1
|
Li Z, Zhou M, Ran X, Wang W, Wang H, Wang T, Wang Y. A powerful but frequently overlooked role of thermodynamics in environmental microbiology: inspirations from anammox. Appl Environ Microbiol 2025; 91:e0166824. [PMID: 39760519 PMCID: PMC11837502 DOI: 10.1128/aem.01668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Thermodynamics has long been applied in predicting undiscovered microorganisms or analyzing energy flows in microbial metabolism, as well as evaluating microbial impacts on global element distributions. However, further development and refinement in this interdisciplinary field are still needed. This work endeavors to develop a whole-cycle framework integrating thermodynamics with microbiological studies, focusing on representative nitrogen-transforming microorganisms. Three crucial concepts (reaction favorability, energy balance, and reaction directionality) are discussed in relation to nitrogen-transforming reactions. Specifically, reaction favorability, which sheds lights on understanding the diversity of nitrogen-transforming microorganisms, has also provided guidance for novel bioprocess development. Energy balance, enabling the quantitative comparison of microbial energy efficiency, unravels the competitiveness of nitrogen-transforming microorganisms under substrate-limiting conditions. Reaction directionality, revealing the niche-differentiating patterns of nitrogen-transforming microorganisms, provides a foundation for predicting biogeochemical reactions under various environmental conditions. This review highlights the need for a more comprehensive integration of thermodynamics in environmental microbiology, aiming to comprehensively understand microbial impacts on the global environment from micro to macro scales.
Collapse
Affiliation(s)
- Zibin Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
2
|
Shao B, Xie YG, Zhang L, Ruan Y, Liang B, Zhang R, Xu X, Wang W, Lin Z, Pei X, Wang X, Zhao L, Zhou X, Wu X, Xing D, Wang A, Lee DJ, Ren N, Canfield DE, Hedlund BP, Hua ZS, Chen C. Versatile nitrate-respiring heterotrophs are previously concealed contributors to sulfur cycle. Nat Commun 2025; 16:1202. [PMID: 39885140 PMCID: PMC11782648 DOI: 10.1038/s41467-025-56588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (N2O), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism. Remarkably, ecophysiology experiments from enrichments demonstrate that such heterotrophs expedite denitrification with sulfur acting as alternative electron sources and substantially curtail N2O emissions in both organic-rich and organic-limited environments. Their flexible, non-sulfur-dependent physiology may confer competitive advantages over conventional heterotrophic denitrifiers in detoxifying sulfide, adapting to organic matter fluctuations, and mitigating greenhouse gas emissions. Our study provides insights into the ecological role of heterotrophic denitrifiers in microbial communities with implications for sulfur cycling and climate change.
Collapse
Affiliation(s)
- Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yuan-Guo Xie
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Long Zhang
- College of Life Sciences, Huaibei Normal University, 235000, Huaibei, PR China
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yang Ruan
- Jangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Ruochen Zhang
- School of Civil and Transportation, Hebei University of Technology, Tianjin, 300401, PR China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhengda Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xuanyuan Pei
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Xueting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Donald E Canfield
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, Las Vegas, NV, 89154, USA
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
3
|
Su Q, Domingo-Félez C, Zhi M, Jensen MM, Xu B, Ng HY, Smets BF. Formation and Fate of Reactive Nitrogen during Biological Nitrogen Removal from Water: Important Yet Often Ignored Chemical Aspects of the Nitrogen Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22480-22501. [PMID: 39671298 DOI: 10.1021/acs.est.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Hydroxylamine, nitrous acid, and nitric oxide are obligate intermediates or side metabolites in different nitrogen-converting microorganisms. These compounds are unstable and susceptible to the formation of highly reactive nitrogen species, including nitrogen dioxide, dinitrogen trioxide, nitroxyl, and peroxynitrite. Due to the high reactivity and cytotoxicity, the buildup of reactive nitrogen can affect the interplay of microorganisms/microbial processes, stimulate the reactions with organic compounds like organic micropollutants (OMP) and act as the precursors of nitrous oxide (N2O). However, there is little understanding of the occurrence and significance of reactive nitrogen during biological nitrogen conversions in engineered water systems. In this review, we evaluate the formation and fate of reactive nitrogen produced by microorganisms involved in biological nitrogen removal (BNR) processes, i.e., nitritation/nitrification, denitratation/denitrification, anammox, and the combined processes. While the formation of reactive nitrogen intermediates is entirely controlled by microbial activities, the consumption can be either biological or purely chemical. Changes in environmental conditions, such as redox transition, pH, and substrate availability, can imbalance the production and consumption of these reactive intermediates, thus leading to the transient accumulation of species. Based on previous experimental evidence, environmental relevance of reactive nitrogen in BNR systems, particularly related to abiotic N2O production and OMP transformation, is demonstrated.
Collapse
Affiliation(s)
- Qingxian Su
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Carlos Domingo-Félez
- James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, United Kingdom
| | - Mei Zhi
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
| | - Marlene Mark Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Boyan Xu
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087 Zhuhai, China
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - Barth F Smets
- Center for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Liu S, Hou C, Dong C, Zhao D, Chen Q, Terence Yang JY, Tang K. Integrated multi-omics analyses reveal microbial community resilience to fluctuating low oxygen in the East China sea. ENVIRONMENTAL RESEARCH 2024; 261:119764. [PMID: 39122162 DOI: 10.1016/j.envres.2024.119764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Climate change and eutrophication are accelerating ocean deoxygenation, leading to a global decline in oxygen levels. The East China Sea, frequently experiencing deoxygenation events, harbors diverse microbial communities. However, the response of these communities to the changing deoxygenation dynamics remains poorly understood. Here, we explored the composition and function of microbial communities inhabiting seawaters of the Changjiang Estuary and offshore areas. Our findings suggested that neutral processes significantly influenced the assembly of these communities. The overall bacterial composition demonstrated remarkable high stability across the oxygen gradient. Salinity exhibited a significantly stronger correlation with bacterial community structure than dissolved oxygen. Both metagenomics and metaproteomics revealed that all of the samples exhibited similar functional community structures. Heterotrophic metabolism dominated these sites, as evidenced by a diverse array of transporters and metabolic enzymes for organic matter uptake and utilization, which constituted a significant portion of the expressed proteins. O2 was the primary electron acceptor in bacteria even under hypoxic conditions, evidenced by expression of low- and high-affinity cytochrome oxidases. Proteins associated with anaerobic processes, such as dissimilatory sulfite reductases, were virtually undetectable. Untargeted liquid chromatography with tandem mass spectrometry analysis of seawater samples revealed a diverse range of dissolved organic matter (DOM) components in amino acids, lipids, organic acids, peptides, and carbohydrates, potentially fueling dominant taxa growth. Despite fluctuations in the abundance of specific genera, the remarkable similarity in community structure, function, and DOM suggests that this ecosystem possesses robust adaptive mechanisms that buffer against abrupt changes, even below the well-defined hypoxic threshold in marine ecosystem.
Collapse
Affiliation(s)
- Shujing Liu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Congcong Hou
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Changjie Dong
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Duo Zhao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Quanrui Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Jin-Yu Terence Yang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, China.
| |
Collapse
|
5
|
Herruzo-Ruiz AM, Trombini C, Moreno-Garrido I, Blasco J, Alhama J, Michán C. Ions and nanoparticles of Ag and/or Cd metals in a model aquatic microcosm: Effects on the abundance, diversity and functionality of the sediment bacteriome. MARINE POLLUTION BULLETIN 2024; 204:116525. [PMID: 38852299 DOI: 10.1016/j.marpolbul.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Metals can be adsorbed on particulate matter, settle in sediments and cause alterations in aquatic environments. This study assesses the effect of Ag and/or Cd, both in ionic and nanoparticle (NP) forms, on the microbiome of sediments. For that purpose, aquatic controlled-microcosm experiments were exposed to an environmentally relevant and at tenfold higher doses of each form of the metals. Changes in the bacteriome were inferred by 16S rDNA sequencing. Ionic Ag caused a significant decrease of several bacterial families, whereas the effect was opposite when mixed with Cd, e.g., Desulfuromonadaceae family; in both cases, the bacteriome functionalities were greatly affected, particularly the nitrogen and sulfur metabolism. Compared to ionic forms, metallic NPs produced hardly any change in the abundance of microbial families, although the α-biodiversity of the bacteriome was reduced, and the functionality altered, when exposed to the NPs´ mixture. Our goal is to understand how metals, in different forms and combinations, released into the environment may endanger the health of aquatic ecosystems. This work may help to understand how aquatic metal pollution alters the structure and functionality of the microbiome and biogeochemical cycles, and how these changes can be addressed.
Collapse
Affiliation(s)
- Ana M Herruzo-Ruiz
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Chiara Trombini
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - Ignacio Moreno-Garrido
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - Julián Blasco
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain.
| |
Collapse
|
6
|
Liu Y, Guo W, Wei C, Huang H, Nan F, Liu X, Liu Q, Lv J, Feng J, Xie S. Rainfall-induced changes in aquatic microbial communities and stability of dissolved organic matter: Insight from a Fen river analysis. ENVIRONMENTAL RESEARCH 2024; 246:118107. [PMID: 38181848 DOI: 10.1016/j.envres.2024.118107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Microbial communities are pivotal in aquatic ecosystems, as they affect water quality, energy dynamics, nutrient cycling, and hydrological stability. This study explored the effects of rainfall on hydrological and photosynthetic parameters, microbial composition, and functional gene profiles in the Fen River. Our results demonstrated that rainfall-induced decreases in stream temperature, dissolved oxygen, pH, total phosphorus, chemical oxygen demand, and dissolved organic carbon concentrations. In contrast, rainfall increased total dissolved solids, salinity, and ammonia-nitrogen concentrations. A detailed microbial community structure analysis revealed that Cyanobacteria was the dominant microbial taxon in the Fen River, accounting for approximately 75% and 25% of the microalgal and bacterial communities, respectively. The abundance of Chlorophyta and Bacillariophyta increased by 47.66% and 29.92%, respectively, whereas the relative abundance of Bacteroidetes decreased by 37.55% under rainfall conditions. Stochastic processes predominantly affected the assembly of the bacterial community on rainy days. Functional gene analysis revealed variations in bacterial functions between sunny (Sun) and rainy (Rain) conditions, particularly in genes associated with the carbon cycle. The 3-oxoacyl-[acyl-carrier-protein] reductase gene was more abundant in the Fen River bacterial community. Particular genes involved in metabolism and environmental information processing, including the acetyl-CoA C-acetyltransferase (atoB), enoyl-CoA hydratase (paaF), and branched-chain amino acid transport system gene (livK), which are integral to environmental information processing, were more abundant in Sun than the Rain conditions. In contrast, the phosphate transport system gene, the galactose metabolic gene, and the pyruvate metabolic gene were more abundant in Rain. The excitation-emission matrix analysis with parallel factor analysis identified four fluorescence components (C1-C4) in the river, which were predominantly protein- (C1) and humic-like (C2-C4) substances. Rainfall affected organic matter production and transport, leading to changes in the degradation and stability of dissolved organic matter. Overall, this study offers insight into how rainfall affects aquatic ecosystems.
Collapse
Affiliation(s)
- Yang Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Weinan Guo
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Caihua Wei
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Hanjie Huang
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fangru Nan
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xudong Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qi Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Junping Lv
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jia Feng
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shulian Xie
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
7
|
Morris RM, Mino S. The complete genome sequences of Thioglobus autotrophicus strains EF2 and EF3, isolated from an oxycline in Effingham Inlet, British Columbia. Microbiol Resour Announc 2024; 13:e0111823. [PMID: 38334403 DOI: 10.1128/mra.01118-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Here we provide the complete genome sequences of two chemoautotrophic isolates from the Thioglobaceae family of marine gamma-proteobacteria. The genomes were obtained from pure cultures that were initially isolated from Effingham Inlet in 2013 and revived from freezer stocks for whole genome sequencing in 2023.
