1
|
Schrope JH, Horn A, Lazorchak K, Tinnen CW, Stevens JJ, Farooqui M, Robertson T, Li J, Bennin D, Juang T, Ahmed A, Li C, Huttenlocher A, Beebe DJ. Confinement by Liquid-Liquid Interface Replicates In Vivo Neutrophil Deformations and Elicits Bleb-Based Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414024. [PMID: 40151891 DOI: 10.1002/advs.202414024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Leukocytes forge paths through interstitial spaces by exerting forces to overcome confining mechanical pressures provided by surrounding cells. While such mechanical cues regulate leukocyte motility, engineering an in vitro system that models the deformable cellular environment encountered in vivo has been challenging. Here, microchannels are constructed with a liquid-liquid interface that exerts confining pressures similar to cells in tissues, and thus, is deformable by cell-generated forces. Consequently, the balance between migratory cell-generated and interfacial pressures determines the degree of confinement. Pioneer cells that first contact the interfacial barrier require greater deformation forces to forge a path for migration, and as a result migrate slower than trailing cells. Critically, resistive pressures are tunable by controlling the curvature of the liquid interface, which regulates motility. By granting cells autonomy in determining their confinement, and tuning environmental resistance, interfacial deformations match those of surrounding cells in vivo during interstitial neutrophil migration in a larval zebrafish model. It is discovered that neutrophils employ a bleb-based mechanism of force generation to deform a soft barrier exerting cell-scale confining pressures. In all, this work introduces a tunable in vitro material interface that replicates confining pressures applied by soft tissue environments.
Collapse
Affiliation(s)
- Jonathan H Schrope
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Adam Horn
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kaitlyn Lazorchak
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Clyde W Tinnen
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jack J Stevens
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mehtab Farooqui
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Tanner Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiayi Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David Bennin
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Terry Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Adeel Ahmed
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
2
|
Chikina AS, Zholudeva AO, Lomakina ME, Kireev II, Dayal AA, Minin AA, Maurin M, Svitkina TM, Alexandrova AY. Plasma Membrane Blebbing Is Controlled by Subcellular Distribution of Vimentin Intermediate Filaments. Cells 2024; 13:105. [PMID: 38201309 PMCID: PMC10778383 DOI: 10.3390/cells13010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The formation of specific cellular protrusions, plasma membrane blebs, underlies the amoeboid mode of cell motility, which is characteristic for free-living amoebae and leukocytes, and can also be adopted by stem and tumor cells to bypass unfavorable migration conditions and thus facilitate their long-distance migration. Not all cells are equally prone to bleb formation. We have previously shown that membrane blebbing can be experimentally induced in a subset of HT1080 fibrosarcoma cells, whereas other cells in the same culture under the same conditions retain non-blebbing mesenchymal morphology. Here we show that this heterogeneity is associated with the distribution of vimentin intermediate filaments (VIFs). Using different approaches to alter the VIF organization, we show that blebbing activity is biased toward cell edges lacking abundant VIFs, whereas the VIF-rich regions of the cell periphery exhibit low blebbing activity. This pattern is observed both in interphase fibroblasts, with and without experimentally induced blebbing, and during mitosis-associated blebbing. Moreover, the downregulation of vimentin expression or displacement of VIFs away from the cell periphery promotes blebbing even in cells resistant to bleb-inducing treatments. Thus, we reveal a new important function of VIFs in cell physiology that involves the regulation of non-apoptotic blebbing essential for amoeboid cell migration and mitosis.
Collapse
Affiliation(s)
- Aleksandra S. Chikina
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
- Dynamics of Immune Responses Team, INSERM-U1223 Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Anna O. Zholudeva
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| | - Maria E. Lomakina
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| | - Igor I. Kireev
- Department of Biology and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119992, Russia;
| | - Alexander A. Dayal
- Institute of Protein Research, Department of Cell Biology, Russian Academy of Sciences, Moscow 119988, Russia; (A.A.D.); (A.A.M.)
| | - Alexander A. Minin
- Institute of Protein Research, Department of Cell Biology, Russian Academy of Sciences, Moscow 119988, Russia; (A.A.D.); (A.A.M.)
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, 26 rue d’Ulm, 75248 Paris, France;
| | - Tatyana M. Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonina Y. Alexandrova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| |
Collapse
|
3
|
Moldenhawer T, Schindler D, Holschneider M, Huisinga W, Beta C. A Hands-on Guide to AmoePy - a Python-Based Software Package to Analyze Cell Migration Data. Methods Mol Biol 2024; 2828:159-184. [PMID: 39147977 DOI: 10.1007/978-1-0716-4023-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Amoeboid cell motility is fundamental for a multitude of biological processes such as embryogenesis, immune responses, wound healing, and cancer metastasis. It is characterized by specific cell shape changes: the extension and retraction of membrane protrusions, known as pseudopodia. A common approach to investigate the mechanisms underlying this type of cell motility is to study phenotypic differences in the locomotion of mutant cell lines. To characterize such differences, methods are required to quantify the contour dynamics of migrating cells. AmoePy is a Python-based software package that provides tools for cell segmentation, contour detection as well as analyzing and simulating contour dynamics. First, a digital representation of the cell contour as a chain of nodes is extracted from each frame of a time-lapse microscopy recording of a moving cell. Then, the dynamics of these nodes-referred to as virtual markers-are tracked as the cell contour evolves over time. From these data, various quantities can be calculated that characterize the contour dynamics, such as the displacement of the virtual markers or the local stretching rate of the marker chain. Their dynamics is typically visualized in space-time plots, the so-called kymographs, where the temporal evolution is displayed for the different locations along the cell contour. Using AmoePy, you can straightforwardly create kymograph plots and videos from stacks of experimental bright-field or fluorescent images of motile cells. A hands-on guide on how to install and use AmoePy is provided in this chapter.
Collapse
Affiliation(s)
- Ted Moldenhawer
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | - Daniel Schindler
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | | | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany.
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
4
|
Heilala M, Lehtonen A, Arasalo O, Peura A, Pokki J, Ikkala O, Nonappa, Klefström J, Munne PM. Fibrin Stiffness Regulates Phenotypic Plasticity of Metastatic Breast Cancer Cells. Adv Healthc Mater 2023; 12:e2301137. [PMID: 37671812 PMCID: PMC11469292 DOI: 10.1002/adhm.202301137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/18/2023] [Indexed: 09/07/2023]
Abstract
The extracellular matrix (ECM)-regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell-based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC-like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell-mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix-based regulation of TNBC cell phenotype and offer scaffolds for CTC-like cells with better mechano-biological properties than liquid.
Collapse
Affiliation(s)
- Maria Heilala
- Department of Applied PhysicsAalto UniversityP.O. Box 15100AaltoEspooFI‐00076Finland
| | - Arttu Lehtonen
- Department of Electrical Engineering and AutomationAalto UniversityP.O. Box 12200AaltoEspooFI‐00076Finland
| | - Ossi Arasalo
- Department of Electrical Engineering and AutomationAalto UniversityP.O. Box 12200AaltoEspooFI‐00076Finland
| | - Aino Peura
- Finnish Cancer Institute and FICAN SouthHelsinki University Hospital & Cancer Cell Circuitry LaboratoryTranslational Cancer MedicineMedical FacultyUniversity of HelsinkiP.O. Box 63 (Haartmaninkatu 8)Helsinki00014Finland
| | - Juho Pokki
- Department of Electrical Engineering and AutomationAalto UniversityP.O. Box 12200AaltoEspooFI‐00076Finland
| | - Olli Ikkala
- Department of Applied PhysicsAalto UniversityP.O. Box 15100AaltoEspooFI‐00076Finland
| | - Nonappa
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33720Finland
| | - Juha Klefström
- Finnish Cancer Institute and FICAN SouthHelsinki University Hospital & Cancer Cell Circuitry LaboratoryTranslational Cancer MedicineMedical FacultyUniversity of HelsinkiP.O. Box 63 (Haartmaninkatu 8)Helsinki00014Finland
| | - Pauliina M. Munne
- Finnish Cancer Institute and FICAN SouthHelsinki University Hospital & Cancer Cell Circuitry LaboratoryTranslational Cancer MedicineMedical FacultyUniversity of HelsinkiP.O. Box 63 (Haartmaninkatu 8)Helsinki00014Finland
| |
Collapse
|
5
|
Rzewnicka A, Krysiak J, Pawłowska R, Żurawiński R. Visualization of Cellular Membranes in 2D and 3D Conditions Using a New Fluorescent Dithienothiophene S,S-Dioxide Derivative. Int J Mol Sci 2023; 24:ijms24119620. [PMID: 37298572 DOI: 10.3390/ijms24119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Cellular membranes play a key role in cell communication with the extracellular environment and neighboring cells. Any changes, including their composition, packing, physicochemical properties and formation of membrane protrusions may affect cells feature. Despite its great importance, tracking membrane changes in living cells is still a challenge. For investigation of processes related to tissue regeneration and cancer metastasis, such as the induction of epithelial-mesenchymal transition, increased cell motility, and blebbing, the possibility to conduct prolonged observation of membrane changes is beneficial, albeit difficult. A particular challenge is conducting this type of research under detachment conditions. In the current manuscript, a new dithienothiophene S,S-dioxide (DTTDO) derivative is presented as an effective dye for staining the membranes of living cells. The synthetic procedures, physicochemical properties, and biological activity of the new compound are presented herein. In addition to the labeling of the membranes in a monolayer culture, its usefulness for visualization of membranes under detachment conditions is also demonstrated. Obtained data have proven that a new DTTDO derivative may be used to stain membranes in various types of experimental procedures, from traditional 2D cell cultures to unanchored conditions. Moreover, due to the specific optical properties, the background signal is reduced and, thus, observation may be performed without washing.
