1
|
Mao Q, Wu B, VanSaders B, Jaeger HM. Structural reconfiguration of interacting multi-particle systems through parametric pumping. Nat Commun 2025; 16:4637. [PMID: 40389412 PMCID: PMC12089536 DOI: 10.1038/s41467-025-59631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/25/2025] [Indexed: 05/21/2025] Open
Abstract
Processes from crystallization to protein folding to micro-robot self-assembly rely on achieving specific configurations of microscopic objects with short-ranged interactions. However, the small scales and large configuration spaces of such multi-body systems render targeted control challenging. Inspired by optical pumping manipulation of quantum states, we develop a method using parametric pumping to selectively excite and destroy undesired structures to populate the targeted one. This method does not rely on free energy considerations and therefore works for systems with non-conservative and even non-reciprocal interactions, which we demonstrate with an acoustically levitated five-particle system in the Rayleigh limit. With results from experiments and simulations on three additional systems ranging up to hundreds of particles, we show the generality of this method, offering a new path for non-invasive manipulation of strongly interacting multi-particle systems.
Collapse
Affiliation(s)
- Qinghao Mao
- Department of Physics, University of Chicago, Chicago, IL, USA.
- James Franck Institute, University of Chicago, Chicago, IL, USA.
| | - Brady Wu
- Department of Physics, University of Chicago, Chicago, IL, USA
- James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Bryan VanSaders
- James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Heinrich M Jaeger
- Department of Physics, University of Chicago, Chicago, IL, USA
- James Franck Institute, University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Qiu W. High-Performance and Environmentally-Friendly Bulk-Wave-Acoustofluidic Devices Driven by Lead-Free Piezoelectric Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407453. [PMID: 39580682 PMCID: PMC11899509 DOI: 10.1002/smll.202407453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/07/2024] [Indexed: 11/26/2024]
Abstract
Bulk-wave-acoustofluidic devices provide strong acoustic fields and high device efficiency, thereby offering high-throughput capability when processing biological samples. Such devices are typically driven by lead zirconate titanate (PZT) transducers, which contain a high content of lead, inevitably resulting in environmental and biocompatibility issues. Replacing PZT with lead-free piezoelectric materials in various ultrasonic devices is considered challenging mainly due to the inferior piezoelectric properties lead-free materials possess compared to those of PZT. In this study, through both experiments and numerical simulations, it is demonstrated that the performance of the bulk-wave-acoustofluidic devices driven by (Bi,Na)TiO3-BaTiO3-(Bi,Na)(Mn,Nb)O3 (BNT-BT-BNMN) can match that of PZT-driven devices at low power and is superior at intermediate power. It is found that the low acoustic impedance and the weak transverse mode in BNT-BT-BNMN compensate for the inferior piezoelectric properties at low power. The fact that the BNT-BT-BNMN devices outperform at intermediate power is consistent with the superior performance of the Mn-doped BNT-based piezoelectric materials compared to PZT at high power. Perfect focusing on 5-μ m $\mathrm{\umu}\mathrm{m}$ -diameter polystyrene particles at a flow rate of up to 10 mL min-1 is achieved using the BNT-BT-BNMN device at input power of 1 W.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Biomedical EngineeringLund UniversityOle Römers väg 3A223 63LundSweden
| |
Collapse
|
3
|
Haque MA, Maestas JR, Zhu X, Hanson BL, Wu DT, Wu N. High-Density and Well-Aligned Hierarchical Structures of Colloids Assembled under Orthogonal Magnetic and Electric Fields. ACS NANO 2025; 19:760-770. [PMID: 39745311 DOI: 10.1021/acsnano.4c11957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle-particle interactions is limited. This work presents results under a combination of electric and magnetic fields. When these two fields are orthogonally applied, we can independently tune the magnitude and direction of the dipolar attraction and repulsion between the particles. As a result, we obtain well-aligned, highly dense, but individually separated linear chains at intermediate particle concentrations. Both the inter- and intrachain spacings can be tuned by adjusting the particle concentration and relative strengths of both fields. At high particle concentrations and by tuning the electric field frequency, the individual microspheres can assemble into colloidal oligomers such as trimers, tetramers, heptamers, and nonamers in response to the electric field due to the synergy between dipolar and electrohydrodynamic interactions. These oligomers, in turn, serve as building blocks for making hierarchical structures with finer architectures upon superimposing a one-dimensional (1D) magnetic field. In addition to experiments, Monte Carlo (MC) simulations have been performed on colloids confined near the electrode, interacting through a Stockmayer-like potential. They faithfully reproduce key observations in the experiments. Our work demonstrates the potential of using orthogonal electric and magnetic fields to assemble diversified types of highly aligned structures for applications in high-strength composites, optical materials, or structured battery electrodes.
Collapse
Affiliation(s)
- Md Ashraful Haque
- Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Joseph R Maestas
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Xingrui Zhu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Benjamin L Hanson
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, United States
| | - David T Wu
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Institute of Chemistry, Academia Sinica, Nangang 115, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
4
|
Li C, Xu G, Wang Y, Huang L, Cai F, Meng L, Jin B, Jiang Z, Sun H, Zhao H, Lu X, Sang X, Huang P, Li F, Yang H, Mao Y, Zheng H. Acoustic-holography-patterned primary hepatocytes possess liver functions. Biomaterials 2024; 311:122691. [PMID: 38996673 DOI: 10.1016/j.biomaterials.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Acoustic holography (AH), a promising approach for cell patterning, emerges as a powerful tool for constructing novel invitro 3D models that mimic organs and cancers features. However, understanding changes in cell function post-AH remains limited. Furthermore, replicating complex physiological and pathological processes solely with cell lines proves challenging. Here, we employed acoustical holographic lattice to assemble primary hepatocytes directly isolated from mice into a cell cluster matrix to construct a liver-shaped tissue sample. For the first time, we evaluated the liver functions of AH-patterned primary hepatocytes. The patterned model exhibited large numbers of self-assembled spheroids and superior multifarious core hepatocyte functions compared to cells in 2D and traditional 3D culture models. AH offers a robust protocol for long-term in vitro culture of primary cells, underscoring its potential for future applications in disease pathogenesis research, drug testing, and organ replacement therapy.
Collapse
Affiliation(s)
- Changcan Li
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China; Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yinhan Wang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Laixin Huang
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Feiyan Cai
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Long Meng
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Zhuoran Jiang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Hang Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xingting Sang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Pengyu Huang
- Institute of Biomedical Engineering, PUMC & Chinese Academy of Medical Sciences (CAMS), Tianjin, China
| | - Fei Li
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| | - Hairong Zheng
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
5
|
Li T, Li J, Bo L, Pei Z, Shen L, Cheng J, Tian Z, Du Y, Cai B, Sun C, Brooks MR, Albert Pan Y. Airborne Acoustic Vortex End Effector-based Contactless, Multi-mode, Programmable Control of Object Surfing. ADVANCED MATERIALS TECHNOLOGIES 2024; 9:2400564. [PMID: 39600617 PMCID: PMC11588303 DOI: 10.1002/admt.202400564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Indexed: 11/29/2024]
Abstract
Tweezers based on optical, electric, magnetic, and acoustic fields have shown great potential for contactless object manipulation. However, current tweezers designed for manipulating millimeter-sized objects such as droplets, particles, and small animals, exhibit limitations in translation resolution, range, and path complexity. Here, we introduce a novel acoustic vortex tweezers system, which leverages a unique airborne acoustic vortex end effector integrated with a three degree-of-freedom (DoF) linear motion stage, for enabling contactless, multi-mode, programmable manipulation of millimeter-sized objects. The acoustic vortex end effector utilizes a cascaded circular acoustic array, which is portable and battery-powered, to generate an acoustic vortex with a ring-shaped energy pattern. The vortex applies acoustic radiation forces to trap and spin an object at its center, simultaneously protecting this object by repelling other materials away with its high-energy ring. Moreover, our vortex tweezers system facilitates contactless, multi-mode, programmable object surfing, as demonstrated in experiments involving trapping, repelling, and spinning particles, translating particles along complex paths, guiding particles around barriers, translating and rotating droplets containing zebrafish larvae, and merging droplets. With these capabilities, we anticipate that our tweezers system will become a valuable tool for the automated, contactless handling of droplets, particles, and bio-samples in biomedical and biochemical research.
