1
|
Montano MM, Yeh I, Ketchart W. cGAS/STING-Independent Induction of Type I Interferon by Inhibitors of the Histone Methylase KDM5B. FASEB J 2025; 39:e70629. [PMID: 40353728 PMCID: PMC12068183 DOI: 10.1096/fj.202500628r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Studies support the role of hexamethylene bis-acetamide [HMBA] induced protein 1 (HEXIM1) as a tumor suppressor. We previously reported that the histone demethylase, KDM5B, inhibits the expression of HEXIM1, and KDM5B inhibitors (KDM5Bi) upregulate HEXIM1 expression. As a consequence, KDM5Bi inhibited cell proliferation, induced differentiation, potentiated sensitivity to cancer chemotherapy, and inhibited breast tumor metastasis. HEXIM1 is crucial for the regulation of triple-negative breast cancer (TNBC) phenotype by KDM5Bi. Type I Interferon (IFN-I) employs the immune system in the tumor microenvironment to restrict tumor growth. Moreover, therapeutic approaches (including mainstay chemotherapy) engage IFN-I signaling. We report herein that HEXIM1 and KDM5Bi induce IFN-I in TNBC. HEXIM1 and KDM5Bi downregulate the expression of polyribonucleotide nucleotidyltransferase 1 (PNPT1) resulting in the release of mitochondrial dsRNA (mt-dsRNA) into the cytoplasm. HEXIM1 also upregulates melanoma differentiation-associated protein 5 (MDA5), a cytoplasmic viral RNA receptor in the innate immune system. MDA5 is required for HEXIM1 and KDM5Bi to induce IFN-I and downstream signaling factors. We observed the augmentation of DNA damage response to Doxorubicin in the presence of KDM5Bi, and this action is a contributing factor in KDM5Bi-induced IFN-I. These actions of HEXIM1 and KDM5Bi occur independently of Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (cGAS/STING), a major DNA sensing pathway and inducer of innate immunity. Via the upregulation of HEXIM1, KDM5Bi represent pharmacologically induced and tumor intrinsic IFN-I production that is cGAS/STING independent. This is critical because cGAS/STING induce an inflammatory response that promotes the survival of cancer cells, and STING is often impaired in malignant cancers.
Collapse
Affiliation(s)
- Monica M. Montano
- Department of PharmacologyCase Western Reserve University School of MedicineClevelandOhioUSA
| | - I‐Ju Yeh
- Department of PharmacologyCase Western Reserve University School of MedicineClevelandOhioUSA
- Stark Neuroscience Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Wannarasmi Ketchart
- Department of PharmacologyCase Western Reserve University School of MedicineClevelandOhioUSA
- Department of Pharmacology, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| |
Collapse
|
2
|
Choi SH, Jurgens SJ, Xiao L, Hill MC, Haggerty CM, Sveinbjörnsson G, Morrill VN, Marston NA, Weng LC, Pirruccello JP, Arnar DO, Gudbjartsson DF, Mantineo H, von Falkenhausen AS, Natale A, Tveit A, Geelhoed B, Roselli C, Van Wagoner DR, Darbar D, Haase D, Soliman EZ, Davogustto GE, Jun G, Calkins H, Anderson JL, Brody JA, Halford JL, Barnard J, Hokanson JE, Smith JD, Bis JC, Young K, Johnson LSB, Risch L, Gula LJ, Kwee LC, Chaffin MD, Kühne M, Preuss M, Gupta N, Nafissi NA, Smith NL, Nilsson PM, van der Harst P, Wells QS, Judy RL, Schnabel RB, Johnson R, Smit RAJ, Gabriel S, Knight S, Furukawa T, Blackwell TW, Nauffal V, Wang X, Min YI, Yoneda ZT, Laksman ZWM, Bezzina CR, Alonso A, Psaty BM, Albert CM, Arking DE, Roden DM, Chasman DI, Rader DJ, Conen D, McManus DD, Fatkin D, Benjamin EJ, Boerwinkle E, Marcus GM, Christophersen IE, Smith JG, Roberts JD, Raffield LM, Shoemaker MB, Cho MH, Cutler MJ, Rienstra M, Chung MK, S Olesen M, Sinner MF, Sotoodehnia N, Kirchhof P, Loos RJF, Nazarian S, Mohanty S, Damrauer SM, Kaab S, Heckbert SR, Redline S, Shah SH, Tanaka T, Ebana Y, Holm H, Stefansson K, Ruff CT, Sabatine MS, et alChoi SH, Jurgens SJ, Xiao L, Hill MC, Haggerty CM, Sveinbjörnsson G, Morrill VN, Marston NA, Weng LC, Pirruccello JP, Arnar DO, Gudbjartsson DF, Mantineo H, von Falkenhausen AS, Natale A, Tveit A, Geelhoed B, Roselli C, Van Wagoner DR, Darbar D, Haase D, Soliman EZ, Davogustto GE, Jun G, Calkins H, Anderson JL, Brody JA, Halford JL, Barnard J, Hokanson JE, Smith JD, Bis JC, Young K, Johnson LSB, Risch L, Gula LJ, Kwee LC, Chaffin MD, Kühne M, Preuss M, Gupta N, Nafissi NA, Smith NL, Nilsson PM, van der Harst P, Wells QS, Judy RL, Schnabel RB, Johnson R, Smit RAJ, Gabriel S, Knight S, Furukawa T, Blackwell TW, Nauffal V, Wang X, Min YI, Yoneda ZT, Laksman ZWM, Bezzina CR, Alonso A, Psaty BM, Albert CM, Arking DE, Roden DM, Chasman DI, Rader DJ, Conen D, McManus DD, Fatkin D, Benjamin EJ, Boerwinkle E, Marcus GM, Christophersen IE, Smith JG, Roberts JD, Raffield LM, Shoemaker MB, Cho MH, Cutler MJ, Rienstra M, Chung MK, S Olesen M, Sinner MF, Sotoodehnia N, Kirchhof P, Loos RJF, Nazarian S, Mohanty S, Damrauer SM, Kaab S, Heckbert SR, Redline S, Shah SH, Tanaka T, Ebana Y, Holm H, Stefansson K, Ruff CT, Sabatine MS, Lunetta KL, Lubitz SA, Ellinor PT. Sequencing in over 50,000 cases identifies coding and structural variation underlying atrial fibrillation risk. Nat Genet 2025; 57:548-562. [PMID: 40050430 DOI: 10.1038/s41588-025-02074-9] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/02/2025] [Indexed: 03/15/2025]
Abstract
Atrial fibrillation (AF) is a prevalent and morbid abnormality of the heart rhythm with a strong genetic component. Here, we meta-analyzed genome and exome sequencing data from 36 studies that included 52,416 AF cases and 277,762 controls. In burden tests of rare coding variation, we identified novel associations between AF and the genes MYBPC3, LMNA, PKP2, FAM189A2 and KDM5B. We further identified associations between AF and rare structural variants owing to deletions in CTNNA3 and duplications of GATA4. We broadly replicated our findings in independent samples from MyCode, deCODE and UK Biobank. Finally, we found that CRISPR knockout of KDM5B in stem-cell-derived atrial cardiomyocytes led to a shortening of the action potential duration and widespread transcriptomic dysregulation of genes relevant to atrial homeostasis and conduction. Our results highlight the contribution of rare coding and structural variants to AF, including genetic links between AF and cardiomyopathies, and expand our understanding of the rare variant architecture for this common arrhythmia.
Collapse
Grants
- K24HL105780 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01 AG068221 NIA NIH HHS
- K08HL153950 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 75N92019D00031 NHLBI NIH HHS
- 18SFRN34110082 American Heart Association (American Heart Association, Inc.)
- R01HL141989 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 648131 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 847770 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 18SFRN34230127 American Heart Association (American Heart Association, Inc.)
- R01HL157635 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 1U01AG068221-01A1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL147148 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL111314 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL155197 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 9SFRN34830063 American Heart Association (American Heart Association, Inc.)
