1
|
Liu J, Sun X, Wu Y, Lv Z, Zhou N, Bian C, Sun S. Hypoxia induces ferroptotic cell death mediated by activation of the inner mitochondrial membrane fission protein MTP18/Drp1 in invertebrates. J Biol Chem 2025; 301:108326. [PMID: 39971157 PMCID: PMC11957787 DOI: 10.1016/j.jbc.2025.108326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Hypoxia and ischemia damage sensitive organelles such as mitochondria, and mitochondrial dysfunction contributes to metabolic disorders in crustaceans under hypoxia. The mechanisms associated with ferroptosis in hypoxic disorders have not been determined in crustaceans. In particular, the early molecular events of mitochondrial dynamics in crustaceans require clarification. In this study, two evolutionarily conserved mitochondrial fission proteins, Drp1 and MTP18, were identified in oriental river prawn (Macrobrachium nipponense). In vitro, ferroptosis-mediated impairment of mitochondrial membrane potential was induced by hypoxia in oriental river prawn hemocytes. In hypoxia-induced hemocytes, activation of Drp1 by increased phosphorylation at S616 was identified. Drp1 mitochondrial translocation also increased, and mitochondrial fusion-related protein expression decreased in vivo. Altered mitochondrial fission-fusion dynamics have been linked to mitochondrial dysfunction, inducing a classic ferroptosis mechanism. Marf overexpression or Drp1 knockdown protected against mitochondrial dysfunction and ferroptotic cell death in vitro. Furthermore, hypoxia-induced mitochondrial fission was verified to be driven by Drp1/MTP18 interaction. Under hypoxia, MTP18 transcription was increased by the binding of activated HIF-1α to hypoxia response elements in its promoter. Conjointly, MTP18 knockdown resulted in less apoptosis and decreased prawn mortality in gill tissue in vitro, suggesting that adaptation to hypoxia involves a vital function by MTP18. In conclusion, we uncovered a conserved role of mitochondrial fission in hypoxia-induced ferroptotic cell death. Therefore, we suggest that specific modulation of MTP18/DRP1-mediated mitochondrial dynamics might be a potential therapeutic strategy in hypoxic stress-induced tissue injury in invertebrates.
Collapse
Affiliation(s)
- Jiaqi Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Xichao Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Yijie Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Zhimin Lv
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Na Zhou
- School of Pharmacy and State Key Laboratory for Quality Research of Chinese Medicines, (R & D Center) Lab. for Drug Discovery from Natural Resource,Macau University of Science and Technology, Taipa, Macau, China
| | - Chao Bian
- College of Life and Marine Sciences, Shenzhen University, Shenzhen, China
| | - Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Abe M, Yanagawa M, Hiroshima M, Kobayashi T, Sako Y. Bilateral regulation of EGFR activity and local PI(4,5)P 2 dynamics in mammalian cells observed with superresolution microscopy. eLife 2024; 13:e101652. [PMID: 39513999 PMCID: PMC11548882 DOI: 10.7554/elife.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Anionic lipid molecules, including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), are implicated in the regulation of epidermal growth factor receptor (EGFR). However, the role of the spatiotemporal dynamics of PI(4,5)P2 in the regulation of EGFR activity in living cells is not fully understood, as it is difficult to visualize the local lipid domains around EGFR. Here, we visualized both EGFR and PI(4,5)P2 nanodomains in the plasma membrane of HeLa cells using super-resolution single-molecule microscopy. The EGFR and PI(4,5)P2 nanodomains aggregated before stimulation with epidermal growth factor (EGF) through transient visits of EGFR to the PI(4,5)P2 nanodomains. The degree of coaggregation decreased after EGF stimulation and depended on phospholipase Cγ, the EGFR effector hydrolyzing PI(4,5)P2. Artificial reduction in the PI(4,5)P2 content of the plasma membrane reduced both the dimerization and autophosphorylation of EGFR after stimulation with EGF. Inhibition of PI(4,5)P2 hydrolysis after EGF stimulation decreased phosphorylation of EGFR-Thr654. Thus, EGFR kinase activity and the density of PI(4,5)P2 around EGFR molecules were found to be mutually regulated.
Collapse
Affiliation(s)
- Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku UniversitySendaiJapan
| | - Michio Hiroshima
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| | - Toshihide Kobayashi
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de PharmacieIllkirchFrance
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| |
Collapse
|
3
|
Qian Y, Celiker OT, Wang Z, Guner-Ataman B, Boyden ES. Temporally multiplexed imaging of dynamic signaling networks in living cells. Cell 2023; 186:5656-5672.e21. [PMID: 38029746 PMCID: PMC10843875 DOI: 10.1016/j.cell.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/30/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Molecular signals interact in networks to mediate biological processes. To analyze these networks, it would be useful to image many signals at once, in the same living cell, using standard microscopes and genetically encoded fluorescent reporters. Here, we report temporally multiplexed imaging (TMI), which uses genetically encoded fluorescent proteins with different clocklike properties-such as reversibly photoswitchable fluorescent proteins with different switching kinetics-to represent different cellular signals. We linearly decompose a brief (few-second-long) trace of the fluorescence fluctuations, at each point in a cell, into a weighted sum of the traces exhibited by each fluorophore expressed in the cell. The weights then represent the signal amplitudes. We use TMI to analyze relationships between different kinase activities in individual cells, as well as between different cell-cycle signals, pointing toward broad utility throughout biology in the analysis of signal transduction cascades in living systems.
Collapse
Affiliation(s)
- Yong Qian
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA
| | - Orhan T Celiker
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 01239, USA
| | - Zeguan Wang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA; Department of Media Arts and Sciences, MIT, Cambridge, MA 01239, USA
| | - Burcu Guner-Ataman
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA
| | - Edward S Boyden
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA; Department of Media Arts and Sciences, MIT, Cambridge, MA 01239, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 01239, USA; Department of Biological Engineering, MIT, Cambridge, MA 01239, USA; Koch Institute, MIT, Cambridge, MA 01239, USA; Howard Hughes Medical Institute, Cambridge, MA 01239, USA; Center for Neurobiological Engineering and K. Lisa Yang Center for Bionics at MIT, Cambridge, MA 01239, USA.
| |
Collapse
|
4
|
Colpman P, Dasgupta A, Archer SL. The Role of Mitochondrial Dynamics and Mitotic Fission in Regulating the Cell Cycle in Cancer and Pulmonary Arterial Hypertension: Implications for Dynamin-Related Protein 1 and Mitofusin2 in Hyperproliferative Diseases. Cells 2023; 12:1897. [PMID: 37508561 PMCID: PMC10378656 DOI: 10.3390/cells12141897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Mitochondria, which generate ATP through aerobic respiration, also have important noncanonical functions. Mitochondria are dynamic organelles, that engage in fission (division), fusion (joining) and translocation. They also regulate intracellular calcium homeostasis, serve as oxygen-sensors, regulate inflammation, participate in cellular and organellar quality control and regulate the cell cycle. Mitochondrial fission is mediated by the large GTPase, dynamin-related protein 1 (Drp1) which, when activated, translocates to the outer mitochondrial membrane (OMM) where it interacts with binding proteins (Fis1, MFF, MiD49 and MiD51). At a site demarcated by the endoplasmic reticulum, fission proteins create a macromolecular ring that divides the organelle. The functional consequence of fission is contextual. Physiological fission in healthy, nonproliferating cells mediates organellar quality control, eliminating dysfunctional portions of the mitochondria via mitophagy. Pathological fission in somatic cells generates reactive oxygen species and triggers cell death. In dividing cells, Drp1-mediated mitotic fission is critical to cell cycle progression, ensuring that daughter cells receive equitable distribution of mitochondria. Mitochondrial fusion is regulated by the large GTPases mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2), which fuse the OMM, and optic atrophy 1 (OPA-1), which fuses the inner mitochondrial membrane. Mitochondrial fusion mediates complementation, an important mitochondrial quality control mechanism. Fusion also favors oxidative metabolism, intracellular calcium homeostasis and inhibits cell proliferation. Mitochondrial lipids, cardiolipin and phosphatidic acid, also regulate fission and fusion, respectively. Here we review the role of mitochondrial dynamics in health and disease and discuss emerging concepts in the field, such as the role of central versus peripheral fission and the potential role of dynamin 2 (DNM2) as a fission mediator. In hyperproliferative diseases, such as pulmonary arterial hypertension and cancer, Drp1 and its binding partners are upregulated and activated, positing mitochondrial fission as an emerging therapeutic target.