Collapse
Affiliation(s)
- Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Jiali Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Luyu Bo
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Zhe Pei
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Liang Shen
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Jiangtao Cheng
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Yingshan Du
- Department of Biomedical Engineering and Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Bowen Cai
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Chuangchuang Sun
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Michael R. Brooks
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Y. Albert Pan
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| |
Collapse
|
6
|
Sar GK, Ghosh D, O'Keeffe K. Solvable model of driven matter with pinning. Phys Rev E 2024; 109:044603. [PMID: 38755809 DOI: 10.1103/physreve.109.044603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/15/2024] [Indexed: 05/18/2024]
Abstract
We present a simple model of driven matter in a 1D medium with pinning impurities, applicable to magnetic domains walls, confined colloids, and other systems. We find rich dynamics, including hysteresis, reentrance, quasiperiodicity, and two distinct routes to chaos. In contrast to other minimal models of driven matter, the model is solvable: we derive the full phase diagram for small N, and for large N, we derive expressions for order parameters and several bifurcation curves. The model is also realistic. Its collective states match those seen in the experiments of magnetic domain walls.
Collapse
Affiliation(s)
- Gourab Kumar Sar
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Kevin O'Keeffe
- Senseable City Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Reinken H, Menzel AM. Vortex Pattern Stabilization in Thin Films Resulting from Shear Thickening of Active Suspensions. PHYSICAL REVIEW LETTERS 2024; 132:138301. [PMID: 38613265 DOI: 10.1103/physrevlett.132.138301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 04/14/2024]
Abstract
The need for structuring on micrometer scales is abundant, for example, in view of phononic applications. We here outline a novel approach based on the phenomenon of active turbulence on the mesoscale. As we demonstrate, a shear-thickening carrier fluid of active microswimmers intrinsically stabilizes regular vortex patterns of otherwise turbulent active suspensions. The fluid self-organizes into a periodically structured nonequilibrium state. Introducing additional passive particles of intermediate size leads to regular spatial organization of these objects. Our approach opens a new path toward functionalization through patterning of thin films and membranes.
Collapse
Affiliation(s)
- Henning Reinken
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
8
|
Kollipara PS, Wu Z, Yao K, Lin D, Ju Z, Zhang X, Jiang T, Ding H, Fang J, Li J, Korgel BA, Redwing JM, Yu G, Zheng Y. Three-Dimensional Optothermal Manipulation of Light-Absorbing Particles in Phase-Change Gel Media. ACS NANO 2024; 18:8062-8072. [PMID: 38456693 PMCID: PMC11285096 DOI: 10.1021/acsnano.3c11162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Rational manipulation and assembly of discrete colloidal particles into architected superstructures have enabled several applications in materials science and nanotechnology. Optical manipulation techniques, typically operated in fluid media, facilitate the precise arrangement of colloidal particles into superstructures by using focused laser beams. However, as the optical energy is turned off, the inherent Brownian motion of the particles in fluid media impedes the retention and reconfiguration of such superstructures. Overcoming this fundamental limitation, we present on-demand, three-dimensional (3D) optical manipulation of colloidal particles in a phase-change solid medium made of surfactant bilayers. Unlike liquid crystal media, the lack of fluid flow within the bilayer media enables the assembly and retention of colloids for diverse spatial configurations. By utilizing the optically controlled temperature-dependent interactions between the particles and their surrounding media, we experimentally exhibit the holonomic microscale control of diverse particles for repeatable, reconfigurable, and controlled colloidal arrangements in 3D. Finally, we demonstrate tunable light-matter interactions between the particles and 2D materials by successfully manipulating and retaining these particles at fixed distances from the 2D material layers. Our experimental results demonstrate that the particles can be retained for over 120 days without any change in their relative positions or degradation in the bilayers. With the capability of arranging particles in 3D configurations with long-term stability, our platform pushes the frontiers of optical manipulation for distinct applications such as metamaterial fabrication, information storage, and security.
Collapse
Affiliation(s)
- Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zilong Wu
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kan Yao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dongdong Lin
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Department of Microelectronic Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhengyu Ju
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiaotian Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Taizhi Jiang
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jie Fang
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian A Korgel
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Guihua Yu
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Janiak J, Li Y, Ferry Y, Doinikov AA, Ahmed D. Acoustic microbubble propulsion, train-like assembly and cargo transport. Nat Commun 2023; 14:4705. [PMID: 37543657 PMCID: PMC10404234 DOI: 10.1038/s41467-023-40387-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/20/2023] [Indexed: 08/07/2023] Open
Abstract
Achieving controlled mobility of microparticles in viscous fluids can become pivotal in biologics, biotechniques, and biomedical applications. The self-assembly, trapping, and transport of microparticles are being explored in active matter, micro and nanorobotics, and microfluidics; however, little work has been done in acoustics, particularly in active matter and robotics. This study reports the discovery and characterization of microbubble behaviors in a viscous gel that is confined to a slight opening between glass boundaries in an acoustic field. Where incident waves encounter a narrow slit, acoustic pressure is amplified, causing the microbubbles to nucleate and cavitate within it. Intermittent activation transforms microbubbles from spherical to ellipsoidal, allowing them to be trapped within the interstice. Continuous activation propels ellipsoidal microbubbles through shape and volume modes that is developed at their surfaces. Ensembles of microbubbles self-assemble into a train-like arrangement, which in turn capture, transport, and release microparticles.
Collapse
Affiliation(s)
- Jakub Janiak
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Yuyang Li
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Yann Ferry
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Alexander A Doinikov
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland.
| |
Collapse
|
10
|
Edel JB, Ma Y, Kornyshev AA. Electrochemical photonics: a pathway towards electrovariable optical metamaterials. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2717-2744. [PMID: 39635491 PMCID: PMC11501799 DOI: 10.1515/nanoph-2023-0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/10/2023] [Indexed: 12/07/2024]
Abstract
This review article focuses on the latest achievements in the creation of a class of electrotuneable optical metamaterials for switchable mirrors/windows, variable colour mirrors, optical filters, and SERS sensors, based on the voltage-controlled self-assembly of plasmonic nanoparticles at liquid/liquid or solid/liquid electrochemical interfaces. Practically, these experimental systems were navigated by physical theory, the role of which was pivotal in defining the optimal conditions for their operation, but which itself was advanced in feedback with experiments. Progress and problems in the realisation of the demonstrated effects for building the corresponding devices are discussed. To put the main topic of the review in a wider perspective, the article also discusses a few other types of electrovariable metamaterials, as well as some of those that are controlled by chemistry.