- 1U01AG058589-01A1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 2019-0526 Hjärt-Lungfonden (Swedish Heart-Lung Foundation)
- R01HL092577 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R35HL135818 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 18SFRN34250007 American Heart Association (American Heart Association, Inc.)
- IRC15-0067 Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
- R01HL137927 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 32473B_176178 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- AA/18/2/34218 British Heart Foundation (BHF)
- 1R01HL164824-01 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- HL113338 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL111024 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL141901 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- PG/20/22/35093 British Heart Foundation (BHF)
- HL116690 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 961045 American Heart Association (American Heart Association, Inc.)
- 18SFRN34110067 American Heart Association (American Heart Association, Inc.)
- P01HL158505 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL089856 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- IK2-CX001780 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- 349-2006-237 Vetenskapsrådet (Swedish Research Council)
- K08HL159346 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 17K07251 MEXT | Japan Society for the Promotion of Science (JSPS)
- 2009-1039 Vetenskapsrådet (Swedish Research Council)
- 32003B_197524 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- 03-007-2022-0035 Hartstichting (Dutch Heart Foundation)
- 33CS30_177520 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- JP18H02804 MEXT | Japan Society for the Promotion of Science (JSPS)
- 2019-0354 Svenska Sällskapet för Medicinsk Forskning (Swedish Society for Medical Research)
- 19SFRN34830063 American Heart Association (American Heart Association, Inc.)
- 2021-02273 Vetenskapsrådet (Swedish Research Council)
- 18SFRN34110067. American Heart Association (American Heart Association, Inc.)
- PG/17/30/32961 British Heart Foundation (BHF)
- 33CS30_148474 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- R01HL149352 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 1R01HL139731 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 2R01HL127564-05A1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 20CDA35260081 American Heart Association (American Heart Association, Inc.)
- HL-093613 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- 1R01HL128914 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- HL43680 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- Ki 731/4-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
Collapse
Affiliation(s)
- Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences (Heart Failure & Arrhythmias), Amsterdam UMC, Amsterdam, The Netherlands
| | - Ling Xiao
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew C Hill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Valerie N Morrill
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas A Marston
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lu-Chen Weng
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - David O Arnar
- deCODE genetics/Amgen, Reykjavik, Iceland
- Cardiovascular Center, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Daniel Fannar Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Electical and Computer Engineering and School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Helene Mantineo
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aenne S von Falkenhausen
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St David's Medical Center, Austin, TX, USA
| | - Arnljot Tveit
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Bastiaan Geelhoed
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David R Van Wagoner
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Doreen Haase
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center (EPICARE), Department of Internal Medicine, Cardiology Section, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Giovanni E Davogustto
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Goo Jun
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hugh Calkins
- Cardiac Arrhythmia Service, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey L Anderson
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
- Division of Cardiology, University of Utah, Salt Lake City, UT, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer L Halford
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John Barnard
- Departments of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - John E Hokanson
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jonathan D Smith
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kendra Young
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Linda S B Johnson
- Department of Clinical Physiology, Department of Clinical Sciences, Skåne University Hospital and Lund University, Lund, Sweden
| | - Lorenz Risch
- Institute of Laboratory Medicine, Faculty of Medical Sciences, Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Center of Laboratory Medicine, University Institute of Clinical Chemistry, University of Bern, Inselspital, Bern, Switzerland
| | - Lorne J Gula
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Lydia Coulter Kwee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Mark D Chaffin
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Kühne
- Cardiology/Electrophysiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Navid A Nafissi
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Peter M Nilsson
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Quinn S Wells
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renae L Judy
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Renate B Schnabel
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg/Kiel/Lübeck, Germany
| | - Renee Johnson
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Roelof A J Smit
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacey Gabriel
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stacey Knight
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Thomas W Blackwell
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Victor Nauffal
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Wang
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuan-I Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Zachary T Yoneda
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zachary W M Laksman
- Department of Medicine and the School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connie R Bezzina
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences (Heart Failure & Arrhythmias), Amsterdam UMC, Amsterdam, The Netherlands
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Christine M Albert
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan M Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel I Chasman
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Preventive Medicine and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - David D McManus
- University of Massachusetts Chan Medical School Worcester, Worcester, MA, USA
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Cardiology Department, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Emelia J Benjamin
- NHLBI and Boston University's Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gregory M Marcus
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - Ingrid E Christophersen
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - J Gustav Smith
- Department of Cardiology, Lund University Diabetes Center and Wallenberg Center for Molecular Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Murray, UT, USA
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mina K Chung
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Morten S Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Moritz F Sinner
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Paulus Kirchhof
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg/Kiel/Lübeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Saman Nazarian
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sanghamitra Mohanty
- Texas Cardiac Arrhythmia Institute, St David's Medical Center, Austin, TX, USA
- Dell Medical School, Austin, TX, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan Kaab
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Susan R Heckbert
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Svati H Shah
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University (TMDU) Graduate School of Medical and Dental Sciences, Tokyo, Japan
- BioResource Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yusuke Ebana
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hilma Holm
- deCODE genetics/Amgen, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Christian T Ruff
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc S Sabatine
- TIMI Study Group, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- NHLBI and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachsetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Kuras M, Betancourt LH, Hong R, Szadai L, Rodriguez J, Horvatovich P, Pla I, Eriksson J, Szeitz B, Deszcz B, Welinder C, Sugihara Y, Ekedahl H, Baldetorp B, Ingvar C, Lundgren L, Lindberg H, Oskolas H, Horvath Z, Rezeli M, Gil J, Appelqvist R, Kemény LV, Malm J, Sanchez A, Szasz AM, Pawłowski K, Wieslander E, Fenyö D, Nemeth IB, Marko-Varga G. Proteogenomic Profiling of Treatment-Naïve Metastatic Malignant Melanoma. Cancers (Basel) 2025; 17:832. [PMID: 40075679 PMCID: PMC11899103 DOI: 10.3390/cancers17050832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Melanoma is a highly heterogeneous disease, and a deeper molecular classification is essential for improving patient stratification and treatment approaches. Here, we describe the histopathology-driven proteogenomic landscape of 142 treatment-naïve metastatic melanoma samples to uncover molecular subtypes and clinically relevant biomarkers. METHODS We performed an integrative proteogenomic analysis to identify proteomic subtypes, assess the impact of BRAF V600 mutations, and study the molecular profiles and cellular composition of the tumor microenvironment. Clinical and histopathological data were used to support findings related to tissue morphology, disease progression, and patient outcomes. RESULTS Our analysis revealed five distinct proteomic subtypes that integrate immune and stromal microenvironment components and correlate with clinical and histopathological parameters. We demonstrated that BRAF V600-mutated melanomas exhibit biological heterogeneity, where an oncogene-induced senescence-like phenotype is associated with improved survival. This led to a proposed mortality risk-based stratification that may contribute to more personalized treatment strategies. Furthermore, tumor microenvironment composition strongly correlated with disease progression and patient outcomes, highlighting a histopathological connective tissue-to-tumor ratio assessment as a potential decision-making tool. We identified a melanoma-associated SAAV signature linked to extracellular matrix remodeling and SAAV-derived neoantigens as potential targets for anti-tumor immune responses. CONCLUSIONS This study provides a comprehensive stratification of metastatic melanoma, integrating proteogenomic insights with histopathological features. The findings may aid in the development of tailored diagnostic and therapeutic strategies, improving patient management and outcomes.
Collapse
Affiliation(s)
- Magdalena Kuras
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Lazaro Hiram Betancourt
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
| | - Runyu Hong
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; (R.H.); (D.F.)
