1
|
Samuels DS, Lybecker MC, Yang XF, Ouyang Z, Bourret TJ, Boyle WK, Stevenson B, Drecktrah D, Caimano MJ. Gene Regulation and Transcriptomics. Curr Issues Mol Biol 2020; 42:223-266. [PMID: 33300497 DOI: 10.21775/cimb.042.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO 80918, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - William K Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
2
|
Choi E, Jeon H, Oh C, Hwang J. Elucidation of a Novel Role of YebC in Surface Polysaccharides Regulation of Escherichia coli bipA-Deletion. Front Microbiol 2020; 11:597515. [PMID: 33240252 PMCID: PMC7682190 DOI: 10.3389/fmicb.2020.597515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
The BipA (BPI-inducible protein A) protein is ubiquitously conserved in various bacterial species and belongs to the translational GTPase family. Interestingly, the function of Escherichia coli BipA is not essential for cell growth under normal growth conditions. However, cultivation of bipA-deleted cells at 20°C leads to cold-sensitive growth defect and several phenotypic changes in ribosome assembly, capsule production, and motility, suggesting its global regulatory roles. Previously, our genomic library screening revealed that the overexpressed ribosomal protein (r-protein) L20 partially suppressed cold-sensitive growth defect by resolving the ribosomal abnormality in bipA-deleted cells at low temperature. Here, we explored another genomic library clone containing yebC, which encodes a predicted transcriptional factor that is not directly associated with ribosome biogenesis. Interestingly, overexpression of yebC in bipA-deleted cells diminished capsule synthesis and partially restored lipopolysaccharide (LPS) core maturation at a low temperature without resolving defects in ribosome assembly or motility, indicating that YebC may be specifically involved in the regulation of exopolysaccharide and LPS core synthesis. In this study, we collectively investigated the impacts of bipA-deletion on E. coli capsule, LPS, biofilm formation, and motility and revealed novel roles of YebC in extracellular polysaccharide production and LPS core synthesis at low temperature using this mutant strain. Furthermore, our findings suggest that ribosomal defects as well as increased capsule synthesis, and changes in LPS composition may contribute independently to the cold-sensitivity of bipA-deleted cells, implying multiple regulatory roles of BipA.
Collapse
Affiliation(s)
- Eunsil Choi
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea.,Department of Microbiology, Pusan National University, Busan, South Korea
| | - Hyerin Jeon
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea
| | - Changmin Oh
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea
| | - Jihwan Hwang
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea.,Department of Microbiology, Pusan National University, Busan, South Korea
| |
Collapse
|
3
|
Zhang Y, Chen T, Raghunandanan S, Xiang X, Yang J, Liu Q, Edmondson DG, Norris SJ, Yang XF, Lou Y. YebC regulates variable surface antigen VlsE expression and is required for host immune evasion in Borrelia burgdorferi. PLoS Pathog 2020; 16:e1008953. [PMID: 33048986 PMCID: PMC7584230 DOI: 10.1371/journal.ppat.1008953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/23/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
Borrelia burgdorferi, the Lyme disease pathogen causes persistent infection by evading the host immune response. Differential expression of the surface-exposed lipoprotein VlsE that undergoes antigenic variation is a key immune evasion strategy employed by B. burgdorferi. Most studies focused on the mechanism of VlsE antigen variation, but little is known about VlsE regulation and factor(s) that regulates differential vlsE expression. In this study, we investigated BB0025, a putative YebC family transcriptional regulator (and hence designated BB0025 as YebC of B. burgdorferi herein). We constructed yebC mutant and complemented strain in an infectious strain of B. burgdorferi. The yebC mutant could infect immunocompromised SCID mice but not immunocompetent mice, suggesting that YebC plays an important role in evading host adaptive immunity. RNA-seq analyses identified vlsE as one of the genes whose expression was most affected by YebC. Quantitative RT-PCR and Western blot analyses confirmed that vlsE expression was dependent on YebC. In vitro, YebC and VlsE were co-regulated in response to growth temperature. In mice, both yebC and vlsE were inversely expressed with ospC in response to the host adaptive immune response. Furthermore, EMSA proved that YebC directly binds to the vlsE promoter, suggesting a direct transcriptional control. These data demonstrate that YebC is a new regulator that modulates expression of vlsE and other genes important for spirochetal infection and immune evasion in the mammalian host.