Collapse
Affiliation(s)
- Joshua B. Edel
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, W12 0BZ, UK
| | - Ye Ma
- Department of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Alexei A. Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, W12 0BZ, UK
| |
Collapse
|
11
|
Ghanem MA, Maxwell AD, Dalecki D, Sapozhnikov OA, Bailey MR. Phase holograms for the three-dimensional patterning of unconstrained microparticles. Sci Rep 2023; 13:9160. [PMID: 37280230 PMCID: PMC10244404 DOI: 10.1038/s41598-023-35337-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Acoustic radiation forces can remotely manipulate particles. Forces from a standing wave field align microscale particles along the nodal or anti-nodal locations of the field to form three-dimensional (3D) patterns. These patterns can be used to form 3D microstructures for tissue engineering applications. However, standing wave generation requires more than one transducer or a reflector, which is challenging to implement in vivo. Here, a method is developed and validated to manipulate microspheres using a travelling wave from a single transducer. Diffraction theory and an iterative angular spectrum approach are employed to design phase holograms to shape the acoustic field. The field replicates a standing wave and aligns polyethylene microspheres in water, which are analogous to cells in vivo, at pressure nodes. Using Gor'kov potential to calculate the radiation forces on the microspheres, axial forces are minimized, and transverse forces are maximized to create stable particle patterns. Pressure fields from the phase holograms and resulting particle aggregation patterns match predictions with a feature similarity index > 0.92, where 1 is a perfect match. The resulting radiation forces are comparable to those produced from a standing wave, which suggests opportunities for in vivo implementation of cell patterning toward tissue engineering applications.
Collapse
Affiliation(s)
- Mohamed A Ghanem
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA, 98105, USA.
| | - Adam D Maxwell
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA, 98105, USA
- Physics Faculty, Moscow State University, Moscow, 119991, Russia
| | - Michael R Bailey
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St., Seattle, WA, 98105, USA
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
12
|
Chen X, Chen X, Peng Y, Zhu L, Wang W. Dielectrophoretic Colloidal Levitation by Electrode Polarization in Oscillating Electric Fields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6932-6945. [PMID: 37148258 DOI: 10.1021/acs.langmuir.3c00759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Controlled colloidal levitation is key to many applications. Recently, it was discovered that polymer microspheres were levitated to a few micrometers in aqueous solutions in alternating current (AC) electric fields. A few mechanisms have been proposed to explain this AC levitation such as electrohydrodynamic flows, asymmetric rectified electric fields, and aperiodic electrodiffusiophoresis. Here, we propose an alternative mechanism based on dielectrophoresis in a spatially inhomogeneous electric field gradient extending from the electrode surface micrometers into the bulk. This field gradient is derived from electrode polarization, where counterions accumulate near electrode surfaces. A dielectric microparticle is then levitated from the electrode surface to a height where the dielectrophoretic lift balances gravity. The dielectrophoretic levitation mechanism is supported by two numerical models. One model assumes point dipoles and solves for the Poisson-Nernst-Planck equations, while the second model incorporates a dielectric sphere of a realistic size and permittivity and uses the Maxwell-stress tensor formulation to solve for the electrical body force. In addition to proposing a plausible levitation mechanism, we further demonstrate that AC colloidal levitation can be used to move synthetic microswimmers to controlled heights. This study sheds light on understanding the dynamics of colloidal particles near an electrode and paves the way to using AC levitation to manipulate colloidal particles, active or passive.
Collapse
Affiliation(s)
- Xiaowen Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xi Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lailai Zhu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
13
|
Yin C, Jiang X, Mann S, Tian L, Drinkwater BW. Acoustic Trapping: An Emerging Tool for Microfabrication Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207917. [PMID: 36942987 DOI: 10.1002/smll.202207917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The high throughput deposition of microscale objects with precise spatial arrangement represents a key step in microfabrication technology. This can be done by creating physical boundaries to guide the deposition process or using printing technologies; in both approaches, these microscale objects cannot be further modified after they are formed. The utilization of dynamic acoustic fields offers a novel approach to facilitate real-time reconfigurable miniaturized systems in a contactless manner, which can potentially be used in physics, chemistry, biology, as well as materials science. Here, the physical interactions of microscale objects in an acoustic pressure field are discussed and how to fabricate different acoustic trapping devices and how to tune the spatial arrangement of the microscale objects are explained. Moreover, different approaches that can dynamically modulate microscale objects in acoustic fields are presented, and the potential applications of the microarrays in biomedical engineering, chemical/biochemical sensing, and materials science are highlighted alongside a discussion of future research challenges.
Collapse
Affiliation(s)
- Chengying Yin
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xingyu Jiang
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, BS8 1TS, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Binjiang Institute of Zhejiang University, 66 Dongxin Road, Hangzhou, 310053, China
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Bruce W Drinkwater
- Faculty of Engineering, Queen's Building, University of Bristol, Bristol, BS8 1TR, UK
| |
Collapse
|
14
|
Melde K, Kremer H, Shi M, Seneca S, Frey C, Platzman I, Degel C, Schmitt D, Schölkopf B, Fischer P. Compact holographic sound fields enable rapid one-step assembly of matter in 3D. SCIENCE ADVANCES 2023; 9:eadf6182. [PMID: 36753553 PMCID: PMC9908023 DOI: 10.1126/sciadv.adf6182] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Acoustic waves exert forces when they interact with matter. Shaping ultrasound fields precisely in 3D thus allows control over the force landscape and should permit particulates to fall into place to potentially form whole 3D objects in "one shot." This is promising for rapid prototyping, most notably biofabrication, since conventional methods are typically slow and apply mechanical or chemical stress on biological cells. Here, we realize the generation of compact holographic ultrasound fields and demonstrate the one-step assembly of matter using acoustic forces. We combine multiple holographic fields that drive the contactless assembly of solid microparticles, hydrogel beads, and biological cells inside standard labware. The structures can be fixed via gelation of the surrounding medium. In contrast to previous work, this approach handles matter with positive acoustic contrast and does not require opposing waves, supporting surfaces or scaffolds. We envision promising applications of 3D holographic ultrasound fields in tissue engineering and additive manufacturing.
Collapse
Affiliation(s)
- Kai Melde
- Micro, Nano and Molecular Systems Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Heiner Kremer
- Empirical Inference Department, Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tübingen, Germany
| | - Minghui Shi
- Micro, Nano and Molecular Systems Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Senne Seneca
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Christoph Frey
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Ilia Platzman
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Christian Degel
- Technical Ultrasound Department, Fraunhofer Institute for Biomedical Engineering, Ensheimer Straße 48, 66386 St. Ingbert, Germany
| | - Daniel Schmitt
- Technical Ultrasound Department, Fraunhofer Institute for Biomedical Engineering, Ensheimer Straße 48, 66386 St. Ingbert, Germany
| | - Bernhard Schölkopf
- Empirical Inference Department, Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tübingen, Germany
| | - Peer Fischer
- Micro, Nano and Molecular Systems Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Goyal R, Athanassiadis AG, Ma Z, Fischer P. Amplification of Acoustic Forces Using Microbubble Arrays Enables Manipulation of Centimeter-Scale Objects. PHYSICAL REVIEW LETTERS 2022; 128:254502. [PMID: 35802439 DOI: 10.1103/physrevlett.128.254502] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/18/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Manipulation of macroscale objects by sound is fundamentally limited by the wavelength and object size. Resonant subwavelength scatterers such as bubbles can decouple these requirements, but typically the forces are weak. Here we show that patterning bubbles into arrays leads to geometric amplification of the scattering forces, enabling the precise assembly and manipulation of cm-scale objects. We rotate a 1 cm object continuously or position it with 15 μm accuracy, using sound with a 50 cm wavelength. The results are described well by a theoretical model. Our results lay the foundation for using secondary Bjerknes forces in the controlled organization and manipulation of macroscale structures.