Collapse
Affiliation(s)
- Robert M Morris
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Sayaka Mino
- School of Oceanography, University of Washington, Seattle, Washington, USA
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Minato-cho, Hakodate, Japan
| |
Collapse
|
8
|
Chen Y, Lin Y, Zhu J, Zhou J, Lin H, Fu Y, Zhou Y. Transcriptomic analysis of nitrogen metabolism pathways in Klebsiella aerogenes under nitrogen-rich conditions. Front Microbiol 2024; 15:1323160. [PMID: 38500581 PMCID: PMC10945327 DOI: 10.3389/fmicb.2024.1323160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
The acceleration of the nitrogen cycle and the nitrogen excess observed in some coastal waters has increased interest into understanding the biochemical and molecular basis of nitrogen metabolism in various microorganisms. To investigate nitrogen metabolism of a novel heterotrophic nitrification and aerobic denitrification bacterium Klebsiella aerogenes strain (B23) under nitrogen-rich conditions, we conducted physiological and transcriptomic high-throughput sequencing analyses on strain B23 cultured on potassium nitrate-free or potassium nitrate-rich media. Overall, K. aerogenes B23 assimilated 82.47% of the nitrate present into cellular nitrogen. Further, 1,195 differentially expressed genes were observed between K. aerogenes B23 cultured on potassium nitrate-free media and those cultured on potassium nitrate-rich media. Gene annotation and metabolic pathway analysis of the transcriptome were performed using a series of bioinformatics tools, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Non-Redundant Protein Database annotation. Accordingly, the nitrogen metabolism pathway of K. aerogenes B23 was analyzed; overall, 39 genes were determined to be involved in this pathway. Differential expression analysis of the genes involved in the nitrogen metabolism pathway demonstrated that, compared to the control, FNR, NarK/14945, fdx, gshA, proB, proA, gapA, argH, artQ, artJ, artM, ArgR, GAT1, prmB, pyrG, glnS, and Ca1 were significantly upregulated in the nitrogen-treated K. aerogenes B23; these genes have been established to be involved in the regulation of nitrate, arginine, glutamate, and ammonia assimilation. Further, norV, norR, and narI were also upregulated in nitrogen-treated K. aerogenes B23; these genes are involved in the regulation of NO metabolism. These differential expression results are important for understanding the regulation process of key nitrogen metabolism enzyme genes in K. aerogenes B23. Therefore, this study establishes a solid foundation for further research into the expression regulation patterns of nitrogen metabolism-associated genes in K. aerogenes B23 under nitrogen-rich conditions; moreover, this research provides essential insight into how K. aerogenes B23 utilizes nutritional elements.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| |
Collapse
|
9
|
Mills DB, Simister RL, Sehein TR, Hallam SJ, Sperling EA, Crowe SA. Constraining the oxygen requirements for modern microbial eukaryote diversity. Proc Natl Acad Sci U S A 2024; 121:e2303754120. [PMID: 38165897 PMCID: PMC10786294 DOI: 10.1073/pnas.2303754120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/07/2023] [Indexed: 01/04/2024] Open
Abstract
Eukaryotes originated prior to the establishment of modern marine oxygen (O2) levels. According to the body fossil and lipid biomarker records, modern (crown) microbial eukaryote lineages began diversifying in the ocean no later than ~800 Ma. While it has long been predicted that increasing atmospheric O2 levels facilitated the early diversification of microbial eukaryotes, the O2 levels needed to permit this diversification remain unconstrained. Using time-resolved geochemical parameter and gene sequence information from a model marine oxygen minimum zone spanning a range of dissolved O2 levels and redox states, we show that microbial eukaryote taxonomic richness and phylogenetic diversity remain the same until O2 declines to around 2 to 3% of present atmospheric levels, below which these diversity metrics become significantly reduced. Our observations suggest that increasing O2 would have only directly promoted early crown-eukaryote diversity if atmospheric O2 was below 2 to 3% of modern levels when crown-eukaryotes originated and then later met or surpassed this range as crown-eukaryotes diversified. If atmospheric O2 was already consistently at or above 2 to 3% of modern levels by the time that crown-eukaryotes originated, then the subsequent diversification of modern microbial eukaryotes was not directly driven by atmospheric oxygenation.
Collapse
Affiliation(s)
- Daniel B. Mills
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333Munich, Germany
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA94305
- The Penn State Extraterrestrial Intelligence Center, The Pennsylvania State University, University Park, PA16802
| | - Rachel L. Simister
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Taylor R. Sehein
- Department of Biological Sciences, Smith College, Northampton, MA01063
| | - Steven J. Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
- Bradshaw Research Initiative for Minerals and Mining, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Ecosystem Services, Commercialization Platforms and Entrepreneurship (ECOSCOPE) Training Program, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Erik A. Sperling
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA94305
| | - Sean A. Crowe
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| |
Collapse
|
10
|
Niu Y, An Z, Gao D, Chen F, Zhou J, Liu B, Qi L, Wu L, Lin Z, Yin G, Liang X, Dong H, Liu M, Hou L, Zheng Y. Tidal dynamics regulates potential coupling of carbon‑nitrogen‑sulfur cycling microbes in intertidal flats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165663. [PMID: 37474052 DOI: 10.1016/j.scitotenv.2023.165663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Tide-driven hydrodynamic process causes significant geochemical gradients that influence biogeochemical cycling and ecological functioning of estuarine and coastal ecosystems. However, the effects of tidal dynamics on microbial communities, particularly at the functional gene level, remain unclear even though microorganisms play critical roles in biogeochemical carbon (C), nitrogen (N) and sulfur (S) cycling. Here, we used 16S rRNA gene amplicon sequencing and microarray-based approach to reveal the stratification of microorganisms related to C, N and S cycles along vertical redox gradients in intertidal wetlands. Alpha-diversity of bacteria and archaea was generally higher at the deep groundwater-sediment interface. Microbial compositions were markedly altered along the sediment profile, and these shifts were largely due to changes in nutrient availability and redox potential. Furthermore, functional genes exhibited redox partitioning between interfaces and transition layer, with abundant genes involved in C decomposition, methanogenesis, heterotrophic denitrification, sulfite reduction and sulfide oxidation existed in the middle anoxic zone. The influence of tidal dynamics on sediment function was highly associated with redox state, sediment texture, and substrates availability, leading to distinct distribution pattern of metabolic coupling of microbes involved in energy flux and elemental cycling in intertidal wetlands. These results indicate that tidal cycles are critical in determining microbial community and functional structure, and they provide new insights into sediment microbe-mediated biogeochemical cycling in intertidal habitats.
Collapse
Affiliation(s)
- Yuhui Niu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
| | - Zhirui An
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Zhuke Lin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China.
| |
Collapse
|
11
|
Mueller AJ, Daebeler A, Herbold CW, Kirkegaard RH, Daims H. Cultivation and genomic characterization of novel and ubiquitous marine nitrite-oxidizing bacteria from the Nitrospirales. THE ISME JOURNAL 2023; 17:2123-2133. [PMID: 37749300 PMCID: PMC10579370 DOI: 10.1038/s41396-023-01518-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Nitrospirales, including the genus Nitrospira, are environmentally widespread chemolithoautotrophic nitrite-oxidizing bacteria. These mostly uncultured microorganisms gain energy through nitrite oxidation, fix CO2, and thus play vital roles in nitrogen and carbon cycling. Over the last decade, our understanding of their physiology has advanced through several new discoveries, such as alternative energy metabolisms and complete ammonia oxidizers (comammox Nitrospira). These findings mainly resulted from studies of terrestrial species, whereas less attention has been given to marine Nitrospirales. In this study, we cultured three new marine Nitrospirales enrichments and one isolate. Three of these four NOB represent new Nitrospira species while the fourth represents a novel genus. This fourth organism, tentatively named "Ca. Nitronereus thalassa", represents the first cultured member of a Nitrospirales lineage that encompasses both free-living and sponge-associated nitrite oxidizers, is highly abundant in the environment, and shows distinct habitat distribution patterns compared to the marine Nitrospira species. Partially explaining this, "Ca. Nitronereus thalassa" harbors a unique combination of genes involved in carbon fixation and respiration, suggesting differential adaptations to fluctuating oxygen concentrations. Furthermore, "Ca. Nitronereus thalassa" appears to have a more narrow substrate range compared to many other marine nitrite oxidizers, as it lacks the genomic potential to utilize formate, cyanate, and urea. Lastly, we show that the presumed marine Nitrospirales lineages are not restricted to oceanic and saline environments, as previously assumed.
Collapse
Affiliation(s)
- Anna J Mueller
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Anne Daebeler
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 7, 370 05, Budweis, Czech Republic
| | - Craig W Herbold
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria
- School of Biological Sciences, University of Canterbury, Christchurch, 8041, New Zealand
| | - Rasmus H Kirkegaard
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Holger Daims
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1030, Vienna, Austria.
- The Comammox Research Platform, University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Liu C, Liu H, Liu X, Li G, Zhang Y, Zhang M, Li Z. Metagenomic analysis insights into the influence of 3,4-dimethylpyrazole phosphate application on nitrous oxide mitigation efficiency across different climate zones in Eastern China. ENVIRONMENTAL RESEARCH 2023; 236:116761. [PMID: 37516265 DOI: 10.1016/j.envres.2023.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Excessive nitrogen (N) fertilization in agroecological systems increases nitrous oxide (N2O) emissions. 3,4-dimethylpyrazole phosphate (DMPP) is used to mitigate N2O losses. The influence of DMPP efficiency on N2O mitigation was clearly affected by spatiotemporal heterogeneity. Using field and incubation experiments combined with metagenomic sequencing, we aimed to investigate DMPP efficiency and the underlying microbial mechanisms in dark-brown (Siping, SP), fluvo-aquic (Cangzhou, CZ; Xinxiang, XX), and red soil (Wenzhou, WZ) from diverse climatic zones. In the field experiments, the DMPP efficiency in N2O mitigation ranged from 51.6% to 89.9%, in the order of XX, CZ, SP, and WZ. The DMPP efficiency in the incubation experiments ranged from 58.3% to 93.9%, and the order of efficiency from the highest to lowest was the same as that of the field experiments. Soil organic matter, total N, pH, texture, and taxonomic and functional α-diversity were important soil environment and microbial factors for DMPP efficiency. DMPP significantly enriched ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB), which promoted N-cycling with low N2O emissions. Random forest (RF) and regression analyses found that an AOA (Nitrosocosmicus) and NOB (Nitrospina) demonstrated important and positive correlation with DMPP efficiency. Moreover, genes associated with carbohydrate metabolism were important for DMPP efficiency and could influenced N-cycling and DMPP metabolism. The similar DMPP efficiency indicated that the variation in DMPP efficiency was significantly due to soil physicochemical and microbial variations. In conclusion, filling the knowledge gap regarding the response of DMPP efficiency to abiotic and biotic factors could be beneficial in DMPP applications, and in adapting more efficient strategies to improve DMPP efficiency and mitigate N2O emissions in multiple regions.