Collapse
Affiliation(s)
- Aneta Rzewnicka
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Jerzy Krysiak
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Róża Pawłowska
- Division of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Remigiusz Żurawiński
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
6
|
Alexandrova A, Lomakina M. How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators and potential markers. Front Pharmacol 2022; 13:962652. [PMID: 36278174 PMCID: PMC9582651 DOI: 10.3389/fphar.2022.962652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor shrinkage as a result of antitumor therapy is not the only and sufficient indicator of treatment success. Cancer progression leads to dissemination of tumor cells and formation of metastases - secondary tumor lesions in distant organs. Metastasis is associated with acquisition of mobile phenotype by tumor cells as a result of epithelial-to-mesenchymal transition and further cell migration based on cytoskeleton reorganization. The main mechanisms of individual cell migration are either mesenchymal, which depends on the activity of small GTPase Rac, actin polymerization, formation of adhesions with extracellular matrix and activity of proteolytic enzymes or amoeboid, which is based on the increase in intracellular pressure caused by the enhancement of actin cortex contractility regulated by Rho-ROCK-MLCKII pathway, and does not depend on the formation of adhesive structures with the matrix, nor on the activity of proteases. The ability of tumor cells to switch from one motility mode to another depending on cell context and environmental conditions, termed migratory plasticity, contributes to the efficiency of dissemination and often allows the cells to avoid the applied treatment. The search for new therapeutic targets among cytoskeletal proteins offers an opportunity to directly influence cell migration. For successful treatment it is important to assess the likelihood of migratory plasticity in a particular tumor. Therefore, the search for specific markers that can indicate a high probability of migratory plasticity is very important.
Collapse
|
7
|
Schick J, Raz E. Blebs—Formation, Regulation, Positioning, and Role in Amoeboid Cell Migration. Front Cell Dev Biol 2022; 10:926394. [PMID: 35912094 PMCID: PMC9337749 DOI: 10.3389/fcell.2022.926394] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
In the context of development, tissue homeostasis, immune surveillance, and pathological conditions such as cancer metastasis and inflammation, migrating amoeboid cells commonly form protrusions called blebs. For these spherical protrusions to inflate, the force for pushing the membrane forward depends on actomyosin contraction rather than active actin assembly. Accordingly, blebs exhibit distinct dynamics and regulation. In this review, we first examine the mechanisms that control the inflation of blebs and bias their formation in the direction of the cell’s leading edge and present current views concerning the role blebs play in promoting cell locomotion. While certain motile amoeboid cells exclusively form blebs, others form blebs as well as other protrusion types. We describe factors in the environment and cell-intrinsic activities that determine the proportion of the different forms of protrusions cells produce.
Collapse
|
8
|
Ishikawa-Ankerhold H, Kroll J, van den Heuvel D, Renkawitz J, Müller-Taubenberger A. Centrosome Positioning in Migrating Dictyostelium Cells. Cells 2022; 11:cells11111776. [PMID: 35681473 PMCID: PMC9179490 DOI: 10.3390/cells11111776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Directional cell migration and the establishment of polarity play an important role in development, wound healing, and host cell defense. While actin polymerization provides the driving force at the cell front, the microtubule network assumes a regulatory function, in coordinating front protrusion and rear retraction. By using Dictyostelium discoideum cells as a model for amoeboid movement in different 2D and 3D environments, the position of the centrosome relative to the nucleus was analyzed using live-cell microscopy. Our results showed that the centrosome was preferentially located rearward of the nucleus under all conditions tested for directed migration, while the nucleus was oriented toward the expanding front. When cells are hindered from straight movement by obstacles, the centrosome is displaced temporarily from its rearward location to the side of the nucleus, but is reoriented within seconds. This relocalization is supported by the presence of intact microtubules and their contact with the cortex. The data suggest that the centrosome is responsible for coordinating microtubules with respect to the nucleus. In summary, we have analyzed the orientation of the centrosome during different modes of migration in an amoeboid model and present evidence that the basic principles of centrosome positioning and movement are conserved between Dictyostelium and human leukocytes.
Collapse
Affiliation(s)
- Hellen Ishikawa-Ankerhold
- Department of Internal Medicine I, University Hospital, Faculty of Medicine, LMU Munich, 81377 Munich, Germany; (H.I.-A.); (D.v.d.H.)
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Janina Kroll
- Biomedical Center Munich (BMC), Department of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Centre of Experimental Medicine, University Hospital, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; (J.K.); (J.R.)
| | - Dominic van den Heuvel
- Department of Internal Medicine I, University Hospital, Faculty of Medicine, LMU Munich, 81377 Munich, Germany; (H.I.-A.); (D.v.d.H.)
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center Munich (BMC), Department of Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Centre of Experimental Medicine, University Hospital, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; (J.K.); (J.R.)
| | - Annette Müller-Taubenberger
- Biomedical Center Munich (BMC), Department of Cell Biology (Anatomy III), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
- Correspondence: ; Tel.: +49-89-2180-75873
| |
Collapse
|
9
|
Asante-Asamani E, Grange D, Rawal D, Santiago Z, Loustau J, Brazill D. A role for myosin II clusters and membrane energy in cortex rupture for Dictyostelium discoideum. PLoS One 2022; 17:e0265380. [PMID: 35468148 PMCID: PMC9037949 DOI: 10.1371/journal.pone.0265380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Blebs, pressure driven protrusions of the cell membrane, facilitate the movement of eukaryotic cells such as the soil amoeba Dictyostelium discoideum, white blood cells and cancer cells. Blebs initiate when the cell membrane separates from the underlying cortex. A local rupture of the cortex, has been suggested as a mechanism by which blebs are initiated. However, much clarity is still needed about how cells inherently regulate rupture of the cortex in locations where blebs are expected to form. In this work, we examine the role of membrane energy and the motor protein myosin II (myosin) in facilitating the cell driven rupture of the cortex. We perform under-agarose chemotaxis experiments, using Dictyostelium discoideum cells, to visualize the dynamics of myosin and calculate changes in membrane energy in the blebbing region. To facilitate a rapid detection of blebs and analysis of the energy and myosin distribution at the cell front, we introduce an autonomous bleb detection algorithm that takes in discrete cell boundaries and returns the coordinate location of blebs with its shape characteristics. We are able to identify by microscopy naturally occurring gaps in the cortex prior to membrane detachment at sites of bleb nucleation. These gaps form at positions calculated to have high membrane energy, and are associated with areas of myosin enrichment. Myosin is also shown to accumulate in the cortex prior to bleb initiation and just before the complete disassembly of the cortex. Together our findings provide direct spatial and temporal evidence to support cortex rupture as an intrinsic bleb initiation mechanism and suggests that myosin clusters are associated with regions of high membrane energy where its contractile activity leads to a rupture of the cortex at points of maximal energy.
Collapse
Affiliation(s)
| | - Daniel Grange
- Department of Applied Mathematics, Stony Brook University, New York, New York, United States of America
| | - Devarshi Rawal
- Mathematics and Statistics Department, Hunter College, Manhattan, New York, United States of America
| | - Zully Santiago
- Department of Natural Science, Baruch College, New York, New York, United States of America
| | - John Loustau
- Mathematics and Statistics Department, Hunter College, Manhattan, New York, United States of America
| | - Derrick Brazill
- Biological Science Department, Hunter College, Manhattan, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Engineering T cells to enhance 3D migration through structurally and mechanically complex tumor microenvironments. Nat Commun 2021; 12:2815. [PMID: 33990566 PMCID: PMC8121808 DOI: 10.1038/s41467-021-22985-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Defining the principles of T cell migration in structurally and mechanically complex tumor microenvironments is critical to understanding escape from antitumor immunity and optimizing T cell-related therapeutic strategies. Here, we engineered nanotextured elastic platforms to study and enhance T cell migration through complex microenvironments and define how the balance between contractility localization-dependent T cell phenotypes influences migration in response to tumor-mimetic structural and mechanical cues. Using these platforms, we characterize a mechanical optimum for migration that can be perturbed by manipulating an axis between microtubule stability and force generation. In 3D environments and live tumors, we demonstrate that microtubule instability, leading to increased Rho pathway-dependent cortical contractility, promotes migration whereas clinically used microtubule-stabilizing chemotherapies profoundly decrease effective migration. We show that rational manipulation of the microtubule-contractility axis, either pharmacologically or through genome engineering, results in engineered T cells that more effectively move through and interrogate 3D matrix and tumor volumes. Thus, engineering cells to better navigate through 3D microenvironments could be part of an effective strategy to enhance efficacy of immune therapeutics. The mechanics of the migration of T cells into tumours is an important aspect of tumour immunity. Here the authors engineer complex 3D environments to explore functions of microtubules and cell contractility as strategies to enhance T cell migration in tumour microenvironments.
Collapse
|
11
|
Mathematical modelling in cell migration: tackling biochemistry in changing geometries. Biochem Soc Trans 2021; 48:419-428. [PMID: 32239187 DOI: 10.1042/bst20190311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/18/2023]
Abstract
Directed cell migration poses a rich set of theoretical challenges. Broadly, these are concerned with (1) how cells sense external signal gradients and adapt; (2) how actin polymerisation is localised to drive the leading cell edge and Myosin-II molecular motors retract the cell rear; and (3) how the combined action of cellular forces and cell adhesion results in cell shape changes and net migration. Reaction-diffusion models for biological pattern formation going back to Turing have long been used to explain generic principles of gradient sensing and cell polarisation in simple, static geometries like a circle. In this minireview, we focus on recent research which aims at coupling the biochemistry with cellular mechanics and modelling cell shape changes. In particular, we want to contrast two principal modelling approaches: (1) interface tracking where the cell membrane, interfacing cell interior and exterior, is explicitly represented by a set of moving points in 2D or 3D space and (2) interface capturing. In interface capturing, the membrane is implicitly modelled analogously to a level line in a hilly landscape whose topology changes according to forces acting on the membrane. With the increased availability of high-quality 3D microscopy data of complex cell shapes, such methods will become increasingly important in data-driven, image-based modelling to better understand the mechanochemistry underpinning cell motion.