Collapse
Affiliation(s)
- Rahul Goyal
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | | | - Zhichao Ma
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
16
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
17
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
18
|
Kopitca A, Latifi K, Zhou Q. Programmable assembly of particles on a Chladni plate. SCIENCE ADVANCES 2021; 7:eabi7716. [PMID: 34550737 PMCID: PMC8457668 DOI: 10.1126/sciadv.abi7716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/03/2021] [Indexed: 06/01/2023]
Abstract
In nature, simple building units can be assembled into complex shapes through long-term time-varying external stimuli that are often spatially nonlinear. In contrast, most artificial methods of externally directed assembly rely on field- or template-based energy minimization. However, methods directing the assembly process by controlling time-varying external stimuli instead of attaining the lowest-energy state remain largely unexplored. In this study, we introduce a method that applies time-varying and spatially nonlinear vibration fields to assemble particles into a desired two-dimensional shape. Our assembly method predicts, controls, and monitors the vibration-induced particle motion to iteratively minimize the difference between the desired shape and the actual particle distribution. We applied our method to a centrally actuated vibrating plate, also known as a Chladni plate, and assembled up to a hundred submillimeter particles into complex recognizable shapes. The method allows programmable formation of shapes beyond the intrinsic limits of periodic patterning of the plate.
Collapse
Affiliation(s)
- Artur Kopitca
- Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
| | - Kourosh Latifi
- Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
- Murata Electronics Oy, 01621 Vantaa, Finland
| | - Quan Zhou
- Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
19
|
Al-Muzaiqer M, Ivanova N, Fliagin V, Lebedev-Stepanov P. Transport and assembling microparticles via Marangoni flows in heating and cooling modes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Soto F, Wang J, Deshmukh S, Demirci U. Reversible Design of Dynamic Assemblies at Small Scales. ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 3:2000193. [PMID: 35663639 PMCID: PMC9165726 DOI: 10.1002/aisy.202000193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 05/08/2023]
Abstract
Emerging bottom-up fabrication methods have enabled the assembly of synthetic colloids, microrobots, living cells, and organoids to create intricate structures with unique properties that transcend their individual components. This review provides an access point to the latest developments in externally driven assembly of synthetic and biological components. In particular, we emphasize reversibility, which enables the fabrication of multiscale systems that would not be possible under traditional techniques. Magnetic, acoustic, optical, and electric fields are the most promising methods for controlling the reversible assembly of biological and synthetic subunits since they can reprogram their assembly by switching on/off the external field or shaping these fields. We feature capabilities to dynamically actuate the assembly configuration by modulating the properties of the external stimuli, including frequency and amplitude. We describe the design principles which enable the assembly of reconfigurable structures. Finally, we foresee that the high degree of control capabilities offered by externally driven assembly will enable broad access to increasingly robust design principles towards building advanced dynamic intelligent systems.
Collapse
Affiliation(s)
- Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| | - Shreya Deshmukh
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
- Department of Bioengineering, School of Engineering, School of Medicine, Stanford University, Stanford, California, 94305-4125, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| |
Collapse
|
21
|
|
22
|
Hammarström B, Skov NR, Olofsson K, Bruus H, Wiklund M. Acoustic trapping based on surface displacement of resonance modes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:1445. [PMID: 33765798 DOI: 10.1121/10.0003600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Acoustic trapping is a promising technique for aligning particles in two-dimensional arrays, as well as for dynamic manipulation of particles individually or in groups. The actuating principles used in current systems rely on either cavity modes in enclosures or complex arrangements for phase control. Therefore, available systems either require high power inputs and costly peripheral equipment or sacrifice flexibility. This work presents a different concept for acoustic trapping of particles and cells that enables dynamically defined trapping patterns inside a simple and inexpensive setup. Here, dynamic operation and dexterous trapping are realized through the use of a modified piezoelectric transducer in direct contact with the liquid sample. Physical modeling shows how the transducer induces an acoustic force potential where the conventional trapping in the axial direction is supplemented by surface displacement dependent lateral trapping. The lateral field is a horizontal array of pronounced potential minima with frequency-dependent locations. The resulting system enables dynamic arraying of levitated trapping sites at low power and can be manufactured at ultra-low cost, operated using low-cost electronics, and assembled in less than 5 min. We demonstrate dynamic patterning of particles and biological cells and exemplify potential uses of the technique for cell-based sample preparation and cell culture.
Collapse
Affiliation(s)
- Björn Hammarström
- Department of Applied Physics, KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-114 21 Stockholm, Sweden
| | - Nils R Skov
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| | - Karl Olofsson
- Department of Applied Physics, KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-114 21 Stockholm, Sweden
| | - Henrik Bruus
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| | - Martin Wiklund
- Department of Applied Physics, KTH Royal Institute of Technology, Roslagstullsbacken 21, SE-114 21 Stockholm, Sweden
| |
Collapse
|
23
|
Maestas JR, Ma F, Wu N, Wu DT. Electric-Field-Driven Assembly of Dipolar Spheres Asymmetrically Confined between Two Electrodes. ACS NANO 2021; 15:2399-2412. [PMID: 33570907 DOI: 10.1021/acsnano.0c04939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Externally applied electric fields have previously been utilized to direct the assembly of colloidal particles confined at a surface into a large variety of colloidal oligomers and nonclose-packed honeycomb lattices (J. Am. Chem. Soc. 2013, 135, 7839-7842). The colloids under such confinement and fields are observed to spontaneously organize into bilayers near the electrode. To extend and better understand how particles can come together to form quasi-two-dimensional materials, we have performed Monte Carlo simulations and complementary experiments of colloids that are strongly confined between two electrodes under an applied alternating current electric field, controlling field strength and particle area fraction. Of particular importance, we control the fraction of particles in the upper vs lower plane, which we describe as asymmetric confinement, and which effectively modulates the coordination number of particles in each plane. We model the particle-particle interactions using a Stockmayer potential to capture the dipolar interactions induced by the electric field. Phase diagrams are then delineated as a function of the control parameters, and a theoretical model is developed in which the energies of several idealized lattices are calculated and compared. We find that the resulting theoretical phase diagrams agree well with simulation. We have not only reproduced the structures observed in experiments using parameters that are close to experimental conditions but also found several previously unobserved phases in the simulations, including a network of rectangular bands, zig zags, and a sigma lattice, which we were then able to confirm in experiment. We further propose a simple way to precisely control the number ratio of particles between different planes, that is, superimposing a direct current electric field with the alternating current electric field, which can be implemented conveniently in experiments. Our work demonstrates that a diverse collection of materials can be assembled from relatively simple ingredients, which can be analyzed effectively through comparison of simulation, theory, and experiment. Our model further explains possible pathways between different phases and provides a platform for examining phases that have yet to be observed in experiments.
Collapse
Affiliation(s)
- Joseph R Maestas
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Fuduo Ma
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - David T Wu
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
24
|
Spatial ultrasound modulation by digitally controlling microbubble arrays. Nat Commun 2020; 11:4537. [PMID: 32913270 PMCID: PMC7484750 DOI: 10.1038/s41467-020-18347-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/18/2020] [Indexed: 01/26/2023] Open
Abstract
Acoustic waves, capable of transmitting through optically opaque objects, have been widely used in biomedical imaging, industrial sensing and particle manipulation. High-fidelity wave front shaping is essential to further improve performance in these applications. An acoustic analog to the successful spatial light modulator (SLM) in optics would be highly desirable. To date there have been no techniques shown that provide effective and dynamic modulation of a sound wave and which also support scale-up to a high number of individually addressable pixels. In the present study, we introduce a dynamic spatial ultrasound modulator (SUM), which dynamically reshapes incident plane waves into complex acoustic images. Its transmission function is set with a digitally generated pattern of microbubbles controlled by a complementary metal–oxide–semiconductor (CMOS) chip, which results in a binary amplitude acoustic hologram. We employ this device to project sequentially changing acoustic images and demonstrate the first dynamic parallel assembly of microparticles using a SUM. The authors introduce a dynamic spatial ultrasound modulator, based on digitally generated patterns of microbubbles controlled by a complementary metal–oxide–semiconductor (CMOS) chip. They achieve reshaping of incident plane waves into complex acoustic images and demonstrate dynamic parallel assembly of microparticles.