Collapse
Affiliation(s)
- Churong Liu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China; College of Natural Resources and Environment, Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou, 10642, China
| | - Hongrun Liu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xueqing Liu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Gang Li
- Key Laboratory of Northeast Crop Physiology Ecology and Cultivation, Ministry of Agriculture in People's Republic of China, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Yushi Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Mingcai Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Ghaly TM, Focardi A, Elbourne LDH, Sutcliffe B, Humphreys W, Paulsen IT, Tetu SG. Stratified microbial communities in Australia's only anchialine cave are taxonomically novel and drive chemotrophic energy production via coupled nitrogen-sulphur cycling. MICROBIOME 2023; 11:190. [PMID: 37626351 PMCID: PMC10463829 DOI: 10.1186/s40168-023-01633-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Anchialine environments, in which oceanic water mixes with freshwater in coastal aquifers, are characterised by stratified water columns with complex physicochemical profiles. These environments, also known as subterranean estuaries, support an abundance of endemic macro and microorganisms. There is now growing interest in characterising the metabolisms of anchialine microbial communities, which is essential for understanding how complex ecosystems are supported in extreme environments, and assessing their vulnerability to environmental change. However, the diversity of metabolic strategies that are utilised in anchialine ecosystems remains poorly understood. RESULTS Here, we employ shotgun metagenomics to elucidate the key microorganisms and their dominant metabolisms along a physicochemical profile in Bundera Sinkhole, the only known continental subterranean estuary in the Southern Hemisphere. Genome-resolved metagenomics suggests that the communities are largely represented by novel taxonomic lineages, with 75% of metagenome-assembled genomes assigned to entirely new or uncharacterised families. These diverse and novel taxa displayed depth-dependent metabolisms, reflecting distinct phases along dissolved oxygen and salinity gradients. In particular, the communities appear to drive nutrient feedback loops involving nitrification, nitrate ammonification, and sulphate cycling. Genomic analysis of the most highly abundant members in this system suggests that an important source of chemotrophic energy is generated via the metabolic coupling of nitrogen and sulphur cycling. CONCLUSION These findings substantially contribute to our understanding of the novel and specialised microbial communities in anchialine ecosystems, and highlight key chemosynthetic pathways that appear to be important in these energy-limited environments. Such knowledge is essential for the conservation of anchialine ecosystems, and sheds light on adaptive processes in extreme environments. Video Abstract.
Collapse
Affiliation(s)
- Timothy M Ghaly
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Amaranta Focardi
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Liam D H Elbourne
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | | | - William Humphreys
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, Sydney, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
14
|
Zhou M, Guan X, Deng T, Hu R, Qian L, Yang X, Wu B, Li J, He Q, Shu L, Yan Q, He Z. Synthetic phylogenetically diverse communities promote denitrification and stability. ENVIRONMENTAL RESEARCH 2023; 231:116184. [PMID: 37207729 DOI: 10.1016/j.envres.2023.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Denitrification is an important process of the global nitrogen cycle as some of its intermediates are environmentally important or related to global warming. However, how the phylogenetic diversity of denitrifying communities affects their denitrification rates and temporal stability remains unclear. Here we selected denitrifiers based on their phylogenetic distance to construct two groups of synthetic denitrifying communities: one closely related (CR) group with all strains from the genus Shewanella and the other distantly related (DR) group with all constituents from different genera. All synthetic denitrifying communities (SDCs) were experimentally evolved for 200 generations. The results showed that high phylogenetic diversity followed by experimental evolution promoted the function and stability of synthetic denitrifying communities. Specifically, the productivity and denitrification rates were significantly (P < 0.05) higher with Paracocus denitrificans as the dominant species (since the 50th generation) in the DR community than those in the CR community. The DR community also showed significantly (t = 7.119, df = 10, P < 0.001) higher stability through overyielding and asynchrony of species fluctuations, and showed more complementarity than the CR group during the experimental evolution. This study has important implications for applying synthetic communities to remediate environmental problems and mitigate greenhouse gas emissions.
Collapse
Affiliation(s)
- Min Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ting Deng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lu Qian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xueqin Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China; College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
15
|
Zhang IH, Sun X, Jayakumar A, Fortin SG, Ward BB, Babbin AR. Partitioning of the denitrification pathway and other nitrite metabolisms within global oxygen deficient zones. ISME COMMUNICATIONS 2023; 3:76. [PMID: 37474642 PMCID: PMC10359470 DOI: 10.1038/s43705-023-00284-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Oxygen deficient zones (ODZs) account for about 30% of total oceanic fixed nitrogen loss via processes including denitrification, a microbially mediated pathway proceeding stepwise from NO3- to N2. This process may be performed entirely by complete denitrifiers capable of all four enzymatic steps, but many organisms possess only partial denitrification pathways, either producing or consuming key intermediates such as the greenhouse gas N2O. Metagenomics and marker gene surveys have revealed a diversity of denitrification genes within ODZs, but whether these genes co-occur within complete or partial denitrifiers and the identities of denitrifying taxa remain open questions. We assemble genomes from metagenomes spanning the ETNP and Arabian Sea, and map these metagenome-assembled genomes (MAGs) to 56 metagenomes from all three major ODZs to reveal the predominance of partial denitrifiers, particularly single-step denitrifiers. We find niche differentiation among nitrogen-cycling organisms, with communities performing each nitrogen transformation distinct in taxonomic identity and motility traits. Our collection of 962 MAGs presents the largest collection of pelagic ODZ microorganisms and reveals a clearer picture of the nitrogen cycling community within this environment.
Collapse
Affiliation(s)
- Irene H Zhang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Xin Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Amal Jayakumar
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | | | - Bess B Ward
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Andrew R Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
16
|
Lu J, Shu Y, Zhang H, Zhang S, Zhu C, Ding W, Zhang W. The Landscape of Global Ocean Microbiome: From Bacterioplankton to Biofilms. Int J Mol Sci 2023; 24:6491. [PMID: 37047466 PMCID: PMC10095273 DOI: 10.3390/ijms24076491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
The development of metagenomics has opened up a new era in the study of marine microbiota, which play important roles in biogeochemical cycles. In recent years, the global ocean sampling expeditions have spurred this research field toward a deeper understanding of the microbial diversities and functions spanning various lifestyles, planktonic (free-living) or sessile (biofilm-associated). In this review, we deliver a comprehensive summary of marine microbiome datasets generated in global ocean expeditions conducted over the last 20 years, including the Sorcerer II GOS Expedition, the Tara Oceans project, the bioGEOTRACES project, the Micro B3 project, the Bio-GO-SHIP project, and the Marine Biofilms. These datasets have revealed unprecedented insights into the microscopic life in our oceans and led to the publication of world-leading research. We also note the progress of metatranscriptomics and metaproteomics, which are confined to local marine microbiota. Furthermore, approaches to transforming the global ocean microbiome datasets are highlighted, and the state-of-the-art techniques that can be combined with data analyses, which can present fresh perspectives on marine molecular ecology and microbiology, are proposed.
Collapse
Affiliation(s)
- Jie Lu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
| | - Yi Shu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266100, China;
| | - Heng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Shangxian Zhang
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Chengrui Zhu
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266100, China;
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Weipeng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266100, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Haide College, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
17
|
Jameson BD, Murdock SA, Ji Q, Stevens CJ, Grundle DS, Kim Juniper S. Network analysis of 16S rRNA sequences suggests microbial keystone taxa contribute to marine N 2O cycling. Commun Biol 2023; 6:212. [PMID: 36823449 PMCID: PMC9950131 DOI: 10.1038/s42003-023-04597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The mechanisms by which large-scale microbial community function emerges from complex ecological interactions between individual taxa and functional groups remain obscure. We leveraged network analyses of 16S rRNA amplicon sequences obtained over a seven-month timeseries in seasonally anoxic Saanich Inlet (Vancouver Island, Canada) to investigate relationships between microbial community structure and water column N2O cycling. Taxa separately broadly into three discrete subnetworks with contrasting environmental distributions. Oxycline subnetworks were structured around keystone aerobic heterotrophs that correlated with nitrification rates and N2O supersaturations, linking N2O production and accumulation to taxa involved in organic matter remineralization. Keystone taxa implicated in anaerobic carbon, nitrogen, and sulfur cycling in anoxic environments clustered together in a low-oxygen subnetwork that correlated positively with nitrification N2O yields and N2O production from denitrification. Close coupling between N2O producers and consumers in the anoxic basin is indicated by strong correlations between the low-oxygen subnetwork, PICRUSt2-predicted nitrous oxide reductase (nosZ) gene abundances, and N2O undersaturation. This study implicates keystone taxa affiliated with common ODZ groups as a potential control on water column N2O cycling and provides a theoretical basis for further investigations into marine microbial interaction networks.
Collapse
Affiliation(s)
- Brett D Jameson
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada.
| | - Sheryl A Murdock
- Department of Biology, University of Victoria, P.O. Box 1700 CSC, Victoria, BC, V8W 2Y2, Canada
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
| | - Qixing Ji
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
- Thrust of Earth, Ocean & Atmospheric Sciences, Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
| | - Catherine J Stevens
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
| | - Damian S Grundle
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
- School of Ocean Futures & School of Earth & Space Exploration, Arizona State University, Tempe, AZ, 85287-7904, USA
| | - S Kim Juniper
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
- Department of Biology, University of Victoria, P.O. Box 1700 CSC, Victoria, BC, V8W 2Y2, Canada
- Ocean Networks Canada, 2474 Arbutus Road, Victoria, BC, V8N 1V8, Canada
| |
Collapse
|
18
|
Louca S, Taylor GT, Astor YM, Buck KN, Muller-Karger FE. Transport-limited reactions in microbial systems. Environ Microbiol 2023; 25:268-282. [PMID: 36345893 DOI: 10.1111/1462-2920.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
Abstract
Predicting microbial metabolic rates and emergent biogeochemical fluxes remains challenging due to the many unknown population dynamical, physiological and reaction-kinetic parameters and uncertainties in species composition. Here, we show that the need for these parameters can be eliminated when population dynamics and reaction kinetics operate at much shorter time scales than physical mixing processes. Such scenarios are widespread in poorly mixed water columns and sediments. In this 'fast-reaction-transport' (FRT) limit, all that is required for predictions are chemical boundary conditions, the physical mixing processes and reaction stoichiometries, while no knowledge of species composition, physiology or population/reaction kinetic parameters is needed. Using time-series data spanning years 2001-2014 and depths 180-900 m across the permanently anoxic Cariaco Basin, we demonstrate that the FRT approach can accurately predict the dynamics of major electron donors and acceptors (Pearson r ≥ 0.9 in all cases). Hence, many microbial processes in this system are largely transport limited and thus predictable regardless of species composition, population dynamics and kinetics. Our approach enables predictions for many systems in which microbial community dynamics and kinetics are unknown. Our findings also reveal a mechanism for the frequently observed decoupling between function and taxonomy in microbial systems.