Collapse
|
12
|
Belotti Y, McGloin D, Weijer CJ. Effects of spatial confinement on migratory properties of Dictyostelium discoideum cells. Commun Integr Biol 2021; 14:5-14. [PMID: 33552382 PMCID: PMC7849737 DOI: 10.1080/19420889.2021.1872917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Migratory environments of various eukaryotic cells, such as amoeba, leukocytes and cancer cells, typically involve spatial confinement. Numerous studies have recently emerged, aimed to develop experimental platforms that better recapitulate the characteristics of the cellular microenvironment. Using microfluidic technologies, we show that increasing confinement of Dictyostelium discoideum cells into narrower micro-channels resulted in a significant change in the mode of migration and associated arrangement of the actomyosin cytoskeleton. We observed that cells tended to migrate at constant speed, the magnitude of which was dependent on the size of the channels, as was the locomotory strategy adopted by each cell. Two different migration modes were observed, pseudopod-based and bleb-based migration, with bleb based migration being more frequent with increasing confinement and leading to slower migration. Beside the migration mode, we found that the major determinants of cell speed are its protrusion rate, the amount of F-actin at its leading edge and the number of actin foci. Our results highlighted the impact of the microenvironments on cell behavior. Furthermore, we developed a novel quantitative movement analysis platform for mono-dimensional cell migration that allows for standardization and simplification of the experimental conditions and aids investigation of the complex and dynamic processes occurring at the single-cell level.
Collapse
Affiliation(s)
- Yuri Belotti
- School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | - David McGloin
- School of Science and Engineering, University of Dundee, Dundee, Scotland, UK
| | | |
Collapse
|
13
|
Brunet T, Albert M, Roman W, Coyle MC, Spitzer DC, King N. A flagellate-to-amoeboid switch in the closest living relatives of animals. eLife 2021; 10:e61037. [PMID: 33448265 PMCID: PMC7895527 DOI: 10.7554/elife.61037] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Amoeboid cell types are fundamental to animal biology and broadly distributed across animal diversity, but their evolutionary origin is unclear. The closest living relatives of animals, the choanoflagellates, display a polarized cell architecture (with an apical flagellum encircled by microvilli) that resembles that of epithelial cells and suggests homology, but this architecture differs strikingly from the deformable phenotype of animal amoeboid cells, which instead evoke more distantly related eukaryotes, such as diverse amoebae. Here, we show that choanoflagellates subjected to confinement become amoeboid by retracting their flagella and activating myosin-based motility. This switch allows escape from confinement and is conserved across choanoflagellate diversity. The conservation of the amoeboid cell phenotype across animals and choanoflagellates, together with the conserved role of myosin, is consistent with homology of amoeboid motility in both lineages. We hypothesize that the differentiation between animal epithelial and crawling cells might have evolved from a stress-induced switch between flagellate and amoeboid forms in their single-celled ancestors.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Marvin Albert
- Department of Molecular Life Sciences, University of ZürichZurichSwitzerland
| | - William Roman
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNEDBarcelonaSpain
| | - Maxwell C Coyle
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Danielle C Spitzer
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Nicole King
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
14
|
Shatkin G, Yeoman B, Birmingham K, Katira P, Engler AJ. Computational models of migration modes improve our understanding of metastasis. APL Bioeng 2020; 4:041505. [PMID: 33195959 PMCID: PMC7647620 DOI: 10.1063/5.0023748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023] Open
Abstract
Tumor cells migrate through changing microenvironments of diseased and healthy tissue, making their migration particularly challenging to describe. To better understand this process, computational models have been developed for both the ameboid and mesenchymal modes of cell migration. Here, we review various approaches that have been used to account for the physical environment's effect on cell migration in computational models, with a focus on their application to understanding cancer metastasis and the related phenomenon of durotaxis. We then discuss how mesenchymal migration models typically simulate complex cell–extracellular matrix (ECM) interactions, while ameboid migration models use a cell-focused approach that largely ignores ECM when not acting as a physical barrier. This approach greatly simplifies or ignores the mechanosensing ability of ameboid migrating cells and should be reevaluated in future models. We conclude by describing future model elements that have not been included to date but would enhance model accuracy.
Collapse
Affiliation(s)
- Gabriel Shatkin
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Katherine Birmingham
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
15
|
Grimaldi C, Schumacher I, Boquet-Pujadas A, Tarbashevich K, Vos BE, Bandemer J, Schick J, Aalto A, Olivo-Marin JC, Betz T, Raz E. E-cadherin focuses protrusion formation at the front of migrating cells by impeding actin flow. Nat Commun 2020; 11:5397. [PMID: 33106478 PMCID: PMC7588466 DOI: 10.1038/s41467-020-19114-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
The migration of many cell types relies on the formation of actomyosin-dependent protrusions called blebs, but the mechanisms responsible for focusing this kind of protrusive activity to the cell front are largely unknown. Here, we employ zebrafish primordial germ cells (PGCs) as a model to study the role of cell-cell adhesion in bleb-driven single-cell migration in vivo. Utilizing a range of genetic, reverse genetic and mathematical tools, we define a previously unknown role for E-cadherin in confining bleb-type protrusions to the leading edge of the cell. We show that E-cadherin-mediated frictional forces impede the backwards flow of actomyosin-rich structures that define the domain where protrusions are preferentially generated. In this way, E-cadherin confines the bleb-forming region to a restricted area at the cell front and reinforces the front-rear axis of migrating cells. Accordingly, when E-cadherin activity is reduced, the bleb-forming area expands, thus compromising the directional persistence of the cells. The arrival of migratory cells at their targets relies on following precise routes within tissues. Here the authors demonstrate that the cell adhesion molecule E-cadherin can control the path of cell migration by confining the site where bleb-type protrusions form within the cell front.
Collapse
Affiliation(s)
- Cecilia Grimaldi
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Isabel Schumacher
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Aleix Boquet-Pujadas
- Institut Pasteur, Bioimage Analysis Unit, 75105, Paris, France.,CNRS UMR 3691, 75105, Paris, France.,Sorbonne Université, 75005, Paris, France
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Bart Eduard Vos
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Jan Bandemer
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Jan Schick
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Anne Aalto
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | | | - Timo Betz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany.,Institute of Physics - Biophysics, Georg August Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany.
| |
Collapse
|
16
|
Bodor DL, Pönisch W, Endres RG, Paluch EK. Of Cell Shapes and Motion: The Physical Basis of Animal Cell Migration. Dev Cell 2020; 52:550-562. [PMID: 32155438 DOI: 10.1016/j.devcel.2020.02.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/31/2023]
Abstract
Motile cells have developed a variety of migration modes relying on diverse traction-force-generation mechanisms. Before the behavior of intracellular components could be easily imaged, cell movements were mostly classified by different types of cellular shape dynamics. Indeed, even though some types of cells move without any significant change in shape, most cell propulsion mechanisms rely on global or local deformations of the cell surface. In this review, focusing mostly on metazoan cells, we discuss how different types of local and global shape changes underlie distinct migration modes. We then discuss mechanical differences between force-generation mechanisms and finish by speculating on how they may have evolved.
Collapse
Affiliation(s)
- Dani L Bodor
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Oncode Institute, Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | - Wolfram Pönisch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Robert G Endres
- Department of Life Sciences and Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London SW7 2AZ, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
17
|
Hasan MM, Teixeira JE, Lam YW, Huston CD. Coactosin Phosphorylation Controls Entamoeba histolytica Cell Membrane Protrusions and Cell Motility. mBio 2020; 11:e00660-20. [PMID: 32753489 PMCID: PMC7407079 DOI: 10.1128/mbio.00660-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Invasion of the colon wall by Entamoeba histolytica during amoebic dysentery entails migration of trophozoites through tissue layers that are rich in extracellular matrix. Transcriptional silencing of the E. histolytica surface metalloprotease EhMSP-1 produces hyperadherent less-motile trophozoites that are deficient in forming invadosomes. Reversible protein phosphorylation is often implicated in regulation of cell motility and invadosome formation. To identify such intermediaries of the EhMSP-1-silenced phenotype, here we compared the phosphoproteomes of EhMSP-1-silenced and vector control trophozoites by using quantitative tandem mass spectrometry-based proteomics. Six proteins were found to be differentially phosphorylated in EhMSP-1-silenced and control cells, including EhCoactosin, a member of the ADF/cofilin family of actin-binding proteins, which was more frequently phosphorylated at serine 147. Regulated overexpression of wild-type, phosphomimetic, and nonphosphorylatable EhCoactosin variants was used to test if phosphorylation functions in control of E. histolytica actin dynamics. Each of the overexpressed proteins colocalized with F-actin during E. histolytica phagocytosis. Nonetheless, trophozoites overexpressing an EhCoactosin phosphomimetic mutant formed more and poorly coordinated cell membrane protrusions compared to those in control or cells expressing a nonphosphorylatable mutant, while trophozoites overexpressing nonphosphorylatable EhCoactosin were significantly more motile within a model of mammalian extracellular matrix. Therefore, although EhCoactosin's actin-binding ability appeared unaffected by phosphorylation, EhCoactosin phosphorylation helps to regulate amoebic motility. These data help to understand the mechanisms underlying altered adherence and motility in EhMSP-1-silenced trophozoites and lay the groundwork for identifying kinases and phosphatases critical for control of amoebic invasiveness.IMPORTANCE Invasive amoebiasis, caused by the intestinal parasite Entamoeba histolytica, causes life-threatening diarrhea and liver abscesses, but, for unknown reasons, only approximately 10% of E. histolytica infections become symptomatic. A key requirement of invasion is the ability of the parasite to migrate through tissue layers. Here, we systematically looked for differences in protein phosphorylation between control parasites and a previously identified hyperadherent E. histolytica cell line that has reduced motility. We identified EhCoactosin, an actin-binding protein not previously known to be phosphoregulated, as one of the differentially phosphorylated proteins in E. histolytica and demonstrated that EhCoactosin phosphorylation functions in control of cell membrane dynamics and amoebic motility. This and the additional differentially phosphorylated proteins reported lay the groundwork for identifying kinases and phosphatases that regulate tissue invasiveness.