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Leticia Szadai
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (L.S.); (I.B.N.)
| | - Jimmy Rodriguez
- Department of Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Peter Horvatovich
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Indira Pla
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Jonatan Eriksson
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Beáta Szeitz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1085 Budapest, Hungary
| | - Bartłomiej Deszcz
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Charlotte Welinder
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
| | - Yutaka Sugihara
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Henrik Ekedahl
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
- SUS University Hospital Lund, 222 42 Lund, Sweden;
| | - Bo Baldetorp
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
| | - Christian Ingvar
- SUS University Hospital Lund, 222 42 Lund, Sweden;
- Department of Surgery, Clinical Sciences, Lund University, SUS, 221 00 Lund, Sweden
| | - Lotta Lundgren
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
- SUS University Hospital Lund, 222 42 Lund, Sweden;
| | - Henrik Lindberg
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Henriett Oskolas
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, 221 00 Lund, Sweden; (C.W.); (B.B.); (L.L.); (H.O.)
| | - Zsolt Horvath
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Jeovanis Gil
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
| | - Roger Appelqvist
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
| | - Lajos V. Kemény
- HCEMM-SU Translational Dermatology Research Group, Semmelweis University, 1085 Budapest, Hungary;
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Lendület “Momentum” Dermatology Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - Johan Malm
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
| | - Aniel Sanchez
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
| | | | - Krzysztof Pawłowski
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elisabet Wieslander
- Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 214 28 Malmö, Sweden; (M.K.); (J.G.); (J.M.); (A.S.); (K.P.)
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; (R.H.); (D.F.)
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Istvan Balazs Nemeth
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (L.S.); (I.B.N.)
| | - György Marko-Varga
- Department of Biomedical Engineering, Lund University, 221 00 Lund, Sweden; (P.H.); (I.P.); (J.E.); (Y.S.); (H.L.); (M.R.); (R.A.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- 1st Department of Surgery, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
4
|
Yang H, Lan L. Transcription-coupled DNA repair protects genome stability upon oxidative stress-derived DNA strand breaks. FEBS Lett 2025; 599:168-176. [PMID: 38813713 PMCID: PMC11607181 DOI: 10.1002/1873-3468.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Elevated oxidative stress, which threatens genome stability, has been detected in almost all types of cancers. Cells employ various DNA repair pathways to cope with DNA damage induced by oxidative stress. Recently, a lot of studies have provided insights into DNA damage response upon oxidative stress, specifically in the context of transcriptionally active genomes. Here, we summarize recent studies to help understand how the transcription is regulated upon DNA double strand breaks (DSB) and how DNA repair pathways are selectively activated at the damage sites coupling with transcription. The role of RNA molecules, especially R-loops and RNA modifications during the DNA repair process, is critical for protecting genome stability. This review provides an update on how cells protect transcribed genome loci via transcription-coupled repair pathways.
Collapse
Affiliation(s)
- Haibo Yang
- Department of Urology, Brigham and Women’s Hospital & Harvard Medical School, Boston, MA, USA
| | - Li Lan
- Departments of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Tay JY, Ho JX, Cheo FF, Iqbal J. The Tumour Microenvironment and Epigenetic Regulation in BRCA1 Pathogenic Variant-Associated Breast Cancers. Cancers (Basel) 2024; 16:3910. [PMID: 39682099 DOI: 10.3390/cancers16233910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: BRCA1 pathogenic variant (PV)-associated breast cancers are most commonly seen in hereditary genetic conditions such as the autosomal-dominant Hereditary Breast and Ovarian Cancer (HBOC) syndrome, and rarely in sporadic breast cancer. Such breast cancers tend to exhibit greater aggressiveness and poorer prognoses due to the influence of BRCA1 pathogenic variants (PVs) on the tumour microenvironment. Additionally, while the genetic basis of BRCA1 PV breast cancer is well-studied, the role of epigenetic mediators in the tumourigenesis of these hereditary breast cancers is also worth exploring. Results: PVs in the BRCA1 gene interact with stromal cells and immune cells, promoting epithelial-mesenchymal transition, angiogenesis, and affecting oestrogen levels. Additionally, BRCA1 PVs contribute to breast cancer development through epigenetic effects on cells, including DNA methylation and histone acetylation, leading to the suppression of proto-oncogenes and dysregulation of cytokines. In terms of epigenetics, lysine-specific demethylase 1 (LSD-1) is considered a master epigenetic regulator, governing both transcriptional repression and activation. It exerts epigenetic control over BRCA1 and, to a lesser extent, BRCA2 genes. The upregulation of LSD-1 is generally associated with a poorer prognosis in cancer patients. In the context of breast cancer in BRCA1/2 PV carriers, LSD-1 contributes to tumour development through various mechanisms. These include the maintenance of a hypoxic environment and direct suppression of BRCA1 gene expression. Conclusions: While LSD-1 itself does not directly cause mutations in BRCA1 or BRCA2 genes, its epigenetic influence sheds light on the potential role of LSD-1 inhibitors as a therapeutic approach in managing breast cancer, particularly in individuals with BRCA1/2 PVs. Targeting LSD-1 may help counteract its detrimental effects and provide a promising avenue for therapy in this specific subgroup of breast cancer.
Collapse
Affiliation(s)
- Jun Yu Tay
- Lee Kong Chian School of Medicine, Imperial College London-Nanyang Technological University, Singapore 308232, Singapore
| | - Josh Xingchong Ho
- Lee Kong Chian School of Medicine, Imperial College London-Nanyang Technological University, Singapore 308232, Singapore
| | - Fan Foon Cheo
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Jabed Iqbal
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore 169856, Singapore
| |
Collapse
|
6
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
7
|
Chen K, Li T, Diao H, Wang Q, Zhou X, Huang Z, Wang M, Mao Z, Yang Y, Yu W. SIRT7 knockdown promotes gemcitabine sensitivity of pancreatic cancer cell via upregulation of GLUT3 expression. Cancer Lett 2024; 598:217109. [PMID: 39002692 DOI: 10.1016/j.canlet.2024.217109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Gemcitabine serves as a first-line chemotherapeutic treatment for pancreatic cancer (PC), but it is prone to rapid drug resistance. Increasing the sensitivity of PC to gemcitabine has long been a focus of research. Fasting interventions may augment the effects of chemotherapy and present new options. SIRT7 is known to link metabolism with various cellular processes through post-translational modifications. We found upregulation of SIRT7 in PC cells is associated with poor prognosis and gemcitabine resistance. Cross-analysis of RNA-seq and ATAC-seq data suggested that GLUT3 might be a downstream target gene of SIRT7. Subsequent investigations demonstrated that SIRT7 directly interacts with the enhancer region of GLUT3 to desuccinylate H3K122. Our group's another study revealed that GLUT3 can transport gemcitabine in breast cancer cells. Here, we found GLUT3 KD reduces the sensitivity of PC cells to gemcitabine, and SIRT7 KD-associated gemcitabine-sensitizing could be reversed by GLUT3 KD. While fasting mimicking induced upregulation of SIRT7 expression in PC cells, knocking down SIRT7 enhanced sensitivity to gemcitabine through upregulating GLUT3 expression. We further confirmed the effect of SIRT7 deficiency on the sensitivity of gemcitabine under fasting conditions using a mouse xenograft model. In summary, our study demonstrates that SIRT7 can regulate GLUT3 expression by binding to its enhancer and altering H3K122 succinylation levels, thus affecting gemcitabine sensitivity in PC cells. Additionally, combining SIRT7 knockdown with fasting may improve the efficacy of gemcitabine. This unveils a novel mechanism by which SIRT7 influences gemcitabine sensitivity in PC and offer innovative strategies for clinical combination therapy with gemcitabine.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Tiane Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Honglin Diao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Qikai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Xiaojia Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Zhihua Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Mingyue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China.