Collapse
Affiliation(s)
- Yan Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Optometry and Eye Hospital and School of Ophthalmology, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Tong Chen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, United States of America
| | - Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Qiang Liu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Diane G. Edmondson
- Department of Pathology and Laboratory Medicine, UTHealth Medical School, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, UTHealth Medical School, Houston, Texas, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Wu S, Xia X, Wang D, Zhou Z, Wang G. Gene function and expression regulation of RuvRCAB in bacterial Cr(VI), As(III), Sb(III), and Cd(II) resistance. Appl Microbiol Biotechnol 2019; 103:2701-2713. [DOI: 10.1007/s00253-019-09666-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
|
5
|
Isolation and characterization of bacteriophage NTR1 infectious for Nocardia transvalensis and other Nocardia species. Virus Genes 2018; 55:257-265. [DOI: 10.1007/s11262-018-1625-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
6
|
Richman TR, Spåhr H, Ermer JA, Davies SMK, Viola HM, Bates KA, Papadimitriou J, Hool LC, Rodger J, Larsson NG, Rackham O, Filipovska A. Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice. Nat Commun 2016; 7:11884. [PMID: 27319982 PMCID: PMC4915168 DOI: 10.1038/ncomms11884] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 11/30/2022] Open
Abstract
The recognition and translation of mammalian mitochondrial mRNAs are poorly understood. To gain further insights into these processes in vivo, we characterized mice with a missense mutation that causes loss of the translational activator of cytochrome oxidase subunit I (TACO1). We report that TACO1 is not required for embryonic survival, although the mutant mice have substantially reduced COXI protein, causing an isolated complex IV deficiency. We show that TACO1 specifically binds the mt-Co1 mRNA and is required for translation of COXI through its association with the mitochondrial ribosome. We determined the atomic structure of TACO1, revealing three domains in the shape of a hook with a tunnel between domains 1 and 3. Mutations in the positively charged domain 1 reduce RNA binding by TACO1. The Taco1 mutant mice develop a late-onset visual impairment, motor dysfunction and cardiac hypertrophy and thus provide a useful model for future treatment trials for mitochondrial disease. Mutations in the translational activator of cytochrome c oxidase subunit I (TACO1) causes cytochrome c oxidase deficiency and Leigh Syndrome in patients. Here, the authors characterize mice with a mutation that causes lack of TACO1 expression, identifying a mouse model that could be useful for preclinical trials.
Collapse
Affiliation(s)
- Tara R Richman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Judith A Ermer
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Stefan M K Davies
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Helena M Viola
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kristyn A Bates
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Crawley, Western Australia 6009, Australia
| | - John Papadimitriou
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Livia C Hool
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Crawley, Western Australia 6009, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Crawley, Western Australia 6009, Australia
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
7
|
Mallipeddi PL, Joshi M, Briggs JM. Pharmacophore-Based Virtual Screening to Aid in the Identification of Unknown Protein Function. Chem Biol Drug Des 2012; 80:828-42. [DOI: 10.1111/j.1747-0285.2012.01408.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zhang Y, Lin J, Gao Y. In silico identification of a multi-functional regulatory protein involved in Holliday junction resolution in bacteria. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 1:S20. [PMID: 23046553 PMCID: PMC3403352 DOI: 10.1186/1752-0509-6-s1-s20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Homologous recombination is a fundamental cellular process that is most widely used by cells to rearrange genes and accurately repair DNA double-strand breaks. It may result in the formation of a critical intermediate named Holliday junction, which is a four-way DNA junction and needs to be resolved to allow chromosome segregation. Different Holliday junction resolution systems and enzymes have been characterized from all three domains of life. In bacteria, the RuvABC complex is the most important resolution system. RESULTS In this study, we conducted comparative genomics studies to identify a novel DNA-binding protein, YebC, which may serve as a key transcriptional regulator that mainly regulates the gene expression of RuvABC resolvasome in bacteria. On the other hand, the presence of YebC orthologs in some organisms lacking RuvC implied that it might participate in other biological processes. Further phylogenetic analysis of YebC protein sequences revealed two functionally different subtypes: YebC_I and YebC_II. Distribution of YebC_I is much wider than YebC_II. Only YebC_I proteins may play an important role in regulating RuvABC gene expression in bacteria. Investigation of YebC-like proteins in eukaryotes suggested that they may have originated from YebC_II proteins and evolved a new function as a specific translational activator in mitochondria. Finally, additional phylum-specific genes associated with Holliday junction resolution were predicted. CONCLUSIONS Overall, our data provide new insights into the basic mechanism of Holliday junction resolution and homologous recombination in bacteria.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Jie Lin
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yang Gao
- Computer Network Information Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 China
| |
Collapse
|
9
|
Galperin MY, Koonin EV. From complete genome sequence to 'complete' understanding? Trends Biotechnol 2010; 28:398-406. [PMID: 20647113 PMCID: PMC3065831 DOI: 10.1016/j.tibtech.2010.05.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/18/2010] [Accepted: 05/28/2010] [Indexed: 12/29/2022]
Abstract
The rapidly accumulating genome sequence data allow researchers to address fundamental biological questions that were not even asked just a few years ago. A major problem in genomics is the widening gap between the rapid progress in genome sequencing and the comparatively slow progress in the functional characterization of sequenced genomes. Here we discuss two key questions of genome biology: whether we need more genomes, and how deep is our understanding of biology based on genomic analysis. We argue that overly specific annotations of gene functions are often less useful than the more generic, but also more robust, functional assignments based on protein family classification. We also discuss problems in understanding the functions of the remaining 'conserved hypothetical' genes.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
10
|
Terwilliger TC. Rapid model building of alpha-helices in electron-density maps. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:268-75. [PMID: 20179338 PMCID: PMC2827347 DOI: 10.1107/s0907444910000314] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/04/2010] [Indexed: 12/04/2022]
Abstract
A method for the identification of alpha-helices in electron-density maps at low resolution followed by interpretation at moderate to high resolution is presented. Rapid identification is achieved at low resolution, where alpha-helices appear as tubes of density. The positioning and direction of the alpha-helices is obtained at moderate to high resolution, where the positions of side chains can be seen. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. An average of 63% of the alpha-helical residues in these proteins were built and an average of 76% of the residues built matched helical residues in the refined models of the proteins. The overall average r.m.s.d. between main-chain atoms in the modeled alpha-helices and the nearest atom with the same name in the refined models of the proteins was 1.3 A.
Collapse
|
11
|
Terwilliger TC. Rapid model building of beta-sheets in electron-density maps. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:276-84. [PMID: 20179339 PMCID: PMC2827348 DOI: 10.1107/s0907444910000302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/04/2010] [Indexed: 11/29/2022]
Abstract
A method for rapidly building beta-sheets into electron-density maps is presented. beta-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C(beta) atoms along the strand averaged over all repeats present in the strand. The beta-strands obtained are then assembled into a single atomic model of the beta-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. The beta-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 A resolution in which a third of the residues in beta-sheets were built and a structure at 3.8 A in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 A.