Collapse
Affiliation(s)
- Muhammad M Hasan
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - José E Teixeira
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Ying-Wai Lam
- Proteomics Facility, Vermont Genetics Network, University of Vermont, Burlington, Vermont, USA
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Christopher D Huston
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
18
|
Quantitative Phase Imaging of Spreading Fibroblasts Identifies the Role of Focal Adhesion Kinase in the Stabilization of the Cell Rear. Biomolecules 2020; 10:biom10081089. [PMID: 32707896 PMCID: PMC7463699 DOI: 10.3390/biom10081089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cells attaching to the extracellular matrix spontaneously acquire front-rear polarity. This self-organization process comprises spatial activation of polarity signaling networks and the establishment of a protruding cell front and a non-protruding cell rear. Cell polarization also involves the reorganization of cell mass, notably the nucleus that is positioned at the cell rear. It remains unclear, however, how these processes are regulated. Here, using coherence-controlled holographic microscopy (CCHM) for non-invasive live-cell quantitative phase imaging (QPI), we examined the role of the focal adhesion kinase (FAK) and its interacting partner Rack1 in dry mass distribution in spreading Rat2 fibroblasts. We found that FAK-depleted cells adopt an elongated, bipolar phenotype with a high central body mass that gradually decreases toward the ends of the elongated processes. Further characterization of spreading cells showed that FAK-depleted cells are incapable of forming a stable rear; rather, they form two distally positioned protruding regions. Continuous protrusions at opposite sides results in an elongated cell shape. In contrast, Rack1-depleted cells are round and large with the cell mass sharply dropping from the nuclear area towards the basal side. We propose that FAK and Rack1 act differently yet coordinately to establish front-rear polarity in spreading cells.
Collapse
|
19
|
Alexandrova AY, Chikina AS, Svitkina TM. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:197-256. [PMID: 33066874 DOI: 10.1016/bs.ircmb.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.
Collapse
Affiliation(s)
- Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.
| | - Aleksandra S Chikina
- Cell Migration and Invasion and Spatio-Temporal Regulation of Antigen Presentation teams, UMR144/U932 Institut Curie, Paris, France
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Cheng Y, Felix B, Othmer HG. The Roles of Signaling in Cytoskeletal Changes, Random Movement, Direction-Sensing and Polarization of Eukaryotic Cells. Cells 2020; 9:E1437. [PMID: 32531876 PMCID: PMC7348768 DOI: 10.3390/cells9061437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Movement of cells and tissues is essential at various stages during the lifetime of an organism, including morphogenesis in early development, in the immune response to pathogens, and during wound-healing and tissue regeneration. Individual cells are able to move in a variety of microenvironments (MEs) (A glossary of the acronyms used herein is given at the end) by suitably adapting both their shape and how they transmit force to the ME, but how cells translate environmental signals into the forces that shape them and enable them to move is poorly understood. While many of the networks involved in signal detection, transduction and movement have been characterized, how intracellular signals control re-building of the cyctoskeleton to enable movement is not understood. In this review we discuss recent advances in our understanding of signal transduction networks related to direction-sensing and movement, and some of the problems that remain to be solved.
Collapse
Affiliation(s)
- Yougan Cheng
- Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, USA;
| | - Bryan Felix
- School of Mathematics, University of Minnesota, Minneapolis, MN 55445, USA;
| | - Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55445, USA;
| |
Collapse
|
21
|
|
22
|
Lian YL, Chen KW, Chou YT, Ke TL, Chen BC, Lin YC, Chen L. PIP3 depletion rescues myoblast fusion defects in human rhabdomyosarcoma cells. J Cell Sci 2020; 133:jcs240325. [PMID: 32220979 DOI: 10.1242/jcs.240325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/10/2020] [Indexed: 11/20/2022] Open
Abstract
Myoblast fusion is required for myotube formation during myogenesis, and defects in myoblast differentiation and fusion have been implicated in a number of diseases, including human rhabdomyosarcoma. Although transcriptional regulation of the myogenic program has been studied extensively, the mechanisms controlling myoblast fusion remain largely unknown. This study identified and characterized the dynamics of a distinct class of blebs, termed bubbling blebs, which are smaller than those that participate in migration. The formation of these bubbling blebs occurred during differentiation and decreased alongside a decline in phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) at the plasma membrane before myoblast fusion. In a human rhabdomyosarcoma-derived (RD) cell line that exhibits strong blebbing dynamics and myoblast fusion defects, PIP3 was constitutively abundant on the membrane during myogenesis. Targeting phosphatase and tensin homolog (PTEN) to the plasma membrane reduced PIP3 levels, inhibited bubbling blebs and rescued myoblast fusion defects in RD cells. These findings highlight the differential distribution and crucial role of PIP3 during myoblast fusion and reveal a novel mechanism underlying myogenesis defects in human rhabdomyosarcoma.
Collapse
Affiliation(s)
- Yen-Ling Lian
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Wei Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ting Chou
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ting-Ling Ke
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
23
|
Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods. Proc Natl Acad Sci U S A 2020; 117:2506-2512. [PMID: 31964823 PMCID: PMC7007555 DOI: 10.1073/pnas.1905730117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cells migrating within the body perform vital functions in development and for defense and repair of tissues. In this dense environment, cells encounter mechanical forces and constraints not experienced when moving under buffer, and, accordingly, many change how they move. We find that gentle squashing, which mimics mechanical resistance, causes cells to move using blebs—a form of projection driven by fluid pressure—rather than pseudopods. This behavior depends on the Piezo stretch-operated ion channel in the cell membrane and calcium fluxes into the cell. Piezo is highly conserved and is required for light touch sensation; this work extends its functions into migrating cells. Blebs and pseudopods can both power cell migration, with blebs often favored in tissues, where cells encounter increased mechanical resistance. To investigate how migrating cells detect and respond to mechanical forces, we used a “cell squasher” to apply uniaxial pressure to Dictyostelium cells chemotaxing under soft agarose. As little as 100 Pa causes a rapid (<10 s), sustained shift to movement with blebs rather than pseudopods. Cells are flattened under load and lose volume; the actin cytoskeleton is reorganized, with myosin II recruited to the cortex, which may pressurize the cytoplasm for blebbing. The transition to bleb-driven motility requires extracellular calcium and is accompanied by increased cytosolic calcium. It is largely abrogated in cells lacking the Piezo stretch-operated channel; under load, these cells persist in using pseudopods and chemotax poorly. We propose that migrating cells sense pressure through Piezo, which mediates calcium influx, directing movement with blebs instead of pseudopods.
Collapse
|
24
|
Li X, Miao Y, Pal DS, Devreotes PN. Excitable networks controlling cell migration during development and disease. Semin Cell Dev Biol 2019; 100:133-142. [PMID: 31836289 DOI: 10.1016/j.semcdb.2019.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022]
Abstract
The directed movements of individual, groups, or sheets of cells at specific times in particular locations bring about form and complexity to developing organisms. Cells move by extending protrusions, such as macropinosomes, pseudopods, lamellipods, filopods, or blebs. Although many of the cytoskeletal components within these structures are known, less is known about the mechanisms that determine their location, number, and characteristics. Recent evidence suggests that control may be exerted by a signal transduction excitable network whose components and activities, including Ras, PI3K, TorC2, and phosphoinositides, self-organize on the plasma membrane and propagate in waves. The waves drive the various types of protrusions, which in turn, determine the modes of cell migration. Acute perturbations at specific points in the network produce abrupt shifts in protrusion type, including transitions from pseudopods to filopods or lamellipods. These observations have also contributed to a delineation of the signal transduction network, including candidate fast positive and delayed negative feedback loops. The network contains many oncogenes and tumor suppressors, and other molecules which have recently been implicated in developmental and metabolic abnormalities. Thus, the concept of signal transduction network excitability in cell migration can be used to understand disease states and morphological changes occurring in development.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Baniukiewicz P, Lutton EJ, Collier S, Bretschneider T. Generative Adversarial Networks for Augmenting Training Data of Microscopic Cell Images. FRONTIERS IN COMPUTER SCIENCE 2019. [DOI: 10.3389/fcomp.2019.00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Baniukiewicz P, Collier S, Bretschneider T. QuimP: analyzing transmembrane signalling in highly deformable cells. Bioinformatics 2019; 34:2695-2697. [PMID: 29566132 PMCID: PMC6061833 DOI: 10.1093/bioinformatics/bty169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Summary Transmembrane signalling plays important physiological roles, with G protein-coupled cell surface receptors being particularly important therapeutic targets. Fluorescent proteins are widely used to study signalling, but analyses of image time series can be challenging, in particular when cells change shape. QuimP software semi-automatically tracks spatio-temporal patterns of fluorescence at the cell membrane at high spatial resolution. This makes it a unique tool for studying transmembrane signalling, particularly during cell migration in immune or cancer cells for example. Availability and implementation QuimP (http://warwick.ac.uk/quimp) is a set of Java plugins for Fiji/ImageJ (http://fiji.sc) installable through the Fiji Updater (http://warwick.ac.uk/quimp/wiki-pages/installation). It is compatible with Mac, Windows and Unix operating systems, requiring version >1.45 of ImageJ and Java 8. QuimP is released as open source (https://github.com/CellDynamics/QuimP) under an academic licence. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Piotr Baniukiewicz
- Department of Computer Science & Zeeman Institute, University of Warwick, Coventry, UK
| | - Sharon Collier
- Department of Computer Science & Zeeman Institute, University of Warwick, Coventry, UK
| | - Till Bretschneider
- Department of Computer Science & Zeeman Institute, University of Warwick, Coventry, UK
| |
Collapse
|
27
|
Santiago Z, Loustau J, Meretzky D, Rawal D, Brazill D. Advances in geometric techniques for analyzing blebbing in chemotaxing Dictyostelium cells. PLoS One 2019; 14:e0211975. [PMID: 30763409 PMCID: PMC6375592 DOI: 10.1371/journal.pone.0211975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/14/2018] [Indexed: 11/19/2022] Open
Abstract
We present a technical platform that allows us to monitor and measure cortex and membrane dynamics during bleb-based chemotaxis. Using D. discoideum cells expressing LifeAct-GFP and crawling under agarose containing RITC-dextran, we were able to simultaneously visualize the actin cortex and the cell membrane throughout bleb formation. Using these images, we then applied edge detect to generate points on the cell boundary with coordinates in a coordinate plane. Then we fitted these points to a curve with known x and y coordinate functions. The result was to parameterize the cell outline. With the parameterization, we demonstrate how to compute data for geometric features such as cell area, bleb area and edge curvature. This allows us to collect vital data for the analysis of blebbing.