Collapse
Affiliation(s)
- Pierce Colpman
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
5
|
Lu Q, Sun X, Yegambaram M, Ornatowski W, Wu X, Wang H, Garcia-Flores A, Da Silva V, Zemskov EA, Tang H, Fineman JR, Tieu K, Wang T, Black SM. Nitration-mediated activation of the small GTPase RhoA stimulates cellular glycolysis through enhanced mitochondrial fission. J Biol Chem 2023; 299:103067. [PMID: 36841483 PMCID: PMC10060112 DOI: 10.1016/j.jbc.2023.103067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Mitochondrial fission and a Warburg phenotype of increased cellular glycolysis are involved in the pathogenesis of pulmonary hypertension (PH). The purpose of this study was to determine whether increases in mitochondrial fission are involved in a glycolytic switch in pulmonary arterial endothelial cells (PAECs). Mitochondrial fission is increased in PAEC isolated from a sheep model of PH induced by pulmonary overcirculation (Shunt PAEC). In Shunt PAEC we identified increases in the S616 phosphorylation responsible for dynamin-related protein 1 (Drp1) activation, the mitochondrial redistribution of Drp1, and increased cellular glycolysis. Reducing mitochondrial fission attenuated cellular glycolysis in Shunt PAEC. In addition, we observed nitration-mediated activation of the small GTPase RhoA in Shunt PAEC, and utilizing a nitration-shielding peptide, NipR1 attenuated RhoA nitration and reversed the Warburg phenotype. Thus, our data identify a novel link between RhoA, mitochondrial fission, and cellular glycolysis and suggest that targeting RhoA nitration could have therapeutic benefits for treating PH.
Collapse
Affiliation(s)
- Qing Lu
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Xutong Sun
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | | | - Wojciech Ornatowski
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Xiaomin Wu
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Hui Wang
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Alejandro Garcia-Flores
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Victoria Da Silva
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Evgeny A Zemskov
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Haiyang Tang
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA; Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Ting Wang
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Stephen M Black
- Center of Translational Science, Florida International University, Port St Lucie, Florida, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, Florida, USA.
| |
Collapse
|
6
|
Selective inhibition of miRNA processing by a herpesvirus-encoded miRNA. Nature 2022; 605:539-544. [PMID: 35508655 DOI: 10.1038/s41586-022-04667-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation1,2. A long appreciated, yet undefined relationship exists between the lytic-latent switch and viral non-coding RNAs3,4. Here we identify viral microRNA (miRNA)-mediated inhibition of host miRNA processing as a cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defences and drive the switch from latent to lytic virus infection. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective primary (pri)-miRNA hairpin loops. Subsequent loss of miR-30 and activation of the miR-30-p53-DRP1 axis triggers a profound disruption of mitochondrial architecture. This impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 triggered virus reactivation from latency, identifying viral miR-aU14 as a readily druggable master regulator of the herpesvirus lytic-latent switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 will provide new therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders.
Collapse
|
7
|
Directed evolution approaches for optogenetic tool development. Biochem Soc Trans 2021; 49:2737-2748. [PMID: 34783342 DOI: 10.1042/bst20210700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022]
Abstract
Photoswitchable proteins enable specific molecular events occurring in complex biological settings to be probed in a rapid and reversible fashion. Recent progress in the development of photoswitchable proteins as components of optogenetic tools has been greatly facilitated by directed evolution approaches in vitro, in bacteria, or in yeast. We review these developments and suggest future directions for this rapidly advancing field.
Collapse
|
8
|
Du N, Ye F, Sun J, Liu K. Stimuli-Responsive Natural Proteins and Their Applications. Chembiochem 2021; 23:e202100416. [PMID: 34773331 DOI: 10.1002/cbic.202100416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Natural proteins are essential biomacromolecules that fulfill versatile functions in the living organism, such as their usage as cytoskeleton, nutriment transporter, homeostasis controller, catalyzer, or immune guarder. Due to the excellent mechanical properties and good biocompatibility/biodegradability, natural protein-based biomaterials are well equipped for prospective applications in various fields. Among these natural proteins, stimuli-responsive proteins can be reversibly and precisely manipulated on demand, rendering the protein-based biomaterials promising candidates for numerous applications, including disease detection, drug delivery, bio-sensing, and regenerative medicine. Therefore, we present some typical natural proteins with diverse physical stimuli-responsive properties, including temperature, light, force, electrical, and magnetic sensing in this review. The structure-function mechanism of these proteins is discussed in detail. Finally, we give a summary and perspective for the development of stimuli-responsive proteins.
Collapse
Affiliation(s)
- Na Du
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
9
|
Function and regulation of the divisome for mitochondrial fission. Nature 2021; 590:57-66. [PMID: 33536648 DOI: 10.1038/s41586-021-03214-x] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/04/2020] [Indexed: 01/30/2023]
Abstract
Mitochondria form dynamic networks in the cell that are balanced by the flux of iterative fusion and fission events of the organelles. It is now appreciated that mitochondrial fission also represents an end-point event in a signalling axis that allows cells to sense and respond to external cues. The fission process is orchestrated by membrane-associated adaptors, influenced by organellar and cytoskeletal interactions and ultimately executed by the dynamin-like GTPase DRP1. Here we invoke the framework of the 'mitochondrial divisome', which is conceptually and operationally similar to the bacterial cell-division machinery. We review the functional and regulatory aspects of the mitochondrial divisome and, within this framework, parse the core from the accessory machinery. In so doing, we transition from a phenomenological to a mechanistic understanding of the fission process.
Collapse
|
10
|
Zhang Y, Gliyazova NS, Li PA, Ibeanu G. Phenoxythiophene sulfonamide compound B355252 protects neuronal cells against glutamate-induced excitotoxicity by attenuating mitochondrial fission and the nuclear translocation of AIF. Exp Ther Med 2021; 21:221. [PMID: 33603830 PMCID: PMC7851598 DOI: 10.3892/etm.2021.9652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/03/2020] [Indexed: 01/03/2023] Open
Abstract
Glutamate neurotoxicity has been implicated in the initiation and progression of various neurological and neurodegenerative disorders. Therefore, it is necessary to develop therapeutics for the treatment of patients with these devastating diseases. Mitochondrial fission plays an import role in the mediation of cell death and survival. The objective of the present study was to determine whether B355252, a phenoxythiophene sulfonamide derivative, reduces glutamate-induced cell death by inhibiting mitochondrial fission and the nuclear translocation of apoptosis-inducing factor (AIF) in glutamate-challenged HT22 neuronal cells. The results revealed that glutamate treatment led to large increases in the mitochondrial levels of the major fission proteins dynamin-related protein 1 (Drp1) and mitochondrial fission 1 protein (Fis1), but only small elevations in the fusion proteins mitofusin 1 and 2 (Mfn1/2) and optic atrophy 1 (Opa1). In addition, glutamate toxicity disrupted mitochondrial reticular networks and increased the translocation of AIF to the nucleus. Pretreatment with B35525 reduced glutamate-induced cell death and prevented the increases in the protein levels of Drp1, Fis1, Mfn1/2 and Opa1 in the mitochondrial fraction. More importantly, the architecture of the mitochondria was protected and nuclear translocation of AIF was completely inhibited by B35525. These findings suggest that the regulation of mitochondrial dynamics is central to the neuroprotective properties of B355252, and presents an attractive opportunity for potential development as a therapy for neurodegenerative disorders associated with mitochondria dysfunction.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.,Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical University, Ningxia 750004, P.R. China.,School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Nailya S Gliyazova
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Gordon Ibeanu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
11
|
Duranova H, Valkova V, Knazicka Z, Olexikova L, Vasicek J. Mitochondria: A worthwhile object for ultrastructural qualitative characterization and quantification of cells at physiological and pathophysiological states using conventional transmission electron microscopy. Acta Histochem 2020; 122:151646. [PMID: 33128989 DOI: 10.1016/j.acthis.2020.151646] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria are highly dynamic intracellular organelles with ultrastructural heterogeneity reflecting the behaviour and functions of the cells. The ultrastructural remodelling, performed by the counteracting active processes of mitochondrial fusion and fission, enables the organelles to respond to diverse cellular requirements and cues. It is also an important part of mechanisms underlying adaptation of mitochondria to pathophysiological conditions that challenge the cell homeostasis. However, if the stressor is constantly acting, the adaptive capacity of the cell can be exceeded and defective changes in mitochondrial morphology (indicating the insufficient functionality of mitochondria or development of mitochondrial disorders) may appear. Beside qualitative description of mitochondrial ultrastructure, stereological principles concerning the estimation of alterations in mitochondrial volume density or surface density are invaluable approaches for unbiased quantification of cells under physiological or pathophysiological conditions. In order to improve our understanding of cellular functions and dysfunctions, transmission electron microscopy (TEM) still remains a gold standard for qualitative and quantitative ultrastructural examination of mitochondria from various cell types, as well as from those experienced to different stimuli or toxicity-inducing factors. In the current study, general morphological and functional features of mitochondria, and their ultrastructural heterogeneity related to physiological and pathophysiological states of the cells are reviewed. Moreover, stereological approaches for accurate quantification of mitochondrial ultrastructure from electron micrographs taken from TEM are described in detail.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Valkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Zuzana Knazicka
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Lucia Olexikova
- Institute of Farm Animal Genetics and Reproduction, NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| | - Jaromir Vasicek
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic; Institute of Farm Animal Genetics and Reproduction, NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| |
Collapse
|
12
|
Montecinos-Franjola F, Bauer BL, Mears JA, Ramachandran R. GFP fluorescence tagging alters dynamin-related protein 1 oligomerization dynamics and creates disassembly-refractory puncta to mediate mitochondrial fission. Sci Rep 2020; 10:14777. [PMID: 32901052 PMCID: PMC7479153 DOI: 10.1038/s41598-020-71655-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Abstract
Green fluorescent protein (GFP)-tagging is the prevalent strategy to monitor protein dynamics in living cells. However, the consequences of appending the bulky GFP moiety to the protein of interest are rarely investigated. Here, using a powerful combination of quantitative fluorescence spectroscopic and imaging techniques, we have examined the oligomerization dynamics of the GFP-tagged mitochondrial fission GTPase dynamin-related protein 1 (Drp1) both in vitro and in vivo. We find that GFP-tagged Drp1 exhibits impaired oligomerization equilibria in solution that corresponds to a greatly diminished cooperative GTPase activity in comparison to native Drp1. Consequently, GFP-tagged Drp1 constitutes aberrantly stable, GTP-resistant supramolecular assemblies both in vitro and in vivo, neither of which reflects a more dynamic native Drp1 oligomerization state. Indeed, GFP-tagged Drp1 is detected more frequently per unit length over mitochondria in Drp1-null mouse embryonic fibroblasts (MEFs) compared to wild-type (wt) MEFs, indicating that the drastically reduced GTP turnover restricts oligomer disassembly from the mitochondrial surface relative to mixed oligomers comprising native and GFP-tagged Drp1. Yet, GFP-tagged Drp1 retains the capacity to mediate membrane constriction in vitro and mitochondrial division in vivo. These findings suggest that instead of robust assembly-disassembly dynamics, persistent Drp1 higher-order oligomerization over membranes is sufficient for mitochondrial fission.