Collapse
|
25
|
Zhao S, Wu M, Yang S, Wu Y, Gu Y, Chen C, Ye J, Xie Z, Tian Z, Bachman H, Huang PH, Xia J, Zhang P, Zhang H, Huang TJ. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers. LAB ON A CHIP 2020; 20:1298-1308. [PMID: 32195522 PMCID: PMC7199844 DOI: 10.1039/d0lc00106f] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Separation of nano/microparticles based on surface acoustic waves (SAWs) has shown great promise for biological, chemical, and medical applications ranging from sample purification to cancer diagnosis. However, the permanent bonding of a microchannel onto relatively expensive piezoelectric substrates and excitation transducers renders the SAW separation devices non-disposable. This limitation not only requires cumbersome cleaning and increased labor and material costs, but also leads to cross-contamination, preventing their implementation in many biological, chemical, and medical applications. Here, we demonstrate a high-performance, disposable acoustofluidic platform for nano/microparticle separation. Leveraging unidirectional interdigital transducers (IDTs), a hybrid channel design with hard/soft materials, and tilted-angle standing SAWs (taSSAWs), our disposable acoustofluidic devices achieve acoustic radiation forces comparable to those generated by existing permanently bonded, non-disposable devices. Our disposable devices can separate not only microparticles but also nanoparticles. Moreover, they can differentiate bacteria from human red blood cells (RBCs) with a purity of up to 96%. Altogether, we developed a unidirectional IDT-based, disposable acoustofluidic platform for micro/nanoparticle separation that can achieve high separation efficiency, versatility, and biocompatibility.
Collapse
Affiliation(s)
- Shuaiguo Zhao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Advances in Micromanipulation Actuated by Vibration-Induced Acoustic Waves and Streaming Flow. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041260] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The use of vibration and acoustic characteristics for micromanipulation has been prevalent in recent years. Due to high biocompatibility, non-contact operation, and relatively low cost, the micromanipulation actuated by the vibration-induced acoustic wave and streaming flow has been widely applied in the sorting, translating, rotating, and trapping of targets at the submicron and micron scales, especially particles and single cells. In this review, to facilitate subsequent research, we summarize the fundamental theories of manipulation driven by vibration-induced acoustic waves and streaming flow. These methods are divided into two types: actuated by the acoustic wave, and actuated by the steaming flow induced by vibrating geometric structures. Recently proposed representative vibroacoustic-driven micromanipulation methods are introduced and compared, and their advantages and disadvantages are summarized. Finally, prospects are presented based on our review of the recent advances and developing trends.
Collapse
|
27
|
Ma Z, Holle AW, Melde K, Qiu T, Poeppel K, Kadiri VM, Fischer P. Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904181. [PMID: 31782570 DOI: 10.1002/adma.201904181] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/11/2019] [Indexed: 05/21/2023]
Abstract
Acoustophoresis is promising as a rapid, biocompatible, noncontact cell manipulation method, where cells are arranged along the nodes or antinodes of the acoustic field. Typically, the acoustic field is formed in a resonator, which results in highly symmetric regular patterns. However, arbitrary, nonsymmetrically shaped cell assemblies are necessary to obtain the irregular cellular arrangements found in biological tissues. It is shown that arbitrarily shaped cell patterns can be obtained from the complex acoustic field distribution defined by an acoustic hologram. Attenuation of the sound field induces localized acoustic streaming and the resultant convection flow gently delivers the suspended cells to the image plane where they form the designed pattern. It is shown that the process can be implemented in a biocompatible collagen solution, which can then undergo gelation to immobilize the cell pattern inside the viscoelastic matrix. The patterned cells exhibit F-actin-based protrusions, which indicate that the cells grow and thrive within the matrix. Cell viability assays and brightfield imaging after one week confirm cell survival and that the patterns persist. Acoustophoretic cell manipulation by holographic fields thus holds promise for noncontact, long-range, long-term cellular pattern formation, with a wide variety of potential applications in tissue engineering and mechanobiology.
Collapse
Affiliation(s)
- Zhichao Ma
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Andrew W Holle
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, 69120, Germany
| | - Kai Melde
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Tian Qiu
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Korbinian Poeppel
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Vincent Mauricio Kadiri
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
28
|
Guevara Vasquez F, Mauck C. Periodic particle arrangements using standing acoustic waves. Proc Math Phys Eng Sci 2019; 475:20190574. [PMID: 31892838 DOI: 10.1098/rspa.2019.0574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023] Open
Abstract
We determine crystal-like materials that can be fabricated by using a standing acoustic wave to arrange small particles in a non-viscous liquid resin, which is cured afterwards to keep the particles in the desired locations. For identical spherical particles with the same physical properties and small compared to the wavelength, the locations where the particles are trapped correspond to the minima of an acoustic radiation potential which describes the net forces that a particle is subject to. We show that the global minima of spatially periodic acoustic radiation potentials can be predicted by the eigenspace of a small real symmetric matrix corresponding to its smallest eigenvalue. We relate symmetries of this eigenspace to particle arrangements composed of points, lines or planes. Since waves are used to generate the particle arrangements, the arrangement's periodicity is limited to certain Bravais lattice classes that we enumerate in two and three dimensions.
Collapse
Affiliation(s)
| | - China Mauck
- Mathematics Department, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
29
|
Kao PK, VanSaders BJ, Durkin MD, Glotzer SC, Solomon MJ. Anisotropy effects on the kinetics of colloidal crystallization and melting: comparison of spheres and ellipsoids. SOFT MATTER 2019; 15:7479-7489. [PMID: 31513214 DOI: 10.1039/c9sm00887j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We use alternating current (AC) electric field assisted self-assembly to produce two-dimensional, millimeter scale arrays of ellipsoidal colloids and study the kinetics of their phase reconfiguration by means of confocal microscopy, light scattering, and computer simulation. We find that the kinetics of orientational and positional ordering can be manipulated by changing the shape of the colloids: ellipsoids with aspect ratio 2.0 melt into disordered structures 5.7 times faster compared to spheres. On the other hand, ellipsoids self-assemble into ordered crystals at a similar rate to spheres. Confocal microscopy is used to directly visualize defects in the self-assembled structures. Small-angle light scattering (SALS) quantifies the light diffraction response, which is sensitive to the kinetics of positional and orientational ordering in the self-assembled anisotropic structures. We find three different light diffraction patterns: a phase with high orientational order (with chain-like structure in real space), a phase with high positional and orientational order (characteristic of a close-packed structure), and a phase that is disordered in position but with intermediate orientational order. The large influence of aspect ratio on the kinetics of the positionally and orientationally ordered phase is explored through simulation; it is found that the number of particle degrees of freedom controls the difference between the melting rates of the ellipsoids and spheres. This research contributes to the understanding of reconfiguration kinetics and optical properties of colloidal crystals produced from anisotropic colloids.
Collapse
Affiliation(s)
- Peng-Kai Kao
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, Building 10 - A151, 2800 Plymouth Road, Ann Arbor, Michigan, USA.
| | | | | | | | | |
Collapse
|
30
|
Acoustic radiation pressure for nonreciprocal transmission and switch effects. Nat Commun 2019; 10:3292. [PMID: 31337755 PMCID: PMC6650405 DOI: 10.1038/s41467-019-11305-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 06/27/2019] [Indexed: 11/08/2022] Open
Abstract
Systems capable of breaking wave transmission reciprocity have recently led to tremendous developments in wave physics. We report herein on a concept that enables one-way transmission of ultrasounds, an acoustic diode, by relying on the radiation pressure effect. This effect makes it possible to reconfigure a multilayer system by significantly deforming a water-air interface. Such a reconfiguration is then used to achieve an efficient acoustic transmission in a specified direction of propagation but not in the opposite, hence resulting in a highly nonreciprocal transmission. The corresponding concept is experimentally demonstrated using an aluminum-water-air-aluminum multilayer system, providing the means to overcome key limitations of current nonreciprocal acoustic devices. We also demonstrate that this diode functionality can even be extended to the design and operations of an acoustic switch, thus paving the way for new wave control possibilities, such as those based on acoustic transistors, phonon computing and amplitude-dependent filters.