Collapse
|
12
|
Terwilliger TC. Rapid chain tracing of polypeptide backbones in electron-density maps. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:285-94. [PMID: 20179340 PMCID: PMC2827349 DOI: 10.1107/s0907444910000272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/04/2010] [Indexed: 11/22/2022]
Abstract
A method for rapid chain tracing of polypeptide backbones at moderate resolution is presented. A method for the rapid tracing of polypeptide backbones has been developed. The method creates an approximate chain tracing that is useful for visual evaluation of whether a structure has been solved and for use in scoring the quality of electron-density maps. The essence of the method is to (i) sample candidate Cα positions at spacings of approximately 0.6 Å along ridgelines of high electron density, (ii) list all possible nonapeptides that satisfy simple geometric and density criteria using these candidate Cα positions, (iii) score the nonapeptides and choose the highest scoring ones, and (iv) find the longest chains that can be made by connecting nonamers. An indexing and storage scheme that allows a single calculation of most distances and density values is used to speed up the process. The method was applied to 42 density-modified electron-density maps at resolutions from 1.5 to 3.8 Å. A total of 21 428 residues in these maps were traced in 24 CPU min with an overall r.m.s.d. of 1.61 Å for Cα atoms compared with the known refined structures. The method appears to be suitable for rapid evaluation of electron-density map quality.
Collapse
|
13
|
Weraarpachai W, Antonicka H, Sasarman F, Seeger J, Schrank B, Kolesar JE, Lochmüller H, Chevrette M, Kaufman BA, Horvath R, Shoubridge EA. Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome. Nat Genet 2009; 41:833-7. [DOI: 10.1038/ng.390] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 04/27/2009] [Indexed: 12/15/2022]
|
14
|
Terwilliger TC, Adams PD, Read RJ, McCoy AJ, Moriarty NW, Grosse-Kunstleve RW, Afonine PV, Zwart PH, Hung LW. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:582-601. [PMID: 19465773 PMCID: PMC2685735 DOI: 10.1107/s0907444909012098] [Citation(s) in RCA: 753] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 03/31/2009] [Indexed: 11/13/2022]
Abstract
Ten measures of experimental electron-density-map quality are examined and the skewness of electron density is found to be the best indicator of actual map quality. A Bayesian approach to estimating map quality is developed and used in the PHENIX AutoSol wizard to make decisions during automated structure solution. Estimates of the quality of experimental maps are important in many stages of structure determination of macromolecules. Map quality is defined here as the correlation between a map and the corresponding map obtained using phases from the final refined model. Here, ten different measures of experimental map quality were examined using a set of 1359 maps calculated by re-analysis of 246 solved MAD, SAD and MIR data sets. A simple Bayesian approach to estimation of map quality from one or more measures is presented. It was found that a Bayesian estimator based on the skewness of the density values in an electron-density map is the most accurate of the ten individual Bayesian estimators of map quality examined, with a correlation between estimated and actual map quality of 0.90. A combination of the skewness of electron density with the local correlation of r.m.s. density gives a further improvement in estimating map quality, with an overall correlation coefficient of 0.92. The PHENIX AutoSol wizard carries out automated structure solution based on any combination of SAD, MAD, SIR or MIR data sets. The wizard is based on tools from the PHENIX package and uses the Bayesian estimates of map quality described here to choose the highest quality solutions after experimental phasing.
Collapse
|
15
|
The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J Bacteriol 2008; 190:6217-27. [PMID: 18641136 DOI: 10.1128/jb.00428-08] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogenicity is often manifested by the expression of various cell-associated and secreted virulence factors, such as exoenzymes, protease, and toxins. In Pseudomonas aeruginosa, the expression of virulence genes is coordinately controlled by the global regulatory quorum-sensing systems, which includes the las and rhl systems as well as the Pseudomonas quinolone signal (PQS) system. Phenazine compounds are among the virulence factors under the control of both the rhl and PQS systems. In this study, regulation of the phzA1B1C1D1E1 (phzA1) operon, which is involved in phenazine synthesis, was investigated. In an initial study of inducing conditions, we observed that phzA1 was induced by subinhibitory concentrations of tetracycline. Screening of 13,000 mutants revealed 32 genes that altered phzA1 expression in the presence of subinhibitory tetracycline concentrations. Among them, the gene PA0964, designated pmpR (pqsR-mediated PQS regulator), has been identified as a novel regulator of the PQS system. It belongs to a large group of widespread conserved hypothetical proteins with unknown function, the YebC protein family (Pfam family DUF28). It negatively regulates the quorum-sensing response regulator pqsR of the PQS system by binding at its promoter region. Alongside phzA1 expression and phenazine and pyocyanin production, a set of virulence factors genes controlled by both rhl and the PQS were shown to be modulated by PmpR. Swarming motility and biofilm formation were also significantly affected. The results added another layer of regulation in the rather complex quorum-sensing systems in P. aeruginosa and demonstrated a clear functional clue for the YebC family proteins.
