therefore, the combination of nanoscience (nanomaterials) and bioscience (ferritin protein) projects several benefits for various applications ranging from electronics to medicine.
Collapse
|
19
|
Lu C, Maity B, Peng X, Ito N, Abe S, Sheng X, Ueno T, Lu D. Design of a gold clustering site in an engineered apo-ferritin cage. Commun Chem 2022; 5:39. [PMID: 36697940 PMCID: PMC9814837 DOI: 10.1038/s42004-022-00651-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/18/2022] [Indexed: 01/28/2023] Open
Abstract
Water-soluble and biocompatible protein-protected gold nanoclusters (Au NCs) hold great promise for numerous applications. However, design and precise regulation of their structure at an atomic level remain challenging. Herein, we have engineered and constructed a gold clustering site at the 4-fold symmetric axis channel of the apo-ferritin cage. Using a series of X-ray crystal structures, we evaluated the stepwise accumulation process of Au ions into the cage and the formation of a multinuclear Au cluster in our designed cavity. We also disclosed the role of key residues in the metal accumulation process. X-ray crystal structures in combination with quantum chemical (QC) calculation revealed a unique Au clustering site with up to 12 Au atoms positions in the cavity. Moreover, the structure of the gold nanocluster was precisely tuned by the dosage of the Au precursor. As the gold concentration increases, the number of Au atoms position at the clustering site increases from 8 to 12, and a structural rearrangement was observed at a higher Au concentration. Furthermore, the binding affinity order of the four Au binding sites on apo-ferritin was unveiled with a stepwise increase of Au precursor concentration.
Collapse
Affiliation(s)
- Chenlin Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100-084, China
| | - Basudev Maity
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Xue Peng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100-084, China
| | - Nozomi Ito
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, and, National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100-084, China.
| |
Collapse
|
20
|
Ming T, Jiang Q, Huo C, Huan H, Wu Y, Su C, Qiu X, Lu C, Zhou J, Li Y, Han J, Zhang Z, Su X. Structural Insights Into the Effects of Interactions With Iron and Copper Ions on Ferritin From the Blood Clam Tegillarca granosa. Front Mol Biosci 2022; 9:800008. [PMID: 35359603 PMCID: PMC8961696 DOI: 10.3389/fmolb.2022.800008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to its role as an iron storage protein, ferritin can function as a major detoxification component in the innate immune defense, and Cu2+ ions can also play crucial antibacterial roles in the blood clam, Tegillarca granosa. However, the mechanism of interaction between iron and copper in recombinant Tegillarca granosa ferritin (TgFer) remains to be investigated. In this study, we investigated the crystal structure of TgFer and examined the effects of Fe2+ and Cu2+ ions on the TgFer structure and catalytic activity. The crystal structure revealed that TgFer presented a typically 4–3–2 symmetry in a cage-like, spherical shell composed of 24 identical subunits, featuring highly conserved organization in both the ferroxidase center and the 3-fold channel. Structural and biochemical analyses indicated that the 4-fold channel of TgFer could be serviced as potential binding sites of metal ions. Cu2+ ions appear to bind preferentially with the 3-fold channel as well as ferroxidase site over Fe2+ ions, possibly inhibiting the ferroxidase activity of TgFer. Our results present a structural and functional characterization of TgFer, providing mechanistic insight into the interactions between TgFer and both Fe2+ and Cu2+ ions.
Collapse
Affiliation(s)
- Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Qinqin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chunheng Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Hengshang Huan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic College, Ningbo, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- *Correspondence: Xiurong Su,
| |
Collapse
|
21
|
Adamson LSR, Tasneem N, Andreas MP, Close W, Jenner EN, Szyszka TN, Young R, Cheah LC, Norman A, MacDermott-Opeskin HI, O'Mara ML, Sainsbury F, Giessen TW, Lau YH. Pore structure controls stability and molecular flux in engineered protein cages. SCIENCE ADVANCES 2022. [PMID: 35119930 DOI: 10.1101/2021.01.27.428512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Protein cages are a common architectural motif used by living organisms to compartmentalize and control biochemical reactions. While engineered protein cages have featured in the construction of nanoreactors and synthetic organelles, relatively little is known about the underlying molecular parameters that govern stability and flux through their pores. In this work, we systematically designed 24 variants of the Thermotoga maritima encapsulin cage, featuring pores of different sizes and charges. Twelve pore variants were successfully assembled and purified, including eight designs with exceptional thermal stability. While negatively charged mutations were better tolerated, we were able to form stable assemblies covering a full range of pore sizes and charges, as observed in seven new cryo-EM structures at 2.5- to 3.6-Å resolution. Molecular dynamics simulations and stopped-flow experiments revealed the importance of considering both pore size and charge, together with flexibility and rate-determining steps, when designing protein cages for controlling molecular flux.