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Wenhua Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
8
|
Nakata Y, Nagasawa S, Sera Y, Yamasaki N, Kanai A, Kobatake K, Ueda T, Koizumi M, Manabe I, Kaminuma O, Honda H. PTIP epigenetically regulates DNA damage-induced cell cycle arrest by upregulating PRDM1. Sci Rep 2024; 14:17987. [PMID: 39097652 PMCID: PMC11297997 DOI: 10.1038/s41598-024-68295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
The genome is constantly exposed to DNA damage from endogenous and exogenous sources. Fine modulation of DNA repair, chromatin remodeling, and transcription factors is necessary for protecting genome integrity, but the precise mechanisms are still largely unclear. We found that after ionizing radiation (IR), global trimethylation of histone H3 at lysine 4 (H3K4me3) was decreased at an early (5 min) post-IR phase but increased at an intermediate (180 min) post-IR phase in both human and mouse hematopoietic cells. We demonstrated that PTIP, a component of the MLL histone methyltransferase complex, is required for H3K4me3 upregulation in the intermediate post-IR phase and promotes cell cycle arrest by epigenetically inducing a cell cycle inhibitor, PRDM1. In addition, we found that PTIP expression is specifically downregulated in acute myeloid leukemia patients. These findings collectively suggest that the PTIP-PRDM1 axis plays an essential role in proper DNA damage response and its deregulation contributes to leukemogenesis.
Collapse
Affiliation(s)
- Yuichiro Nakata
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan.
| | - Shion Nagasawa
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Yasuyuki Sera
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine,, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Norimasa Yamasaki
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Akinori Kanai
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kohei Kobatake
- Department of Urology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Takeshi Ueda
- Department of Biochemistry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama-Shi, Osaka, 589-8511, Japan
| | - Miho Koizumi
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine,, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Osamu Kaminuma
- Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine,, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
9
|
Olfson E, Farhat LC, Liu W, Vitulano LA, Zai G, Lima MO, Parent J, Polanczyk GV, Cappi C, Kennedy JL, Fernandez TV. Rare de novo damaging DNA variants are enriched in attention-deficit/hyperactivity disorder and implicate risk genes. Nat Commun 2024; 15:5870. [PMID: 38997333 PMCID: PMC11245598 DOI: 10.1038/s41467-024-50247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Research demonstrates the important role of genetic factors in attention-deficit/hyperactivity disorder (ADHD). DNA sequencing of families provides a powerful approach for identifying de novo (spontaneous) variants, leading to the discovery of hundreds of clinically informative risk genes for other childhood neurodevelopmental disorders. This approach has yet to be extensively leveraged in ADHD. We conduct whole-exome DNA sequencing in 152 families, comprising a child with ADHD and both biological parents, and demonstrate a significant enrichment of rare and ultra-rare de novo gene-damaging mutations in ADHD cases compared to unaffected controls. Combining these results with a large independent case-control DNA sequencing cohort (3206 ADHD cases and 5002 controls), we identify lysine demethylase 5B (KDM5B) as a high-confidence risk gene for ADHD and estimate that 1057 genes contribute to ADHD risk. Using our list of genes harboring ultra-rare de novo damaging variants, we show that these genes overlap with previously reported risk genes for other neuropsychiatric conditions and are enriched in several canonical biological pathways, suggesting early neurodevelopmental underpinnings of ADHD. This work provides insight into the biology of ADHD and demonstrates the discovery potential of DNA sequencing in larger parent-child trio cohorts.
Collapse
Affiliation(s)
- Emily Olfson
- Child Study Center, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| | - Luis C Farhat
- Child Study Center, Yale University, New Haven, CT, USA
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Wenzhong Liu
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Gwyneth Zai
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Monicke O Lima
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Justin Parent
- University of Rhode Island, Kingston, RI, USA
- Bradley/Hasbro Children's Research Center, E.P. Bradley Hospital, Providence, RI, USA
- Alpert Medical School of Brown University, Providence, RI, USA
| | - Guilherme V Polanczyk
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Cappi
- Department of Psychiatry at Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - James L Kennedy
- Tanenbaum Centre, Molecular Brain Sciences Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Thomas V Fernandez
- Child Study Center, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
10
|
Tolue Ghasaban F, Ghanei M, Mahmoudian RA, Taghehchian N, Abbaszadegan MR, Moghbeli M. MicroRNAs as the critical regulators of epithelial mesenchymal transition in pancreatic tumor cells. Heliyon 2024; 10:e30599. [PMID: 38726188 PMCID: PMC11079401 DOI: 10.1016/j.heliyon.2024.e30599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer (PC), as one of the main endocrine and digestive systems malignancies has the highest cancer related mortality in the world. Lack of the evident clinical symptoms and appropriate diagnostic markers in the early stages of tumor progression are the main reasons of the high mortality rate among PC patients. Therefore, it is necessary to investigate the molecular pathways involved in the PC progression, in order to introduce novel early diagnostic methods. Epithelial mesenchymal transition (EMT) is a critical cellular process associated with pancreatic tumor cells invasion and distant metastasis. MicroRNAs (miRNAs) are also important regulators of EMT process. In the present review, we discussed the role of miRNAs in regulation of EMT process during PC progression. It has been reported that the miRNAs mainly regulate the EMT process in pancreatic tumor cells through the regulation of EMT-specific transcription factors and several signaling pathways such as WNT, NOTCH, TGF-β, JAK/STAT, and PI3K/AKT. Considering the high stability of miRNAs in body fluids and their role in regulation of EMT process, they can be introduced as the non-invasive diagnostic markers in the early stages of malignant pancreatic tumors. This review paves the way to introduce a non-invasive EMT based panel marker for the early tumor detection among PC patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 PMCID: PMC10969416 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| |
Collapse
|
12
|
Mankan AK, Mankan N, de Las Heras B, Ramkissoon SH, Bodriagova O, Vidal L, Grande E, Saini KS. Bladder Cancer, Loss of Y Chromosome, and New Opportunities for Immunotherapy. Adv Ther 2024; 41:885-890. [PMID: 38198042 DOI: 10.1007/s12325-023-02758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Immune checkpoint inhibitors (ICI) have emerged as an important therapeutic approach for patients with cancers including bladder cancer (BC). This commentary describes a recent study that demonstrated that the loss of Y chromosome (LOY) and/or loss of specific genes on Y chromosome confers an aggressive phenotype to BC because of T cell dysfunction resulting in CD8+T cell exhaustion. Loss of expression of Y chromosome genes KDM5D and UTY was similarly associated with an unfavorable prognosis in patients with BC as these genes were partially responsible for the impaired anti-tumor immunity in LOY tumors. From a clinical perspective, the study showed that tumors with LOY may be susceptible to treatment with ICIs.
Collapse
Affiliation(s)
- Arun K Mankan
- Fortrea Inc., 8, Moore Drive, Durham, NC, 27709, USA.
| | | | | | - Shakti H Ramkissoon
- Labcorp Oncology, Durham, NC, USA
- Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Laura Vidal
- Fortrea Inc., 8, Moore Drive, Durham, NC, 27709, USA
| | | | - Kamal S Saini
- Fortrea Inc., 8, Moore Drive, Durham, NC, 27709, USA.
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
13
|
Ullrich V, Ertmer S, Baginska A, Dorsch M, Gull HH, Cima I, Berger P, Dobersalske C, Langer S, Meyer L, Dujardin P, Kebir S, Glas M, Blau T, Keyvani K, Rauschenbach L, Sure U, Roesch A, Grüner BM, Scheffler B. KDM5B predicts temozolomide-resistant subclones in glioblastoma. iScience 2024; 27:108596. [PMID: 38174322 PMCID: PMC10762356 DOI: 10.1016/j.isci.2023.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/06/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Adaptive plasticity to the standard chemotherapeutic temozolomide (TMZ) leads to glioblastoma progression. Here, we examine early stages of this process in patient-derived cellular models, exposing the human lysine-specific demethylase 5B (KDM5B) as a prospective indicator for subclonal expansion. By integration of a reporter, we show its preferential activity in rare, stem-like ALDH1A1+ cells, immediately increasing expression upon TMZ exposure. Naive, genetically unmodified KDM5Bhigh cells phosphorylate AKT (pAKT) and act as slow-cycling persisters under TMZ. Knockdown of KDM5B reverses pAKT levels, simultaneously increasing PTEN expression and TMZ sensitivity. Pharmacological inhibition of PTEN rescues the effect. Interference with KDM5B subsequent to TMZ decreases cellular vitality, and clonal tracing with DNA barcoding demonstrates high individual levels of KDM5B to predict subclonal expansion already before TMZ exposure. Thus, KDM5Bhigh treatment-naive cells preferentially contribute to the dynamics of drug resistance under TMZ. These findings may serve as a cornerstone for future biomarker-assisted clinical trials.