Collapse
Affiliation(s)
- Zully Santiago
- Department of Biological Sciences, Hunter College and the PhD Program in Biology, Graduate Center, CUNY, New York, NY United States of America
| | - John Loustau
- Department of Mathematics and Statistics, Hunter College, CUNY, New York, NY, United States of America
- * E-mail: (JL); (DB)
| | - David Meretzky
- Department of Mathematics and Statistics, Hunter College, CUNY, New York, NY, United States of America
| | - Devarshi Rawal
- Department of Mathematics and Statistics, Hunter College, CUNY, New York, NY, United States of America
| | - Derrick Brazill
- Department of Biological Sciences, Hunter College and the PhD Programs in Biology and Biochemistry, Graduate Center, CUNY, New York, NY United States of America
- * E-mail: (JL); (DB)
| |
Collapse
|
28
|
Chikina AS, Svitkina TM, Alexandrova AY. Time-resolved ultrastructure of the cortical actin cytoskeleton in dynamic membrane blebs. J Cell Biol 2018; 218:445-454. [PMID: 30541746 PMCID: PMC6363452 DOI: 10.1083/jcb.201806075] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/14/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Membrane blebbing accompanies various cellular processes, including cytokinesis, apoptosis, and cell migration, especially invasive migration of cancer cells. Blebs are extruded by intracellular pressure and are initially cytoskeleton-free, but they subsequently assemble the cytoskeleton, which can drive bleb retraction. Despite increasing appreciation of physiological significance of blebbing, the molecular and, especially, structural mechanisms controlling bleb dynamics are incompletely understood. We induced membrane blebbing in human HT1080 fibrosarcoma cells by inhibiting the Arp2/3 complex. Using correlative platinum replica electron microscopy, we characterize cytoskeletal architecture of the actin cortex in cells during initiation of blebbing and in blebs at different stages of their expansion-retraction cycle. The transition to blebbing in these conditions occurred through an intermediate filopodial stage, whereas bleb initiation was biased toward filopodial bases, where the cytoskeleton exhibited local weaknesses. Different stages of the bleb life cycle (expansion, pausing, and retraction) are characterized by specific features of cytoskeleton organization that provide implications about mechanisms of cytoskeleton assembly and bleb retraction.
Collapse
Affiliation(s)
- Aleksandra S Chikina
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.,Department of Biology, University of Pennsylvania, Philadelphia, PA
| | | | - Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| |
Collapse
|
29
|
Othmer HG. Eukaryotic Cell Dynamics from Crawlers to Swimmers. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018; 9. [PMID: 30854030 DOI: 10.1002/wcms.1376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Movement requires force transmission to the environment, and motile cells are robustly, though not elegantly, designed nanomachines that often can cope with a variety of environmental conditions by altering the mode of force transmission used. As with humans, the available modes range from momentary attachment to a substrate when crawling, to shape deformations when swimming, and at the cellular level this involves sensing the mechanical properties of the environment and altering the mode appropriately. While many types of cells can adapt their mode of movement to their microenvironment (ME), our understanding of how they detect, transduce and process information from the ME to determine the optimal mode is still rudimentary. The shape and integrity of a cell is determined by its cytoskeleton (CSK), and thus the shape changes that may be required to move involve controlled remodeling of the CSK. Motion in vivo is often in response to extracellular signals, which requires the ability to detect such signals and transduce them into the shape changes and force generation needed for movement. Thus the nanomachine is complex, and while much is known about individual components involved in movement, an integrated understanding of motility in even simple cells such as bacteria is not at hand. In this review we discuss recent advances in our understanding of cell motility and some of the problems remaining to be solved.
Collapse
Affiliation(s)
- H G Othmer
- School of Mathematics, University of Minnesota
| |
Collapse
|
30
|
Abel AM, Tiwari AA, Gerbec ZJ, Siebert JR, Yang C, Schloemer NJ, Dixon KJ, Thakar MS, Malarkannan S. IQ Domain-Containing GTPase-Activating Protein 1 Regulates Cytoskeletal Reorganization and Facilitates NKG2D-Mediated Mechanistic Target of Rapamycin Complex 1 Activation and Cytokine Gene Translation in Natural Killer Cells. Front Immunol 2018; 9:1168. [PMID: 29892299 PMCID: PMC5985319 DOI: 10.3389/fimmu.2018.01168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play essential roles in mediating antitumor immunity. NK cells respond to various inflammatory stimuli including cytokines and stress-induced cellular ligands which activate germline-encoded activation receptors (NKRs), such as NKG2D. The signaling molecules activated downstream of NKRs are well defined; however, the mechanisms that regulate these pathways are not fully understood. IQ domain-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein. It regulates diverse cellular signaling programs in various physiological contexts, including immune cell activation and function. Therefore, we sought to investigate the role of IQGAP1 in NK cells. Development and maturation of NK cells from mice lacking IQGAP1 (Iqgap1-/- ) were mostly intact; however, the absolute number of splenic NK cells was significantly reduced. Phenotypic and functional characterization revealed a significant reduction in the egression of NK cells from the bone marrow of Iqagp1-/- mice altering their peripheral homeostasis. Lack of IQGAP1 resulted in reduced NK cell motility and their ability to mediate antitumor immunity in vivo. Activation of Iqgap1-/- NK cells via NKRs, including NKG2D, resulted in significantly reduced levels of inflammatory cytokines compared with wild-type (WT). This reduction in Iqgap1-/- NK cells is neither due to an impaired membrane proximal signaling nor a defect in gene transcription. The levels of Ifng transcripts were comparable between WT and Iqgap1-/- , suggesting that IQGAP1-dependent regulation of cytokine production is regulated by a post-transcriptional mechanism. To this end, Iqgap1-/- NK cells failed to fully induce S6 phosphorylation and showed significantly reduced protein translation following NKG2D-mediated activation, revealing a previously undefined regulatory function of IQGAP1 via the mechanistic target of rapamycin complex 1. Together, these results implicate IQGAP1 as an essential scaffold for NK cell homeostasis and function and provide novel mechanistic insights to the post-transcriptional regulation of inflammatory cytokine production.
Collapse
Affiliation(s)
- Alex M Abel
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Aradhana A Tiwari
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Zachary J Gerbec
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Jason R Siebert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Chao Yang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Nathan J Schloemer
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kate J Dixon
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
31
|
Davidson AJ, Amato C, Thomason PA, Insall RH. WASP family proteins and formins compete in pseudopod- and bleb-based migration. J Cell Biol 2018; 217:701-714. [PMID: 29191847 PMCID: PMC5800805 DOI: 10.1083/jcb.201705160] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/03/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022] Open
Abstract
Actin pseudopods induced by SCAR/WAVE drive normal migration and chemotaxis in eukaryotic cells. Cells can also migrate using blebs, in which the edge is driven forward by hydrostatic pressure instead of actin. In Dictyostelium discoideum, loss of SCAR is compensated by WASP moving to the leading edge to generate morphologically normal pseudopods. Here we use an inducible double knockout to show that cells lacking both SCAR and WASP are unable to grow, make pseudopods or, unexpectedly, migrate using blebs. Remarkably, amounts and dynamics of actin polymerization are normal. Pseudopods are replaced in double SCAR/WASP mutants by aberrant filopods, induced by the formin dDia2. Further disruption of the gene for dDia2 restores cells' ability to initiate blebs and thus migrate, though pseudopods are still lost. Triple knockout cells still contain near-normal F-actin levels. This work shows that SCAR, WASP, and dDia2 compete for actin. Loss of SCAR and WASP causes excessive dDia2 activity, maintaining F-actin levels but blocking pseudopod and bleb formation and migration.