Collapse
Affiliation(s)
- Felipe Montecinos-Franjola
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Brianna L Bauer
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA. .,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
13
|
De Zitter E, Ridard J, Thédié D, Adam V, Lévy B, Byrdin M, Gotthard G, Van Meervelt L, Dedecker P, Demachy I, Bourgeois D. Mechanistic Investigations of Green mEos4b Reveal a Dynamic Long-Lived Dark State. J Am Chem Soc 2020; 142:10978-10988. [PMID: 32463688 DOI: 10.1021/jacs.0c01880] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins (PCFPs) are key players in advanced microscopy schemes such as photoactivated localization microscopy (PALM). Whereas photoconversion and red-state blinking in PCFPs have been studied intensively, their green-state photophysical behavior has received less attention. Yet dark states in green PCFPs can become strongly populated in PALM schemes and exert an indirect but considerable influence on the quality of data recorded in the red channel. Furthermore, green-state photoswitching in PCFPs can be used directly for PALM and has been engineered to design highly efficient reversibly switchable fluorescent proteins (RSFPs) amenable to various nanoscopy schemes. Here, we demonstrate that green mEos4b efficiently switches to a long-lived dark state through cis-trans isomerization of its chromophore, as do most RSFPs. However, by combining kinetic crystallography, molecular dynamics simulations, and Raman spectroscopy, we find that the dark state in green mEos4b is much more dynamic than that seen in switched-off green IrisFP, a biphotochromic PCFP engineered from the common EosFP parent. Our data suggest that H-bonding patterns maintained by the chromophore in green PCFPs and RSFPs in both their on- and off-states collectively control photoswitching quantum yields. The reduced number of H-bonds maintained by the dynamic dark chromophore in green mEos4b thus largely accounts for the observed lower switching contrast as compared to that of IrisFP. We also compare the long-lived dark states reached from green and red mEos4b, on the basis of their X-ray structures and Raman signatures. Altogether, these data provide a unifying picture of the complex photophysics of PCFPs and RSFPs.
Collapse
Affiliation(s)
- Elke De Zitter
- Department of Chemistry, KU Leuven, Heverlee 3001, Belgium
| | - Jacqueline Ridard
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Daniel Thédié
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Virgile Adam
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Bernard Lévy
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Martin Byrdin
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Guillaume Gotthard
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble 38000, France
| | | | - Peter Dedecker
- Department of Chemistry, KU Leuven, Heverlee 3001, Belgium
| | - Isabelle Demachy
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| |
Collapse
|
14
|
Encoding quantized fluorescence states with fractal DNA frameworks. Nat Commun 2020; 11:2185. [PMID: 32366822 PMCID: PMC7198603 DOI: 10.1038/s41467-020-16112-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 04/14/2020] [Indexed: 02/02/2023] Open
Abstract
Signal amplification in biological systems is achieved by cooperatively recruiting multiple copies of regulatory biomolecules. Nevertheless, the multiplexing capability of artificial fluorescent amplifiers is limited due to the size limit and lack of modularity. Here, we develop Cayley tree-like fractal DNA frameworks to topologically encode the fluorescence states for multiplexed detection of low-abundance targets. Taking advantage of the self-similar topology of Cayley tree, we use only 16 DNA strands to construct n-node (n = 53) structures of up to 5 megadalton. The high level of degeneracy allows encoding 36 colours with 7 nodes by site-specifically anchoring of distinct fluorophores onto a structure. The fractal topology minimises fluorescence crosstalk and allows quantitative decoding of quantized fluorescence states. We demonstrate a spectrum of rigid-yet-flexible super-multiplex structures for encoded fluorescence detection of single-molecule recognition events and multiplexed discrimination of living cells. Thus, the topological engineering approach enriches the toolbox for high-throughput cell imaging. Though DNA framework-based scaffolds for biomolecular assembly are attractive for bioimaging applications, realizing super-multiplex fluorescent amplifiers remains a challenge. Here, the authors report a topological engineering approach to designing fractal DNA frameworks for multiplexed amplifiers.
Collapse
|
15
|
Tosheva KL, Yuan Y, Matos Pereira P, Culley S, Henriques R. Between life and death: strategies to reduce phototoxicity in super-resolution microscopy. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:163001. [PMID: 33994582 PMCID: PMC8114953 DOI: 10.1088/1361-6463/ab6b95] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 05/23/2023]
Abstract
Super-resolution microscopy (SRM) enables non-invasive, molecule-specific imaging of the internal structure and dynamics of cells with sub-diffraction limit spatial resolution. One of its major limitations is the requirement for high-intensity illumination, generating considerable cellular phototoxicity. This factor considerably limits the capacity for live-cell observations, particularly for extended periods of time. Here, we give an overview of new developments in hardware, software and probe chemistry aiming to reduce phototoxicity. Additionally, we discuss how the choice of biological model and sample environment impacts the capacity for live-cell observations.
Collapse
Affiliation(s)
- Kalina L Tosheva
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Yue Yuan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | | | - Siân Culley
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
16
|
Shinoda H, Lu K, Nakashima R, Wazawa T, Noguchi K, Matsuda T, Nagai T. Acid-Tolerant Reversibly Switchable Green Fluorescent Protein for Super-resolution Imaging under Acidic Conditions. Cell Chem Biol 2019; 26:1469-1479.e6. [DOI: 10.1016/j.chembiol.2019.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/13/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023]
|
17
|
Yoshida Y, Mogi Y. How do plastids and mitochondria divide? Microscopy (Oxf) 2019; 68:45-56. [PMID: 30476140 DOI: 10.1093/jmicro/dfy132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Plastids and mitochondria are thought to have originated from free-living cyanobacterial and alpha-proteobacterial ancestors, respectively, via endosymbiosis. Their evolutionary origins dictate that these organelles do not multiply de novo but through the division of pre-existing plastids and mitochondria. Over the past three decades, studies have shown that plastid and mitochondrial division are performed by contractile ring-shaped structures, broadly termed the plastid and mitochondrial-division machineries. Interestingly, the division machineries are hybrid forms of the bacterial cell division system and eukaryotic membrane fission system. The structure and function of the plastid and mitochondrial-division machineries are similar to each other, implying that the division machineries evolved in parallel since their establishment in primitive eukaryotes. Compared with our knowledge of their structures, our understanding of the mechanical details of how these division machineries function is still quite limited. Here, we review and compare the structural frameworks of the plastid and mitochondrial-division machineries in both lower and higher eukaryotes. Then, we highlight fundamental issues that need to be resolved to reveal the underlying mechanisms of plastid and mitochondrial division. Finally, we highlight related studies that point to an exciting future for the field.