Collapse
Affiliation(s)
- Vivien Ullrich
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah Ertmer
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Baginska
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Madeleine Dorsch
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Hanah H. Gull
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Igor Cima
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Pia Berger
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Celia Dobersalske
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah Langer
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Loona Meyer
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Philip Dujardin
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Sied Kebir
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Martin Glas
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Tobias Blau
- Department of Neuropathology, University Hospital Essen, 45147 Essen, Germany
| | - Kathy Keyvani
- Department of Neuropathology, University Hospital Essen, 45147 Essen, Germany
| | - Laurèl Rauschenbach
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrich Sure
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, 45147 Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany
| | - Alexander Roesch
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Barbara M. Grüner
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Björn Scheffler
- DKFZ-Division Translational Neurooncology at the WTZ, DKTK partner site, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
14
|
Cao Y, Wu C, Ma L. Lysine demethylase 5B (KDM5B): A key regulator of cancer drug resistance. J Biochem Mol Toxicol 2024; 38:e23587. [PMID: 38014925 DOI: 10.1002/jbt.23587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Chemoresistance, a roadblock in the chemotherapy process, has been impeding its effective treatment. KDM5B, a member of the histone demethylase family, has been crucial in the emergence and growth of malignancies. More significantly, KDM5B has recently been linked closely to cancer's resistance to chemotherapy. In this review, we explain the biological properties of KDM5B, its function in the emergence and evolution of cancer treatment resistance, and our hopes for future drug resistance-busting combinations involving KDM5B and related targets or medications.
Collapse
Affiliation(s)
- Yaquan Cao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian, China
| |
Collapse
|
15
|
Fernandez TV, Williams ZP, Kline T, Rajendran S, Augustine F, Wright N, Sullivan CAW, Olfson E, Abdallah SB, Liu W, Hoffman EJ, Gupta AR, Singer HS. Primary complex motor stereotypies are associated with de novo damaging DNA coding mutations that identify KDM5B as a risk gene. PLoS One 2023; 18:e0291978. [PMID: 37788244 PMCID: PMC10547198 DOI: 10.1371/journal.pone.0291978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023] Open
Abstract
Motor stereotypies are common in children with autism spectrum disorder (ASD), intellectual disability, or sensory deprivation, as well as in typically developing children ("primary" stereotypies, pCMS). The precise pathophysiological mechanism for motor stereotypies is unknown, although genetic etiologies have been suggested. In this study, we perform whole-exome DNA sequencing in 129 parent-child trios with pCMS and 853 control trios (118 cases and 750 controls after quality control). We report an increased rate of de novo predicted-damaging DNA coding variants in pCMS versus controls, identifying KDM5B as a high-confidence risk gene and estimating 184 genes conferring risk. Genes harboring de novo damaging variants in pCMS probands show significant overlap with those in Tourette syndrome, ASD, and those in ASD probands with high versus low stereotypy scores. An exploratory analysis of these pCMS gene expression patterns finds clustering within the cortex and striatum during early mid-fetal development. Exploratory gene ontology and network analyses highlight functional convergence in calcium ion transport, demethylation, cell signaling, cell cycle and development. Continued sequencing of pCMS trios will identify additional risk genes and provide greater insights into biological mechanisms of stereotypies across diagnostic boundaries.
Collapse
Affiliation(s)
- Thomas V. Fernandez
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States America
| | - Zsanett P. Williams
- Department of Psychiatry, Vanderbilt University School of Nursing, Nashville, TN, United States America
| | - Tina Kline
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| | - Shreenath Rajendran
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| | - Farhan Augustine
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| | - Nicole Wright
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Catherine A. W. Sullivan
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States America
| | - Emily Olfson
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Sarah B. Abdallah
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Wenzhong Liu
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Ellen J. Hoffman
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
| | - Abha R. Gupta
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, United States America
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States America
| | - Harvey S. Singer
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States America
| |
Collapse
|
16
|
Mao X, Wu J, Zhang Q, Zhang S, Chen X, Liu X, Wei M, Wan X, Qiu L, Zeng M, Lei X, Liu C, Han J. Requirement of WDR70 for POLE3-mediated DNA double-strand breaks repair. SCIENCE ADVANCES 2023; 9:eadh2358. [PMID: 37682991 PMCID: PMC10491287 DOI: 10.1126/sciadv.adh2358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
H2BK120ub1 triggers several prominent downstream histone modification pathways and changes in chromatin structure, therefore involving it into multiple critical cellular processes including DNA transcription and DNA damage repair. Although it has been reported that H2BK120ub1 is mediated by RNF20/40 and CRL4WDR70, less is known about the underlying regulation mechanism for H2BK120ub1 by WDR70. By using a series of biochemical and cell-based studies, we find that WDR70 promotes H2BK120ub1 by interacting with RNF20/40 complex, and deposition of H2BK120ub1 and H3K79me2 in POLE3 loci is highly sensitive to POLE3 transcription. Moreover, we demonstrate that POLE3 interacts CHRAC1 to promote DNA repair by regulation on the expression of homology-directed repair proteins and KU80 recruitment and identify CHRAC1 D121Y mutation in colorectal cancer, which leads to the defect in DNA repair due to attenuated the interaction with POLE3. These findings highlight a previously unknown role for WDR70 in maintenance of genomic stability and imply POLE3 and CHRAC1 as potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Xiaobing Mao
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Wu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoshuang Chen
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Liu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Zeng
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University hospital, Sichuan University, Chengdu 610041, China
| | - Xue Lei
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cong Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Sun JKL, Wong GCN, Chow KHM. Cross-talk between DNA damage response and the central carbon metabolic network underlies selective vulnerability of Purkinje neurons in ataxia-telangiectasia. J Neurochem 2023; 166:654-677. [PMID: 37319113 DOI: 10.1111/jnc.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.