Collapse
Affiliation(s)
| | - Clelia Amato
- Cancer Research UK Beatson Institute, Glasgow, Scotland, UK
| | | | | |
Collapse
|
32
|
Abstract
Many researchers use the social amoeba Dictyostelium discoideum as a model organism to study various aspects of the eukaryotic cell chemotaxis. Traditionally, Dictyostelium chemotaxis is considered to be driven mainly by branched F-actin polymerization. However, recently it has become evident that Dictyostelium, as well as many other eukaryotic cells, can also employ intracellular hydrostatic pressure to generate force for migration. This process results in the projection of hemispherical plasma membrane protrusions, called blebs, that can be controlled by chemotactic signaling.Here we describe two methods to study chemotactic blebbing in Dictyostelium cells and to analyze the intensity of the blebbing response in various strains and under different conditions. The first of these methods-the cyclic-AMP shock assay-allows one to quantify the global blebbing response of cells to a uniform chemoattractant stimulation. The second one-the under-agarose migration assay-induces directional blebbing in cells moving in a gradient of chemoattractant. In this assay, the cells can be switched from a predominantly F-actin-driven mode of motility to a bleb-driven chemotaxis, allowing one to compare the efficiency of both modes and explore the molecular machinery controlling chemotactic blebbing.
Collapse
Affiliation(s)
- Evgeny Zatulovskiy
- Department of Biology, Stanford University, 337 Campus Drive, Stanford, CA, 94305, USA.
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| |
Collapse
|
33
|
Collier S, Paschke P, Kay RR, Bretschneider T. Image based modeling of bleb site selection. Sci Rep 2017; 7:6692. [PMID: 28751725 PMCID: PMC5532237 DOI: 10.1038/s41598-017-06875-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/20/2017] [Indexed: 12/02/2022] Open
Abstract
Cells often employ fast, pressure-driven blebs to move through tissues or against mechanical resistance, but how bleb sites are selected and directed to the cell front remains an open question. Previously, we found that chemotaxing Dictyostelium cells preferentially bleb from concave regions, where membrane tension facilitates membrane-cortex detachment. Now, through a novel modeling approach based on actual cell contours, we use cell geometry to predict where blebs will form in migrating cells. We find that cell geometry alone, and by implication, physical forces in the membrane, is sufficient to predict the location of blebs in rounded cells moving in a highly resistive environment. The model is less successful with more polarized cells moving against less resistance, but can be greatly improved by positing a front-to-back gradient in membrane-cortex adhesion. In accord with this prediction, we find that Talin, which links membrane and cortex, forms such a front-to-back gradient. Thus our model provides a means of dissecting out the role of physical forces in controlling where blebs form, and shows that in certain circumstances they could be the major determining factor.
Collapse
Affiliation(s)
- Sharon Collier
- MOAC Doctoral Training Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Peggy Paschke
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Robert R Kay
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Till Bretschneider
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
34
|
Traynor D, Kay RR. A polycystin-type transient receptor potential (Trp) channel that is activated by ATP. Biol Open 2017; 6:200-209. [PMID: 28011630 PMCID: PMC5312093 DOI: 10.1242/bio.020685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ATP and ADP are ancient extra-cellular signalling molecules that in Dictyostelium amoebae cause rapid, transient increases in cytosolic calcium due to an influx through the plasma membrane. This response is independent of hetero-trimeric G-proteins, the putative IP3 receptor IplA and all P2X channels. We show, unexpectedly, that it is abolished in mutants of the polycystin-type transient receptor potential channel, TrpP. Responses to the chemoattractants cyclic-AMP and folic acid are unaffected in TrpP mutants. We report that the DIF morphogens, cyclic-di-GMP, GABA, glutamate and adenosine all induce strong cytoplasmic calcium responses, likewise independently of TrpP. Thus, TrpP is dedicated to purinergic signalling. ATP treatment causes cell blebbing within seconds but this does not require TrpP, implicating a separate purinergic receptor. We could detect no effect of ATP on chemotaxis and TrpP mutants grow, chemotax and develop almost normally in standard conditions. No gating ligand is known for the human homologue of TrpP, polycystin-2, which causes polycystic kidney disease. Our results now show that TrpP mediates purinergic signalling in Dictyostelium and is directly or indirectly gated by ATP. Summary: We show that a Trp channel related to the mammalian polycystin channel, rather than a P2X receptor, is responsible for the purinergic stimulation of cytosolic calcium levels in Dictyostelium cells.
Collapse
Affiliation(s)
- David Traynor
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB1 0QH, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB1 0QH, UK
| |
Collapse
|
35
|
Srivastava N, Kay RR, Kabla AJ. Method to study cell migration under uniaxial compression. Mol Biol Cell 2017; 28:809-816. [PMID: 28122819 PMCID: PMC5349787 DOI: 10.1091/mbc.e16-08-0575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 12/23/2022] Open
Abstract
A method is described for imposing mechanical compression on individual cells while monitoring their morphology and migratory phenotype. A compression of the order of 500 Pa flattens the cells by up to 50% and triggers a transition in the mode of migration. This approach is convenient for studying mechanotransduction in confined environments. The chemical, physical, and mechanical properties of the extracellular environment have a strong effect on cell migration. Aspects such as pore size or stiffness of the matrix influence the selection of the mechanism used by cells to propel themselves, including by pseudopods or blebbing. How a cell perceives its environment and how such a cue triggers a change in behavior are largely unknown, but mechanics is likely to be involved. Because mechanical conditions are often controlled by modifying the composition of the environment, separating chemical and physical contributions is difficult and requires multiple controls. Here we propose a simple method to impose a mechanical compression on individual cells without altering the composition of the matrix. Live imaging during compression provides accurate information about the cell's morphology and migratory phenotype. Using Dictyostelium as a model, we observe that a compression of the order of 500 Pa flattens the cells under gel by up to 50%. This uniaxial compression directly triggers a transition in the mode of migration from primarily pseudopodial to bleb driven in <30 s. This novel device is therefore capable of influencing cell migration in real time and offers a convenient approach with which to systematically study mechanotransduction in confined environments.
Collapse
Affiliation(s)
- Nishit Srivastava
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Alexandre J Kabla
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| |
Collapse
|
36
|
Mescher M, Jeong P, Knapp SK, Rübsam M, Saynisch M, Kranen M, Landsberg J, Schlaak M, Mauch C, Tüting T, Niessen CM, Iden S. The epidermal polarity protein Par3 is a non-cell autonomous suppressor of malignant melanoma. J Exp Med 2017; 214:339-358. [PMID: 28096290 PMCID: PMC5294851 DOI: 10.1084/jem.20160596] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/02/2016] [Accepted: 12/06/2016] [Indexed: 12/23/2022] Open
Abstract
Mescher et al. uncover a novel tissue-borne tumor suppression mechanism, engaging polarity proteins in the epithelial microenvironment that prevent malignant outgrowth of neighboring cell types through control of heterologous cell–cell contacts. Moreover, their data support an emerging role of P-cadherin, which is frequently amplified in human carcinoma, as a protumorigenic and proinvasive adhesion molecule, thus placing it as a promising druggable target to disrupt tumor–microenvironment interactions for anticancer therapy. Melanoma, an aggressive skin malignancy with increasing lifetime risk, originates from melanocytes (MCs) that are in close contact with surrounding epidermal keratinocytes (KCs). How the epidermal microenvironment controls melanomagenesis remains poorly understood. In this study, we identify an unexpected non–cell autonomous role of epidermal polarity proteins, molecular determinants of cytoarchitecture, in malignant melanoma. Epidermal Par3 inactivation in mice promotes MC dedifferentiation, motility, and hyperplasia and, in an autochthonous melanoma model, results in increased tumor formation and lung metastasis. KC-specific Par3 loss up-regulates surface P-cadherin that is essential to promote MC proliferation and phenotypic switch toward dedifferentiation. In agreement, low epidermal PAR3 and high P-cadherin expression correlate with human melanoma progression, whereas elevated P-cadherin levels are associated with reduced survival of melanoma patients, implying that this mechanism also drives human disease. Collectively, our data show that reduced KC Par3 function fosters a permissive P-cadherin–dependent niche for MC transformation, invasion, and metastasis. This reveals a previously unrecognized extrinsic tumor-suppressive mechanism, whereby epithelial polarity proteins dictate the cytoarchitecture and fate of other tissue-resident cells to suppress their malignant outgrowth.