Collapse
Affiliation(s)
- Yamato Yoshida
- Department of Science, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Yuko Mogi
- Department of Science, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| |
Collapse
|
18
|
|
19
|
Melatti C, Pieperhoff M, Lemgruber L, Pohl E, Sheiner L, Meissner M. A unique dynamin-related protein is essential for mitochondrial fission in Toxoplasma gondii. PLoS Pathog 2019; 15:e1007512. [PMID: 30947298 PMCID: PMC6448817 DOI: 10.1371/journal.ppat.1007512] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/10/2018] [Indexed: 11/19/2022] Open
Abstract
The single mitochondrion of apicomplexan protozoa is thought to be critical for all stages of the life cycle, and is a validated drug target against these important human and veterinary parasites. In contrast to other eukaryotes, replication of the mitochondrion is tightly linked to the cell cycle. A key step in mitochondrial segregation is the fission event, which in many eukaryotes occurs by the action of dynamins constricting the outer membrane of the mitochondria from the cytosolic face. To date, none of the components of the apicomplexan fission machinery have been identified and validated. We identify here a highly divergent, dynamin-related protein (TgDrpC), conserved in apicomplexans as essential for mitochondrial biogenesis and potentially for fission in Toxoplasma gondii. We show that TgDrpC is found adjacent to the mitochondrion, and is localised both at its periphery and at its basal part, where fission is expected to occur. We demonstrate that depletion or dominant negative expression of TgDrpC results in interconnected mitochondria and ultimately in drastic changes in mitochondrial morphology, as well as in parasite death. Intriguingly, we find that the canonical adaptor TgFis1 is not required for mitochondrial fission. The identification of an Apicomplexa-specific enzyme required for mitochondrial biogenesis and essential for parasite growth highlights parasite adaptation. This work paves the way for future drug development targeting TgDrpC, and for the analysis of additional partners involved in this crucial step of apicomplexan multiplication.
Collapse
Affiliation(s)
- Carmen Melatti
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Manuela Pieperhoff
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Leandro Lemgruber
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Ehmke Pohl
- Department of Biosciences, & Biophysical Sciences Institute, Durham University, Durham, United Kingdom
| | - Lilach Sheiner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
20
|
Adaniya SM, O-Uchi J, Cypress MW, Kusakari Y, Jhun BS. Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology. Am J Physiol Cell Physiol 2019; 316:C583-C604. [PMID: 30758993 DOI: 10.1152/ajpcell.00523.2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial fragmentation frequently occurs in chronic pathological conditions as seen in various human diseases. In fact, abnormal mitochondrial morphology and mitochondrial dysfunction are hallmarks of heart failure (HF) in both human patients and HF animal models. A link between mitochondrial fragmentation and cardiac pathologies has been widely proposed, but the physiological relevance of mitochondrial fission and fusion in the heart is still unclear. Recent studies have increasingly shown that posttranslational modifications (PTMs) of fission and fusion proteins are capable of directly modulating the stability, localization, and/or activity of these proteins. These PTMs include phosphorylation, acetylation, ubiquitination, conjugation of small ubiquitin-like modifier proteins, O-linked-N-acetyl-glucosamine glycosylation, and proteolysis. Thus, understanding the PTMs of fission and fusion proteins may allow us to understand the complexities that determine the balance of mitochondrial fission and fusion as well as mitochondrial function in various cell types and organs including cardiomyocytes and the heart. In this review, we summarize present knowledge regarding the function and regulation of mitochondrial fission and fusion in cardiomyocytes, specifically focusing on the PTMs of each mitochondrial fission/fusion protein. We also discuss the molecular mechanisms underlying abnormal mitochondrial morphology in HF and their contributions to the development of cardiac diseases, highlighting the crucial roles of PTMs of mitochondrial fission and fusion proteins. Finally, we discuss the future potential of manipulating PTMs of fission and fusion proteins as a therapeutic strategy for preventing and/or treating HF.
Collapse
Affiliation(s)
- Stephanie M Adaniya
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota.,Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University , Providence, Rhode Island
| | - Jin O-Uchi
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Michael W Cypress
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine , Tokyo , Japan
| | - Bong Sook Jhun
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
21
|
Jhun BS, O-Uchi J, Adaniya SM, Cypress MW, Yoon Y. Adrenergic Regulation of Drp1-Driven Mitochondrial Fission in Cardiac Physio-Pathology. Antioxidants (Basel) 2018; 7:antiox7120195. [PMID: 30567380 PMCID: PMC6316402 DOI: 10.3390/antiox7120195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/28/2022] Open
Abstract
Abnormal mitochondrial morphology, especially fragmented mitochondria, and mitochondrial dysfunction are hallmarks of a variety of human diseases including heart failure (HF). Although emerging evidence suggests a link between mitochondrial fragmentation and cardiac dysfunction, it is still not well described which cardiac signaling pathway regulates mitochondrial morphology and function under pathophysiological conditions such as HF. Mitochondria change their shape and location via the activity of mitochondrial fission and fusion proteins. This mechanism is suggested as an important modulator for mitochondrial and cellular functions including bioenergetics, reactive oxygen species (ROS) generation, spatiotemporal dynamics of Ca2+ signaling, cell growth, and death in the mammalian cell- and tissue-specific manners. Recent reports show that a mitochondrial fission protein, dynamin-like/related protein 1 (DLP1/Drp1), is post-translationally modified via cell signaling pathways, which control its subcellular localization, stability, and activity in cardiomyocytes/heart. In this review, we summarize the possible molecular mechanisms for causing post-translational modifications (PTMs) of DLP1/Drp1 in cardiomyocytes, and further discuss how these PTMs of DLP1/Drp1 mediate abnormal mitochondrial morphology and mitochondrial dysfunction under adrenergic signaling activation that contributes to the development and progression of HF.
Collapse
Affiliation(s)
- Bong Sook Jhun
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jin O-Uchi
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Stephanie M Adaniya
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA.
- Department of Medicine, Division of Cardiology, the Alpert Medical School of Brown University, Providence, RI 02903, USA.
| | - Michael W Cypress
- Lillehei Heart Institute, Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
22
|
Wang S, Shuai Y, Sun C, Xue B, Hou Y, Su X, Sun Y. Lighting Up Live Cells with Smart Genetically Encoded Fluorescence Probes from GMars Family. ACS Sens 2018; 3:2269-2277. [PMID: 30346738 DOI: 10.1021/acssensors.8b00449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a special kind of delicate light-controllable genetically encoded optical device, reversibly photoswitchable fluorescent proteins (RSFPs) have been widely applied in many fields, especially various kinds of advanced nanoscopy approaches in recent years. However, there are still necessities for exploring novel RSFPs with specific biochemical or photophysical properties not only for bioimaging or biosensing applications but also for fluorescent protein (FP) mechanisms study and further knowledge-based molecular sensors or optical actuators' rational design and evolution. Besides previously reported GMars-Q and GMars-T variants, herein, we reported the development and applications of other RSFPs from GMars family, especially some featured RSFPs with desired optical properties. In the current work, in vitro FP purification, spectra measurements, and live-cell RESOLFT nanoscopy approaches were applied to characterize the basic properties and test the imaging performances of the selected RSFPs. As demonstrated, GMars variants such as GMars-A, GMars-G, or remarkable photofatigue-resistant GMars-L were found with beneficial properties to be capable of parallelized RESOLFT nanoscopy in living cells, while other featured GMars variants such as dark GMars-P may be a good candidate for further biosensor or actuator design and applications.
Collapse
Affiliation(s)
- Sheng Wang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Yao Shuai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Chaoying Sun
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Boxin Xue
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Yingping Hou
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Xiaodong Su
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Yujie Sun
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Divakaruni SS, Van Dyke AM, Chandra R, LeGates TA, Contreras M, Dharmasri PA, Higgs HN, Lobo MK, Thompson SM, Blanpied TA. Long-Term Potentiation Requires a Rapid Burst of Dendritic Mitochondrial Fission during Induction. Neuron 2018; 100:860-875.e7. [PMID: 30318410 DOI: 10.1016/j.neuron.2018.09.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 08/09/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022]
Abstract
Synaptic transmission is bioenergetically demanding, and the diverse processes underlying synaptic plasticity elevate these demands. Therefore, mitochondrial functions, including ATP synthesis and Ca2+ handling, are likely essential for plasticity. Although axonal mitochondria have been extensively analyzed, LTP is predominantly induced postsynaptically, where mitochondria are understudied. Additionally, though mitochondrial fission is essential for their function, signaling pathways that regulate fission in neurons remain poorly understood. We found that NMDAR-dependent LTP induction prompted a rapid burst of dendritic mitochondrial fission and elevations of mitochondrial matrix Ca2+. The fission burst was triggered by cytosolic Ca2+ elevation and required CaMKII, actin, and Drp1, as well as dynamin 2. Preventing fission impaired mitochondrial matrix Ca2+ elevations, structural LTP in cultured neurons, and electrophysiological LTP in hippocampal slices. These data illustrate a novel pathway whereby synaptic activity controls mitochondrial fission and show that dynamic control of fission regulates plasticity induction, perhaps by modulating mitochondrial Ca2+ handling.
Collapse
Affiliation(s)
- Sai Sachin Divakaruni
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adam M Van Dyke
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tara A LeGates
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Minerva Contreras
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Poorna A Dharmasri
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Mary Kay Lobo
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Scott M Thompson
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas A Blanpied
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
24
|
Abstract
The past decade has witnessed an explosion in the use of super-resolution fluorescence microscopy methods in biology and other fields. Single-molecule localization microscopy (SMLM) is one of the most widespread of these methods and owes its success in large part to the ability to control the on-off state of fluorophores through various chemical, photochemical, or binding-unbinding mechanisms. We provide here a comprehensive overview of switchable fluorophores in SMLM including a detailed review of all major classes of SMLM fluorophores, and we also address strategies for labeling specimens, considerations for multichannel and live-cell imaging, potential pitfalls, and areas for future development.