Collapse
Affiliation(s)
- Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
18
|
Szczepanek J, Skorupa M, Jarkiewicz-Tretyn J, Cybulski C, Tretyn A. Harnessing Epigenetics for Breast Cancer Therapy: The Role of DNA Methylation, Histone Modifications, and MicroRNA. Int J Mol Sci 2023; 24:ijms24087235. [PMID: 37108398 PMCID: PMC10138995 DOI: 10.3390/ijms24087235] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer exhibits various epigenetic abnormalities that regulate gene expression and contribute to tumor characteristics. Epigenetic alterations play a significant role in cancer development and progression, and epigenetic-targeting drugs such as DNA methyltransferase inhibitors, histone-modifying enzymes, and mRNA regulators (such as miRNA mimics and antagomiRs) can reverse these alterations. Therefore, these epigenetic-targeting drugs are promising candidates for cancer treatment. However, there is currently no effective epi-drug monotherapy for breast cancer. Combining epigenetic drugs with conventional therapies has yielded positive outcomes and may be a promising strategy for breast cancer therapy. DNA methyltransferase inhibitors, such as azacitidine, and histone deacetylase inhibitors, such as vorinostat, have been used in combination with chemotherapy to treat breast cancer. miRNA regulators, such as miRNA mimics and antagomiRs, can alter the expression of specific genes involved in cancer development. miRNA mimics, such as miR-34, have been used to inhibit tumor growth, while antagomiRs, such as anti-miR-10b, have been used to inhibit metastasis. The development of epi-drugs that target specific epigenetic changes may lead to more effective monotherapy options in the future.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| | | | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Andrzej Tretyn
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
19
|
Rohbeck E, Niersmann C, Köhrer K, Wachtmeister T, Roden M, Eckel J, Romacho T. Positive allosteric GABA A receptor modulation counteracts lipotoxicity-induced gene expression changes in hepatocytes in vitro. Front Physiol 2023; 14:1106075. [PMID: 36860523 PMCID: PMC9968943 DOI: 10.3389/fphys.2023.1106075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: We have previously shown that the novel positive allosteric modulator of the GABAA receptor, HK4, exerts hepatoprotective effects against lipotoxicity-induced apoptosis, DNA damage, inflammation and ER stress in vitro. This might be mediated by downregulated phosphorylation of the transcription factors NF-κB and STAT3. The current study aimed to investigate the effect of HK4 on lipotoxicity-induced hepatocyte injury at the transcriptional level. Methods: HepG2 cells were treated with palmitate (200 μM) in the presence or absence of HK4 (10 μM) for 7 h. Total RNA was isolated and the expression profiles of mRNAs were assessed. Differentially expressed genes were identified and subjected to the DAVID database and Ingenuity Pathway Analysis software for functional and pathway analysis, all under appropriate statistical testing. Results: Transcriptomic analysis showed substantial modifications in gene expression in response to palmitate as lipotoxic stimulus with 1,457 differentially expressed genes affecting lipid metabolism, oxidative phosphorylation, apoptosis, oxidative and ER stress among others. HK4 preincubation resulted in the prevention of palmitate-induced dysregulation by restoring initial gene expression pattern of untreated hepatocytes comprising 456 genes. Out of the 456 genes, 342 genes were upregulated and 114 downregulated by HK4. Enriched pathways analysis of those genes by Ingenuity Pathway Analysis, pointed towards oxidative phosphorylation, mitochondrial dysregulation, protein ubiquitination, apoptosis, and cell cycle regulation as affected pathways. These pathways are regulated by the key upstream regulators TP53, KDM5B, DDX5, CAB39 L and SYVN1, which orchestrate the metabolic and oxidative stress responses including modulation of DNA repair and degradation of ER stress-induced misfolded proteins in the presence or absence of HK4. Discussion: We conclude that HK4 specifically targets mitochondrial respiration, protein ubiquitination, apoptosis and cell cycle. This not only helps to counteract lipotoxic hepatocellular injury through modification of gene expression, but - by targeting transcription factors responsible for DNA repair, cell cycle progression and ER stress - might even prevent lipotoxic mechanisms. These findings suggest that HK4 has a great potential for the treatment of non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Elisabeth Rohbeck
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany,CureDiab Metabolic Research GmbH, Düsseldorf, Germany
| | - Corinna Niersmann
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany,CureDiab Metabolic Research GmbH, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Centre (BMFZ), Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Centre (BMFZ), Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Eckel
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,CureDiab Metabolic Research GmbH, Düsseldorf, Germany
| | - Tania Romacho
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,Chronic Complications of Diabetes Lab (ChroCoDiL), Department of Nursing Sciences, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, Almería, Spain,*Correspondence: Tania Romacho,
| |
Collapse
|
20
|
Frigerio C, Di Nisio E, Galli M, Colombo CV, Negri R, Clerici M. The Chromatin Landscape around DNA Double-Strand Breaks in Yeast and Its Influence on DNA Repair Pathway Choice. Int J Mol Sci 2023; 24:ijms24043248. [PMID: 36834658 PMCID: PMC9967470 DOI: 10.3390/ijms24043248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
DNA double-strand breaks (DSBs) are harmful DNA lesions, which elicit catastrophic consequences for genome stability if not properly repaired. DSBs can be repaired by either non-homologous end joining (NHEJ) or homologous recombination (HR). The choice between these two pathways depends on which proteins bind to the DSB ends and how their action is regulated. NHEJ initiates with the binding of the Ku complex to the DNA ends, while HR is initiated by the nucleolytic degradation of the 5'-ended DNA strands, which requires several DNA nucleases/helicases and generates single-stranded DNA overhangs. DSB repair occurs within a precisely organized chromatin environment, where the DNA is wrapped around histone octamers to form the nucleosomes. Nucleosomes impose a barrier to the DNA end processing and repair machinery. Chromatin organization around a DSB is modified to allow proper DSB repair either by the removal of entire nucleosomes, thanks to the action of chromatin remodeling factors, or by post-translational modifications of histones, thus increasing chromatin flexibility and the accessibility of repair enzymes to the DNA. Here, we review histone post-translational modifications occurring around a DSB in the yeast Saccharomyces cerevisiae and their role in DSB repair, with particular attention to DSB repair pathway choice.
Collapse
Affiliation(s)
- Chiara Frigerio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Elena Di Nisio
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Michela Galli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Chiara Vittoria Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, 00185 Rome, Italy
- Correspondence: (R.N.); (M.C.)
| | - Michela Clerici
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence: (R.N.); (M.C.)
| |
Collapse
|
21
|
Di Nisio E, Licursi V, Mannironi C, Buglioni V, Paiardini A, Robusti G, Noberini R, Bonaldi T, Negri R. A truncated and catalytically inactive isoform of KDM5B histone demethylase accumulates in breast cancer cells and regulates H3K4 tri-methylation and gene expression. Cancer Gene Ther 2023:10.1038/s41417-022-00584-w. [PMID: 36697763 DOI: 10.1038/s41417-022-00584-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
KDM5B histone demethylase is overexpressed in many cancers and plays an ambivalent role in oncogenesis, depending on the specific context. This ambivalence could be explained by the expression of KDM5B protein isoforms with diverse functional roles, which could be present at different levels in various cancer cell lines. We show here that one of these isoforms, namely KDM5B-NTT, accumulates in breast cancer cell lines due to remarkable protein stability relative to the canonical PLU-1 isoform, which shows a much faster turnover. This isoform is the truncated and catalytically inactive product of an mRNA with a transcription start site downstream of the PLU-1 isoform, and the consequent usage of an alternative ATG for translation initiation. It also differs from the PLU-1 transcript in the inclusion of an additional exon (exon-6), previously attributed to other putative isoforms. Overexpression of this isoform in MCF7 cells leads to an increase in bulk H3K4 methylation and induces derepression of a gene cluster, including the tumor suppressor Cav1 and several genes involved in the interferon-alpha and -gamma response. We discuss the relevance of this finding considering the hypothesis that KDM5B may possess regulatory roles independent of its catalytic activity.
Collapse
Affiliation(s)
- Elena Di Nisio
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, via dei Sardi 70, 00185, Rome, Italy.,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, DD1 5EH, Dundee, Scotland, UK
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Cecilia Mannironi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Valentina Buglioni
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, via dei Sardi 70, 00185, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Giulia Robusti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Department of Oncology and Hematology-Oncology, University of Milan, Milan, 20122, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, via dei Sardi 70, 00185, Rome, Italy. .,Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Via degli Apuli 4, 00185, Rome, Italy.
| |
Collapse
|
22
|
Metzler VM, de Brot S, Haigh DB, Woodcock CL, Lothion-Roy J, Harris AE, Nilsson EM, Ntekim A, Persson JL, Robinson BD, Khani F, Laursen KB, Gudas LJ, Toss MS, Madhusudan S, Rakha E, Heery DM, Rutland CS, Mongan NP, Jeyapalan JN. The KDM5B and KDM1A lysine demethylases cooperate in regulating androgen receptor expression and signalling in prostate cancer. Front Cell Dev Biol 2023; 11:1116424. [PMID: 37152294 PMCID: PMC10154691 DOI: 10.3389/fcell.2023.1116424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Histone H3 lysine 4 (H3K4) methylation is key epigenetic mark associated with active transcription and is a substrate for the KDM1A/LSD1 and KDM5B/JARID1B lysine demethylases. Increased expression of KDM1A and KDM5B is implicated in many cancer types, including prostate cancer (PCa). Both KDM1A and KDM5B interact with AR and promote androgen regulated gene expression. For this reason, there is great interested in the development of new therapies targeting KDM1A and KDM5B, particularly in the context of castrate resistant PCa (CRPC), where conventional androgen deprivation therapies and androgen receptor signalling inhibitors are no longer effective. As there is no curative therapy for CRPC, new approaches are urgently required to suppress androgen signalling that prevent, delay or reverse progression to the castrate resistant state. While the contribution of KDM1A to PCa is well established, the exact contribution of KDM5B to PCa is less well understood. However, there is evidence that KDM5B is implicated in numerous pro-oncogenic mechanisms in many different types of cancer, including the hypoxic response, immune evasion and PI3/AKT signalling. Here we elucidate the individual and cooperative functions of KDM1A and KDM5B in PCa. We show that KDM5B mRNA and protein expression is elevated in localised and advanced PCa. We show that the KDM5 inhibitor, CPI-455, impairs androgen regulated transcription and alternative splicing. Consistent with the established role of KDM1A and KDM5B as AR coregulators, we found that individual pharmacologic inhibition of KDM1A and KDM5 by namoline and CPI-455 respectively, impairs androgen regulated transcription. Notably, combined inhibition of KDM1A and KDM5 downregulates AR expression in CRPC cells. Furthermore, combined KDM1A and KDM5 inhibition impairs PCa cell proliferation and invasion more than individual inhibition of KDM1A and KDM5B. Collectively our study has identified individual and cooperative mechanisms involving KDM1A and KDM5 in androgen signalling in PCa. Our findings support the further development of KDM1A and KDM5B inhibitors to treat advanced PCa. Further work is now required to confirm the therapeutic feasibility of combined inhibition of KDM1A and KDM5B as a novel therapeutic strategy for targeting AR positive CRPC.