Collapse
Affiliation(s)
- Stilianos Louca
- Department of Biology, University of Oregon, Oregon, USA
- Institute of Ecology and Evolution, University of Oregon, Oregon, USA
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, New York, USA
| | - Yrene M Astor
- Estación de Investigaciones Marinas de Margarita, Fundación La Salle de Ciencias Naturales, Punta de Piedras, Estado Nueva Esparta, Venezuela
| | - Kristen N Buck
- College of Marine Science, University of South Florida, Florida, USA
| | | |
Collapse
|
19
|
Morgan-Lang C, Hallam SJ. A Guide to Gene-Centric Analysis Using TreeSAPP. Curr Protoc 2023; 3:e671. [PMID: 36801973 DOI: 10.1002/cpz1.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Gene-centric analysis is commonly used to chart the structure, function, and activity of microbial communities in natural and engineered environments. A common approach is to create custom ad hoc reference marker gene sets, but these come with the typical disadvantages of inaccuracy and limited utility beyond assigning query sequences taxonomic labels. The Tree-based Sensitive and Accurate Phylogenetic Profiler (TreeSAPP) software package standardizes analysis of phylogenetic and functional marker genes and improves predictive performance using a classification algorithm that leverages information-rich reference packages consisting of a multiple sequence alignment, a profile hidden Markov model, taxonomic lineage information, and a phylogenetic tree. Here, we provide a set of protocols that link the various analysis modules in TreeSAPP into a coherent process that both informs and directs the user experience. This workflow, initiated from a collection of candidate reference sequences, progresses through construction and refinement of a reference package to marker identification and normalized relative abundance calculations for homologous sequences in metagenomic and metatranscriptomic datasets. The alpha subunit of methyl-coenzyme M reductase (McrA) involved in biological methane cycling is presented as a use case given its dual role as a phylogenetic and functional marker gene driving an ecologically relevant process. These protocols fill several gaps in prior TreeSAPP documentation and provide best practices for reference package construction and refinement, including manual curation steps from trusted sources in support of reproducible gene-centric analysis. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Creating reference packages Support Protocol 1: Installing TreeSAPP Support Protocol 2: Annotating traits within a phylogenetic context Basic Protocol 2: Updating reference packages Basic Protocol 3: Calculating relative abundance of genes in metagenomic and metatranscriptomic datasets.
Collapse
Affiliation(s)
- Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Steven J Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada.,Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Zhang Z, Han P, Zheng Y, Jiao S, Dong H, Liang X, Gao D, Niu Y, Yin G, Liu M, Hou L. Spatiotemporal Dynamics of Bacterial Taxonomic and Functional Profiles in Estuarine Intertidal Soils of China Coastal Zone. MICROBIAL ECOLOGY 2023; 85:383-399. [PMID: 35298685 DOI: 10.1007/s00248-022-01996-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Bacteria play an important role in regulating carbon (C), nitrogen (N), and sulfur (S) in estuarine intertidal wetlands. To gain insights into the ecological and metabolic modes possessed by bacteria in estuarine intertidal wetlands, a total of 78 surface soil samples were collected from China's coastal intertidal wetlands to examine the spatial and seasonal variations of bacterial taxonomic composition, assembly processes, and ecological system functions through shotgun metagenomic and 16S rRNA gene sequencing. Obvious spatiotemporal dynamic patterns in the bacterial community structure were identified, with more pronounced seasonal rather than spatial variations. Dispersion limitation was observed to act as a critical factor affecting community assembly, explaining approximately half of the total variation in the bacterial community. Functional bacterial community structure exhibited a more significant latitudinal change than seasonal variability, highlighting that functional stability of the bacterial communities differed with their taxonomic variability. Identification of biogeochemically related links between C, N, and S cycles in the soils showed the adaptive routed metabolism of the bacterial communities and the strong interactions between coupled metabolic pathways. Our study broadens the insights into the taxonomic and functional profiles of bacteria in China's estuarine intertidal soils and helps us understand the effects exerted by environmental factors on the ecological health and microbial diversity of estuarine intertidal flats.
Collapse
Affiliation(s)
- Zongxiao Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Yuhui Niu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
21
|
Blumberg K, Miller M, Ponsero A, Hurwitz B. Ontology-driven analysis of marine metagenomics: what more can we learn from our data? Gigascience 2022; 12:giad088. [PMID: 37941395 PMCID: PMC10632069 DOI: 10.1093/gigascience/giad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/30/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The proliferation of metagenomic sequencing technologies has enabled novel insights into the functional genomic potentials and taxonomic structure of microbial communities. However, cyberinfrastructure efforts to manage and enable the reproducible analysis of sequence data have not kept pace. Thus, there is increasing recognition of the need to make metagenomic data discoverable within machine-searchable frameworks compliant with the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles for data stewardship. Although a variety of metagenomic web services exist, none currently leverage the hierarchically structured terminology encoded within common life science ontologies to programmatically discover data. RESULTS Here, we integrate large-scale marine metagenomic datasets with community-driven life science ontologies into a novel FAIR web service. This approach enables the retrieval of data discovered by intersecting the knowledge represented within ontologies against the functional genomic potential and taxonomic structure computed from marine sequencing data. Our findings highlight various microbial functional and taxonomic patterns relevant to the ecology of prokaryotes in various aquatic environments. CONCLUSIONS In this work, we present and evaluate a novel Semantic Web architecture that can be used to ask novel biological questions of existing marine metagenomic datasets. Finally, the FAIR ontology searchable data products provided by our API can be leveraged by future research efforts.
Collapse
Affiliation(s)
- Kai Blumberg
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew Miller
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Alise Ponsero
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Bonnie Hurwitz
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
22
|
Wu C, Narale DD, Cui Z, Wang X, Liu H, Xu W, Zhang G, Sun J. Diversity, structure, and distribution of bacterioplankton and diazotroph communities in the Bay of Bengal during the winter monsoon. Front Microbiol 2022; 13:987462. [PMID: 36532434 PMCID: PMC9748438 DOI: 10.3389/fmicb.2022.987462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/03/2022] [Indexed: 10/31/2023] Open
Abstract
The Bay of Bengal (BoB) is conventionally believed to be a low productive, oligotrophic marine ecosystem, where the diazotroph communities presumed to play a vital role in adding "new" nitrogen through the nitrogen fixation process. However, the diazotroph communities in the oceanic region of the BoB are still poorly understood though it represents most of the seawater volume. The present study investigated a detailed account of the bacterioplankton community structure and distribution in the oceanic BoB during the winter monsoon using high throughput sequencing targeting the 16S rRNA and nifH genes. Our study observed diverse groups of bacterioplankton communities in the BoB including both cyanobacterial and non-cyanobacterial phylotypes. Cyanobacteria (Prochlorococcus spp. and Synechococcus spp.) and Proteobacteria (mainly α-, γ-, and δ-Proteobacteria) were the most abundant groups within the bacterial communities, possessing differential vertical distribution patterns. Cyanobacteria were more abundant in the surface waters, whereas Proteobacteria dominated the deeper layers (75 m). However, within the diazotroph communities, Proteobacteria (mainly γ-Proteobacteria) were the most dominant groups than Cyanobacteria. Function prediction based on PICRUSt revealed that nitrogen fixation might more active to add fixed nitrogen in the surface waters, while nitrogen removal pathways (denitrification and anammox) might stronger in deeper layers. Canonical correspondence analysis (CCA) indicated that temperature, salinity, and silicate were major environmental factors driving the distribution of bacterial communities. Additionally, phosphate was also an important factor in regulating the diazotroph communities in the surface water. Overall, this study provided detailed information on bacterial communities and their vital role in the nitrogen cycles in oligotrophic ecosystems.
Collapse
Affiliation(s)
- Chao Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dhiraj Dhondiram Narale
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xingzhou Wang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China
| | - Haijiao Liu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China
| | - Wenzhe Xu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Guicheng Zhang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Sun
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
23
|
Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean. Proc Natl Acad Sci U S A 2022; 119:e2200014119. [PMID: 36067300 PMCID: PMC9477243 DOI: 10.1073/pnas.2200014119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzymes catalyze key reactions within Earth's life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin, with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups were identified, yet only 25 KO groups contributed over half of the protein abundance, simultaneously indicating abundant key functions and a long tail of diverse functions. Vertical attenuation of individual proteins displayed stratification of nutrient transport, carbon utilization, and environmental stress. The microbial community also varied along horizontal scales, shaped by environmental features specific to the oligotrophic North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific, and nutrient-rich equatorial upwelling. Some of the most abundant proteins were associated with nitrification and C1 metabolisms, with observed interactions between these pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase (NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM) displayed distributions indicative of biogeochemical status such as oxidative or nutritional stress, with the potential to be more sensitive than chemical sensors. Enzymes that mediate transformations of atmospheric gases like CO, CO2, NO, methanethiol, and methylamines were most abundant in the upwelling region. We identified hot spots of biochemical transformation in the central Pacific Ocean, highlighted previously understudied metabolic pathways in the environment, and provided rich empirical data for biogeochemical models critical for forecasting ecosystem response to climate change.
Collapse
|
24
|
Climate-Resilient Microbial Biotechnology: A Perspective on Sustainable Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14095574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We designed this review to describe a compilation of studies to enlighten the concepts of plant–microbe interactions, adopted protocols in smart crop farming, and biodiversity to reaffirm sustainable agriculture. The ever-increasing use of agrochemicals to boost crop production has created health hazards to humans and the environment. Microbes can bring up the hidden strength of plants, augmenting disease resistance and yield, hereafter, crops could be grown without chemicals by harnessing microbes that live in/on plants and soil. This review summarizes an understanding of the functions and importance of indigenous microbial communities; host–microbial and microbial–microbial interactions; simplified experimentally controlled synthetic flora used to perform targeted operations; maintaining the molecular mechanisms; and microbial agent application technology. It also analyzes existing problems and forecasts prospects. The real advancement of microbiome engineering requires a large number of cycles to obtain the necessary ecological principles, precise manipulation of the microbiome, and predictable results. To advance this approach, interdisciplinary collaboration in the areas of experimentation, computation, automation, and applications is required. The road to microbiome engineering seems to be long; however, research and biotechnology provide a promising approach for proceeding with microbial engineering and address persistent social and environmental issues.
Collapse
|
25
|
Shao B, Zhang R, Xu X, Niu L, Fan K, Lin Z, Zhao L, Zhou X, Ren N, Lee DJ, Chen C. Cryptic Sulfur and Oxygen Cycling Potentially Reduces N 2O-Driven Greenhouse Warming: Underlying Revision Need of the Nitrogen Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5960-5972. [PMID: 35416037 DOI: 10.1021/acs.est.1c08113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increasing global deoxygenation has widely formed oxygen-limited biotopes, altering the metabolic pathways of numerous microbes and causing a large greenhouse effect of nitrous oxide (N2O). Although there are many sources of N2O, denitrification is the sole sink that removes N2O from the biosphere, and the low-level oxygen in waters has been classically thought to be the key factor regulating N2O emissions from incomplete denitrification. However, through microcosm incubations with sandy sediment, we demonstrate here for the first time that the stress from oxygenated environments does not suppress, but rather boosts the complete denitrification process when the sulfur cycle is actively ongoing. This study highlights the potential of reducing N2O-driven greenhouse warming and fills a gap in pre-cognitions on the nitrogen cycle, which may impact our current understanding of greenhouse gas sinks. Combining molecular techniques and kinetic verification, we reveal that dominant inhibitions in oxygen-limited environments can interestingly undergo triple detoxification by cryptic sulfur and oxygen cycling, which may extensively occur in nature but have been long neglected by researchers. Furthermore, reviewing the present data and observations from natural and artificial ecosystems leads to the necessary revision needs of the global nitrogen cycle.