Collapse
Affiliation(s)
- Honglin Li
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA, 98195
| |
Collapse
|
25
|
Stockmar I, Feddersen H, Cramer K, Gruber S, Jung K, Bramkamp M, Shin JY. Optimization of sample preparation and green color imaging using the mNeonGreen fluorescent protein in bacterial cells for photoactivated localization microscopy. Sci Rep 2018; 8:10137. [PMID: 29973667 PMCID: PMC6031688 DOI: 10.1038/s41598-018-28472-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/19/2018] [Indexed: 11/08/2022] Open
Abstract
mNeonGreen fluorescent protein is capable of photo-switching, hence in principle applicable for super-resolution imaging. However, difficult-to-control blinking kinetics that lead to simultaneous emission of multiple nearby mNeonGreen molecules impedes its use for PALM. Here, we determined the on- and off- switching rate and the influence of illumination power on the simultaneous emission. Increasing illumination power reduces the probability of simultaneous emission, but not enough to generate high quality PALM images. Therefore, we introduce a simple data post-processing step that uses temporal and spatial information of molecule localizations to further reduce artifacts arising from simultaneous emission of nearby emitters. We also systematically evaluated various sample preparation steps to establish an optimized protocol to preserve cellular morphology and fluorescence signal. In summary, we propose a workflow for super-resolution imaging with mNeonGreen based on optimization of sample preparation, data acquisition and simple post-acquisition data processing. Application of our protocol enabled us to resolve the expected double band of bacterial cell division protein DivIVA, and to visualize that the chromosome organization protein ParB organized into sub-clusters instead of the typically observed diffraction-limited foci. We expect that our workflow allows a broad use of mNeonGreen for super-resolution microscopy, which is so far difficult to achieve.
Collapse
Affiliation(s)
- Iris Stockmar
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Max Plank Institute for Biochemistry, Martinsried, Germany
| | - Helge Feddersen
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kimberly Cramer
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Max Plank Institute for Biochemistry, Martinsried, Germany
| | - Stephan Gruber
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Kirsten Jung
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Marc Bramkamp
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| | - Jae Yen Shin
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany.
- Max Plank Institute for Biochemistry, Martinsried, Germany.
| |
Collapse
|
26
|
Abstract
Multi-colour super-resolution localization microscopy is an efficient technique to study a variety of intracellular processes, including protein-protein interactions. This technique requires specific labels that display transition between fluorescent and non-fluorescent states under given conditions. For the most commonly used label types, photoactivatable fluorescent proteins and organic fluorophores, these conditions are different, making experiments that combine both labels difficult. Here, we demonstrate that changing the standard imaging buffer of thiols/oxygen scavenging system, used for organic fluorophores, to the commercial mounting medium Vectashield increased the number of photons emitted by the fluorescent protein mEos2 and enhanced the photoconversion rate between its green and red forms. In addition, the photophysical properties of organic fluorophores remained unaltered with respect to the standard imaging buffer. The use of Vectashield together with our optimized protocol for correction of sample drift and chromatic aberrations enabled us to perform two-colour 3D super-resolution imaging of the nucleolus and resolve its three compartments.
Collapse
|
27
|
|
28
|
Smyrnova D, Marín MDC, Olivucci M, Ceulemans A. Systematic Excited State Studies of Reversibly Switchable Fluorescent Proteins. J Chem Theory Comput 2018; 14:3163-3172. [PMID: 29772175 DOI: 10.1021/acs.jctc.8b00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The reversibly switchable fluorescent proteins Dronpa, rsFastLime, rsKame, Padron, and bsDronpa feature the same chromophore but display a 40 nm variation in absorption maxima and an only 18 nm variation in emission maxima. In the present contribution, we employ QM/MM models to investigate the mechanism of such remarkably different spectral variations, which are caused by just a few amino acid replacements. We show that the models, which are based on CASPT2//CASSCF level of QM theory, reproduce the observed trends in absorption maxima, with only a 3.5 kcal/mol blue-shift, and in emission maxima, with an even smaller 1.5 kcal/mol blue-shift with respect to the observed quantities. In order to explain the variations across the series, we look at the chromophore's electronic structure change during absorption and emission. Such analysis indicates that a change in charge-transfer character, which is more pronounced during absorption, triggers a cascade of hydrogen-bond-network rearrangements, suggesting preparation to an isomerization event. We also show how the contribution of Arg 89 and Arg 64 residues to the chromophore conformational changes correlate with the spectral variations in absorption and emission. Furthermore, we describe how the conical intersection stability is related to the protein's photophysical properties. While for the Dronpa, rsFastLime, and rsKame triad, the stability correlates with the photoswitching speed, this does not happen for bsDronpa and Padron, suggesting a less obvious photoisomerization mechanism.
Collapse
Affiliation(s)
- Daryna Smyrnova
- Quantum Chemistry and Physical Chemistry Division, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Heverlee , Belgium
| | - María Del Carmen Marín
- Department of Biotechnology, Chemistry, and Pharmacy , Universitá di Siena , via A. Moro 2 , I-53100 Siena , Italy.,Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry, and Pharmacy , Universitá di Siena , via A. Moro 2 , I-53100 Siena , Italy.,Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Arnout Ceulemans
- Quantum Chemistry and Physical Chemistry Division, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Heverlee , Belgium
| |
Collapse
|
29
|
Insight into the fission mechanism by quantitative characterization of Drp1 protein distribution in the living cell. Sci Rep 2018; 8:8122. [PMID: 29802333 PMCID: PMC5970238 DOI: 10.1038/s41598-018-26578-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
One of the main players in the process of mitochondrial fragmentation is dynamin-related protein 1 (Drp1), which assembles into a helical ring-like structure on the mitochondria and facilitates fission. The fission mechanism is still poorly understood and detailed information concerning oligomeric form of Drp1, its cellular distribution and the size of the fission complex is missing. To estimate oligomeric forms of Drp1 in the cytoplasm and on the mitochondria, we performed a quantitative analysis of Drp1 diffusion and distribution in gene-edited HeLa cell lines. This paper provides an insight into the fission mechanism based on the quantitative description of Drp1 cellular distribution. We found that approximately half of the endogenous GFP-Drp1 pool remained in the cytoplasm, predominantly in a tetrameric form, at a concentration of 28 ± 9 nM. The Drp1 mitochondrial pool included many different oligomeric states with equilibrium distributions that could be described by isodesmic supramolecular polymerization with a Kd of 31 ± 10 nM. We estimated the average number of Drp1 molecules forming the functional fission complex to be approximately 100, representing not more than 14% of all Drp1 oligomers. We showed that the upregulated fission induced by niclosamide is accompanied by an increase in the number of large Drp1 oligomers.
Collapse
|
30
|
Dlasková A, Engstová H, Špaček T, Kahancová A, Pavluch V, Smolková K, Špačková J, Bartoš M, Hlavatá LP, Ježek P. 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:829-844. [PMID: 29727614 DOI: 10.1016/j.bbabio.2018.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/10/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
3D super-resolution microscopy based on the direct stochastic optical reconstruction microscopy (dSTORM) with primary Alexa-Fluor-647-conjugated antibodies is a powerful method for accessing changes of objects that could be normally resolved only by electron microscopy. Despite the fact that mitochondrial cristae yet to become resolved, we have indicated changes in cristae width and/or morphology by dSTORM of ATP-synthase F1 subunit α (F1α). Obtained 3D images were analyzed with the help of Ripley's K-function modeling spatial patterns or transferring them into distance distribution function. Resulting histograms of distances frequency distribution provide most frequent distances (MFD) between the localized single antibody molecules. In fasting state of model pancreatic β-cells, INS-1E, MFD between F1α were ~80 nm at 0 and 3 mM glucose, whereas decreased to 61 nm and 57 nm upon glucose-stimulated insulin secretion (GSIS) at 11 mM and 20 mM glucose, respectively. Shorter F1α interdistances reflected cristae width decrease upon GSIS, since such repositioning of F1α correlated to average 20 nm and 15 nm cristae width at 0 and 3 mM glucose, and 9 nm or 8 nm after higher glucose simulating GSIS (11, 20 mM glucose, respectively). Also, submitochondrial entities such as nucleoids of mtDNA were resolved e.g. after bromo-deoxyuridine (BrDU) pretreatment using anti-BrDU dSTORM. MFD in distances distribution histograms reflected an average nucleoid diameter (<100 nm) and average distances between nucleoids (~1000 nm). Double channel PALM/dSTORM with Eos-lactamase-β plus anti-TFAM dSTORM confirmed the latter average inter-nucleoid distance. In conclusion, 3D single molecule (dSTORM) microscopy is a reasonable tool for studying mitochondrion.