Collapse
|
16
|
Ruan SK, Chin KH, Shr HL, Lyu PC, Wang AHJ, Chou SH. Preliminary X-ray analysis of XC5848, a hypothetical ORFan protein with an Sm-like motif from Xanthomonas campestris. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:30-3. [PMID: 17183169 PMCID: PMC2330107 DOI: 10.1107/s1744309106052730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 12/06/2006] [Indexed: 11/10/2022]
Abstract
XC5848, a hypothetical protein from the pathogenic bacterium Xanthomonas campestris that causes black rot, has been chosen as a potential target for the discovery of novel folds. It is unique to the Xanthomonas genus and has significant sequence identity mainly to corresponding proteins from the Xanthomonas genus. In this paper, the cloning, overexpression, purification and crystallization of the XC5848 protein are reported. The XC5848 crystals diffracted to a resolution of at least 1.68 A. They belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 48.13, b = 51.62, c = 82.32 A. Two molecules were found in each asymmetric unit. Preliminary structural studies nevertheless indicate that XC5848 belongs to the highly conserved Sm-like alpha-beta-beta-beta-beta fold. However, significant differences in sequence and structure were observed. It therefore represents a novel variant of the crucial Sm-like motif that is heavily involved in mRNA splicing and degradation.
Collapse
Affiliation(s)
- Sz-Kai Ruan
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Ko-Hsin Chin
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hui-Lin Shr
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ping-Chiang Lyu
- Department of Life Science, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Shan-Ho Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
17
|
Qiu Y, Tereshko V, Kim Y, Zhang R, Collart F, Yousef M, Kossiakoff A, Joachimiak A. The crystal structure of Aq_328 from the hyperthermophilic bacteria Aquifex aeolicus shows an ancestral histone fold. Proteins 2006; 62:8-16. [PMID: 16287087 PMCID: PMC2792020 DOI: 10.1002/prot.20590] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The structure of Aq_328, an uncharacterized protein from hyperthermophilic bacteria Aquifex aeolicus, has been determined to 1.9 A by using multi-wavelength anomalous diffraction (MAD) phasing. Although the amino acid sequence analysis shows that Aq_328 has no significant similarity to proteins with a known structure and function, the structure comparison by using the Dali server reveals that it: (1) assumes a histone-like fold, and (2) is similar to an ancestral nuclear histone protein (PDB code 1F1E) with z-score 8.1 and RMSD 3.6 A over 124 residues. A sedimentation equilibrium experiment indicates that Aq_328 is a monomer in solution, with an average sedimentation coefficient of 2.4 and an apparent molecular weight of about 20 kDa. The overall architecture of Aq_328 consists of two noncanonical histone domains in tandem repeat within a single chain, and is similar to eukaryotic heterodimer (H2A/H2B and H3/H4) and an archaeal histone heterodimer (HMfA/HMfB). The sequence comparisons between the two histone domains of Aq_328 and six eukaryotic/archaeal histones demonstrate that most of the conserved residues that underlie the Aq_328 architecture are used to build and stabilize the two cross-shaped antiparallel histone domains. The high percentage of salt bridges in the structure could be a factor in the protein's thermostability. The structural similarities to other histone-like proteins, molecular properties, and potential function of Aq_328 are discussed in this paper.