Collapse
Affiliation(s)
- Melina Mescher
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50923 Köln, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50923 Köln, Germany
| | - Peter Jeong
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50923 Köln, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50923 Köln, Germany
| | - Sina K Knapp
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50923 Köln, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50923 Köln, Germany
| | - Matthias Rübsam
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50923 Köln, Germany.,Department of Dermatology, University of Cologne, 50923 Köln, Germany
| | - Michael Saynisch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50923 Köln, Germany
| | - Marina Kranen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50923 Köln, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50923 Köln, Germany
| | - Jennifer Landsberg
- Laboratory of Immunodermatology, Department of Dermatology, Venereology, and Allergology, University Hospital Essen, and German Cancer Consortium, Partner Site Essen/Düsseldorf, West German Cancer Center, University of Duisburg-Essen, 45122 Essen, Germany.,Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, 53115 Bonn, Germany
| | - Max Schlaak
- Department of Dermatology, University of Cologne, 50923 Köln, Germany
| | - Cornelia Mauch
- Department of Dermatology, University of Cologne, 50923 Köln, Germany
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology and Allergy, University of Bonn, 53115 Bonn, Germany.,Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Carien M Niessen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50923 Köln, Germany.,Department of Dermatology, University of Cologne, 50923 Köln, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50923 Köln, Germany
| | - Sandra Iden
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50923 Köln, Germany .,Center for Molecular Medicine Cologne, University of Cologne, 50923 Köln, Germany
| |
Collapse
|
37
|
Masuda K, Kitakami JI, Kozasa T, Kodama T, Ihara S, Hamakubo T. Visualization of ligand‐induced G
i
‐protein activation in chemotaxing cells. FASEB J 2016; 31:910-919. [DOI: 10.1096/fj.201601102r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/07/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Kazuyuki Masuda
- Department of Quantitative Biology and MedicineResearch Center for Advanced Science and TechnologyUniversity of Tokyo Tokyo Japan
| | - Jun-Ichi Kitakami
- Laboratory of Systems Biology and MedicineResearch Center for Advanced Science and TechnologyUniversity of Tokyo Tokyo Japan
| | - Tohru Kozasa
- Department of Quantitative Biology and MedicineResearch Center for Advanced Science and TechnologyUniversity of Tokyo Tokyo Japan
| | - Tatsuhiko Kodama
- Laboratory of Systems Biology and MedicineResearch Center for Advanced Science and TechnologyUniversity of Tokyo Tokyo Japan
| | - Sigeo Ihara
- Laboratory of Systems Biology and MedicineResearch Center for Advanced Science and TechnologyUniversity of Tokyo Tokyo Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and MedicineResearch Center for Advanced Science and TechnologyUniversity of Tokyo Tokyo Japan
| |
Collapse
|
38
|
Liu Y, Lacal J, Firtel RA, Kortholt A. Connecting G protein signaling to chemoattractant-mediated cell polarity and cytoskeletal reorganization. Small GTPases 2016; 9:360-364. [PMID: 27715492 PMCID: PMC5997169 DOI: 10.1080/21541248.2016.1235390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The directional movement toward extracellular chemical gradients, a process called chemotaxis, is an important property of cells. Central to eukaryotic chemotaxis is the molecular mechanism by which chemoattractant-mediated activation of G-protein coupled receptors (GPCRs) induces symmetry breaking in the activated downstream signaling pathways. Studies with mainly Dictyostelium and mammalian neutrophils as experimental systems have shown that chemotaxis is mediated by a complex network of signaling pathways. Recently, several labs have used extensive and efficient proteomic approaches to further unravel this dynamic signaling network. Together these studies showed the critical role of the interplay between heterotrimeric G-protein subunits and monomeric G proteins in regulating cytoskeletal rearrangements during chemotaxis. Here we highlight how these proteomic studies have provided greater insight into the mechanisms by which the heterotrimeric G protein cycle is regulated, how heterotrimeric G proteins-induced symmetry breaking is mediated through small G protein signaling, and how symmetry breaking in G protein signaling subsequently induces cytoskeleton rearrangements and cell migration.
Collapse
Affiliation(s)
- Youtao Liu
- a Department of Cell Biochemistry , University of Groningen , Groningen , The Netherlands
| | - Jesus Lacal
- b Section of Cell and Developmental Biology, Division of Biological Sciences, University of California , San Diego, La Jolla , CA , USA
| | - Richard A Firtel
- b Section of Cell and Developmental Biology, Division of Biological Sciences, University of California , San Diego, La Jolla , CA , USA
| | - Arjan Kortholt
- a Department of Cell Biochemistry , University of Groningen , Groningen , The Netherlands
| |
Collapse
|
39
|
Ibo M, Srivastava V, Robinson DN, Gagnon ZR. Cell Blebbing in Confined Microfluidic Environments. PLoS One 2016; 11:e0163866. [PMID: 27706201 PMCID: PMC5051935 DOI: 10.1371/journal.pone.0163866] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
Migrating cells can extend their leading edge by forming myosin-driven blebs and F-actin-driven pseudopods. When coerced to migrate in resistive environments, Dictyostelium cells switch from using predominately pseudopods to blebs. Bleb formation has been shown to be chemotactic and can be influenced by the direction of the chemotactic gradient. In this study, we determine the blebbing responses of developed cells of Dictyostelium discoideum to cAMP gradients of varying steepness produced in microfluidic channels with different confining heights, ranging between 1.7 μm and 3.8 μm. We show that microfluidic confinement height, gradient steepness, buffer osmolarity and Myosin II activity are important factors in determining whether cells migrate with blebs or with pseudopods. Dictyostelium cells were observed migrating within the confines of microfluidic gradient channels. When the cAMP gradient steepness is increased from 0.7 nM/μm to 20 nM/μm, cells switch from moving with a mixture of blebs and pseudopods to moving only using blebs when chemotaxing in channels with confinement heights less than 2.4 μm. Furthermore, the size of the blebs increases with gradient steepness and correlates with increases in myosin-II localization at the cell cortex. Reduction of intracellular pressure by high osmolarity buffer or inhibition of myosin-II by blebbistatin leads to a decrease in bleb formation and bleb size. Together, our data reveal that the protrusion type formed by migrating cells can be influenced by the channel height and the steepness of the cAMP gradient, and suggests that a combination of confinement-induced myosin-II localization and cAMP-regulated cortical contraction leads to increased intracellular fluid pressure and bleb formation.
Collapse
Affiliation(s)
- Markela Ibo
- Johns Hopkins University, Department of Chemical and Biomolecular Engineering, Baltimore, MD, 21218, United States of America
| | - Vasudha Srivastava
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, 21205, United States of America
| | - Douglas N. Robinson
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD, 21205, United States of America
| | - Zachary R. Gagnon
- Johns Hopkins University, Department of Chemical and Biomolecular Engineering, Baltimore, MD, 21218, United States of America
- * E-mail:
| |
Collapse
|
40
|
Diz-Muñoz A, Romanczuk P, Yu W, Bergert M, Ivanovitch K, Salbreux G, Heisenberg CP, Paluch EK. Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biol 2016; 14:74. [PMID: 27589901 PMCID: PMC5010735 DOI: 10.1186/s12915-016-0294-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. RESULTS Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. CONCLUSIONS Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.
Collapse
Affiliation(s)
- Alba Diz-Muñoz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany.
| | - Pawel Romanczuk
- Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany.
- Department of Biology, Institute of Theoretical Biology, Humboldt University, Berlin, 10115, Germany.
| | - Weimiao Yu
- Institute of Molecular and Cell Biology, A-STAR, Singapore, 138673, Singapore
| | - Martin Bergert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK
| | - Kenzo Ivanovitch
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK
- Present address: Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, 01187, Germany
- The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincolns Inn Fields, London, WC2A 3LY, UK
| | | | - Ewa K Paluch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, London, UK
| |
Collapse
|
41
|
Schuster SL, Segerer FJ, Gegenfurtner FA, Kick K, Schreiber C, Albert M, Vollmar AM, Rädler JO, Zahler S. Contractility as a global regulator of cellular morphology, velocity, and directionality in low-adhesive fibrillary micro-environments. Biomaterials 2016; 102:137-47. [DOI: 10.1016/j.biomaterials.2016.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023]
|
42
|
Abstract
Cell migration results from stepwise mechanical and chemical interactions between cells and their extracellular environment. Mechanistic principles that determine single-cell and collective migration modes and their interconversions depend upon the polarization, adhesion, deformability, contractility, and proteolytic ability of cells. Cellular determinants of cell migration respond to extracellular cues, including tissue composition, topography, alignment, and tissue-associated growth factors and cytokines. Both cellular determinants and tissue determinants are interdependent; undergo reciprocal adjustment; and jointly impact cell decision making, navigation, and migration outcome in complex environments. We here review the variability, decision making, and adaptation of cell migration approached by live-cell, in vivo, and in silico strategies, with a focus on cell movements in morphogenesis, repair, immune surveillance, and cancer metastasis.
Collapse
Affiliation(s)
- Veronika Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030;
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, 10129 Torino, Italy
| | - Peter Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; .,Department of Cell Biology, Radboud University Medical Centre, 6525GA Nijmegen, The Netherlands; .,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
43
|
Kundu S. Stochastic modelling suggests that an elevated superoxide anion - hydrogen peroxide ratio can drive extravascular phagocyte transmigration by lamellipodium formation. J Theor Biol 2016; 407:143-154. [PMID: 27380944 DOI: 10.1016/j.jtbi.2016.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/01/2016] [Indexed: 11/24/2022]
Abstract
Chemotaxis, integrates diverse intra- and inter-cellular molecular processes into a purposeful patho-physiological response; the operatic rules of which, remain speculative. Here, I surmise, that superoxide anion induced directional motility, in a responding cell, results from a quasi pathway between the stimulus, surrounding interstitium, and its biochemical repertoire. The epochal event in the mounting of an inflammatory response, is the extravascular transmigration of a phagocyte competent cell towards the site of injury, secondary to the development of a lamellipodium. This stochastic-to-markovian process conversion, is initiated by the cytosolic-ROS of the damaged cell, but is maintained by the inverse association of a de novo generated pool of self-sustaining superoxide anions and sub-critical hydrogen peroxide levels. Whilst, the exponential rise of O2(.-) is secondary to the focal accumulation of higher order lipid raft-Rac1/2-actin oligomers; O2(.-) mediated inactivation and redistribution of ECSOD, accounts for the minimal concentration of H2O2 that the phagocyte experiences. The net result of this reciprocal association between ROS/ RNS members, is the prolonged perturbation and remodeling of the cytoskeleton and plasma membrane, a prelude to chemotactic migration. The manuscript also describes the significance of stochastic modeling, in the testing of plausible molecular hypotheses of observable phenomena in complex biological systems.
Collapse
Affiliation(s)
- Siddhartha Kundu
- Department of Biochemistry, Dr. Baba Saheb Ambedkar Medical College & Hospital, Government of NCT Delhi, Sector - 6, Rohini, Delhi 110085, India; Mathematical and Computational Biology, Information Technology Research Academy (ITRA), Media Lab Asia, 2nd Floor, Block 2, C-DOT Campus, Mehrauli, New Delhi 110030, India; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India.
| |
Collapse
|
44
|
A RhoA and Rnd3 cycle regulates actin reassembly during membrane blebbing. Proc Natl Acad Sci U S A 2016; 113:E1863-71. [PMID: 26976596 DOI: 10.1073/pnas.1600968113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The actin cytoskeleton usually lies beneath the plasma membrane. When the membrane-associated actin cytoskeleton is transiently disrupted or the intracellular pressure is increased, the plasma membrane detaches from the cortex and protrudes. Such protruded membrane regions are called blebs. However, the molecular mechanisms underlying membrane blebbing are poorly understood. This study revealed that epidermal growth factor receptor kinase substrate 8 (Eps8) and ezrin are important regulators of rapid actin reassembly for the initiation and retraction of protruded blebs. Live-cell imaging of membrane blebbing revealed that local reassembly of actin filaments occurred at Eps8- and activated ezrin-positive foci of membrane blebs. Furthermore, we found that a RhoA-ROCK-Rnd3 feedback loop determined the local reassembly sites of the actin cortex during membrane blebbing.