Collapse
|
31
|
Silva GT, Tian L, Franklin A, Wang X, Han X, Mann S, Drinkwater BW. Acoustic deformation for the extraction of mechanical properties of lipid vesicle populations. Phys Rev E 2019; 99:063002. [PMID: 31330730 DOI: 10.1103/physreve.99.063002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 04/30/2023]
Abstract
We use an ultrasonic standing wave to simultaneously trap and deform thousands of soft lipid vesicles immersed in a liquid solution. In our device, acoustic radiation stresses comparable in magnitude to those generated in optical stretching devices are achieved over a spatial extent of more than ten acoustic wavelengths. We solve the acoustic scattering problem in the long-wavelength limit to obtain the radiation stress. The result is then combined with thin-shell elasticity theory to form expressions that relate the deformed geometry to the applied acoustic field intensity. Using observation of the deformed geometry and this model, we rapidly extract mechanical properties, such as the membrane Young's modulus, from populations of lipid vesicles.
Collapse
Affiliation(s)
- Glauber T Silva
- Physical Acoustics Group, Instituto de Física, Universidade Federal de Alagoas, Maceió, AL 57072-970, Brazil
| | - Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Amanda Franklin
- Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom
| | - Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Bruce W Drinkwater
- Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom
| |
Collapse
|
32
|
Destgeer G, Hashmi A, Park J, Ahmed H, Afzal M, Sung HJ. Microparticle self-assembly induced by travelling surface acoustic waves. RSC Adv 2019; 9:7916-7921. [PMID: 35521193 PMCID: PMC9061445 DOI: 10.1039/c8ra09859j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/05/2019] [Indexed: 01/04/2023] Open
Abstract
We present an acoustofluidic method based on travelling surface acoustic waves (TSAWs) to induce self-assembly of microparticles inside a microfluidic channel. The particles are trapped above an interdigitated transducer, placed directly beneath the microchannel, by the TSAW-based direct acoustic radiation force (ARF). This approach was applied to trap 10 μm polystyrene particles, which were pushed towards the ceiling of the microchannel by 72 MHz TSAWs to form single- and multiple-layer colloidal structures. The repair of cracks and defects within the crystal lattice occurs as part of the self-assembly process. The sample flow through the first inlet can be switched with a buffer flow through the second inlet to control the number of particles assembled in the crystalline structure. The constant flow-induced Stokes drag force on the particles is balanced by the opposing TSAW-based ARF. This force balance is essential for the acoustics-based self-assembly of microparticles inside the microchannel. Moreover, we studied the effects of varying input voltage and fluid flow rate on the position and shape of the colloidal structure. The active self-assembly of microparticles into crystals with multiple layers can be used in the bottom-up fabrication of colloidal structures with dimensions greater than 500 μm × 500 μm, which is expected to have important applications in various fields. We present an acoustofluidic method based on travelling surface acoustic waves (TSAWs) for the self-assembly of microparticles inside a microfluidic channel.![]()
Collapse
Affiliation(s)
| | - Ali Hashmi
- Institut de Biologie du Développement de Marseille (IBDM)
- France
| | - Jinsoo Park
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| | - Husnain Ahmed
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| | - Muhammad Afzal
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| | - Hyung Jin Sung
- Department of Mechanical Engineering
- KAIST
- Daejeon 34141
- Korea
| |
Collapse
|
33
|
Olofsson K, Hammarström B, Wiklund M. Ultrasonic Based Tissue Modelling and Engineering. MICROMACHINES 2018; 9:E594. [PMID: 30441752 PMCID: PMC6266922 DOI: 10.3390/mi9110594] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Systems and devices for in vitro tissue modelling and engineering are valuable tools, which combine the strength between the controlled laboratory environment and the complex tissue organization and environment in vivo. Device-based tissue engineering is also a possible avenue for future explant culture in regenerative medicine. The most fundamental requirements on platforms intended for tissue modelling and engineering are their ability to shape and maintain cell aggregates over long-term culture. An emerging technology for tissue shaping and culture is ultrasonic standing wave (USW) particle manipulation, which offers label-free and gentle positioning and aggregation of cells. The pressure nodes defined by the USW, where cells are trapped in most cases, are stable over time and can be both static and dynamic depending on actuation schemes. In this review article, we highlight the potential of USW cell manipulation as a tool for tissue modelling and engineering.
Collapse
Affiliation(s)
- Karl Olofsson
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| | - Björn Hammarström
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| | - Martin Wiklund
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
34
|
Systematic realization of double-zero-index phononic crystals with hard inclusions. Sci Rep 2018; 8:7288. [PMID: 29740164 PMCID: PMC5940914 DOI: 10.1038/s41598-018-25696-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/26/2018] [Indexed: 12/04/2022] Open
Abstract
A systematic process is described to realize double-zero-index phononic crystals with Dirac-like points experimentally. This type of crystal normally has softer inclusion material than its surroundings medium, allowing mapping into a zero-index medium under certain conditions but also making experimental implementation difficult. On the other hand, realizing phononic crystals with hard inclusions can be experimentally more feasible, but the mapping conditions cannot be directly applied to hard-inclusion crystals such that mapping is not systematically guaranteed in these cases. Moreover, even if such crystals become realizable, there is a lack of a systematic design process which can be used to optimize or to redesign the crystals, which largely limits their potential applications. In this paper, we discover the essential conditions for realizing phononic crystals with hard inclusions and propose a methodology for the systematic design of these crystals using homogenization based on the effective medium theory. Using the proposed method, a double-zero-index phononic crystal with hard inclusions is optimized and experimentally realized for an underwater ultrasonic wave collimator.
Collapse
|
35
|
Akella M, Juárez JJ. High-Throughput Acoustofluidic Self-Assembly of Colloidal Crystals. ACS OMEGA 2018; 3:1425-1436. [PMID: 31458472 PMCID: PMC6641480 DOI: 10.1021/acsomega.7b01862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/22/2018] [Indexed: 05/17/2023]
Abstract
Colloidal crystals are encountered in a variety of energy-harvesting applications, where they serve as waveguides or filters for electromagnetic and electro-optic energy. Techniques such as electric or magnetic assembly are used to assemble colloidal crystals, but are limited by crystal size, yield, and throughput. This article demonstrates the continuous, high-throughput assembly of two-dimensional (2D)-colloidal crystals in an acoustofluidic flow cell. The device is fabricated using off-the-shelf components and does not require a clean-room access. An experimental state diagram shows how the fluid flow rate and voltage applied to the piezoelectric element in our device can tune the crystal microstructure. Highly ordered colloidal crystals are continuously assembled in less than a minute with a throughput yield of several hundred particles per minute using this device. The acoustically assembled ordered 2D crystals are immobilized using a UV-curable resin and extracted as ordered polymer-particle fibers, demonstrating the ability of using acoustic fields to assemble ordered structures embedded in bulk materials. Particle tracking is used to construct the cross-channel particle distribution to understand the effect of acoustic compression on colloidal crystal assembly. Microparticle image velocimetry data is compared to a theoretical transport model to quantify the effect fluid flow and acoustic trapping has on the colloidal crystal ensemble.