Collapse
Affiliation(s)
- Yang Qiu
- The University of Chicago, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Valentina Tereshko
- The University of Chicago, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Youngchang Kim
- Structural Biology Center and Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, Illinois
| | - Rongguang Zhang
- Structural Biology Center and Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, Illinois
| | - Frank Collart
- Structural Biology Center and Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, Illinois
| | - Mohammed Yousef
- The University of Chicago, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Anthony Kossiakoff
- The University of Chicago, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Andrzej Joachimiak
- The University of Chicago, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
- Structural Biology Center and Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, Illinois
- Correspondence to: Andrzej Joachimiak, Structural Biology Center and Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Building 202, Argonne, Illinois 60439. and Anthony Kossia-koff, The University of Chicago, Department of Biochemistry and Molecular Biology, University of Chicago, 920 E. 58 St., Chicago, IL 60637.
| |
Collapse
|
18
|
Chin KH, Huang ZW, Wei KC, Chou CC, Lee CC, Shr HL, Gao FP, Lyu PC, Wang AHJ, Chou SH. Preparation, crystallization and preliminary X-ray characterization of a conserved hypothetical protein XC1692 from Xanthomonas campestris. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:691-3. [PMID: 16511130 PMCID: PMC1952469 DOI: 10.1107/s1744309105018798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 06/13/2005] [Indexed: 11/10/2022]
Abstract
Xanthomonas campestris pv. campestris strain 17 is a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. Its genome contains approximately 4500 genes, one third of which have no known structure and/or function yet are highly conserved among several different bacterial genuses. One of these gene products is XC1692 protein, containing 141 amino acids. It was overexpressed in Escherichia coli, purified and crystallized in a variety of forms using the hanging-drop vapour-diffusion method. The crystals diffract to at least 1.45 A resolution. They are hexagonal and belong to space group P6(3), with unit-cell parameters a = b = 56.9, c = 71.0 A. They contain one molecule per asymmetric unit.
Collapse
Affiliation(s)
- Ko-Hsin Chin
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Zhao-Wei Huang
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Kun-Chou Wei
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Chia-Cheng Chou
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Hui-Lin Shr
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Fei Philip Gao
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Ping-Chiang Lyu
- Department of Life Science, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Shan-Ho Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
19
|
Chin KH, Kuo WT, Chou CC, Shr HL, Lyu PC, Wang AHJ, Chou SH. Cloning, purification, crystallization and preliminary X-ray analysis of XC229, a conserved hypothetical protein from Xanthomonas campestris. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:694-6. [PMID: 16511131 PMCID: PMC1952452 DOI: 10.1107/s1744309105018944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 06/14/2005] [Indexed: 11/10/2022]
Abstract
Xanthomonas campestris pv. campestris is a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. Its genome contains approximately 4500 genes, roughly one third of which have no known structure and/or function. However, some of these unknown genes are highly conserved among several different bacterial genuses. XC229 is one such protein containing 134 amino acids. It was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystal diffracted to a resolution of at least 1.80 A. It is cubic and belongs to space group I2(x)3, with unit-cell parameters a = b = c = 106.8 A. It contains one or two molecules per asymmetric unit.
Collapse
Affiliation(s)
- Ko-Hsin Chin
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Wei-Tien Kuo
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Chia-Cheng Chou
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Hui-Lin Shr
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Ping-Chiang Lyu
- Department of Life Science, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
- Core Facility for Protein Crystallography, Academia Sinica, Nankang, Taipei, Taiwan
| | - Shan-Ho Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
20
|
Functional clues for hypothetical proteins based on genomic context analysis in prokaryotes. Nucleic Acids Res 2004; 32:6321-6. [PMID: 15576358 DOI: 10.1093/nar/gkh973] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Three integrated genomic context methods were used to annotate uncharacterized proteins in 102 bacterial genomes. Of 7853 orthologous groups with unknown function containing 45,110 proteins, 1738 groups could be linked to functionally associated partners. In many cases, those partners are uncharacterized themselves (hinting at newly identified modules) or have been described in general terms only. However, we were able to assign pathways, cellular processes or physical complexes for 273 groups (encompassing 3624 previously functionally uncharacterized proteins).