Collapse
Affiliation(s)
- Lachlan S R Adamson
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Nuren Tasneem
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Michael P Andreas
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William Close
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Eric N Jenner
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Taylor N Szyszka
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Reginald Young
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Li Chen Cheah
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, QLD 4102, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | | | - Megan L O'Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Frank Sainsbury
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, QLD 4102, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Tobias W Giessen
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Campderdown, NSW 2006, Australia
| |
Collapse
|
22
|
Adamson LSR, Tasneem N, Andreas MP, Close W, Jenner EN, Szyszka TN, Young R, Cheah LC, Norman A, MacDermott-Opeskin HI, O’Mara ML, Sainsbury F, Giessen TW, Lau YH. Pore structure controls stability and molecular flux in engineered protein cages. SCIENCE ADVANCES 2022; 8:eabl7346. [PMID: 35119930 PMCID: PMC8816334 DOI: 10.1126/sciadv.abl7346] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Protein cages are a common architectural motif used by living organisms to compartmentalize and control biochemical reactions. While engineered protein cages have featured in the construction of nanoreactors and synthetic organelles, relatively little is known about the underlying molecular parameters that govern stability and flux through their pores. In this work, we systematically designed 24 variants of the Thermotoga maritima encapsulin cage, featuring pores of different sizes and charges. Twelve pore variants were successfully assembled and purified, including eight designs with exceptional thermal stability. While negatively charged mutations were better tolerated, we were able to form stable assemblies covering a full range of pore sizes and charges, as observed in seven new cryo-EM structures at 2.5- to 3.6-Å resolution. Molecular dynamics simulations and stopped-flow experiments revealed the importance of considering both pore size and charge, together with flexibility and rate-determining steps, when designing protein cages for controlling molecular flux.
Collapse
Affiliation(s)
- Lachlan S. R. Adamson
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Nuren Tasneem
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Michael P. Andreas
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William Close
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Eric N. Jenner
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Taylor N. Szyszka
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Reginald Young
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Li Chen Cheah
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, QLD 4102, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | | | - Megan L. O’Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Frank Sainsbury
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 41 Boggo Road, Dutton Park, QLD 4102, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Tobias W. Giessen
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
- Corresponding author. (T.W.G.); (Y.H.L.)
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Campderdown, NSW 2006, Australia
- Corresponding author. (T.W.G.); (Y.H.L.)
| |
Collapse
|
23
|
Zurita C, Tsushima S, Solari PL, Jeanson A, Creff G, Den Auwer C. Interaction of Th(IV), Pu(IV) and Fe(III) with ferritin protein: how similar? JOURNAL OF SYNCHROTRON RADIATION 2022; 29:45-52. [PMID: 34985422 PMCID: PMC8733997 DOI: 10.1107/s1600577521012340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/21/2021] [Indexed: 05/28/2023]
Abstract
Ferritin is the main protein of Fe storage in eukaryote and prokaryote cells. It is a large multifunctional, multi-subunit protein consisting of heavy H and light L subunits. In the field of nuclear toxicology, it has been suggested that some actinide elements, such as thorium and plutonium at oxidation state +IV, have a comparable `biochemistry' to iron at oxidation state +III owing to their very high tendency for hydrolysis and somewhat comparable ionic radii. Therefore, the possible mechanisms of interaction of such actinide elements with the Fe storage protein is a fundamental question of bio-actinidic chemistry. We recently described the complexation of Pu(IV) and Th(IV) with horse spleen ferritin (composed mainly of L subunits). In this article, we bring another viewpoint to this question by further combining modeling with our previous EXAFS data for Pu(IV) and Th(IV). As a result, the interaction between the L subunits and both actinides appears to be non-specific but driven only by the density of the presence of Asp and Glu residues on the protein shell. The formation of an oxyhydroxide Th or Pu core has not been observed under the experimental conditions here, nor the interaction of Th or Pu with the ferric oxyhydroxide core.
Collapse
Affiliation(s)
- Cyril Zurita
- Université Côte d’Azur, CNRS, ICN, 06108 Nice, France
| | - Satoru Tsushima
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
- World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | | | | | - Gaëlle Creff
- Université Côte d’Azur, CNRS, ICN, 06108 Nice, France
| | | |
Collapse
|
24
|
Bradley JM, Fair J, Hemmings AM, Le Brun NE. Key carboxylate residues for iron transit through the prokaryotic ferritin SynFtn. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34825885 PMCID: PMC8743623 DOI: 10.1099/mic.0.001105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ferritins are proteins forming 24meric rhombic dodecahedral cages that play a key role in iron storage and detoxification in all cell types. Their function requires the transport of Fe2+ from the exterior of the protein to buried di-iron catalytic sites, known as ferroxidase centres, where Fe2+ is oxidized to form Fe3+-oxo precursors of the ferritin mineral core. The route of iron transit through animal ferritins is well understood: the Fe2+ substrate enters the protein via channels at the threefold axes and conserved carboxylates on the inner surface of the protein cage have been shown to contribute to transient binding sites that guide Fe2+ to the ferroxidase centres. The routes of iron transit through prokaryotic ferritins are less well studied but for some, at least, there is evidence that channels at the twofold axes are the major route for Fe2+ uptake. SynFtn, isolated from the cyanobacterium Synechococcus CC9311, is an atypical prokaryotic ferritin that was recently shown to take up Fe2+ via its threefold channels. However, the transfer site carboxylate residues conserved in animal ferritins are absent, meaning that the route taken from the site of iron entry into SynFtn to the catalytic centre is yet to be defined. Here, we report the use of a combination of site-directed mutagenesis, absorbance-monitored activity assays and protein crystallography to probe the effect of substitution of two residues potentially involved in this pathway. Both Glu141 and Asp65 play a role in guiding the Fe2+ substrate to the ferroxidase centre. In the absence of Asp65, routes for Fe2+ to, and Fe3+ exit from, the ferroxidase centre are affected resulting in inefficient formation of the mineral core. These observations further define the iron transit route in what may be the first characterized example of a new class of ferritins peculiar to cyanobacteria.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Joshua Fair