Collapse
Affiliation(s)
- Andrea Dlasková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Engstová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Špaček
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anežka Kahancová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vojtěch Pavluch
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katarína Smolková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Špačková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Bartoš
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Alef Ltd, Prague, Czech Republic
| | - Lydie Plecitá Hlavatá
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
31
|
Ugarte-Uribe B, Prévost C, Das KK, Bassereau P, García-Sáez AJ. Drp1 polymerization stabilizes curved tubular membranes similar to those of constricted mitochondria. J Cell Sci 2018; 132:jcs.208603. [PMID: 29361534 DOI: 10.1242/jcs.208603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
Dynamin-related protein 1 (Drp1), an 80 kDa mechanochemical GTPase of the dynamin superfamily, is required for mitochondrial division in mammals. Despite the role of Drp1 dysfunction in human disease, its molecular mechanism remains poorly understood. Here, we examined the effect of Drp1 on membrane curvature using tubes pulled from giant unilamellar vesicles (GUVs). We found that GTP promoted rapid rearrangement of Drp1 from a uniform distribution to discrete foci, in line with the assembly of Drp1 scaffolds at multiple nucleation sites around the lipid tube. Polymerized Drp1 preserved the membrane tube below the protein coat, also in the absence of pulling forces, but did not induce spontaneous membrane fission. Strikingly, Drp1 polymers stabilized membrane curvatures similar to those of constricted mitochondria against pressure changes. Our findings support a new model for mitochondrial division whereby Drp1 mainly acts as a scaffold for membrane curvature stabilization, which sets it apart from other dynamin homologs.
Collapse
Affiliation(s)
- Begoña Ugarte-Uribe
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.,Biofisika Institute (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain
| | - Coline Prévost
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Kushal Kumar Das
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.,Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| |
Collapse
|
32
|
Abstract
Mitochondria are dynamic organelles that continually adapt their morphology by fusion and fission events. An imbalance between fusion and fission has been linked to major neurodegenerative diseases, including Huntington's, Alzheimer's, and Parkinson's diseases. A member of the Dynamin superfamily, dynamin-related protein 1 (DRP1), a dynamin-related GTPase, is required for mitochondrial membrane fission. Self-assembly of DRP1 into oligomers in a GTP-dependent manner likely drives the division process. We show here that DRP1 self-assembles in two ways: i) in the presence of the non-hydrolysable GTP analog GMP-PNP into spiral-like structures of ~36 nm diameter; and ii) in the presence of GTP into rings composed of 13-18 monomers. The most abundant rings were composed of 16 monomers and had an outer and inner ring diameter of ~30 nm and ~20 nm, respectively. Three-dimensional analysis was performed with rings containing 16 monomers. The single-particle cryo-electron microscopy map of the 16 monomer DRP1 rings suggests a side-by-side assembly of the monomer with the membrane in a parallel fashion. The inner ring diameter of 20 nm is insufficient to allow four membranes to exist as separate entities. Furthermore, we observed that mitochondria were tubulated upon incubation with DRP1 protein in vitro. The tubes had a diameter of ~ 30nm and were decorated with protein densities. These findings suggest DRP1 tubulates mitochondria, and that additional steps may be required for final mitochondrial fission.
Collapse
|
33
|
Lee A, Tsekouras K, Calderon C, Bustamante C, Pressé S. Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis. Chem Rev 2017; 117:7276-7330. [PMID: 28414216 PMCID: PMC5487374 DOI: 10.1021/acs.chemrev.6b00729] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Super-resolution microscopy provides direct insight into fundamental biological processes occurring at length scales smaller than light's diffraction limit. The analysis of data at such scales has brought statistical and machine learning methods into the mainstream. Here we provide a survey of data analysis methods starting from an overview of basic statistical techniques underlying the analysis of super-resolution and, more broadly, imaging data. We subsequently break down the analysis of super-resolution data into four problems: the localization problem, the counting problem, the linking problem, and what we've termed the interpretation problem.
Collapse
Affiliation(s)
- Antony Lee
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Konstantinos Tsekouras
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, United States
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute, University of California at Berkeley, Berkeley, California 94720, United States
| | - Steve Pressé
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Department of Cell and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
34
|
Klementieva NV, Bozhanova NG, Zagaynova EV, Lukyanov KA, Mishin AS. Fluorophores for single-molecule localization microscopy. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017030074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Stracy M, Kapanidis AN. Single-molecule and super-resolution imaging of transcription in living bacteria. Methods 2017; 120:103-114. [PMID: 28414097 PMCID: PMC5670121 DOI: 10.1016/j.ymeth.2017.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
In vivo single-molecule and super-resolution techniques are transforming our ability to study transcription as it takes place in its native environment in living cells. This review will detail the methods for imaging single molecules in cells, and the data-analysis tools which can be used to extract quantitative information on the spatial organization, mobility, and kinetics of the transcription machinery from these experiments. Furthermore, we will highlight studies which have applied these techniques to shed new light on bacterial transcription.
Collapse
Affiliation(s)
- Mathew Stracy
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
| |
Collapse
|
36
|
Chowdhury SR, Reimer A, Sharan M, Kozjak-Pavlovic V, Eulalio A, Prusty BK, Fraunholz M, Karunakaran K, Rudel T. Chlamydia preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission. J Cell Biol 2017; 216:1071-1089. [PMID: 28330939 PMCID: PMC5379946 DOI: 10.1083/jcb.201608063] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/09/2016] [Accepted: 02/15/2017] [Indexed: 11/22/2022] Open
Abstract
Chlamydiae are intracellular pathogens that depend on the host for their survival and development. Chowdhury et al. demonstrate that Chlamydia trachomatis infection can prevent mitochondrial fission in primary cells by reducing DRP1 abundance via miR-30c–dependent inhibition of p53. Obligate intracellular bacteria such as Chlamydia trachomatis depend on metabolites of the host cell and thus protect their sole replication niche by interfering with the host cells’ stress response. Here, we investigated the involvement of host microRNAs (miRNAs) in maintaining the viability of C. trachomatis–infected primary human cells. We identified miR-30c-5p as a prominently up-regulated miRNA required for the stable down-regulation of p53, a major suppressor of metabolite supply in C. trachomatis–infected cells. Loss of miR-30c-5p led to the up-regulation of Drp1, a mitochondrial fission regulator and a target gene of p53, which, in turn, severely affected chlamydial growth and had a marked effect on the mitochondrial network. Drp1-induced mitochondrial fragmentation prevented replication of C. trachomatis even in p53-deficient cells. Additionally, Chlamydia maintain mitochondrial integrity during reactive oxygen species–induced stress that occurs naturally during infection. We show that C. trachomatis require mitochondrial ATP for normal development and hence postulate that they preserve mitochondrial integrity through a miR-30c-5p–dependent inhibition of Drp1-mediated mitochondrial fission.
Collapse
Affiliation(s)
| | - Anastasija Reimer
- Department of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Malvika Sharan
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Ana Eulalio
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Bhupesh K Prusty
- Department of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Martin Fraunholz
- Department of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Karthika Karunakaran
- Department of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
37
|
Zhou L, Li R, Liu C, Sun T, Htet Aung LH, Chen C, Gao J, Zhao Y, Wang K. Foxo3a inhibits mitochondrial fission and protects against doxorubicin-induced cardiotoxicity by suppressing MIEF2. Free Radic Biol Med 2017; 104:360-370. [PMID: 28137654 DOI: 10.1016/j.freeradbiomed.2017.01.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Doxorubicin (DOX) as a chemotherapeutic drug is widely used to treat a variety of human tumors. However, a major factor limiting its clinical use is its cardiotoxicity. The molecular components and detailed mechanisms regulating DOX-induced cardiotoxicity remain largely unidentified. Here we report that Foxo3a is downregulated in the cardiomyocyte and mouse heart in response to DOX treatment. Foxo3a attenuates DOX-induced mitochondrial fission and apoptosis in cardiomyocytes. Cardiac specific Foxo3a transgenic mice show reduced mitochondrial fission, apoptosis and cardiotoxicity upon DOX administration. Furthermore, Foxo3a directly targets mitochondrial dynamics protein of 49kDa (MIEF2) and suppresses its expression at transcriptional level. Knockdown of MIEF2 reduces DOX-induced mitochondrial fission and apoptosis in cardiomyocytes and in vivo. Also, knockdown of MIEF2 protects heart from DOX-induced cardiotoxicity. Our study identifies a novel pathway composed of Foxo3a and MIEF2 that mediates DOX cardiotoxicity. This discovery provides a promising therapeutic strategy for the treatment of cancer therapy and cardioprotection.