Collapse
|
45
|
Alert R, Casademunt J. Bleb Nucleation through Membrane Peeling. PHYSICAL REVIEW LETTERS 2016; 116:068101. [PMID: 26919015 DOI: 10.1103/physrevlett.116.068101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 06/05/2023]
Abstract
We study the nucleation of blebs, i.e., protrusions arising from a local detachment of the membrane from the cortex of a cell. Based on a simple model of elastic linkers with force-dependent kinetics, we show that bleb nucleation is governed by membrane peeling. By this mechanism, the growth or shrinkage of a detached membrane patch is completely determined by the linker kinetics, regardless of the energetic cost of the detachment. We predict the critical nucleation radius for membrane peeling and the corresponding effective energy barrier. These may be typically smaller than those predicted by classical nucleation theory, implying a much faster nucleation. We also perform simulations of a continuum stochastic model of membrane-cortex adhesion to obtain the statistics of bleb nucleation times as a function of the stress on the membrane. The determinant role of membrane peeling changes our understanding of bleb nucleation and opens new directions in the study of blebs.
Collapse
Affiliation(s)
- Ricard Alert
- Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jaume Casademunt
- Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
46
|
Sroka J, Krecioch I, Zimolag E, Lasota S, Rak M, Kedracka-Krok S, Borowicz P, Gajek M, Madeja Z. Lamellipodia and Membrane Blebs Drive Efficient Electrotactic Migration of Rat Walker Carcinosarcoma Cells WC 256. PLoS One 2016; 11:e0149133. [PMID: 26863616 PMCID: PMC4749172 DOI: 10.1371/journal.pone.0149133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/27/2016] [Indexed: 11/23/2022] Open
Abstract
The endogenous electric field (EF) may provide an important signal for directional cell migration during wound healing, embryonic development and cancer metastasis but the mechanism of cell electrotaxis is poorly understood. Additionally, there is no research addressing the question on the difference in electrotactic motility of cells representing various strategies of cell movement—specifically blebbing vs. lamellipodial migration. In the current study we constructed a unique experimental model which allowed for the investigation of electrotactic movement of cells of the same origin but representing different modes of cell migration: weakly adherent, spontaneously blebbing (BC) and lamellipodia forming (LC) WC256 cells. We report that both BC and LC sublines show robust cathodal migration in a physiological EF (1–3 V/cm). The directionality of cell movement was completely reversible upon reversing the field polarity. However, the full reversal of cell direction after the change of EF polarity was much faster in the case of BC (10 minutes) than LC cells (30 minutes). We also investigated the distinct requirements for Rac, Cdc42 and Rho pathways and intracellular Ca2+ in electrotaxis of WC256 sublines forming different types of cell protrusions. It was found that Rac1 is required for directional movement of LC to a much greater extent than for BC, but Cdc42 and RhoA are more crucial for BC than for LC cells. The inhibition of ROCK did not affect electrotaxis of LC in contrast to BC cells. The results also showed that intracellular Ca2+ is essential only for the electrotactic reaction of BC cells. Moreover, inhibition of MLCK and myosin II did not affect the electrotaxis of LC in contrast to BC cells. In conclusion, our results revealed that both lamellipodia and membrane blebs can efficiently drive electrotactic migration of WC 256 carcinosarcoma cells, however directional migration is mediated by different signalling pathways.
Collapse
Affiliation(s)
- Jolanta Sroka
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Izabela Krecioch
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Eliza Zimolag
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Slawomir Lasota
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Monika Rak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7b, 30-387, Krakow, Poland
| | - Pawel Borowicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Marta Gajek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| |
Collapse
|
47
|
Otto GP, Cocorocchio M, Munoz L, Tyson RA, Bretschneider T, Williams RSB. Employing Dictyostelium as an Advantageous 3Rs Model for Pharmacogenetic Research. Methods Mol Biol 2016; 1407:123-30. [PMID: 27271898 DOI: 10.1007/978-1-4939-3480-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing concern regarding the use of animals in research has triggered a growing need for non-animal research models in a range of fields. The development of 3Rs (replacement, refinement, and reduction) approaches in research, to reduce the reliance on the use of animal tissue and whole-animal experiments, has recently included the use of Dictyostelium. In addition to not feeling pain and thus being relatively free of ethical constraints, Dictyostelium provides a range of distinct methodological advantages for researchers that has led to a number of breakthroughs. These methodologies include using cell behavior (cell movement and shape) as a rapid indicator of sensitivity to poorly characterized medicines, natural products, and other chemicals to help understand the molecular mechanism of action of compounds. Here, we outline a general approach to employing Dictyostelium as a 3Rs research model, using cell behavior as a readout to better understand how compounds, such as the active ingredient in chilli peppers, capsaicin, function at a cellular level. This chapter helps scientists unfamiliar with Dictyostelium to rapidly employ it as an advantageous model system for research, to reduce the use of animals in research, and to make paradigm shift advances in our understanding of biological chemistry.
Collapse
Affiliation(s)
- Grant P Otto
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, UK
| | - Marco Cocorocchio
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, UK
| | - Laura Munoz
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, UK
| | - Richard A Tyson
- Warwick Systems Biology Centre, University of Warwick, Coventry, UK
| | | | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 OEX, UK.
| |
Collapse
|
48
|
Roth H, Samereier M, Trommler G, Noegel AA, Schleicher M, Müller-Taubenberger A. Balanced cortical stiffness is important for efficient migration of Dictyostelium cells in confined environments. Biochem Biophys Res Commun 2015; 467:730-5. [PMID: 26482849 DOI: 10.1016/j.bbrc.2015.10.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
Dictyostelium discoideum cells resemble in many aspects human leukocytes and serve as a model to study actin cytoskeleton dynamics and cell migration of highly motile cells. Dictyostelium cells deficient in the actin-binding protein filamin (ddFLN) showed a surprisingly subtle change in phenotype with no or only minor effects in single cell motility. These findings were in contrast to the strong actin-crosslinking activities measured for filamin in vitro. In the present study, we set out to revisit the role of ddFLN in cell migration. For this purpose, we examined migration of wild-type, ddFLN-null and ddFLN-overexpressing cells under different conditions. In addition to cyclic-AMP chemotaxis assays using micropipettes, we explored cell migration under more confined conditions: an under-agarose 2D assay and a 3D assay employing a collagen matrix that was adapted from assays for leukocytes. Using 3D migration conditions, cells deficient in ddFLN displayed only a minor impairment of motility, similar to the results obtained for migration in 2D. However, cells overexpressing ddFLN showed a remarkable decrease in the speed of migration in particular in 3D environments. We suggest that these results are in line with an increased stiffening of the cortex due to the crosslinking activity of overexpressed ddFLN. Our conclusion is that the absolute level of ddFLN is critical for efficient migration. Furthermore, our results show that under conditions of increased mechanical stress, Dictyostelium cells, like leukocytes, switch to a bleb-based mode of movement.
Collapse
Affiliation(s)
- Heike Roth
- Department of Cell Biology (Anatomy III), Biomedical Center, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Matthias Samereier
- Department of Cell Biology (Anatomy III), Biomedical Center, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Gudrun Trommler
- Department of Cell Biology (Anatomy III), Biomedical Center, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Angelika A Noegel
- Institute for Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Michael Schleicher
- Department of Cell Biology (Anatomy III), Biomedical Center, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Annette Müller-Taubenberger
- Department of Cell Biology (Anatomy III), Biomedical Center, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
49
|
Dufour AC, Olivo-Marin JC, Guillen N. Amoeboid movement in protozoan pathogens. Semin Cell Dev Biol 2015; 46:128-34. [PMID: 26459974 DOI: 10.1016/j.semcdb.2015.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 12/01/2022]
Abstract
Entamoeba histolytica, the causative agent of amoebiasis, is a protozoan parasite characterised by its amoeboid motility, which is essential to its survival and invasion of the human host. Elucidating the molecular mechanisms leading to invasion of human tissues by E. histolytica requires a quantitative understanding of how its cytoskeleton deforms and tailors its mode of migration to the local microenvironment. Here we review the wide range of methods available to extract biophysical information from amoeboid cells, from interventional techniques to computational modelling approaches, and discuss how recent developments in bioimaging and bioimage informatics can complement our understanding of cellular morphodynamics at the intracellular level.
Collapse
Affiliation(s)
- Alexandre C Dufour
- Institut Pasteur, Bioimage Analysis Unit, Department of Cell Biology & Infection, Paris, France; CNRS UMR 3691 "Pathological and Physiological Cell Dynamics", Paris, France.
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Bioimage Analysis Unit, Department of Cell Biology & Infection, Paris, France; CNRS UMR 3691 "Pathological and Physiological Cell Dynamics", Paris, France.
| | - Nancy Guillen
- Institut Pasteur, Cell Biology of Parasitism Unit, Department of Cell Biology & Infection, Paris, France; INSERM U786, Paris, France.
| |
Collapse
|
50
|
Nichols JME, Veltman D, Kay RR. Chemotaxis of a model organism: progress with Dictyostelium. Curr Opin Cell Biol 2015; 36:7-12. [DOI: 10.1016/j.ceb.2015.06.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/22/2015] [Accepted: 06/27/2015] [Indexed: 11/25/2022]
|