Collapse
|
21
|
Galperin MY, Koonin EV. 'Conserved hypothetical' proteins: prioritization of targets for experimental study. Nucleic Acids Res 2004; 32:5452-63. [PMID: 15479782 PMCID: PMC524295 DOI: 10.1093/nar/gkh885] [Citation(s) in RCA: 303] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Comparative genomics shows that a substantial fraction of the genes in sequenced genomes encodes 'conserved hypothetical' proteins, i.e. those that are found in organisms from several phylogenetic lineages but have not been functionally characterized. Here, we briefly discuss recent progress in functional characterization of prokaryotic 'conserved hypothetical' proteins and the possible criteria for prioritizing targets for experimental study. Based on these criteria, the chief one being wide phyletic spread, we offer two 'top 10' lists of highly attractive targets. The first list consists of proteins for which biochemical activity could be predicted with reasonable confidence but the biological function was predicted only in general terms, if at all ('known unknowns'). The second list includes proteins for which there is no prediction of biochemical activity, even if, for some, general biological clues exist ('unknown unknowns'). The experimental characterization of these and other 'conserved hypothetical' proteins is expected to reveal new, crucial aspects of microbial biology and could also lead to better functional prediction for medically relevant human homologs.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
22
|
Kim SH, Shin DH, Choi IG, Schulze-Gahmen U, Chen S, Kim R. Structure-based functional inference in structural genomics. ACTA ACUST UNITED AC 2004; 4:129-35. [PMID: 14649297 DOI: 10.1023/a:1026200610644] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The dramatically increasing number of new protein sequences arising from genomics and proteomics requires the need for methods to rapidly and reliably infer the molecular and cellular functions of these proteins. One such approach, structural genomics, aims to delineate the total repertoire of protein folds in nature, thereby providing three-dimensional folding patterns for all proteins and to infer molecular functions of the proteins based on the combined information of structures and sequences. The goal of obtaining protein structures on a genomic scale has motivated the development of high throughput technologies and protocols for macromolecular structure determination that have begun to produce structures at a greater rate than previously possible. These new structures have revealed many unexpected functional inferences and evolutionary relationships that were hidden at the sequence level. Here, we present samples of structures determined at Berkeley Structural Genomics Center and collaborators' laboratories to illustrate how structural information provides and complements sequence information to deduce the functional inferences of proteins with unknown molecular functions. Two of the major premises of structural genomics are to discover a complete repertoire of protein folds in nature and to find molecular functions of the proteins whose functions are not predicted from sequence comparison alone. To achieve these objectives on a genomic scale, new methods, protocols, and technologies need to be developed by multi-institutional collaborations worldwide. As part of this effort, the Protein Structure Initiative has been launched in the United States (PSI; www.nigms.nih.gov/funding/psi.html). Although infrastructure building and technology development are still the main focus of structural genomics programs, a considerable number of protein structures have already been produced, some of them coming directly out of semiautomated structure determination pipelines. The Berkeley Structural Genomics Center (BSGC) has focused on the proteins of Mycoplasma or their homologues from other organisms as its structural genomics targets because of the minimal genome size of the Mycoplasmas as well as their relevance to human and animal pathogenicity (http://www.strgen.org). Here we present several protein examples encompassing a spectrum of functional inferences obtainable from their three-dimensional structures in five situations, where the inferences are new and testable, and are not predictable from protein sequence information alone.