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK.,Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
25
|
Mohanty A, Parida A, Subhadarshanee B, Behera N, Subudhi T, Koochana PK, Behera RK. Alteration of Coaxial Heme Ligands Reveals the Role of Heme in Bacterioferritin from Mycobacterium tuberculosis. Inorg Chem 2021; 60:16937-16952. [PMID: 34695354 DOI: 10.1021/acs.inorgchem.1c01554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The uptake and utilization of iron remains critical for the survival/virulence of the host/pathogens in spite of the limitations (low bioavailability/high toxicity) associated with this nutrient. Both the host and pathogens manage to overcome these problems by utilizing the iron repository protein nanocages, ferritins, which not only sequester and detoxify the free Fe(II) ions but also decrease the iron solubility gap by synthesizing/encapsulating the Fe(III)-oxyhydroxide biomineral in its central hollow nanocavity. Bacterial pathogens including Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encode a distinct subclass of ferritins called bacterioferritin (BfrA), which binds heme, the versatile redox cofactor, via coaxial, conserved methionine (M52) residues at its subunit-dimer interfaces. However, the exact role of heme in Mtb BfrA remains yet to be established. Therefore, its coaxial ligands were altered via site-directed mutagenesis, which resulted in both heme-bound (M52C; ∼1 heme per cage) and heme-free (M52H and M52L) variants, indicating the importance of M52 residues as preferential heme binding axial ligands in Mtb BfrA. All these variants formed intact nanocages of similar size and iron-loading ability as that of wild-type (WT) Mtb BfrA. However, the as-isolated heme-bound variants (WT and M52C) exhibited enhanced protein stability and reductive iron mobilization as compared to their heme-free analogues (M52H and M52L). Further, increasing the heme content in BfrA variants by reconstitution not only enhanced the cage stability but also facilitated the iron mobilization, suggesting the role of heme. In contrary, heme altered the ferroxidase activity to a lesser extent despite facilitating the accumulation of the reactive intermediates formed during the course of the reaction. The current study suggests that heme in Mtb BfrA enhances the overall stability of the protein and possibly acts as an intrinsic electron relay station to influence the iron mineral dissolution and thus may be associated with Mtb's pathogenicity.
Collapse
Affiliation(s)
- Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Akankshika Parida
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Narmada Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Tanaya Subudhi
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | | | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
26
|
Ciambellotti S, Pratesi A, Tassone G, Turano P, Mangani S, Pozzi C. Iron Binding in the Ferroxidase Site of Human Mitochondrial Ferritin. Chemistry 2021; 27:14690-14701. [PMID: 34343376 DOI: 10.1002/chem.202102270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Ferritins are nanocage proteins that store iron ions in their central cavity as hydrated ferric oxide biominerals. In mammals, further the L (light) and H (heavy) chains constituting cytoplasmic maxi-ferritins, an additional type of ferritin has been identified, the mitochondrial ferritin (MTF). Human MTF (hMTF) is a functional homopolymeric H-like ferritin performing the ferroxidase activity in its ferroxidase site (FS), in which Fe(II) is oxidized to Fe(III) in the presence of dioxygen. To better investigate its ferroxidase properties, here we performed time-lapse X-ray crystallography analysis of hMTF, providing structural evidence of how iron ions interact with hMTF and of their binding to the FS. Transient iron binding sites, populating the pathway along the cage from the iron entry channel to the catalytic center, were also identified. Furthermore, our kinetic data at variable iron loads indicate that the catalytic iron oxidation reaction occurs via a diferric peroxo intermediate followed by the formation of ferric-oxo species, with significant differences with respect to human H-type ferritin.
Collapse
Affiliation(s)
- Silvia Ciambellotti
- Department of Chemistry "Ugo Schiff" Department of Excellence 2018-2022, University of Florence, via della Lastruccia 2, 50019, Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| | - Paola Turano
- Department of Chemistry "Ugo Schiff" Department of Excellence 2018-2022, University of Florence, via della Lastruccia 2, 50019, Sesto Fiorentino, Italy.,Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Stefano Mangani
- Magnetic Resonance Center (CERM), University of Florence, Luigi Sacconi 6, 50019, Sesto Fiorentino (FI), Italy.,Consorzio Interuniversitario Risonanze Magnetiche di, Metallo Proteine (C.I.R.M.M.P.), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy Department of Excellence 2018-2020, University of Siena, via Aldo Moro, 2, 53110, Siena, Italy
| |
Collapse
|
27
|
Wang Y, Zang J, Wang C, Zhang X, Zhao G. Structural Insights for the Stronger Ability of Shrimp Ferritin to Coordinate with Heavy Metal Ions as Compared to Human H-Chain Ferritin. Int J Mol Sci 2021; 22:ijms22157859. [PMID: 34360624 PMCID: PMC8346123 DOI: 10.3390/ijms22157859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Although apoferritin has been widely utilized as a new class of natural protein nanovehicles for encapsulation and delivery of nutraceuticals, its ability to remove metal heavy ions has yet to be explored. In this study, for the first time, we demonstrated that the ferritin from kuruma prawns (Marsupenaeus japonicus), named MjF, has a pronouncedly larger ability to resist denaturation induced by Cd2+ and Hg2+ as compared to its analogue, human H-chain ferritin (HuHF), despite the fact that these two proteins share a high similarity in protein structure. Treatment of HuHF with Cd2+ or Hg2+ at a metal ion/protein shell ratio of 100/1 resulted in marked protein aggregation, while the MjF solution was kept constantly clear upon treatment with Cd2+ and Hg2+ at different protein shell/metal ion ratios (50/1, 100/1, 250/1, 500/1, 1000/1, and 2500/1). Structural comparison analyses in conjunction with the newly solved crystal structure of the complex of MjF plus Cd2+ or Hg2+ revealed that cysteine (Cys) is a major residue responsible for such binding, and that the large difference in the ability to resist denaturation induced by these two heavy metal ions between MjF and HuHF is mainly derived from the different positions of Cys residues in these two proteins; namely, Cys residues in HuHF are located on the outer surface, while Cys residues from MjF are buried within the protein shell. All of these findings raise the high possibility that prawn ferritin, as a food-derived protein, could be developed into a novel bio-template to remove heavy metal ions from contaminated food systems.