Collapse
Affiliation(s)
- Luyu Zhou
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Ruibei Li
- School of Professional Studies, Northwestern University, Chicago, IL 60611, USA
| | - Cuiyun Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Teng Sun
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Lynn Htet Htet Aung
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chao Chen
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jinning Gao
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yanfang Zhao
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
38
|
Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals. Int J Mol Sci 2017; 18:ijms18010144. [PMID: 28098754 PMCID: PMC5297777 DOI: 10.3390/ijms18010144] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/28/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Current research has demonstrated that mitochondrial morphology, distribution, and function are maintained by the balanced regulation of mitochondrial fission and fusion, and perturbation of the homeostasis between these processes has been related to cell or organ dysfunction and abnormal mitochondrial redistribution. Abnormal mitochondrial fusion induces the fragmentation of mitochondria from a tubular morphology into pieces; in contrast, perturbed mitochondrial fission results in the fusion of adjacent mitochondria. A member of the dynamin family of large GTPases, dynamin-related protein 1 (Drp1), effectively influences cell survival and apoptosis by mediating the mitochondrial fission process in mammals. Drp1-dependent mitochondrial fission is an intricate process regulating both cellular and organ dynamics, including development, apoptosis, acute organ injury, and various diseases. Only after clarification of the regulative mechanisms of this critical protein in vivo and in vitro will it set a milestone for preventing mitochondrial fission related pathological processes and refractory diseases.
Collapse
|
39
|
Lambert TJ, Waters JC. Navigating challenges in the application of superresolution microscopy. J Cell Biol 2017; 216:53-63. [PMID: 27920217 PMCID: PMC5223610 DOI: 10.1083/jcb.201610011] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 11/22/2022] Open
Abstract
In 2014, the Nobel Prize in Chemistry was awarded to three scientists who have made groundbreaking contributions to the field of superresolution (SR) microscopy (SRM). The first commercial SR microscope came to market a decade earlier, and many other commercial options have followed. As commercialization has lowered the barrier to using SRM and the awarding of the Nobel Prize has drawn attention to these methods, biologists have begun adopting SRM to address a wide range of questions in many types of specimens. There is no shortage of reviews on the fundamental principles of SRM and the remarkable achievements made with these methods. We approach SRM from another direction: we focus on the current practical limitations and compromises that must be made when designing an SRM experiment. We provide information and resources to help biologists navigate through common pitfalls in SRM specimen preparation and optimization of image acquisition as well as errors and artifacts that may compromise the reproducibility of SRM data.
Collapse
Affiliation(s)
- Talley J Lambert
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Jennifer C Waters
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
40
|
Smyrnova D, Zinovjev K, Tuñón I, Ceulemans A. Thermal Isomerization Mechanism in Dronpa and Its Mutants. J Phys Chem B 2016; 120:12820-12825. [PMID: 28002952 DOI: 10.1021/acs.jpcb.6b10859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photoswitching speed of the reversibly switchable fluorescent proteins (RSFPs) from the family of green fluorescent proteins (GFPs) changes upon mutation which is of direct importance for various high-resolution techniques. Dronpa is one of the most used RSFPs. Its point mutants rsFastLime (Dronpa V157G) and rsKame (Dronpa V157L) exhibit a striking difference in their photoswitching speed. Here the QM/MM on-the-fly string method is used in order to explore the details of the thermal isomerization mechanism. The four principal ways in which isomerization may occur have been scrutinized for each of the three proteins. It has been shown that thermal isomerization occurs via a one-bond-flip mechanism in all three proteins, although, in rsKame, where the chromophore is constrained more, the activation free energy difference between hula-twist and one-bond-flip is significantly smaller. Functional mode analysis has been applied to examine the motions of the amino acids during the isomerization. It clearly identifies the importance of Val/Leu 157 as well as the amino acids in the α-helix during the isomerization.
Collapse
Affiliation(s)
- Daryna Smyrnova
- Quantum Chemistry and Physical Chemistry Division, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Kirill Zinovjev
- Departament de Química Física, Universitat de València , 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València , 46100 Burjassot, Spain
| | - Arnout Ceulemans
- Quantum Chemistry and Physical Chemistry Division, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
41
|
Pasqualini FS, Nesmith AP, Horton RE, Sheehy SP, Parker KK. Mechanotransduction and Metabolism in Cardiomyocyte Microdomains. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4081638. [PMID: 28044126 PMCID: PMC5164897 DOI: 10.1155/2016/4081638] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/11/2023]
Abstract
Efficient contractions of the left ventricle are ensured by the continuous transfer of adenosine triphosphate (ATP) from energy production sites, the mitochondria, to energy utilization sites, such as ionic pumps and the force-generating sarcomeres. To minimize the impact of intracellular ATP trafficking, sarcomeres and mitochondria are closely packed together and in proximity with other ultrastructures involved in excitation-contraction coupling, such as t-tubules and sarcoplasmic reticulum junctions. This complex microdomain has been referred to as the intracellular energetic unit. Here, we review the literature in support of the notion that cardiac homeostasis and disease are emergent properties of the hierarchical organization of these units. Specifically, we will focus on pathological alterations of this microdomain that result in cardiac diseases through energy imbalance and posttranslational modifications of the cytoskeletal proteins involved in mechanosensing and transduction.
Collapse
Affiliation(s)
- Francesco S. Pasqualini
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Institute for Regenerative Medicine (IREM), Wyss Translational Center, University and ETH Zurich, Zurich, Switzerland
| | - Alexander P. Nesmith
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Renita E. Horton
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- James Worth Bagley College of Engineering and College of Agriculture and Life Sciences, Mississippi State University, Starkville, MS, USA
| | - Sean P. Sheehy
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
42
|
Lo CYW, Chen S, Creed SJ, Kang M, Zhao N, Tang BZ, Elgass KD. Novel super-resolution capable mitochondrial probe, MitoRed AIE, enables assessment of real-time molecular mitochondrial dynamics. Sci Rep 2016; 6:30855. [PMID: 27492961 PMCID: PMC4974624 DOI: 10.1038/srep30855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/08/2016] [Indexed: 12/17/2022] Open
Abstract
Mitochondria and mitochondrial dynamics play vital roles in health and disease. With the intricate nanometer-scale structure and rapid dynamics of mitochondria, super-resolution microscopy techniques possess great un-tapped potential to significantly contribute to understanding mitochondrial biology and kinetics. Here we present a novel mitochondrial probe (MitoRed AIE) suitable for live mitochondrial dynamics imaging and single particle tracking (SPT), together with a multi-dimensional data analysis approach to assess local mitochondrial (membrane) fluidity. The MitoRed AIE probe localizes primarily to mitochondrial membranes, with 95 ms fluorophore on-time delivering 106 photons/ms, characteristics which we exploit to demonstrate live cell 100 fps 3D time-lapse tracking of mitochondria. Combining our experimental and analytical approaches, we uncover mitochondrial dynamics at unprecedented time scales. This approach opens up a new regime into high spatio-temporal resolution dynamics in many areas of mitochondrial biology.
Collapse
Affiliation(s)
- Camden Yeung-Wah Lo
- Monash Micro Imaging, Monash University, Melbourne, Australia.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Sijie Chen
- School of Chemistry, University of Melbourne, Melbourne, Australia.,Division of Biomedical Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Sarah Jayne Creed
- Monash Micro Imaging, Monash University, Melbourne, Australia.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Miaomiao Kang
- Division of Biomedical Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Na Zhao
- School of Chemistry &Chemical Engineering, Shaanxi Normal University, P.R. China
| | - Ben Zhong Tang
- Division of Biomedical Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience and Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kirstin Diana Elgass
- Monash Micro Imaging, Monash University, Melbourne, Australia.,Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
43
|
McLelland GL, Lee SA, McBride HM, Fon EA. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system. J Cell Biol 2016; 214:275-91. [PMID: 27458136 PMCID: PMC4970327 DOI: 10.1083/jcb.201603105] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
Vesicular transport from mitochondria to lysosomes is an emerging mitochondrial quality control mechanism. Here, McLelland et al. identify how mitochondrial vesicles are targeted for degradation, showing that syntaxin-17 is recruited to these structures to govern their SNARE-dependent fusion with endolysosomes. Mitochondria are considered autonomous organelles, physically separated from endocytic and biosynthetic pathways. However, recent work uncovered a PINK1/parkin-dependent vesicle transport pathway wherein oxidized or damaged mitochondrial content are selectively delivered to the late endosome/lysosome for degradation, providing evidence that mitochondria are indeed integrated within the endomembrane system. Given that mitochondria have not been shown to use canonical soluble NSF attachment protein receptor (SNARE) machinery for fusion, the mechanism by which mitochondrial-derived vesicles (MDVs) are targeted to the endosomal compartment has remained unclear. In this study, we identify syntaxin-17 as a core mitochondrial SNARE required for the delivery of stress-induced PINK1/parkin-dependent MDVs to the late endosome/lysosome. Syntaxin-17 remains associated with mature MDVs and forms a ternary SNARE complex with SNAP29 and VAMP7 to mediate MDV–endolysosome fusion in a manner dependent on the homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Syntaxin-17 can be traced to the last eukaryotic common ancestor, hinting that the removal of damaged mitochondrial content may represent one of the earliest vesicle transport routes in the cell.