Collapse
|
36
|
Melde K, Choi E, Wu Z, Palagi S, Qiu T, Fischer P. Acoustic Fabrication via the Assembly and Fusion of Particles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704507. [PMID: 29205522 DOI: 10.1002/adma.201704507] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/22/2017] [Indexed: 05/22/2023]
Abstract
Acoustic assembly promises a route toward rapid parallel fabrication of whole objects directly from solution. This study reports the contact-free and maskless assembly, and fixing of silicone particles into arbitrary 2D shapes using ultrasound fields. Ultrasound passes through an acoustic hologram to form a target image. The particles assemble from a suspension along lines of high pressure in the image due to acoustic radiation forces and are then fixed (crosslinked) in a UV-triggered reaction. For this, the particles are loaded with a photoinitiator by solvent-induced swelling. This localizes the reaction and allows the bulk suspension to be reused. The final fabricated parts are mechanically stable and self-supporting.
Collapse
Affiliation(s)
- Kai Melde
- Micro, Nano and Molecular Systems Group Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Eunjin Choi
- Micro, Nano and Molecular Systems Group Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Zhiguang Wu
- Micro, Nano and Molecular Systems Group Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Stefano Palagi
- Micro, Nano and Molecular Systems Group Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Tian Qiu
- Micro, Nano and Molecular Systems Group Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Peer Fischer
- Micro, Nano and Molecular Systems Group Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
37
|
Longitudinal Near-Field Coupling between Acoustic Resonators Grafted onto a Waveguide. CRYSTALS 2017. [DOI: 10.3390/cryst7110323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Bilal OR, Foehr A, Daraio C. Reprogrammable Phononic Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700628. [PMID: 28841769 DOI: 10.1002/adma.201700628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Phononic metamaterials rely on the presence of resonances in a structured medium to control the propagation of elastic waves. Their response depends on the geometry of their fundamental building blocks. A major challenge in metamaterials design is the realization of basic building blocks that can be tuned dynamically. Here, a metamaterial plate is realized that can be dynamically tuned by harnessing geometric and magnetic nonlinearities in the individual unit cells. The proposed tuning mechanism allows a stiffness variability of the individual unit cells and can control the amplitude of transmitted excitation through the plate over three orders of magnitude. The concepts can be extended to metamaterials at different scales, and they can be applied in a broad range of engineering applications, from seismic shielding at low frequency to ultrasonic cloaking at higher frequency ranges.
Collapse
Affiliation(s)
- Osama R Bilal
- Institute for Theoretical Physics, ETH Zurich, Zurich, 8092, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - André Foehr
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Chiara Daraio
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
39
|
Collins DJ, Ma Z, Han J, Ai Y. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. LAB ON A CHIP 2016; 17:91-103. [PMID: 27883136 DOI: 10.1039/c6lc01142j] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite increasing demand in the manipulation of nanoscale objects for next generation biological and industrial processes, there is a lack of methods for reliable separation, concentration and purification of nanoscale objects. Acoustic methods have proven their utility in contactless manipulation of microscale objects mainly relying on the acoustic radiation effect, though the influence of acoustic streaming has typically prevented manipulation at smaller length scales. In this work, however, we explicitly take advantage of the strong acoustic streaming in the vicinity of a highly focused, high frequency surface acoustic wave (SAW) beam emanating from a series of focused 6 μm substrate wavelength interdigital transducers patterned on a piezoelectric lithium niobate substrate and actuated with a 633 MHz sinusoidal signal. This streaming field serves to focus fluid streamlines such that incoming particles interact with the acoustic field similarly regardless of their initial starting positions, and results in particle displacements that would not be possible with a travelling acoustic wave force alone. This streaming-induced manipulation of nanoscale particles is maximized with the formation of micro-vortices that extend the width of the microfluidic channel even with the imposition of a lateral flow, occurring when the streaming-induced flow velocities are an order of magnitude larger than the lateral one. We make use of this acoustic streaming to demonstrate the continuous and differential focusing of 100 nm, 300 nm and 500 nm particles.
Collapse
Affiliation(s)
- David J Collins
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore. and Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore
| | - Zhichao Ma
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602, Singapore and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
40
|
Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning. Nat Commun 2016; 7:13068. [PMID: 27708286 PMCID: PMC5059748 DOI: 10.1038/ncomms13068] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/31/2016] [Indexed: 01/11/2023] Open
Abstract
The spontaneous assembly of chemically encoded, molecularly crowded, water-rich micro-droplets into periodic defect-free two-dimensional arrays is achieved in aqueous media by a combination of an acoustic standing wave pressure field and in situ complex coacervation. Acoustically mediated coalescence of primary droplets generates single-droplet per node micro-arrays that exhibit variable surface-attachment properties, spontaneously uptake dyes, enzymes and particles, and display spatial and time-dependent fluorescence outputs when exposed to a reactant diffusion gradient. In addition, coacervate droplet arrays exhibiting dynamical behaviour and exchange of matter are prepared by inhibiting coalescence to produce acoustically trapped lattices of droplet clusters that display fast and reversible changes in shape and spatial configuration in direct response to modulations in the acoustic frequencies and fields. Our results offer a novel route to the design and construction of ‘water-in-water' micro-droplet arrays with controllable spatial organization, programmable signalling pathways and higher order collective behaviour. Isolated droplets can be used as micro-reactors, yet it is challenging to operate them functionally in solution and observe chemical exchanges between droplets. Here, Tian et al. use an acoustic trap to assemble water-based micro-droplets into periodic arrays, spontaneously separated from solution media.
Collapse
|
41
|
|
42
|
|
43
|
Drinkwater BW. Dynamic-field devices for the ultrasonic manipulation of microparticles. LAB ON A CHIP 2016; 16:2360-75. [PMID: 27256513 DOI: 10.1039/c6lc00502k] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The use of acoustic radiation forces in lab-on-a-chip environments has seen a rapid development in recent years. Operations such as particle sieving, sorting and characterisation are becoming increasingly common with a range of applications in the biomedical sciences. Traditionally, these applications rely on static patterns of ultrasonic pressure and are often collectively referred to as ultrasonic standing wave devices. Recent years have also seen the emergence of devices which capitalise on dynamic and reconfigurable ultrasonic fields and these are the subject of this review. Dynamic ultrasonic fields lead to acoustic radiation forces that change with time. They have opened up the possibility of performing a wide range of manipulations such as the transport and rotation of individual particles or agglomerates. In addition, they have led to device reconfigurability, i.e. the ability of a single lab-on-a-chip device to perform multiple functions. This opens up the possibility of channel-less microfluidic devices which would have many applications, for example in biosensing and microscale assembly. This paper reviews the current state of the field of dynamic and reconfigurable ultrasonic particle manipulation devices and then discusses the open problems and future possibilities.
Collapse
Affiliation(s)
- Bruce W Drinkwater
- Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK.
| |
Collapse
|
44
|
Collins DJ, Devendran C, Ma Z, Ng JW, Neild A, Ai Y. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves. SCIENCE ADVANCES 2016; 2:e1600089. [PMID: 27453940 PMCID: PMC4956186 DOI: 10.1126/sciadv.1600089] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/14/2016] [Indexed: 05/17/2023]
Abstract
Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.
Collapse
Affiliation(s)
- David J. Collins
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Citsabehsan Devendran
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia
| | - Zhichao Ma
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Jia Wei Ng
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| |
Collapse
|
45
|
Phan HV, Alan T, Neild A. Droplet Manipulation Using Acoustic Streaming Induced by a Vibrating Membrane. Anal Chem 2016; 88:5696-703. [PMID: 27119623 DOI: 10.1021/acs.analchem.5b04481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a simple method for on-demand manipulation of aqueous droplets in oil. With numerical simulations and experiments, we show that a vibrating membrane can produce acoustic streaming. By making use of this vortical flow, we manage to repulse the droplets away from the membrane edges. Then, by simply aligning the membrane at 45° to the flow, the droplets can be forced to follow the membrane's boundaries, thus steering them across streamlines and even between different oil types. We also characterize the repulsion and steering effect with various excitation voltages at different water and oil flow rates. The maximum steering frequency we have achieved is 165 Hz. The system is extremely robust and reliable: the same membrane can be reused after many days and with different oils and/or surfactants at the same operating frequency.