Collapse
Affiliation(s)
- Yingjie Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China;
| | - Xiuqing Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
- Correspondence: (X.Z.); (G.Z.); Tel.: +86-10-62736710 (G.Z.); Fax: +86-10-62738737 (G.Z.)
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
- Correspondence: (X.Z.); (G.Z.); Tel.: +86-10-62736710 (G.Z.); Fax: +86-10-62738737 (G.Z.)
| |
Collapse
|
28
|
Plays M, Müller S, Rodriguez R. Chemistry and biology of ferritin. Metallomics 2021; 13:6244244. [PMID: 33881539 PMCID: PMC8083198 DOI: 10.1093/mtomcs/mfab021] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Iron is an essential element required by cells and has been described as a key player in ferroptosis. Ferritin operates as a fundamental iron storage protein in cells forming multimeric assemblies with crystalline iron cores. We discuss the latest findings on ferritin structure and activity and its link to cell metabolism and ferroptosis. The chemistry of iron, including its oxidation states, is important for its biological functions, its reactivity, and the biology of ferritin. Ferritin can be localized in different cellular compartments and secreted by cells with a variety of functions depending on its spatial context. Here, we discuss how cellular ferritin localization is tightly linked to its function in a tissue-specific manner, and how impairment of iron homeostasis is implicated in diseases, including cancer and coronavirus disease 2019. Ferritin is a potential biomarker and we discuss latest research where it has been employed for imaging purposes and drug delivery.
Collapse
Affiliation(s)
- Marina Plays
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Sebastian Müller
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75005 Paris, France.,Centre national de la recherche scientifique UMR 3666, Paris, France.,Institut national de la santé et de la recherche médicale U1143, Paris, France.,PSL Université Paris, Paris, France
| |
Collapse
|
29
|
Wang W, Zhang Y, Zhao G, Wang H. Ferritin with Atypical Ferroxidase Centers Takes B-Channels as the Pathway for Fe 2+ Uptake from Mycoplasma. Inorg Chem 2021; 60:7207-7216. [PMID: 33852289 DOI: 10.1021/acs.inorgchem.1c00265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we present a 1.9 Å resolution crystal structure of Mycoplasma Penetrans ferritin, which reveals that its ferroxidase center is located on the inner surface of ferritin but not buried within the four-helix of each subunit. Such a ferroxidase center exhibits a lower iron oxidation activity as compared to the reported ferritin. More importantly, we found that Fe2+ enters into the center via the rarely reported B-channels rather than the normal 3- or 4-fold channels. All these findings may provide the structural bases to explore the new iron oxidation mechanism adopted by this special ferritin, which is beneficial for understanding the relationship between the structure and function of ferritin.
Collapse
Affiliation(s)
- Wenming Wang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.,Shanxi Key Laboratory of Pharmaceutical Biotechnology, Taiyuan 030006, China
| | - Yao Zhang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongfei Wang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
30
|
Koochana PK, Mohanty A, Parida A, Behera N, Behera PM, Dixit A, Behera RK. Flavin-mediated reductive iron mobilization from frog M and Mycobacterial ferritins: impact of their size, charge and reactivities with NADH/O 2. J Biol Inorg Chem 2021; 26:265-281. [PMID: 33598740 DOI: 10.1007/s00775-021-01850-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/21/2021] [Indexed: 01/01/2023]
Abstract
In vitro, reductive mobilization of ferritin iron using suitable electron transfer mediators has emerged as a possible mechanism to mimic the iron release process, in vivo. Nature uses flavins as electron relay molecules for important biological oxidation and oxygenation reactions. Therefore, the current work utilizes three flavin analogues: riboflavin (RF), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which differ in size and charge but have similar redox potentials, to relay electron from nicotinamide adenine dinucleotide (NADH) to ferritin mineral core. Of these, the smallest/neutral analogue, RF, released more iron (~ three fold) in comparison to the larger and negatively charged FMN and FAD. Although iron mobilization got marred during the initial stages under aerobic conditions, but increased with a greater slope at the later stages of the reaction kinetics, which gets inhibited by superoxide dismutase, consistent with the generation of O2∙- in situ. The initial step, i.e., interaction of flavins with NADH played critical role in the iron release process. Overall, the flavin-mediated reductive iron mobilization from ferritins occurred via two competitive pathways, involving the reduced form of flavins either alone (anaerobic condition) or in combination with O2∙- intermediate (aerobic condition). Moreover, faster iron release was observed for ferritins from Mycobacterium tuberculosis than from bullfrog, indicating the importance of protein nanocage and the advantages they provide to the respective organisms. Therefore, these structure-reactivity studies of flavins with NADH/O2 holds significance in ferritin iron release, bioenergetics, O2-based cellular toxicity and may be potentially exploited in the treatment of methemoglobinemia. Smaller sized/neutral flavin analogue, riboflavin (RF) exhibits faster reactivity towards both NADH and O2 generating more amount of O2∙- and releases higher amount of iron from different ferritins, compared to its larger sized/negatively charged derivatives such as FMN and FAD.