Collapse
Affiliation(s)
- Bo Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ruochen Zhang
- School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li Niu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhengda Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xu Zhou
- Engineering Laboratory of Microalgal Bioenergy, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
26
|
Xie ZX, He YB, Zhang SF, Lin L, Wang MH, Wang DZ. Metaexoproteomics Reveals Microbial Behavior in the Ocean's Interior. Front Microbiol 2022; 13:749874. [PMID: 35250917 PMCID: PMC8889253 DOI: 10.3389/fmicb.2022.749874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The proteins present in the extracellular environment of cells, named the "exoproteome," are critical for microbial survival, growth, and interaction with their surroundings. However, little is known about microbial exoproteomes in natural marine environments. Here, we used a metaproteomic approach to characterize the exoprotein profiles (10 kDa-0.2 μm) throughout a water column in the South China Sea. Viruses, together with Alpha- and Gammaproteobacteria were the predominant contributors. However, the exoprotein-producing microbial communities varied with depth: SAR11 in the shallow waters, Pseudomonadales and Nitrososphaeria in the mesopelagic layer, and Alteromonadales, Rhizobiales, and Betaproteobacteria in the bathypelagic layer. Besides viral and unknown proteins, diverse transporters contributed substantially to the exoproteomes and varied vertically in their microbial origins, but presented similar patterns in their predicted substrate identities throughout the water column. Other microbial metabolic processes subject to vertical zonation included proteolysis, the oxidation of ammonia, nitrite and carbon monoxide, C1 metabolism, and the degradation of sulfur-containing dissolved organic matter (DOM). Our metaexoproteomic study provides insights into the depth-variable trends in the in situ ecological traits of the marine microbial community hidden in the non-cellular world, including nutrient cycling, niche partitioning and DOM remineralization.
Collapse
Affiliation(s)
- Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, China
| | | | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, China
| | - Ming-Hua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
27
|
Understanding Interaction Patterns within Deep-Sea Microbial Communities and Their Potential Applications. Mar Drugs 2022; 20:md20020108. [PMID: 35200637 PMCID: PMC8874374 DOI: 10.3390/md20020108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Environmental microbes living in communities engage in complex interspecies interactions that are challenging to decipher. Nevertheless, the interactions provide the basis for shaping community structure and functioning, which is crucial for ecosystem service. In addition, microbial interactions facilitate specific adaptation and ecological evolution processes particularly essential for microbial communities dwelling in resource-limiting habitats, such as the deep oceans. Recent technological and knowledge advancements provide an opportunity for the study of interactions within complex microbial communities, such as those inhabiting deep-sea waters and sediments. The microbial interaction studies provide insights into developing new strategies for biotechnical applications. For example, cooperative microbial interactions drive the degradation of complex organic matter such as chitins and celluloses. Such microbiologically-driven biogeochemical processes stimulate creative designs in many applied sciences. Understanding the interaction processes and mechanisms provides the basis for the development of synthetic communities and consequently the achievement of specific community functions. Microbial community engineering has many application potentials, including the production of novel antibiotics, biofuels, and other valuable chemicals and biomaterials. It can also be developed into biotechniques for waste processing and environmental contaminant bioremediation. This review summarizes our current understanding of the microbial interaction mechanisms and emerging techniques for inferring interactions in deep-sea microbial communities, aiding in future biotechnological and therapeutic applications.
Collapse
|
28
|
Sbaoui Y, Nouadi B, Ezaouine A, Rida Salam M, Elmessal M, Bennis F, Chegdani F. Functional Prediction of Biological Profile During Eutrophication in Marine Environment. Bioinform Biol Insights 2022; 16:11779322211063993. [PMID: 35023908 PMCID: PMC8744080 DOI: 10.1177/11779322211063993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
In the marine environment, coastal nutrient pollution and algal blooms are increasing in many coral reefs and surface waters around the world, leading to higher concentrations of dissolved organic carbon (DOC), nitrogen (N), phosphate (P), and sulfur (S) compounds. The adaptation of the marine microbiota to this stress involves evolutionary processes through mutations that can provide selective phenotypes. The aim of this in silico analysis is to elucidate the potential candidate hub proteins, biological processes, and key metabolic pathways involved in the pathogenicity of bacterioplankton during excess of nutrients. The analysis was carried out on the model organism Escherichia coli K-12, by adopting an analysis pipeline consisting of a set of packages from the Cystoscape platform. The results obtained show that the metabolism of carbon and sugars generally are the 2 driving mechanisms for the expression of virulence factors.
Collapse
Affiliation(s)
- Yousra Sbaoui
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Badreddine Nouadi
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Abdelkarim Ezaouine
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Rida Salam
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mariame Elmessal
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Faiza Bennis
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| | - Fatima Chegdani
- Immunology and Biodiversity Laboratory, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
29
|
Abstract
The SUP05 clade of gammaproteobacteria (Thioglobaceae) comprises both primary producers and primary consumers of organic carbon in the oceans. Host-associated autotrophs are a principal source of carbon and other nutrients for deep-sea eukaryotes at hydrothermal vents, and their free-living relatives are a primary source of organic matter in seawater at vents and in marine oxygen minimum zones. Similar to other abundant marine heterotrophs, such as SAR11 and Roseobacter, heterotrophic Thioglobaceae use the dilute pool of osmolytes produced by phytoplankton for growth, including methylated amines and sulfonates. Heterotrophic members are common throughout the ocean, and autotrophic members are abundant at hydrothermal vents and in anoxic waters; combined, they can account for more than 50% of the total bacterial community. Studies of both cultured and uncultured representatives from this diverse family are providing novel insights into the shifting biogeochemical roles of autotrophic and heterotrophic bacteria that cross oxic-anoxic boundary layers in the ocean.
Collapse
Affiliation(s)
- Robert M Morris
- School of Oceanography, University of Washington, Seattle, Washington 98195, USA;
| | - Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
30
|
Diel Protein Regulation of Marine Picoplanktonic Communities Assessed by Metaproteomics. Microorganisms 2021; 9:microorganisms9122621. [PMID: 34946222 PMCID: PMC8707726 DOI: 10.3390/microorganisms9122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The diel cycle is of enormous biological importance in that it imposes temporal structure on ecosystem productivity. In the world’s oceans, microorganisms form complex communities that carry out about half of photosynthesis and the bulk of life-sustaining nutrient cycling. How the functioning of microbial communities is impacted by day and night periods in surface seawater remains to be elucidated. In this study, we compared the day and night metaproteomes of the free-living and the particle-attached bacterial fractions from picoplanktonic communities sampled from the northwest Mediterranean Sea surface. Our results showed similar taxonomic distribution of free-living and particle-attached bacterial populations, with Alphaproteobacteria, Gammaproteobacteria and Cyanobacteria being the most active members. Comparison of the day and night metaproteomes revealed that free-living and particle-attached bacteria were more active during the day and the night, respectively. Interestingly, protein diel variations were observed in the photoautotroph Synechococcales and in (photo)-heterotrophic bacteria such as Flavobacteriales, Pelagibacterales and Rhodobacterales. Moreover, our data demonstrated that diel cycle impacts light-dependent processes such as photosynthesis and UV-stress response in Synechococcales and Rhodobacterales, respectively, while the protein regulation from the ubiquitous Pelagibacterales remained stable over time. This study unravels, for the first time, the diel variation in the protein expression of major free-living and particle-attached microbial players at the sea surface, totaling an analysis of eight metaproteomes.
Collapse
|
31
|
Kusch S, Wakeham SG, Dildar N, Zhu C, Sepúlveda J. Bacterial and archaeal lipids trace chemo(auto)trophy along the redoxcline in Vancouver Island fjords. GEOBIOLOGY 2021; 19:521-541. [PMID: 33960615 DOI: 10.1111/gbi.12446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/30/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
Marine oxygen minimum zones play a crucial role in the global oceanic carbon, nitrogen, and sulfur cycles as they harbor microbial communities that are adapted to the water column chemistry and redox zonation, and in turn control the water column chemistry and greenhouse gas release. These micro-organisms have metabolisms that rely on terminal electron acceptors other than O2 and often benefit from syntrophic relationships (metabolic coupling). Here, we study chemo(auto)trophy along the redoxcline in two stratified fjords on Vancouver Island (Canada) using bacterial bacteriohopanepolyols and archaeal ether lipids. We analyze the distribution of these lipid classes in suspended particulate matter (SPM) to trace ammonia oxidation, anaerobic ammonium oxidation (anammox), sulfate reduction/sulfur oxidation, methanogenesis, and methane oxidation, and investigate ecological niches to evaluate potential links between their respective bacterial and archaeal sources. Our results show an unparalleled BHP and ether lipid structural diversity that allows tracing the major redox-driven metabolic processes at the time of sampling: Both fjords are dominated by archaeal ammonia oxidation and anammox; sulfate-reducing bacteria may be present in Deer Bay, but absent from Effingham Inlet; methanogenic Euryarchaeota and archaeal and bacterial methanotrophs are detectable at low abundance. Correlation analysis reveals distinct biomarker clusters that provide constraints on the biogeochemical niches of some orphan BHP and ether lipids such as in situ-produced adenosyl-BHPs or unsaturated archaeols.
Collapse
Affiliation(s)
- Stephanie Kusch
- University of Cologne Centre for Accelerator Mass Spectrometry, University of Cologne, Cologne, Germany
| | - Stuart G Wakeham
- Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
| | - Nadia Dildar
- Department of Geological Sciences and Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO, USA
| | - Chun Zhu
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Julio Sepúlveda
- Department of Geological Sciences and Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
32
|
Gottshall EY, Bryson SJ, Cogert KI, Landreau M, Sedlacek CJ, Stahl DA, Daims H, Winkler M. Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria. WATER RESEARCH 2021; 202:117426. [PMID: 34274897 DOI: 10.1016/j.watres.2021.117426] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The discovery of anaerobic ammonia-oxidizing bacteria (Anammox) and, more recently, aerobic bacteria common in many natural and engineered systems that oxidize ammonia completely to nitrate (Comammox) have significantly altered our understanding of the global nitrogen cycle. A high affinity for ammonia (Km(app),NH3 ≈ 63nM) and oxygen place Comammox Nitrospira inopinata, the first described isolate, in the same trophic category as organisms such as some ammonia-oxidizing archaea. However, N. inopinata has a relatively low affinity for nitrite (Km,NO2 ≈ 449.2μM) suggesting it would be less competitive for nitrite than other nitrite-consuming aerobes and anaerobes. We examined the ecological relevance of the disparate substrate affinities by coupling it with the Anammox bacterium Candidatus Brocadia anammoxidans. Synthetic communities of the two were established in hydrogel granules in which Comammox grew in the aerobic outer layer to provide Anammox with nitrite in the inner anoxic core to form dinitrogen gas. This spatial organization was confirmed with FISH imaging, supporting a mutualistic or commensal relationship. The functional significance of interspecies spatial organization was informed by the hydrogel encapsulation format, broadening our limited understanding of the interplay between these two species. The resulting low nitrate formation and the competitiveness of Comammox over other aerobic ammonia- and nitrite-oxidizers sets this ecological cooperation apart and points to potential biotechnological applications. Since nitrate is an undesirable product of wastewater treatment effluents, the Comammox-Anammox symbiosis may be of economic and ecological importance to reduce nitrogen contamination of receiving waters.