Collapse
Affiliation(s)
- Sung-Hou Kim
- Department of Chemistry, University of California, Berkeley, California 94720-5230, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Kolker E, Makarova KS, Shabalina S, Picone AF, Purvine S, Holzman T, Cherny T, Armbruster D, Munson RS, Kolesov G, Frishman D, Galperin MY. Identification and functional analysis of 'hypothetical' genes expressed in Haemophilus influenzae. Nucleic Acids Res 2004; 32:2353-61. [PMID: 15121896 PMCID: PMC419445 DOI: 10.1093/nar/gkh555] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The progress in genome sequencing has led to a rapid accumulation in GenBank submissions of uncharacterized 'hypothetical' genes. These genes, which have not been experimentally characterized and whose functions cannot be deduced from simple sequence comparisons alone, now comprise a significant fraction of the public databases. Expression analyses of Haemophilus influenzae cells using a combination of transcriptomic and proteomic approaches resulted in confident identification of 54 'hypothetical' genes that were expressed in cells under normal growth conditions. In an attempt to understand the functions of these proteins, we used a variety of publicly available analysis tools. Close homologs in other species were detected for each of the 54 'hypothetical' genes. For 16 of them, exact functional assignments could be found in one or more public databases. Additionally, we were able to suggest general functional characterization for 27 more genes (comprising approximately 80% total). Findings from this analysis include the identification of a pyruvate-formate lyase-like operon, likely to be expressed not only in H.influenzae but also in several other bacteria. Further, we also observed three genes that are likely to participate in the transport and/or metabolism of sialic acid, an important component of the H.influenzae lipo-oligosaccharide. Accurate functional annotation of uncharacterized genes calls for an integrative approach, combining expression studies with extensive computational analysis and curation, followed by eventual experimental verification of the computational predictions.
Collapse
Affiliation(s)
- Eugene Kolker
- BIATECH, 19310 North Creek Parkway, Suite 115, Bothell, WA 98011, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Frishman D. What we have learned about prokaryotes from structural genomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2004; 7:211-24. [PMID: 14506850 DOI: 10.1089/153623103322246601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Five years ago systematic determination and theoretical analysis of all protein structures encoded in model prokaryotic organisms was proposed as a powerful way to obtain new insights into protein function and the variety of protein folds. What has been the pay-off from studying structures in genomic context? Have we learned anything new about protein structure? Can we now predict protein function better? In this contribution, I summarize the status of large-scale structure determination projects on prokaryotes and provide an overview of the main results obtained from experimental and theoretical studies in this dynamic research field.
Collapse
Affiliation(s)
- Dmitrij Frishman
- Department of Genome Oriented Bioinformatics, Technical University of Munich, Freising-Weihenstephan, Germany.
| |
Collapse
|
25
|
Abstract
The study of structural genomics and structural proteomics has determined the tertiary structures of many hypothetical proteins, whose molecular functions could not be understood using conventional methods. In order to infer the geometrical location of the functional site, the biochemical function and the biological function of the hypothetical protein, much effort has been made in protein informatics. The importance of heterogeneous databases and various descriptors of amino acid sequences, tertiary structures and pathways on the proteome scale has been emphasised.
Collapse
Affiliation(s)
- Kengo Kinoshita
- Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro-cho, Turumi-ku, 230-0045, Yokohama, Japan.
| | | |
Collapse
|
26
|
Ota M, Kinoshita K, Nishikawa K. Prediction of catalytic residues in enzymes based on known tertiary structure, stability profile, and sequence conservation. J Mol Biol 2003; 327:1053-64. [PMID: 12662930 DOI: 10.1016/s0022-2836(03)00207-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The catalytic or functionally important residues of a protein are known to exist in evolutionarily constrained regions. However, the patterns of residue conservation alone are sometimes not very informative, depending on the homologous sequences available for a given query protein. Here, we present an integrated method to locate the catalytic residues in an enzyme from its sequence and structure. Mutations of functional residues usually decrease the activity, but concurrently often increase stability. Also, catalytic residues tend to occupy partially buried sites in holes or clefts on the molecular surface. After confirming these general tendencies by carrying out statistical analyses on 49 representative enzymes, these data together with amino acid conservation were evaluated. This novel method exhibited better sensitivity in the prediction accuracy than traditional methods that consider only the residue conservation. We applied it to some so-called "hypothetical" proteins, with known structures but undefined functions. The relationships among the catalytic, conserved, and destabilizing residues in enzymatic proteins are discussed.
Collapse
Affiliation(s)
- Motonori Ota
- National Institute of Genetics, Yata, Mishima, 411-8540, Shizuoka, Japan.
| | | | | |
Collapse
|