Collapse
Affiliation(s)
| | - Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Akankshika Parida
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Narmada Behera
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | | | - Anshuman Dixit
- Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
31
|
Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE. Bacterial iron detoxification at the molecular level. J Biol Chem 2021; 295:17602-17623. [PMID: 33454001 PMCID: PMC7762939 DOI: 10.1074/jbc.rev120.007746] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable "free" iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| | | | - Michael T Wilson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom; Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
32
|
Cozzi A, Santambrogio P, Ripamonti M, Rovida E, Levi S. Pathogenic mechanism and modeling of neuroferritinopathy. Cell Mol Life Sci 2021; 78:3355-3367. [PMID: 33439270 PMCID: PMC11072144 DOI: 10.1007/s00018-020-03747-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022]
Abstract
Neuroferritinopathy is a rare autosomal dominant inherited movement disorder caused by alteration of the L-ferritin gene that results in the production of a ferritin molecule that is unable to properly manage iron, leading to the presence of free redox-active iron in the cytosol. This form of iron has detrimental effects on cells, particularly severe for neuronal cells, which are highly sensitive to oxidative stress. Although very rare, the disorder is notable for two reasons. First, neuroferritinopathy displays features also found in a larger group of disorders named Neurodegeneration with Brain Iron Accumulation (NBIA), such as iron deposition in the basal ganglia and extrapyramidal symptoms; thus, the elucidation of its pathogenic mechanism may contribute to clarifying the incompletely understood aspects of NBIA. Second, neuroferritinopathy shows the characteristic signs of an accelerated process of aging; thus, it can be considered an interesting model to study the progress of aging. Here, we will review the clinical and neurological features of neuroferritinopathy and summarize biochemical studies and data from cellular and animal models to propose a pathogenic mechanism of the disorder.
Collapse
Affiliation(s)
- Anna Cozzi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Paolo Santambrogio
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Maddalena Ripamonti
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Ermanna Rovida
- Institute for Genetic and Biomedical Research, National Research Council, 20138, Milan, Italy
| | - Sonia Levi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy.
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
33
|
Mohanty A, K M, Jena SS, Behera RK. Kinetics of Ferritin Self-Assembly by Laser Light Scattering: Impact of Subunit Concentration, pH, and Ionic Strength. Biomacromolecules 2021; 22:1389-1398. [PMID: 33720694 DOI: 10.1021/acs.biomac.0c01562] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ferritins, the cellular iron repositories, are self-assembled, hollow spherical nanocage proteins composed of 24 subunits. The self-assembly process in ferritin generates the electrostatic gradient to rapidly sequester Fe(II) ions, thereby minimizing its toxicity (Fenton reaction). Although the factors that drive self-assembly and control its kinetics are little investigated, its inherent reversibility has been utilized for cellular imaging and targeted drug delivery. The current work tracks the kinetics of ferritin self-assembly by laser light scattering and investigates the factors that influence the process. The formation of partially structured subunit-monomers/dimers, at pH ≤ 1.5, serves as the starting material for the self-assembly, which upon increasing the pH exhibits biphasic behavior (a rapid assembly process coupled with subunit folding followed by a slower reassembly/reorganization process) and completes within 10 min. The ferritin self-assembly accelerated with subunit concentration and ionic strength (t1/2 decreases in both the cases) but slowed down with the pH of the medium from 5.5 to 7.5 (t1/2 increases). These findings would help to regulate the ferritin self-assembly to enhance the loading/unloading of drugs/nanomaterials for exploiting it as a nanocarrier and nanoreactor.
Collapse
Affiliation(s)
- Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008 Odisha, India
| | - Mithra K
- Department of Physics and Astronomy, National Institute of Technology, Rourkela 769008 Odisha, India
| | - Sidhartha S Jena
- Department of Physics and Astronomy, National Institute of Technology, Rourkela 769008 Odisha, India
| | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008 Odisha, India
| |
Collapse
|
34
|
Huan H, Jiang Q, Wu Y, Qiu X, Lu C, Su C, Zhou J, Li Y, Ming T, Su X. Structure determination of ferritin from Dendrorhynchus zhejiangensis. Biochem Biophys Res Commun 2020; 531:195-202. [PMID: 32792196 DOI: 10.1016/j.bbrc.2020.07.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022]
Abstract
Ferritin is an important hub of iron metabolism because it stores iron during times of iron overload and releases iron during iron deficiency. Here, we present the first crystal structure of ferritin from the marine invertebrate Dendrorhynchus zhejiangensis with a 2.3 Å resolution. D. zhejiangensis ferritin (DzFer) exhibits a common cage-shaped hollow sphere with 24 subunits containing the ferroxidase centers and 3-fold and 4-fold channels. The structure of DzFer shows highly conserved catalytic residues in the ferroxidase center. The metal wire formed by ferrous ions in the 3-fold channel reveals the path that iron ions use to enter and translocate into the ferroxidase site to be oxidized and finally arrive at the nucleation site. However, the electrostatic environment of the channels and pores exhibits significant and extensive variability, suggesting that ferritins execute diverse functions in different environments.
Collapse
Affiliation(s)
- Hengshang Huan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Qinqin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic, Ningbo, Zhejiang, 315800, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China.