Collapse
Affiliation(s)
- Ekaterina Y Gottshall
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States.
| | - Sam J Bryson
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| | - Kathryn I Cogert
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| | - Matthieu Landreau
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| | - Christopher J Sedlacek
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1010, Austria
| | - David A Stahl
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| | - Holger Daims
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1010, Austria; The Comammox Research Platform. University of Vienna, 1010, Austria
| | - Mari Winkler
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| |
Collapse
|
33
|
Patin NV, Dietrich ZA, Stancil A, Quinan M, Beckler JS, Hall ER, Culter J, Smith CG, Taillefert M, Stewart FJ. Gulf of Mexico blue hole harbors high levels of novel microbial lineages. THE ISME JOURNAL 2021; 15:2206-2232. [PMID: 33612832 PMCID: PMC8319197 DOI: 10.1038/s41396-021-00917-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Exploration of oxygen-depleted marine environments has consistently revealed novel microbial taxa and metabolic capabilities that expand our understanding of microbial evolution and ecology. Marine blue holes are shallow karst formations characterized by low oxygen and high organic matter content. They are logistically challenging to sample, and thus our understanding of their biogeochemistry and microbial ecology is limited. We present a metagenomic and geochemical characterization of Amberjack Hole on the Florida continental shelf (Gulf of Mexico). Dissolved oxygen became depleted at the hole's rim (32 m water depth), remained low but detectable in an intermediate hypoxic zone (40-75 m), and then increased to a secondary peak before falling below detection in the bottom layer (80-110 m), concomitant with increases in nutrients, dissolved iron, and a series of sequentially more reduced sulfur species. Microbial communities in the bottom layer contained heretofore undocumented levels of the recently discovered phylum Woesearchaeota (up to 58% of the community), along with lineages in the bacterial Candidate Phyla Radiation (CPR). Thirty-one high-quality metagenome-assembled genomes (MAGs) showed extensive biochemical capabilities for sulfur and nitrogen cycling, as well as for resisting and respiring arsenic. One uncharacterized gene associated with a CPR lineage differentiated hypoxic from anoxic zone communities. Overall, microbial communities and geochemical profiles were stable across two sampling dates in the spring and fall of 2019. The blue hole habitat is a natural marine laboratory that provides opportunities for sampling taxa with under-characterized but potentially important roles in redox-stratified microbial processes.
Collapse
Affiliation(s)
- N V Patin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA.
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
- Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USA.
| | | | - A Stancil
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USA
| | - M Quinan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USA
| | - J S Beckler
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USA
| | - E R Hall
- Mote Marine Laboratory, Sarasota, FL, USA
| | - J Culter
- Mote Marine Laboratory, Sarasota, FL, USA
| | - C G Smith
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USA
| | - M Taillefert
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - F J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
34
|
Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, Holt KE, Moreau JW. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. THE ISME JOURNAL 2021; 15:1810-1825. [PMID: 33504941 DOI: 10.1101/2020.06.03.132969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/17/2020] [Indexed: 05/21/2023]
Abstract
Microbes transform aqueous mercury (Hg) into methylmercury (MeHg), a potent neurotoxin that accumulates in terrestrial and marine food webs, with potential impacts on human health. This process requires the gene pair hgcAB, which encodes for proteins that actuate Hg methylation, and has been well described for anoxic environments. However, recent studies report potential MeHg formation in suboxic seawater, although the microorganisms involved remain poorly understood. In this study, we conducted large-scale multi-omic analyses to search for putative microbial Hg methylators along defined redox gradients in Saanich Inlet, British Columbia, a model natural ecosystem with previously measured Hg and MeHg concentration profiles. Analysis of gene expression profiles along the redoxcline identified several putative Hg methylating microbial groups, including Calditrichaeota, SAR324 and Marinimicrobia, with the last the most active based on hgc transcription levels. Marinimicrobia hgc genes were identified from multiple publicly available marine metagenomes, consistent with a potential key role in marine Hg methylation. Computational homology modelling predicts that Marinimicrobia HgcAB proteins contain the highly conserved amino acid sites and folding structures required for functional Hg methylation. Furthermore, a number of terminal oxidases from aerobic respiratory chains were associated with several putative novel Hg methylators. Our findings thus reveal potential novel marine Hg-methylating microorganisms with a greater oxygen tolerance and broader habitat range than previously recognized.
Collapse
Affiliation(s)
- Heyu Lin
- School of Earth Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - David B Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Yoochan Myung
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC, 3004, Australia
| | - Carl H Lamborg
- Department of Ocean Sciences, University of California, Santa Cruz, CA, 95064, USA
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Caitlin M Gionfriddo
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, 37831, USA
- Smithsonian Environmental Research Center, Edgewater, MD, 21037, USA
| | - Kathryn E Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Monash, VIC, 3800, Australia
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - John W Moreau
- School of Earth Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Currently at School of Geographical & Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
35
|
van Vliet DM, von Meijenfeldt FB, Dutilh BE, Villanueva L, Sinninghe Damsté JS, Stams AJ, Sánchez‐Andrea I. The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ Microbiol 2021; 23:2834-2857. [PMID: 33000514 PMCID: PMC8359478 DOI: 10.1111/1462-2920.15265] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023]
Abstract
Dysoxic marine waters (DMW, < 1 μM oxygen) are currently expanding in volume in the oceans, which has biogeochemical, ecological and societal consequences on a global scale. In these environments, distinct bacteria drive an active sulfur cycle, which has only recently been recognized for open-ocean DMW. This review summarizes the current knowledge on these sulfur-cycling bacteria. Critical bottlenecks and questions for future research are specifically addressed. Sulfate-reducing bacteria (SRB) are core members of DMW. However, their roles are not entirely clear, and they remain largely uncultured. We found support for their remarkable diversity and taxonomic novelty by mining metagenome-assembled genomes from the Black Sea as model ecosystem. We highlight recent insights into the metabolism of key sulfur-oxidizing SUP05 and Sulfurimonas bacteria, and discuss the probable involvement of uncultivated SAR324 and BS-GSO2 bacteria in sulfur oxidation. Uncultivated Marinimicrobia bacteria with a presumed organoheterotrophic metabolism are abundant in DMW. Like SRB, they may use specific molybdoenzymes to conserve energy from the oxidation, reduction or disproportionation of sulfur cycle intermediates such as S0 and thiosulfate, produced from the oxidation of sulfide. We expect that tailored sampling methods and a renewed focus on cultivation will yield deeper insight into sulfur-cycling bacteria in DMW.
Collapse
Affiliation(s)
- Daan M. van Vliet
- Laboratory of MicrobiologyWageningen University and Research, Stippeneng 4, 6708WEWageningenNetherlands
| | | | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Science for LifeUtrecht University, Padualaan 8, 3584 CHUtrechtNetherlands
| | - Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Landsdiep 4, 1797 SZ, 'tHorntje (Texel)Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Landsdiep 4, 1797 SZ, 'tHorntje (Texel)Netherlands
- Department of Earth Sciences, Faculty of GeosciencesUtrecht University, Princetonlaan 8A, 3584 CBUtrechtNetherlands
| | - Alfons J.M. Stams
- Laboratory of MicrobiologyWageningen University and Research, Stippeneng 4, 6708WEWageningenNetherlands
- Centre of Biological EngineeringUniversity of Minho, Campus de Gualtar, 4710‐057BragaPortugal
| | - Irene Sánchez‐Andrea
- Laboratory of MicrobiologyWageningen University and Research, Stippeneng 4, 6708WEWageningenNetherlands
| |
Collapse
|
36
|
Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, Holt KE, Moreau JW. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. THE ISME JOURNAL 2021; 15:1810-1825. [PMID: 33504941 PMCID: PMC8163782 DOI: 10.1038/s41396-020-00889-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023]
Abstract
Microbes transform aqueous mercury (Hg) into methylmercury (MeHg), a potent neurotoxin that accumulates in terrestrial and marine food webs, with potential impacts on human health. This process requires the gene pair hgcAB, which encodes for proteins that actuate Hg methylation, and has been well described for anoxic environments. However, recent studies report potential MeHg formation in suboxic seawater, although the microorganisms involved remain poorly understood. In this study, we conducted large-scale multi-omic analyses to search for putative microbial Hg methylators along defined redox gradients in Saanich Inlet, British Columbia, a model natural ecosystem with previously measured Hg and MeHg concentration profiles. Analysis of gene expression profiles along the redoxcline identified several putative Hg methylating microbial groups, including Calditrichaeota, SAR324 and Marinimicrobia, with the last the most active based on hgc transcription levels. Marinimicrobia hgc genes were identified from multiple publicly available marine metagenomes, consistent with a potential key role in marine Hg methylation. Computational homology modelling predicts that Marinimicrobia HgcAB proteins contain the highly conserved amino acid sites and folding structures required for functional Hg methylation. Furthermore, a number of terminal oxidases from aerobic respiratory chains were associated with several putative novel Hg methylators. Our findings thus reveal potential novel marine Hg-methylating microorganisms with a greater oxygen tolerance and broader habitat range than previously recognized.
Collapse
Affiliation(s)
- Heyu Lin
- grid.1008.90000 0001 2179 088XSchool of Earth Sciences, The University of Melbourne, Parkville, VIC 3010 Australia
| | - David B. Ascher
- grid.1008.90000 0001 2179 088XStructural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1051.50000 0000 9760 5620Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004 Australia
| | - Yoochan Myung
- grid.1008.90000 0001 2179 088XStructural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.1051.50000 0000 9760 5620Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, VIC 3004 Australia
| | - Carl H. Lamborg
- grid.205975.c0000 0001 0740 6917Department of Ocean Sciences, University of California, Santa Cruz, CA 95064 USA
| | - Steven J. Hallam
- grid.17091.3e0000 0001 2288 9830Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z1 Canada ,grid.17091.3e0000 0001 2288 9830Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Caitlin M. Gionfriddo
- grid.135519.a0000 0004 0446 2659Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 USA ,grid.419533.90000 0000 8612 0361Present Address: Smithsonian Environmental Research Center, Edgewater, MD 21037 USA
| | - Kathryn E. Holt
- grid.1002.30000 0004 1936 7857Department of Infectious Diseases, Central Clinical School, Monash University, Monash, VIC 3800 Australia ,grid.8991.90000 0004 0425 469XDepartment of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT UK
| | - John W. Moreau
- grid.1008.90000 0001 2179 088XSchool of Earth Sciences, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.8756.c0000 0001 2193 314XPresent Address: Currently at School of Geographical & Earth Sciences, University of Glasgow, Glasgow, G12 8QQ UK
| |
Collapse
|
37
|
Michán C, Blasco J, Alhama J. High-throughput molecular analyses of microbiomes as a tool to monitor the wellbeing of aquatic environments. Microb Biotechnol 2021; 14:870-885. [PMID: 33559398 PMCID: PMC8085945 DOI: 10.1111/1751-7915.13763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Aquatic environments are the recipients of many sources of environmental stress that trigger both local and global changes. To evaluate the associated risks to organisms and ecosystems more sensitive and accurate strategies are required. The analysis of the microbiome is one of the most promising candidates for environmental diagnosis of aquatic systems. Culture-independent interconnected meta-omic approaches are being increasing used to fill the gaps that classical microbial approaches cannot resolve. Here, we provide a prospective view of the increasing application of these high-throughput molecular technologies to evaluate the structure and functional activity of microbial communities in response to changes and disturbances in the environment, mostly of anthropogenic origin. Some relevant topics are reviewed, such as: (i) the use of microorganisms for water quality assessment, highlighting the incidence of antimicrobial resistance as an increasingly serious threat to global public health; (ii) the crucial role of microorganisms and their complex relationships with the ongoing climate change, and other stress threats; (iii) the responses of the environmental microbiome to extreme pollution conditions, such as acid mine drainage or oil spills. Moreover, protists and viruses, due to their huge impacts on the structure of microbial communities, are emerging candidates for the assessment of aquatic environmental health.