Collapse
Affiliation(s)
- Hoang Van Phan
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Tuncay Alan
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Adrian Neild
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University , Clayton, Victoria 3800, Australia
| |
Collapse
|
46
|
Owens CE, Shields CW, Cruz DF, Charbonneau P, López GP. Highly parallel acoustic assembly of microparticles into well-ordered colloidal crystallites. SOFT MATTER 2016; 12:717-28. [PMID: 26558940 DOI: 10.1039/c5sm02348c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The precise arrangement of microscopic objects is critical to the development of functional materials and ornately patterned surfaces. Here, we present an acoustics-based method for the rapid arrangement of microscopic particles into organized and programmable architectures, which are periodically spaced within a square assembly chamber. This macroscale device employs two-dimensional bulk acoustic standing waves to propel particles along the base of the chamber toward pressure nodes or antinodes, depending on the acoustic contrast factor of the particle, and is capable of simultaneously creating thousands of size-limited, isotropic and anisotropic assemblies within minutes. We pair experiments with Brownian dynamics simulations to model the migration kinetics and assembly patterns of spherical microparticles. We use these insights to predict and subsequently validate the onset of buckling of the assemblies into three-dimensional clusters by experiments upon increasing the acoustic pressure amplitude and the particle concentration. The simulations are also used to inform our experiments for the assembly of non-spherical particles, which are then recovered via fluid evaporation and directly inspected by electron microscopy. This method for assembly of particles offers several notable advantages over other approaches (e.g., magnetics, electrokinetics and optical tweezing) including simplicity, speed and scalability and can also be used in concert with other such approaches for enhancing the types of assemblies achievable.
Collapse
Affiliation(s)
- Crystal E Owens
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|
47
|
Shear-mediated contributions to the effective properties of soft acoustic metamaterials including negative index. Sci Rep 2015; 5:18562. [PMID: 26686414 PMCID: PMC4685261 DOI: 10.1038/srep18562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/20/2015] [Indexed: 12/03/2022] Open
Abstract
Here we show that, for sub-wavelength particles in a fluid, viscous losses due to shear waves and their influence on neighbouring particles significantly modify the effective acoustic properties, and thereby the conditions at which negative acoustic refraction occurs. Building upon earlier single particle scattering work, we adopt a multiple scattering approach to derive the effective properties (density, bulk modulus, wavenumber). We show,through theoretical prediction, the implications for the design of “soft” (ultrasonic) metamaterials based on locally-resonant sub-wavelength porous rubber particles, through selection of particle size and concentration, and demonstrate tunability of the negative speed zones by modifying the viscosity of the suspending medium. For these lossy materials with complex effective properties, we confirm the use of phase angles to define the backward propagation condition in preference to “single-” and “double-negative” designations.
Collapse
|
48
|
Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 2015; 6:8686. [PMID: 26522429 PMCID: PMC4659840 DOI: 10.1038/ncomms9686] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 09/17/2015] [Indexed: 12/25/2022] Open
Abstract
In single-cell analysis, cellular activity and parameters are assayed on an individual, rather than population-average basis. Essential to observing the activity of these cells over time is the ability to trap, pattern and retain them, for which previous single-cell-patterning work has principally made use of mechanical methods. While successful as a long-term cell-patterning strategy, these devices remain essentially single use. Here we introduce a new method for the patterning of multiple spatially separated single particles and cells using high-frequency acoustic fields with one cell per acoustic well. We characterize and demonstrate patterning for both a range of particle sizes and the capture and patterning of cells, including human lymphocytes and red blood cells infected by the malarial parasite Plasmodium falciparum. This ability is made possible by a hitherto unexplored regime where the acoustic wavelength is on the same order as the cell dimensions.
Collapse
Affiliation(s)
- David J. Collins
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Belinda Morahan
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jose Garcia-Bustos
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christian Doerig
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Magdalena Plebanski
- Department of Immunology, Alfred Hospital Precinct, Monash University, Melbourne, Victoria 3004, Australia
- Therapeutics and Regenerative Division, Monash Institute of Medical Engineering, MIME, Monash University, Clayton, Victoria 3800, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
49
|
Scholz MS, Drinkwater BW, Llewellyn-Jones TM, Trask RS. Counterpropagating wave acoustic particle manipulation device for the effective manufacture of composite materials. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1845-1855. [PMID: 26470047 DOI: 10.1109/tuffc.2015.007116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An ultrasonic assembly device exhibiting broadband behavior and a sacrificial plastic frame is described. This device is used to assemble a variety of microscopic particles differing in size, shape, and material into simple patterns within several host fluids. When the host fluid is epoxy, the assembled materials can be cured and the composite sample extracted from the sacrificial frame. The wideband performance means that within a single device, the wavelength can be varied, leading to control of the length scale of the acoustic radiation force field. We show that glass fibers of 50 μm length and 14 μm diameter can be assembled into a series of stripes separated by hundreds of microns in a time of 0.3 s. Finite element analysis is used to understand the attributes of the device which control its wideband characteristics. The bandwidth is shown to be governed by the damping produced by a combination of the plastic frame and the relatively large volume of the fluid particle mixture. The model also reveals that the acoustic radiation forces are a maximum near the substrate of the device, which is in agreement with experimental observations. The device is extended to 8-transducers and used to assemble more complex particle distributions.
Collapse
|
50
|
Yang Y, Pham AT, Cruz D, Reyes C, Wiley BJ, Lopez GP, Yellen BB. Assembly of colloidal molecules, polymers, and crystals in acoustic and magnetic fields. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:4725-4731. [PMID: 26179877 DOI: 10.1002/adma.201500462] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/02/2015] [Indexed: 05/28/2023]
Abstract
A dynamically adjustable colloidal assembly technique is presented, which combines magnetic and acoustic fields to produce a wide range of colloidal structures, ranging from discrete colloidal molecules, to polymer networks and crystals. The structures can be stabilized and dried, making them suitable for the fabrication of advanced materials.
Collapse
Affiliation(s)
- Ye Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, NC, 27708, USA
- NSF Research Triangle Materials Research Science and Engineering Center (MRSEC), Duke University, Box 90217, Durham, NC, 27708, USA
| | - An T Pham
- Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, NC, 27708, USA
- NSF Research Triangle Materials Research Science and Engineering Center (MRSEC), Duke University, Box 90217, Durham, NC, 27708, USA
| | - Daniela Cruz
- NSF Research Triangle Materials Research Science and Engineering Center (MRSEC), Duke University, Box 90217, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Christopher Reyes
- NSF Research Triangle Materials Research Science and Engineering Center (MRSEC), Duke University, Box 90217, Durham, NC, 27708, USA
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Benjamin J Wiley
- NSF Research Triangle Materials Research Science and Engineering Center (MRSEC), Duke University, Box 90217, Durham, NC, 27708, USA
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Gabriel P Lopez
- Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, NC, 27708, USA
- NSF Research Triangle Materials Research Science and Engineering Center (MRSEC), Duke University, Box 90217, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Benjamin B Yellen
- Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, NC, 27708, USA
- NSF Research Triangle Materials Research Science and Engineering Center (MRSEC), Duke University, Box 90217, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- University of Michigan - Shanghai Jiao Tong University, Joint Institute, Shanghai Jiao Tong University, 800 Dong Chuan Rd, Shanghai, 200240, China
| |
Collapse
|