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China; School of Marine Science, Ningbo University, Ningbo, Zhejiang, 315823, China.
| |
Collapse
|
35
|
Silver nanoparticle synthesis in human ferritin by photochemical reduction. J Inorg Biochem 2020; 206:111016. [DOI: 10.1016/j.jinorgbio.2020.111016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 01/04/2023]
|
36
|
Watanabe Y, Aiba Y, Ariyasu S, Abe S. Molecular Design and Regulation of Metalloenzyme Activities through Two Novel Approaches: Ferritin and P450s. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yoshihito Watanabe
- Research Center for Materials Science, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Shinya Ariyasu
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Abe
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda-cho, Yokohama, Kanagawa, Japan
| |
Collapse
|
37
|
Chen P, De Meulenaere E, Deheyn DD, Bandaru PR. Iron redox pathway revealed in ferritin via electron transfer analysis. Sci Rep 2020; 10:4033. [PMID: 32132578 PMCID: PMC7055317 DOI: 10.1038/s41598-020-60640-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/13/2020] [Indexed: 01/16/2023] Open
Abstract
Ferritin protein is involved in biological tissues in the storage and management of iron - an essential micro-nutrient in the majority of living systems. While there are extensive studies on iron-loaded ferritin, its functionality in iron delivery is not completely clear. Here, for the first time, differential pulse voltammetry (DPV) has been successfully adapted to address the challenge of resolving a cascade of fast and co-occurring redox steps in enzymatic systems such as ferritin. Using DPV, comparative analysis of ferritins from two evolutionary-distant organisms has allowed us to propose a stepwise resolution for the complex mix of concurrent redox steps that is inherent to ferritins and to fine-tune the structure-function relationship of each redox step. Indeed, the cyclic conversion between Fe3+ and Fe2+ as well as the different oxidative steps of the various ferroxidase centers already known in ferritins were successfully discriminated, bringing new evidence that both the 3-fold and 4-fold channels can be functional in ferritin.
Collapse
Affiliation(s)
- Peng Chen
- Department of Mechanical Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Evelien De Meulenaere
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA.
| | - Prabhakar R Bandaru
- Department of Mechanical Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
38
|
Bradley JM, Pullin J, Moore GR, Svistunenko DA, Hemmings AM, Le Brun NE. Routes of iron entry into, and exit from, the catalytic ferroxidase sites of the prokaryotic ferritin SynFtn. Dalton Trans 2020; 49:1545-1554. [DOI: 10.1039/c9dt03570b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This work describes the identification of two residues, D137 and E62, that are critical for, respectively, the transport of Fe2+ into, and Fe3+ out of, the catalytic sites of a prokaryotic ferritin.
Collapse
Affiliation(s)
- Justin M. Bradley
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | - Jacob Pullin
- School of Biological Sciences
- University of Essex
- Colchester CO4 3SQ
- UK
| | - Geoffrey R. Moore
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | | | - Andrew M. Hemmings
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| |
Collapse
|
39
|
Muhoberac BB, Vidal R. Iron, Ferritin, Hereditary Ferritinopathy, and Neurodegeneration. Front Neurosci 2019; 13:1195. [PMID: 31920471 PMCID: PMC6917665 DOI: 10.3389/fnins.2019.01195] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular growth, function, and protection require proper iron management, and ferritin plays a crucial role as the major iron sequestration and storage protein. Ferritin is a 24 subunit spherical shell protein composed of both light (FTL) and heavy chain (FTH1) subunits, possessing complimentary iron-handling functions and forming three-fold and four-fold pores. Iron uptake through the three-fold pores is well-defined, but the unloading process somewhat less and generally focuses on lysosomal ferritin degradation although it may have an additional, energetically efficient pore mechanism. Hereditary Ferritinopathy (HF) or neuroferritinopathy is an autosomal dominant neurodegenerative disease caused by mutations in the FTL C-terminal sequence, which in turn cause disorder and unraveling at the four-fold pores allowing iron leakage and enhanced formation of toxic, improperly coordinated iron (ICI). Histopathologically, HF is characterized by iron deposition and formation of ferritin inclusion bodies (IBs) as the cells overexpress ferritin in an attempt to address iron accumulation while lacking the ability to clear ferritin and its aggregates. Overexpression and IB formation tax cells materially and energetically, i.e., their synthesis and disposal systems, and may hinder cellular transport and other spatially dependent functions. ICI causes cellular damage to proteins and lipids through reactive oxygen species (ROS) formation because of high levels of brain oxygen, reductants and metabolism, taxing cellular repair. Iron can cause protein aggregation both indirectly by ROS-induced protein modification and destabilization, and directly as with mutant ferritin through C-terminal bridging. Iron release and ferritin degradation are also linked to cellular misfunction through ferritinophagy, which can release sufficient iron to initiate the unique programmed cell death process ferroptosis causing ROS formation and lipid peroxidation. But IB buildup suggests suppressed ferritinophagy, with elevated iron from four-fold pore leakage together with ROS damage and stress leading to a long-term ferroptotic-like state in HF. Several of these processes have parallels in cell line and mouse models. This review addresses the roles of ferritin structure and function within the above-mentioned framework, as they relate to HF and associated disorders characterized by abnormal iron accumulation, protein aggregation, oxidative damage, and the resulting contributions to cumulative cellular stress and death.