Collapse
Affiliation(s)
- Carmen Michán
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| | - Julián Blasco
- Department of Ecology and Coastal ManagementICMAN‐CSICCampus Rio San PedroPuerto Real (Cádiz)E‐11510Spain
| | - José Alhama
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| |
Collapse
|
38
|
Decrypting bacterial polyphenol metabolism in an anoxic wetland soil. Nat Commun 2021; 12:2466. [PMID: 33927199 PMCID: PMC8084988 DOI: 10.1038/s41467-021-22765-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
Microorganisms play vital roles in modulating organic matter decomposition and nutrient cycling in soil ecosystems. The enzyme latch paradigm posits microbial degradation of polyphenols is hindered in anoxic peat leading to polyphenol accumulation, and consequently diminished microbial activity. This model assumes that polyphenols are microbially unavailable under anoxia, a supposition that has not been thoroughly investigated in any soil type. Here, we use anoxic soil reactors amended with and without a chemically defined polyphenol to test this hypothesis, employing metabolomics and genome-resolved metaproteomics to interrogate soil microbial polyphenol metabolism. Challenging the idea that polyphenols are not bioavailable under anoxia, we provide metabolite evidence that polyphenols are depolymerized, resulting in monomer accumulation, followed by the generation of small phenolic degradation products. Further, we show that soil microbiome function is maintained, and possibly enhanced, with polyphenol addition. In summary, this study provides chemical and enzymatic evidence that some soil microbiota can degrade polyphenols under anoxia and subvert the assumed polyphenol lock on soil microbial metabolism.
Collapse
|
39
|
Kong LF, Yan KQ, Xie ZX, He YB, Lin L, Xu HK, Liu SQ, Wang DZ. Metaproteomics Reveals Similar Vertical Distribution of Microbial Transport Proteins in Particulate Organic Matter Throughout the Water Column in the Northwest Pacific Ocean. Front Microbiol 2021; 12:629802. [PMID: 33841356 PMCID: PMC8034268 DOI: 10.3389/fmicb.2021.629802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Solubilized particulate organic matter (POM) rather than dissolved organic matter (DOM) has been speculated to be the major carbon and energy sources for heterotrophic prokaryotes in the ocean. However, the direct evidence is still lack. Here we characterized microbial transport proteins of POM collected from both euphotic (75 m, deep chlorophyll maximum DCM, and 100 m) and upper-twilight (200 m and 500 m) zones in three contrasting environments in the northwest Pacific Ocean using a metaproteomic approach. The proportion of transport proteins was relatively high at the bottom of the euphotic zone (200 m), indicating that this layer was the most active area of microbe-driven POM remineralization in the water column. In the upper-twilight zone, the predicted substrates of the identified transporters indicated that amino acids, carbohydrates, taurine, inorganic nutrients, urea, biopolymers, and cobalamin were essential substrates for the microbial community. SAR11, Rhodobacterales, Alteromonadales, and Enterobacteriales were the key contributors with the highest expression of transporters. Interestingly, both the taxonomy and function of the microbial communities varied among water layers and sites with different environments; however, the distribution of transporter types and their relevant organic substrates were similar among samples, suggesting that microbial communities took up similar compounds and were functionally redundant in organic matter utilization throughout the water column. The similar vertical distribution of transport proteins from the euphotic zone to the upper twilight zone among the contrasting environments indicated that solubilized POM rather than DOM was the preferable carbon and energy sources for the microbial communities.
Collapse
Affiliation(s)
- Ling-Fen Kong
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | | | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | | | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | | | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
40
|
Gazitúa MC, Vik DR, Roux S, Gregory AC, Bolduc B, Widner B, Mulholland MR, Hallam SJ, Ulloa O, Sullivan MB. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. THE ISME JOURNAL 2021; 15:981-998. [PMID: 33199808 PMCID: PMC8115048 DOI: 10.1038/s41396-020-00825-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 01/29/2023]
Abstract
Viruses play an important role in the ecology and biogeochemistry of marine ecosystems. Beyond mortality and gene transfer, viruses can reprogram microbial metabolism during infection by expressing auxiliary metabolic genes (AMGs) involved in photosynthesis, central carbon metabolism, and nutrient cycling. While previous studies have focused on AMG diversity in the sunlit and dark ocean, less is known about the role of viruses in shaping metabolic networks along redox gradients associated with marine oxygen minimum zones (OMZs). Here, we analyzed relatively quantitative viral metagenomic datasets that profiled the oxygen gradient across Eastern Tropical South Pacific (ETSP) OMZ waters, assessing whether OMZ viruses might impact nitrogen (N) cycling via AMGs. Identified viral genomes encoded six N-cycle AMGs associated with denitrification, nitrification, assimilatory nitrate reduction, and nitrite transport. The majority of these AMGs (80%) were identified in T4-like Myoviridae phages, predicted to infect Cyanobacteria and Proteobacteria, or in unclassified archaeal viruses predicted to infect Thaumarchaeota. Four AMGs were exclusive to anoxic waters and had distributions that paralleled homologous microbial genes. Together, these findings suggest viruses modulate N-cycling processes within the ETSP OMZ and may contribute to nitrogen loss throughout the global oceans thus providing a baseline for their inclusion in the ecosystem and geochemical models.
Collapse
Affiliation(s)
- M. Consuelo Gazitúa
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA ,Viromica Consulting, Santiago, Chile
| | - Dean R. Vik
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Simon Roux
- grid.451309.a0000 0004 0449 479XDOE Joint Genome Institute, Berkeley, CA USA
| | - Ann C. Gregory
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Benjamin Bolduc
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Brittany Widner
- grid.261368.80000 0001 2164 3177Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA USA ,grid.56466.370000 0004 0504 7510Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Margaret R. Mulholland
- grid.261368.80000 0001 2164 3177Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA USA
| | - Steven J. Hallam
- grid.17091.3e0000 0001 2288 9830Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
| | - Osvaldo Ulloa
- grid.5380.e0000 0001 2298 9663Departamento de Oceanografía & Instituto Milenio de Oceanografía, Universidad de Concepción, Concepción, Chile
| | - Matthew B. Sullivan
- grid.261331.40000 0001 2285 7943Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA ,grid.261331.40000 0001 2285 7943Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH USA
| |
Collapse
|
41
|
Marine plankton metabolisms revealed. Nat Microbiol 2021; 6:147-148. [PMID: 33510437 DOI: 10.1038/s41564-020-00856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Mueller AJ, Jung MY, Strachan CR, Herbold CW, Kirkegaard RH, Wagner M, Daims H. Genomic and kinetic analysis of novel Nitrospinae enriched by cell sorting. THE ISME JOURNAL 2021; 15:732-745. [PMID: 33067588 PMCID: PMC8026999 DOI: 10.1038/s41396-020-00809-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022]
Abstract
Chemolithoautotrophic nitrite-oxidizing bacteria (NOB) are key players in global nitrogen and carbon cycling. Members of the phylum Nitrospinae are the most abundant, known NOB in the oceans. To date, only two closely affiliated Nitrospinae species have been isolated, which are only distantly related to the environmentally abundant uncultured Nitrospinae clades. Here, we applied live cell sorting, activity screening, and subcultivation on marine nitrite-oxidizing enrichments to obtain novel marine Nitrospinae. Two binary cultures were obtained, each containing one Nitrospinae strain and one alphaproteobacterial heterotroph. The Nitrospinae strains represent two new genera, and one strain is more closely related to environmentally abundant Nitrospinae than previously cultured NOB. With an apparent half-saturation constant of 8.7 ± 2.5 µM, this strain has the highest affinity for nitrite among characterized marine NOB, while the other strain (16.2 ± 1.6 µM) and Nitrospina gracilis (20.1 ± 2.1 µM) displayed slightly lower nitrite affinities. The new strains and N. gracilis share core metabolic pathways for nitrite oxidation and CO2 fixation but differ remarkably in their genomic repertoires of terminal oxidases, use of organic N sources, alternative energy metabolisms, osmotic stress and phage defense. The new strains, tentatively named "Candidatus Nitrohelix vancouverensis" and "Candidatus Nitronauta litoralis", shed light on the niche differentiation and potential ecological roles of Nitrospinae.
Collapse
Affiliation(s)
- Anna J Mueller
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Man-Young Jung
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Althanstrasse 14, 1090, Vienna, Austria
- Department of Science Education, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea
| | - Cameron R Strachan
- Department for Farm Animals and Public Health, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- FFoQSI GmbH, Technopark 1C, 3430, Tulln, Austria
| | - Craig W Herbold
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Rasmus H Kirkegaard
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Michael Wagner
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Althanstrasse 14, 1090, Vienna, Austria
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
- University of Vienna, The Comammox Research Platform, Vienna, Austria
| | - Holger Daims
- University of Vienna, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, Althanstrasse 14, 1090, Vienna, Austria.
- University of Vienna, The Comammox Research Platform, Vienna, Austria.
| |
Collapse
|
43
|
Saito MA, Saunders JK, Chagnon M, Gaylord DA, Shepherd A, Held NA, Dupont C, Symmonds N, York A, Charron M, Kinkade DB. Development of an Ocean Protein Portal for Interactive Discovery and Education. J Proteome Res 2021; 20:326-336. [PMID: 32897077 PMCID: PMC8036901 DOI: 10.1021/acs.jproteome.0c00382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proteins are critical in catalyzing chemical reactions, forming key cellular structures, and in regulating cellular processes. Investigation of marine microbial proteins by metaproteomics methods enables the discovery of numerous aspects of microbial biogeochemical processes. However, these datasets present big data challenges as they often involve many samples collected across broad geospatial and temporal scales, resulting in thousands of protein identifications, abundances, and corresponding annotation information. The Ocean Protein Portal (OPP) was created to enable data sharing and discovery among multiple scientific domains and serve both research and education functions. The portal focuses on three use case questions: "Where is my protein of interest?", "Who makes it?", and "How much is there?" and provides profile and section visualizations, real-time taxonomic analysis, and links to metadata, sequence analysis, and other external resources to enable connections to be made between biogeochemical and proteomics datasets.
Collapse
Affiliation(s)
- Mak A Saito
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, Massachusetts 02543, United States
| | - Jaclyn K Saunders
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, Massachusetts 02543, United States
| | - Michael Chagnon
- RPS Group, South Kingston, Rhode Island 02879, United States
- Kaimika Technology, Cumberland, Rhode Island 02864, United States
| | - David A Gaylord
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, Massachusetts 02543, United States
| | - Adam Shepherd
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, Massachusetts 02543, United States
| | - Noelle A Held
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, Massachusetts 02543, United States
| | - Christopher Dupont
- Woods Hole Oceanographic Institute, Falmouth, Massachusetts 02543, United States
| | - Nicholas Symmonds
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, Massachusetts 02543, United States
| | - Amber York
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, Massachusetts 02543, United States
| | - Matthew Charron
- Kaimika Technology, Cumberland, Rhode Island 02864, United States
| | - Danie B Kinkade
- Woods Hole Oceanographic Institute, Falmouth, Massachusetts 02543, United States
| |
Collapse
|
44
|
Breier JA, Jakuba MV, Saito MA, Dick GJ, Grim SL, Chan EW, McIlvin MR, Moran DM, Alanis BA, Allen AE, Dupont CL, Johnson R. Revealing ocean-scale biochemical structure with a deep-diving vertical profiling autonomous vehicle. Sci Robot 2020; 5:5/48/eabc7104. [PMID: 33239321 DOI: 10.1126/scirobotics.abc7104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022]
Abstract
Vast and diverse microbial communities exist within the ocean. To better understand the global influence of these microorganisms on Earth's climate, we developed a robot capable of sampling dissolved and particulate seawater biochemistry across ocean basins while still capturing the fine-scale biogeochemical processes therein. Carbon and other nutrients are acquired and released by marine microorganisms as they build and break down organic matter. The scale of the ocean makes these processes globally relevant and, at the same time, challenging to fully characterize. Microbial community composition and ocean biochemistry vary across multiple physical scales up to that of the ocean basins. Other autonomous underwater vehicles are optimized for moving continuously and, primarily, horizontally through the ocean. In contrast, Clio, the robot that we describe, is designed to efficiently and precisely move vertically through the ocean, drift laterally in a Lagrangian manner to better observe water masses, and integrate with research vessel operations to map large horizontal scales to a depth of 6000 meters. We present results that show how Clio conducts high-resolution sensor surveys and sample return missions, including a mapping of 1144 kilometers of the Sargasso Sea to a depth of 1000 meters. We further show how the samples obtain filtered biomass from seawater that enable genomic and proteomic measurements not possible through in situ sensing. These results demonstrate a robotic oceanography approach for global-scale surveys of ocean biochemistry.