Collapse
Affiliation(s)
- Veronika M. Metzler
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Daisy B. Haigh
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Corinne L. Woodcock
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Anna E. Harris
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Emeli M. Nilsson
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Atara Ntekim
- Department of Oncology, University Hospital Ibadan, Ibadan, Nigeria
| | - Jenny L. Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Biomedical Sciences, Malmö Universitet, Malmö, Sweden
| | - Brian D. Robinson
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Urology, Weill Cornell Medicine, New York, NY, United States
| | - Kristian B. Laursen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Michael S. Toss
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | | | - Emad Rakha
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - David M. Heery
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Catrin S. Rutland
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Mongan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Nigel P. Mongan, , ; Jennie N. Jeyapalan,
| | - Jennie N. Jeyapalan
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nigel P. Mongan, , ; Jennie N. Jeyapalan,
| |
Collapse
|
23
|
Epigenetic Insights on PARP-1 Activity in Cancer Therapy. Cancers (Basel) 2022; 15:cancers15010006. [PMID: 36612003 PMCID: PMC9817704 DOI: 10.3390/cancers15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
The regulation of chromatin state and histone protein eviction have been proven essential during transcription and DNA repair. Poly(ADP-ribose) (PAR) polymerase 1 (PARP-1) and poly(ADP-ribosyl)ation (PARylation) are crucial mediators of these processes by affecting DNA/histone epigenetic events. DNA methylation/hydroxymethylation patterns and histone modifications are established by mutual coordination between all epigenetic modifiers. This review will focus on histones and DNA/histone epigenetic machinery that are direct targets of PARP-1 activity by covalent and non-covalent PARylation. The effects of these modifications on the activity/recruitment of epigenetic enzymes at DNA damage sites or gene regulatory regions will be outlined. Furthermore, based on the achievements made to the present, we will discuss the potential application of epigenetic-based therapy as a novel strategy for boosting the success of PARP inhibitors, improving cell sensitivity or overcoming drug resistance.
Collapse
|
24
|
Hu T, Pan C, Zhang T, Ni M, Wang W, Zhang S, Chen Y, Wang J, Fang Q. Nrf2 overexpression increases the resistance of acute myeloid leukemia to cytarabine by inhibiting replication factor C4. Cancer Gene Ther 2022; 29:1773-1790. [PMID: 35840666 PMCID: PMC9663296 DOI: 10.1038/s41417-022-00501-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023]
Abstract
Drug resistance is a key factor in the treatment failure of acute myeloid leukemia (AML). Nuclear factor E2-related factor 2 (Nrf2) plays a crucial role in tumor chemotherapy resistance. However, the potential mechanism of Nrf2 regulating DNA mismatch repair (MMR) pathway to mediate gene-instability drug resistance in AML is still unclear. Here, it was found that Nrf2 expression was closely related to the disease progression of AML as well as highly expressed in AML patients with poor prognostic gene mutations. Meanwhile, it was also found that the expression of Nrf2 was significantly negatively correlated with DNA MMR gene replication factor C4 (RFC4) in AML. CHIP analysis combined with luciferase reporter gene results further showed that Nrf2 may inhibit the expression of RFC4 by its interaction with the RFC4 promoter. In vitro and vivo experiments showed that the overexpression of Nrf2 decreased the killing effect of chemotherapy drug cytarabine (Ara-C) on leukemia cells and inhibited the expression of RFC4. Mechanistically, The result that Nrf2-RFC4 axis mediated AML genetic instability drug resistance might be received by activating the JNK/NF-κB signaling pathway. Taken together, these findings may provide a new idea for improving AML drug resistance.
Collapse
Affiliation(s)
- Tianzhen Hu
- College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chengyun Pan
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, Guizhou, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tianzhuo Zhang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ming Ni
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, Guizhou, China
| | - Weili Wang
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, Guizhou, China
| | - Siyu Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Chen
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, Guizhou, China
| | - Jishi Wang
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guiyang, Guizhou, China.
| | - Qin Fang
- pharmacy department, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
25
|
ElGindi M, Sapudom J, Laws P, Garcia-Sabaté A, Daqaq MF, Teo J. 3D microenvironment attenuates simulated microgravity-mediated changes in T cell transcriptome. Cell Mol Life Sci 2022; 79:508. [PMID: 36063234 PMCID: PMC11803002 DOI: 10.1007/s00018-022-04531-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Human space travel and exploration are of interest to both the industrial and scientific community. However, there are many adverse effects of spaceflight on human physiology. In particular, there is a lack of understanding of the extent to which microgravity affects the immune system. T cells, key players of the adaptive immune system and long-term immunity, are present not only in blood circulation but also reside within the tissue. As of yet, studies investigating the effects of microgravity on T cells are limited to peripheral blood or traditional 2D cell culture that recapitulates circulating blood. To better mimic interstitial tissue, 3D cell culture has been well established for physiologically and pathologically relevant models. In this work, we utilize 2D cell culture and 3D collagen matrices to gain an understanding of how simulated microgravity, using a random positioning machine, affects both circulating and tissue-resident T cells. T cells were studied in both resting and activated stages. We found that 3D cell culture attenuates the effects of simulated microgravity on the T cells transcriptome and nuclear irregularities compared to 2D cell culture. Interestingly, simulated microgravity appears to have less effect on activated T cells compared to those in the resting stage. Overall, our work provides novel insights into the effects of simulated microgravity on circulating and tissue-resident T cells which could provide benefits for the health of space travellers.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Praveen Laws
- Laboratory of Applied Nonlinear Dynamics, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Mohammed F Daqaq
- Laboratory of Applied Nonlinear Dynamics, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
- Department of Mechanical and Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
26
|
Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 2022; 23:563-580. [PMID: 35338361 DOI: 10.1038/s41576-022-00468-7] [Citation(s) in RCA: 486] [Impact Index Per Article: 162.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/16/2022]
Abstract
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Center Munich, Munich, Germany.
- Faculty of Biology, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.
| |
Collapse
|
27
|
Abstract
Over the course of a human lifespan, genome integrity erodes, leading to an increased abundance of several types of chromatin changes. The abundance of DNA lesions (chemical perturbations to nucleotides) increases with age, as does the number of genomic mutations and transcriptional disruptions caused by replication or transcription of those lesions, respectively. At the epigenetic level, precise DNA methylation patterns degrade, likely causing increasingly stochastic variations in gene expression. Similarly, the tight regulation of histone modifications begins to unravel. The genomic instability caused by these mechanisms allows transposon element reactivation and remobilization, further mutations, gene dysregulation, and cytoplasmic chromatin fragments. This cumulative genomic instability promotes cell signaling events that drive cell fate decisions and extracellular communications known to disrupt tissue homeostasis and regeneration. In this Review, we focus on age-related epigenetic changes and their interactions with age-related genomic changes that instigate these events.