Collapse
Affiliation(s)
- Gian-Luca McLelland
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Sydney A Lee
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Heidi M McBride
- Rare Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Edward A Fon
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada Neurodegenerative Diseases Group, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
44
|
Reinhardt F, Schultz J, Waterstradt R, Baltrusch S. Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells. Biochem Biophys Res Commun 2016; 474:646-651. [PMID: 27154223 DOI: 10.1016/j.bbrc.2016.04.142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 was down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion.
Collapse
Affiliation(s)
- Florian Reinhardt
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, D-18057 Rostock, Germany
| | - Julia Schultz
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, D-18057 Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, D-18057 Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, D-18057 Rostock, Germany.
| |
Collapse
|
45
|
Georgieva M, Cattoni DI, Fiche JB, Mutin T, Chamousset D, Nollmann M. Nanometer resolved single-molecule colocalization of nuclear factors by two-color super resolution microscopy imaging. Methods 2016; 105:44-55. [PMID: 27045944 DOI: 10.1016/j.ymeth.2016.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022] Open
Abstract
In order to study the detailed assembly and regulation mechanisms of complex structures and machineries in the cell, simultaneous in situ observation of all the individual interacting components should be achieved. Multi-color Single-Molecule Localization Microscopy (SMLM) is ideally suited for these quantifications. Here, we build on previous developments and thoroughly discuss a protocol for two-color SMLM combining PALM and STORM, including sample preparation details, image acquisition and data postprocessing analysis. We implement and evaluate a recently proposed colocalization analysis method (aCBC) that allows single-molecule colocalization quantification with the potential of revealing fine, nanometer-scaled, structural details of multicomponent complexes. Finally, using a doubly-labeled nuclear factor (Beaf-32) in Drosophila S2 cells we experimentally validate the colocalization quantification algorithm, highlight its advantages and discuss how using high molecular weight fluorescently labeled tags compromises colocalization precision in two-color SMLM experiments.
Collapse
Affiliation(s)
- Mariya Georgieva
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Diego I Cattoni
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Thibaut Mutin
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Delphine Chamousset
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
46
|
Zhang L, Trushin S, Christensen TA, Bachmeier BV, Gateno B, Schroeder A, Yao J, Itoh K, Sesaki H, Poon WW, Gylys KH, Patterson ER, Parisi JE, Diaz Brinton R, Salisbury JL, Trushina E. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease. Sci Rep 2016; 6:18725. [PMID: 26729583 PMCID: PMC4700525 DOI: 10.1038/srep18725] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/25/2015] [Indexed: 11/30/2022] Open
Abstract
Altered brain metabolism is associated with progression of Alzheimer’s Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, “mitochondria-on-a-string” (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905
| | - Trace A Christensen
- Electron Microscopy Core Facility, Mayo Clinic, 200 First St. SW, Rochester, MN 55905
| | | | - Benjamin Gateno
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905
| | - Andreas Schroeder
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD, USA
| | - Wayne W Poon
- Institute for Memory Impairments and Neurological Disorders. University of California Irvine, CA, USA
| | | | | | - Joseph E Parisi
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.,Neuroscience Program, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey L Salisbury
- Electron Microscopy Core Facility, Mayo Clinic, 200 First St. SW, Rochester, MN 55905.,Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN 55905
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905.,Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN 55905
| |
Collapse
|
47
|
Sydor AM, Czymmek KJ, Puchner EM, Mennella V. Super-Resolution Microscopy: From Single Molecules to Supramolecular Assemblies. Trends Cell Biol 2015; 25:730-748. [DOI: 10.1016/j.tcb.2015.10.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022]
|
48
|
Ji WK, Hatch AL, Merrill RA, Strack S, Higgs HN. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. eLife 2015; 4:e11553. [PMID: 26609810 PMCID: PMC4755738 DOI: 10.7554/elife.11553] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/25/2015] [Indexed: 12/19/2022] Open
Abstract
While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites. DOI:http://dx.doi.org/10.7554/eLife.11553.001 Inside cells, structures called mitochondria supply the energy needed to carry out the processes that sustain life. Mitochondria constantly divide (a process known as fission) or fuse together, which helps to keep them in good working condition and well distributed around the cell. Several neurological disorders, including Parkinson’s disease and Alzheimer’s, are associated with problems that affect mitochondrial fission. Many different molecules work together to help mitochondria divide, including a protein called Drp1. A number of Drp1 molecules can associate with each other to form an “oligomer” in the shape of a ring around a mitochondrion. The ring then constricts to split the mitochondrion in two. It is often assumed that Drp1 molecules are recruited to the mitochondria immediately before fission and then form the oligomer ring. However, by using microscopy to track the movement of fluorescently labeled Drp1 molecules in human cells, Ji, Hatch et al. now suggest that Drp1 is continuously binding to and releasing from mitochondria, regardless of the need for fission. The experiments showed that when bound to surface of the mitochondrion, Drp1 switches between assembling and disassembling the oligomer ring. This process of Drp1 assembly and oligomerization on mitochondria is called maturation. Specific signals for fission can push Drp1 toward maturation, which then leads to fission. Ji, Hatch et al. found that one such signal is the assembly of filaments of a protein called actin. Preventing actin filaments from forming reduced the amount of Drp1 that accumulated at mitochondria, and resulted in the mitochondria dividing less frequently. Further biochemical experiments also revealed that actin interacts directly with Drp1 and stimulates Drp1 activity, helping the ring to organize and assist mitochondrial fission. The formation of actin filaments is not the only mechanism that can recruit Drp1 to mitochondria. Future work should investigate whether other mechanisms work with actin to recruit Drp1. As with actin filaments, other signals might be predicted to influence the balance of maturation and disassembly of Drp1 oligomers. DOI:http://dx.doi.org/10.7554/eLife.11553.002
Collapse
Affiliation(s)
- Wei-ke Ji
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Anna L Hatch
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Ronald A Merrill
- Department of Pharmacology, The University of Iowa, Iowa City, United States
| | - Stefan Strack
- Department of Pharmacology, The University of Iowa, Iowa City, United States
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
49
|
Flicker-assisted localization microscopy reveals altered mitochondrial architecture in hypertension. Sci Rep 2015; 5:16875. [PMID: 26593883 PMCID: PMC4655370 DOI: 10.1038/srep16875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/21/2015] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial morphology is central to normal physiology and disease development. However, in many live cells and tissues, complex mitochondrial structures exist and morphology has been difficult to quantify. We have measured the shape of electrically-discrete mitochondria, imaging them individually to restore detail hidden in clusters and demarcate functional boundaries. Stochastic “flickers” of mitochondrial membrane potential were visualized with a rapidly-partitioning fluorophore and the pixel-by-pixel covariance of spatio-temporal fluorescence changes analyzed. This Flicker-assisted Localization Microscopy (FaLM) requires only an epifluorescence microscope and sensitive camera. In vascular myocytes, the apparent variation in mitochondrial size was partly explained by densely-packed small mitochondria. In normotensive animals, mitochondria were small spheres or rods. In hypertension, mitochondria were larger, occupied more of the cell volume and were more densely clustered. FaLM provides a convenient tool for increased discrimination of mitochondrial architecture and has revealed mitochondrial alterations that may contribute to hypertension.
Collapse
|
50
|
Duwé S, De Zitter E, Gielen V, Moeyaert B, Vandenberg W, Grotjohann T, Clays K, Jakobs S, Van Meervelt L, Dedecker P. Expression-Enhanced Fluorescent Proteins Based on Enhanced Green Fluorescent Protein for Super-resolution Microscopy. ACS NANO 2015; 9:9528-41. [PMID: 26308583 DOI: 10.1021/acsnano.5b04129] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
"Smart fluorophores", such as reversibly switchable fluorescent proteins, are crucial for advanced fluorescence imaging. However, only a limited number of such labels is available, and many display reduced biological performance compared to more classical variants. We present the development of robustly photoswitchable variants of enhanced green fluorescent protein (EGFP), named rsGreens, that display up to 30-fold higher fluorescence in E. coli colonies grown at 37 °C and more than 4-fold higher fluorescence when expressed in HEK293T cells compared to their ancestor protein rsEGFP. This enhancement is not due to an intrinsic increase in the fluorescence brightness of the probes, but rather due to enhanced expression levels that allow many more probe molecules to be functional at any given time. We developed rsGreens displaying a range of photoswitching kinetics and show how these can be used for multimodal diffraction-unlimited fluorescence imaging such as pcSOFI and RESOLFT, achieving a spatial resolution of ∼70 nm. By determining the first ever crystal structures of a negative reversibly switchable FP derived from Aequorea victoria in both the "on"- and "off"-conformation we were able to confirm the presence of a cis-trans isomerization and provide further insights into the mechanisms underlying the photochromism. Our work demonstrates that genetically encoded "smart fluorophores" can be readily optimized for biological performance and provides a practical strategy for developing maturation- and stability-enhanced photochromic fluorescent proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Tim Grotjohann
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| | | | - Stefan Jakobs
- Department of Neurology, University of Goettingen Medical School , Robert-Koch-Str. 40, 37075 Goettingen, Germany
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| | | | | |
Collapse
|