Collapse
Affiliation(s)
- John A Breier
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
| | | | - Mak A Saito
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sharon L Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eric W Chan
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | | | - Dawn M Moran
- Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Brianna A Alanis
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Andrew E Allen
- Microbial and Environmental Genomics, J. Craig Venter Institute, San Diego, CA 92121, USA.,Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chris L Dupont
- Microbial and Environmental Genomics, J. Craig Venter Institute, San Diego, CA 92121, USA
| | - Rod Johnson
- Bermuda Institute of Ocean Sciences, St. George's, GE 01, Bermuda
| |
Collapse
|
45
|
Vik D, Gazitúa MC, Sun CL, Zayed AA, Aldunate M, Mulholland MR, Ulloa O, Sullivan MB. Genome-resolved viral ecology in a marine oxygen minimum zone. Environ Microbiol 2020; 23:2858-2874. [PMID: 33185964 DOI: 10.1111/1462-2920.15313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022]
Abstract
Oxygen minimum zones (OMZs) are critical to marine nitrogen cycling and global climate change. While OMZ microbial communities are relatively well-studied, little is known about their viruses. Here, we assess the viral community ecology of 22 deeply sequenced viral metagenomes along a gradient of oxygenated to anoxic waters (<0.02 μmol/l O2 ) in the Eastern Tropical South Pacific (ETSP) OMZ. We identified 46 127 viral populations (≥5 kb), which augments the known viruses from ETSP by 10-fold. Viral communities clustered into six groups that correspond to oceanographic features. Oxygen concentration was the predominant environmental feature driving viral community structure. Alpha and beta diversity of viral communities in the anoxic zone were lower than in surface waters, which parallels the low microbial diversity seen in other studies. ETSP viruses were largely endemic, with the majority of shared viruses (87%) also present in other OMZ samples. We detected 543 putative viral-encoded auxiliary metabolic genes (AMGs), of which some have a distribution that reflects physico-chemical characteristics across depth. Together these findings provide an ecological baseline for viral community structure, drivers and population variability in OMZs that will help future studies assess the role of viruses in these climate-critical environments.
Collapse
Affiliation(s)
- Dean Vik
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Maria Consuelo Gazitúa
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Viromica Consulting, Santiago, Chile
| | - Christine L Sun
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Montserrat Aldunate
- Department of Oceanography, Universidad de Concepción, Concepción, Chile.,Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Margaret R Mulholland
- Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA, USA
| | - Osvaldo Ulloa
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.,Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Center of Microbiome Science, The Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
46
|
Gupta D, Guzman MS, Bose A. Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications. ACTA ACUST UNITED AC 2020; 47:863-876. [DOI: 10.1007/s10295-020-02309-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 02/05/2023]
Abstract
Abstract
Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional and supports essential microbial oxidation–reduction processes, such as respiration and photosynthesis. The microbial capacity to use electrons from insoluble electron donors, such as redox-active minerals, poised electrodes, or even other microbial cells is called extracellular electron uptake (EEU). Autotrophs with this capability can thrive in nutrient and soluble electron donor-deficient environments. As primary producers, autotrophic microbes capable of EEU greatly impact microbial ecology and play important roles in matter and energy flow in the biosphere. In this review, we discuss EEU-driven autotrophic metabolisms, their mechanism and physiology, and highlight their ecological, evolutionary, and biotechnological implications.
Collapse
Affiliation(s)
- Dinesh Gupta
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in St. Louis One Brookings Drive 63130 St. Louis MO USA
| | - Michael S Guzman
- grid.250008.f 0000 0001 2160 9702 Biosciences and Biotechnology Division Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA USA
| | - Arpita Bose
- grid.4367.6 0000 0001 2355 7002 Department of Biology Washington University in St. Louis One Brookings Drive 63130 St. Louis MO USA
| |
Collapse
|
47
|
Mattes TE, Ingalls AE, Burke S, Morris RM. Metabolic flexibility of SUP05 under low DO growth conditions. Environ Microbiol 2020; 23:2823-2833. [PMID: 32893469 DOI: 10.1111/1462-2920.15226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022]
Abstract
Chemoautotrophic bacteria from the SUP05 clade often dominate anoxic waters within marine oxygen minimum zones (OMZs) where they use energy gained from the oxidation of reduced sulfur to fuel carbon fixation. Some of these SUP05 bacteria are facultative aerobes that can use either nitrate or oxygen as a terminal electron acceptor making them ideally suited to thrive at the boundaries of OMZs where they experience fluctuations in dissolved oxygen (DO). SUP05 metabolism in these regions, and therefore the biogeochemical function of SUP05, depends largely on their sensitivity to oxygen. We evaluated growth and quantified differences in gene expression in Ca. T. autotrophicus strain EF1 from the SUP05 clade under high DO (22 μM), anoxic, and low DO (3.8 μM) concentrations. We show that strain EF1 cells respire oxygen and nitrate and that cells have higher growth rates, express more genes, and fix more carbon when oxygen becomes available for aerobic respiration. Evidence that facultatively aerobic SUP05 are more active and respire nitrate when oxygen becomes available at low concentrations suggests that they are an important source of nitrite across marine OMZ boundary layers.
Collapse
Affiliation(s)
- Timothy E Mattes
- Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Susan Burke
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Robert M Morris
- School of Oceanography, University of Washington, Seattle, WA, USA
| |
Collapse
|
48
|
Ruiz‐Fernández P, Ramírez‐Flandes S, Rodríguez‐León E, Ulloa O. Autotrophic carbon fixation pathways along the redox gradient in oxygen-depleted oceanic waters. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:334-341. [PMID: 32202395 PMCID: PMC7318340 DOI: 10.1111/1758-2229.12837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 05/25/2023]
Abstract
Anoxic marine zones (AMZs), also known as 'oxygen-deficient zones', contribute to the loss of fixed nitrogen from the ocean by anaerobic microbial processes. While these microbial processes associated with the nitrogen cycle have been extensively studied, those linked to the carbon cycle in AMZs have received much less attention, particularly the autotrophic carbon fixation - a crucial component of the carbon cycle. Using metagenomic and metatranscriptomic data from major AMZs, we report an explicit partitioning of the marker genes associated with different autotrophic carbon fixation pathways along the redox gradient (from oxic to anoxic conditions) present in the water column of AMZs. Sequences related to the Calvin-Benson-Bassham cycle were found along the entire gradient, while those related to the reductive Acetyl-CoA pathway were restricted to suboxic and anoxic waters. Sequences putatively associated with the 3-hydroxypropionate/4-hydroxybutyrate cycle dominated in the upper and lower oxyclines. Genes related to the reductive tricarboxylic acid cycle were represented from dysoxic to anoxic waters. The taxonomic affiliation of the sequences is consistent with the presence of microorganisms involved in crucial steps of biogeochemical cycles in AMZs, such as the gamma-proteobacteria sulfur oxidisers, the anammox bacteria Candidatus Scalindua and the thaumarcheota ammonia oxidisers of the Marine Group I.
Collapse
Affiliation(s)
- Paula Ruiz‐Fernández
- Departamento de Oceanografía, Universidad de ConcepciónCasilla 160‐C, ConcepciónChile
- Instituto Milenio de OceanografíaCasilla 1313, ConcepciónChile
- Programade Postgrados en Oceanografía, Departamento de OceanografíaUniversidad de Concepción, Casilla 160‐C, ConcepciónChile
| | - Salvador Ramírez‐Flandes
- Departamento de Oceanografía, Universidad de ConcepciónCasilla 160‐C, ConcepciónChile
- Instituto Milenio de OceanografíaCasilla 1313, ConcepciónChile
| | | | - Osvaldo Ulloa
- Departamento de Oceanografía, Universidad de ConcepciónCasilla 160‐C, ConcepciónChile
- Instituto Milenio de OceanografíaCasilla 1313, ConcepciónChile
| |
Collapse
|
49
|
Li H, Zhou R, Xu S, Chen X, Hong Y, Lu Q, Liu H, Zhou B, Liang X. Improving Gene Annotation of the Peanut Genome by Integrated Proteogenomics Workflow. J Proteome Res 2020; 19:2226-2235. [DOI: 10.1021/acs.jproteome.9b00723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Haifen Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for Crops Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, China
| | - Ruo Zhou
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Shaohang Xu
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for Crops Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, China
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for Crops Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, China
| | - Qing Lu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for Crops Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for Crops Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, China
| | - Baojin Zhou
- Deepxomics Co., Ltd., Shenzhen 518000, China
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for Crops Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou 510640, China
| |
Collapse
|
50
|
Quero GM, Celussi M, Relitti F, Kovačević V, Del Negro P, Luna GM. Inorganic and Organic Carbon Uptake Processes and Their Connection to Microbial Diversity in Meso- and Bathypelagic Arctic Waters (Eastern Fram Strait). MICROBIAL ECOLOGY 2020; 79:823-839. [PMID: 31728602 DOI: 10.1007/s00248-019-01451-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The deep Arctic Ocean is increasingly vulnerable to climate change effects, yet our understanding of its microbial processes is limited. We collected samples from shelf waters, mesopelagic Atlantic Waters (AW) and bathypelagic Norwegian Sea Deep Waters (NSDW) in the eastern Fram Strait, along coast-to-offshore transects off Svalbard during boreal summer. We measured community respiration, heterotrophic carbon production (HCP), and dissolved inorganic carbon utilization (DICu) together with prokaryotic abundance, diversity, and metagenomic predictions. In deep samples, HCP was significantly faster in AW than in NSDW, while we observed no differences in DICu rates. Organic carbon uptake was higher than its inorganic counterpart, suggesting a major reliance of deep microbial Arctic communities on heterotrophic metabolism. Community structure and spatial distribution followed the hydrography of water masses. Distinct from other oceans, the most abundant OTU in our deep samples was represented by the archaeal MG-II. To address the potential biogeochemical role of each water mass-specific microbial community, as well as their link with the measured rates, PICRUSt-based predicted metagenomes were built. The results showed that pathways of auto- and heterotrophic carbon utilization differed between the deep water masses, although this was not reflected in measured DICu rates. Our findings provide new insights to understand microbial processes and diversity in the dark Arctic Ocean and to progress toward a better comprehension of the biogeochemical cycles and their trends in light of climate changes.
Collapse
Affiliation(s)
- Grazia Marina Quero
- Stazione Zoologica Anton Dohrn, Integrative Marine Ecology Department, Napoli, Italy
- Istituto per le Risorse Biologiche e le Biotecnologie Marine (CNR-IRBIM), Consiglio Nazionale delle Ricerche, Ancona, Italy
| | - Mauro Celussi
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy.
| | - Federica Relitti
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
| | - Vedrana Kovačević
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
| | - Paola Del Negro
- Oceanography Division, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Trieste, Italy
| | - Gian Marco Luna
- Istituto per le Risorse Biologiche e le Biotecnologie Marine (CNR-IRBIM), Consiglio Nazionale delle Ricerche, Ancona, Italy
| |
Collapse
|