Collapse
Affiliation(s)
- Barry B. Muhoberac
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana Alzheimer Disease Center, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
40
|
Parida A, Mohanty A, Kansara BT, Behera RK. Impact of Phosphate on Iron Mineralization and Mobilization in Nonheme Bacterioferritin B from Mycobacterium tuberculosis. Inorg Chem 2019; 59:629-641. [DOI: 10.1021/acs.inorgchem.9b02894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Akankshika Parida
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bharat T. Kansara
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Rabindra K. Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
41
|
Maity B, Hishikawa Y, Lu D, Ueno T. Recent progresses in the accumulation of metal ions into the apo-ferritin cage: Experimental and theoretical perspectives. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Effect of the point mutation H54N on the ferroxidase process of Rana catesbeiana H′ ferritin. J Inorg Biochem 2019; 197:110697. [DOI: 10.1016/j.jinorgbio.2019.110697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/15/2023]
|
43
|
Jin Y, He J, Fan K, Yan X. Ferritin variants: inspirations for rationally designing protein nanocarriers. NANOSCALE 2019; 11:12449-12459. [PMID: 31231742 DOI: 10.1039/c9nr03823j] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ferritin, a natural iron storage protein, is endowed with a unique structure, the ability to self-assemble and excellent physicochemical properties. Beyond these, genetic manipulation can easily tune the structure and functions of ferritin nanocages, which further expands the biomedical applications of ferritin. Here, we focus on human H-ferritin, a recently discovered ligand of transferrin receptor 1, to review its derived variants and related structures and properties. We hope this review will provide new insights into how to rationally design versatile protein cage nanocarriers for effective disease treatment.
Collapse
Affiliation(s)
- Yiliang Jin
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China. and University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China.
| | - Jiuyang He
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Kelong Fan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China. and University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China. and Academy of Medical Sciences, Zhengzhou University, 40 N Daxue Road, Zhengzhou 450052, China
| |
Collapse
|
44
|
Mohanty A, Subhadarshanee B, Barman P, Mahapatra C, Aishwarya B, Behera RK. Iron Mineralizing Bacterioferritin A from Mycobacterium tuberculosis Exhibits Unique Catalase-Dps-like Dual Activities. Inorg Chem 2019; 58:4741-4752. [DOI: 10.1021/acs.inorgchem.8b02758] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Biswamaitree Subhadarshanee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar 751024, Odisha, India
| | - Pallavi Barman
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Chinmayee Mahapatra
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - B. Aishwarya
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Rabindra K. Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
45
|
Chen W, Li S, Li X, Zhang C, Hu X, Zhu F, Shen G, Feng F. Iron sulfur clusters in protein nanocages for photocatalytic hydrogen generation in acidic aqueous solutions. Chem Sci 2019; 10:2179-2185. [PMID: 30881642 PMCID: PMC6385480 DOI: 10.1039/c8sc05293j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/15/2018] [Indexed: 12/11/2022] Open
Abstract
We took advantage of the iron binding affinity of apoferritin to immobilize iron-sulfur clusters into apoferritin up to 312 moieties per protein, with a loading rate as high as 25 wt%. The photocatalytic hydrogen generation activity in acidic aqueous solutions was achieved with TONs up to 31 (based on a single catalyst moiety) or 8.3 × 103 (based on a single protein) upon 3 h of visible light irradiation. The present study provides a versatile strategy to construct uniform protein/photocatalyst supramolecular systems with FeFe-H2ase activity.
Collapse
Affiliation(s)
- Weijian Chen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Shuyi Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Xiao Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Chi Zhang
- School of Chemistry & Chemical Engineering , Shangqiu Normal University , Shangqiu 476000 , China
| | - Xiantao Hu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Fan Zhu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Guosong Shen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education , Department of Polymer Science & Engineering , School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China .
| |
Collapse
|
46
|
Abe S, Ito N, Maity B, Lu C, Lu D, Ueno T. Coordination design of cadmium ions at the 4-fold axis channel of the apo-ferritin cage. Dalton Trans 2019; 48:9759-9764. [PMID: 30993287 DOI: 10.1039/c9dt00609e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Spherical protein cages with highly symmetrical structures provide unique environments for the conjugation of metal ions and metal nanoparticles. Ferritin has been widely studied as a template for the coordination of metal ions and metal nanoparticles in fundamental research and applications. However, it remains difficult to design metal coordination sites precisely. In this work, we describe the design and construction of new metal coordination sites by introducing Cys residues at the 4-fold symmetrical hydrophobic channel of apo-ferritin. X-ray crystal structure analyses of the mutants containing Cd(ii) ions show that the four or eight binding sites for Cd(ii) ions are located at the 4-fold symmetrical axis channel of apo-ferritin. It was found that the coordination number and configuration of Cd(ii) ions can be varied by adjusting the positions of the Cys residues at the symmetrical channels of the apo-ferritin cage.
Collapse
Affiliation(s)
- Satoshi Abe
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Koochana PK, Mohanty A, Subhadarshanee B, Satpati S, Naskar R, Dixit A, Behera RK. Phenothiazines and phenoxazines: as electron transfer mediators for ferritin iron release. Dalton Trans 2019; 48:3314-3326. [DOI: 10.1039/c8dt04383c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Redox active phenothiazine and phenoxazine dyes facilitate ferritin iron release by acting as electron transfer (ET) mediators following Marcus theory.
Collapse
Affiliation(s)
| | - Abhinav Mohanty
- Department of Chemistry
- National Institute of Technology
- Rourkela-769008
- India
| | | | - Suresh Satpati
- Institute of Life Sciences
- Bhubaneswar-751023
- India
- Indian Institute of Science
- Bangalore-560012
| | - Rajat Naskar
- Department of Chemistry
- National Institute of Technology
- Rourkela-769008
- India
| | | | - Rabindra K. Behera
- Department of Chemistry
- National Institute of Technology
- Rourkela-769008
- India
| |
Collapse
|
48
|
Chandramouli B, Del Galdo S, Mancini G, Barone V. Mechanistic insights into metal ions transit through threefold ferritin channel. Biochim Biophys Acta Gen Subj 2018; 1863:472-480. [PMID: 30496786 DOI: 10.1016/j.bbagen.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The mechanism of how the hydrophilic threefold channel (C3) of ferritin nanocages facilitates diffusion of diverse metal ions into the internal cavity remains poorly explored. METHODS Computational modeling and free energy estimations were carried out on R. catesbeiana H´ ferritin. Transit features and associated energetics for Fe2+, Mg2+, Zn2+ ions through the C3 channel have been examined. RESULTS We highlight that iron conduction requires the involvement of two Fe2+ ions in the channel. In such doubly occupied configuration, as observed in X-ray structures, Fe2+ is displaced from the internal site (stabilized by D127) at lower energetic cost. Moreover, comparison of Fe2+, Mg2+ and Zn2+ transit features shows that E130 geometric constriction provides not only an electrostatic anchor to the incoming ions but also differentially influence their diffusion kinetics. CONCLUSIONS Overall, the study provides insights into Fe2+ entry mechanism and characteristic features of metal-protein interactions that influence the metal ions passage. The dynamics data suggest that E130 may act as a metal selectivity gate. This implicates an ion-specific entry mechanism through the channel with the distinct diffusion kinetics being the discriminating factor. GENERAL SIGNIFICANCE Ferritin nanocages not only act as biological iron reservoirs but also have gained importance in material science as template scaffolds for synthesizing metal nanoparticles. This study provides mechanistic understanding on the conduction of different metal ions through the channel.
Collapse
Affiliation(s)
- Balasubramanian Chandramouli
- Compunet, Istituto Italiano di Tecnologia (IIT), Via Morego 30, I-16163 Genova, Italy; Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | - Sara Del Galdo
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOMCNR), UOS di Pisa, Area della Ricerca CNR, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Giordano Mancini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
| |
Collapse
|
49
|
Cutrin JC, Alberti D, Bernacchioni C, Ciambellotti S, Turano P, Luchinat C, Crich SG, Aime S. Cancer cell death induced by ferritins and the peculiar role of their labile iron pool. Oncotarget 2018; 9:27974-27984. [PMID: 29963255 PMCID: PMC6021343 DOI: 10.18632/oncotarget.25416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 04/28/2018] [Indexed: 12/19/2022] Open
Abstract
Cellular uptake of human H-ferritin loaded with 50 or 350 iron ions results in significant cytotoxicity on HeLa cells at submicromolar concentrations. Conversely, Horse Spleen Ferritin, that can be considered a model of L-cages, as it contains only about 10% of H subunits, even when loaded with 1000 iron ions, is toxic only at >1 order of magnitude higher protein concentrations. We propose here that the different cytotoxicity of the two ferritin cages originates from the presence in H-ferritin of a pool of non-biomineralized iron ions bound at the ferroxidase catalytic sites of H-ferritin subunits. This iron pool is readily released during the endosomal-mediated H-ferritin internalization.
Collapse
Affiliation(s)
- Juan Carlos Cutrin
- University of Torino, Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | - Diego Alberti
- University of Torino, Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | | | | | - Paola Turano
- Center for Magnetic Resonance, University of Florence, Florence, Italy
| | - Claudio Luchinat
- Center for Magnetic Resonance, University of Florence, Florence, Italy
| | | | - Silvio Aime
- Center for Magnetic Resonance, University of Florence, Florence, Italy.,IBB-CNR, Sede Secondaria c/o MBC, Torino, Italy
| |
Collapse
|
50
|
Koochana PK, Mohanty A, Das S, Subhadarshanee B, Satpati S, Dixit A, Sabat SC, Behera RK. Releasing iron from ferritin protein nanocage by reductive method: The role of electron transfer mediator. Biochim Biophys Acta Gen Subj 2018; 1862:1190-1198. [PMID: 29471025 DOI: 10.1016/j.bbagen.2018.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ferritin detoxifies excess of free Fe(II) and concentrates it in the form of ferrihydrite (Fe2O3·xH2O) mineral. When in need, ferritin iron is released for cellular metabolic activities. However, the low solubility of Fe(III) at neutral pH, its encapsulation by stable protein nanocage and presence of dissolved O2 limits in vitro ferritin iron release. METHODS Physiological reducing agent, NADH (E1/2 = -330 mV) was inefficient in releasing the ferritin iron (E1/2 = +183 mV), when used alone. Thus, current work investigates the role of low concentration (5-50 μM) of phenazine based electron transfer (ET) mediators such as FMN, PYO - a redox active virulence factor secreted by Pseudomonas aeruginosa and PMS towards iron mobilization from recombinant frog M ferritin. RESULTS The presence of dissolved O2, resulting in initial lag phase and low iron release in FMN, had little impact in case of PMS and PYO, reflecting their better ET relay ability that facilitates iron mobilization. The molecular modeling as well as fluorescence studies provided further structural insight towards interaction of redox mediators on ferritin surface for electron relay. CONCLUSIONS Reductive mobilization of iron from ferritin is dependent on the relative rate of NADH oxidation, dissolved O2 consumption and mineral core reduction, which in turn depends on E1/2 of these mediators and their interaction with ferritin. GENERAL SIGNIFICANCE The current mechanism of in vitro iron mobilization from ferritin by using redox mediators involves different ET steps, which may help to understand the iron release pathway in vivo and to check microbial growth.
Collapse
Affiliation(s)
| | - Abhinav Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Suman Das
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Biswamaitree Subhadarshanee
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India; KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh Satpati
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
| | - Anshuman Dixit
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India
| | | | - Rabindra K Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|