Collapse
Affiliation(s)
- Carolina Soto-Palma
- Institute on the Biology of Aging and Metabolism
- Department of Biochemistry, Molecular Biology, and Biophysics
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism
- Department of Biochemistry, Molecular Biology, and Biophysics
| | - Christopher D. Faulk
- Institute on the Biology of Aging and Metabolism
- Department of Animal Science, and
| | - Xiao Dong
- Institute on the Biology of Aging and Metabolism
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
28
|
Pavlenko E, Ruengeler T, Engel P, Poepsel S. Functions and Interactions of Mammalian KDM5 Demethylases. Front Genet 2022; 13:906662. [PMID: 35899196 PMCID: PMC9309374 DOI: 10.3389/fgene.2022.906662] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022] Open
Abstract
Mammalian histone demethylases of the KDM5 family are mediators of gene expression dynamics during developmental, cellular differentiation, and other nuclear processes. They belong to the large group of JmjC domain containing, 2-oxoglutarate (2-OG) dependent oxygenases and target methylated lysine 4 of histone H3 (H3K4me1/2/3), an epigenetic mark associated with active transcription. In recent years, KDM5 demethylases have gained increasing attention due to their misregulation in many cancer entities and are intensively explored as therapeutic targets. Despite these implications, the molecular basis of KDM5 function has so far remained only poorly understood. Little is known about mechanisms of nucleosome recognition, the recruitment to genomic targets, as well as the local regulation of demethylase activity. Experimental evidence suggests close physical and functional interactions with epigenetic regulators such as histone deacetylase (HDAC) containing complexes, as well as the retinoblastoma protein (RB). To understand the regulation of KDM5 proteins in the context of chromatin, these interactions have to be taken into account. Here, we review the current state of knowledge on KDM5 function, with a particular emphasis on molecular interactions and their potential implications. We will discuss and outline open questions that need to be addressed to better understand histone demethylation and potential demethylation-independent functions of KDM5s. Addressing these questions will increase our understanding of histone demethylation and allow us to develop strategies to target individual KDM5 enzymes in specific biological and disease contexts.
Collapse
Affiliation(s)
- Egor Pavlenko
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Till Ruengeler
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Paulina Engel
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Simon Poepsel
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- *Correspondence: Simon Poepsel,
| |
Collapse
|
29
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
30
|
Bayley R, Borel V, Moss RJ, Sweatman E, Ruis P, Ormrod A, Goula A, Mottram RMA, Stanage T, Hewitt G, Saponaro M, Stewart GS, Boulton SJ, Higgs MR. H3K4 methylation by SETD1A/BOD1L facilitates RIF1-dependent NHEJ. Mol Cell 2022; 82:1924-1939.e10. [PMID: 35439434 PMCID: PMC9616806 DOI: 10.1016/j.molcel.2022.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/14/2021] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
Abstract
The 53BP1-RIF1-shieldin pathway maintains genome stability by suppressing nucleolytic degradation of DNA ends at double-strand breaks (DSBs). Although RIF1 interacts with damaged chromatin via phospho-53BP1 and facilitates recruitment of the shieldin complex to DSBs, it is unclear whether other regulatory cues contribute to this response. Here, we implicate methylation of histone H3 at lysine 4 by SETD1A-BOD1L in the recruitment of RIF1 to DSBs. Compromising SETD1A or BOD1L expression or deregulating H3K4 methylation allows uncontrolled resection of DNA ends, impairs end-joining of dysfunctional telomeres, and abrogates class switch recombination. Moreover, defects in RIF1 localization to DSBs are evident in patient cells bearing loss-of-function mutations in SETD1A. Loss of SETD1A-dependent RIF1 recruitment in BRCA1-deficient cells restores homologous recombination and leads to resistance to poly(ADP-ribose)polymerase inhibition, reinforcing the clinical relevance of these observations. Mechanistically, RIF1 binds directly to methylated H3K4, facilitating its recruitment to, or stabilization at, DSBs.
Collapse
Affiliation(s)
- Rachel Bayley
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Valerie Borel
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK
| | - Rhiannon J Moss
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ellie Sweatman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Philip Ruis
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK
| | - Alice Ormrod
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Amalia Goula
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Rachel M A Mottram
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tyler Stanage
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK
| | - Graeme Hewitt
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, Midland Road, London, UK.
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
31
|
Sanchez A, Buck-Koehntop BA, Miller KM. Joining the PARty: PARP Regulation of KDM5A during DNA Repair (and Transcription?). Bioessays 2022; 44:e2200015. [PMID: 35532219 DOI: 10.1002/bies.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
Abstract
The lysine demethylase KDM5A collaborates with PARP1 and the histone variant macroH2A1.2 to modulate chromatin to promote DNA repair. Indeed, KDM5A engages poly(ADP-ribose) (PAR) chains at damage sites through a previously uncharacterized coiled-coil domain, a novel binding mode for PAR interactions. While KDM5A is a well-known transcriptional regulator, its function in DNA repair is only now emerging. Here we review the molecular mechanisms that regulate this PARP1-macroH2A1.2-KDM5A axis in DNA damage and consider the potential involvement of this pathway in transcription regulation and cancer. Using KDM5A as an example, we discuss how multifunctional chromatin proteins transition between several DNA-based processes, which must be coordinated to protect the integrity of the genome and epigenome. The dysregulation of chromatin and loss of genome integrity that is prevalent in human diseases including cancer may be related and could provide opportunities to target multitasking proteins with these pathways as therapeutic strategies.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, The University of Texas at Austin, Austin, Texas, USA
| | | | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, The University of Texas at Austin, Austin, Texas, USA.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
32
|
Zhang J, Lu X, MoghaddamKohi S, Shi L, Xu X, Zhu WG. Histone lysine modifying enzymes and their critical roles in DNA double-strand break repair. DNA Repair (Amst) 2021; 107:103206. [PMID: 34411909 DOI: 10.1016/j.dnarep.2021.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Cells protect the integrity of the genome against DNA double-strand breaks through several well-characterized mechanisms including nonhomologous end-joining repair, homologous recombination repair, microhomology-mediated end-joining and single-strand annealing. However, aberrant DNA damage responses (DDRs) lead to genome instability and tumorigenesis. Clarification of the mechanisms underlying the DDR following lethal damage will facilitate the identification of therapeutic targets for cancer. Histones are small proteins that play a major role in condensing DNA into chromatin and regulating gene function. Histone modifications commonly occur in several residues including lysine, arginine, serine, threonine and tyrosine, which can be acetylated, methylated, ubiquitinated and phosphorylated. Of these, lysine modifications have been extensively explored during DDRs. Here, we focus on discussing the roles of lysine modifying enzymes involved in acetylation, methylation, and ubiquitination during the DDR. We provide a comprehensive understanding of the basis of potential epigenetic therapies driven by histone lysine modifications.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Xiaopeng Lu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Sara MoghaddamKohi
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingzhi Xu
- Department of Cell Biology and Medical Genetics, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
33
|
Kaneko S, Takasawa K, Asada K, Shinkai N, Bolatkan A, Yamada M, Takahashi S, Machino H, Kobayashi K, Komatsu M, Hamamoto R. Epigenetic Mechanisms Underlying COVID-19 Pathogenesis. Biomedicines 2021; 9:1142. [PMID: 34572329 PMCID: PMC8466119 DOI: 10.3390/biomedicines9091142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
In 2019, a novel severe acute respiratory syndrome called coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was reported and was declared a pandemic by the World Health Organization (WHO) in March 2020. With the advancing development of COVID-19 vaccines and their administration globally, it is expected that COVID-19 will converge in the future; however, the situation remains unpredictable because of a series of reports regarding SARS-CoV-2 variants. Currently, there are still few specific effective treatments for COVID-19, as many unanswered questions remain regarding the pathogenic mechanism of COVID-19. Continued elucidation of COVID-19 pathogenic mechanisms is a matter of global importance. In this regard, recent reports have suggested that epigenetics plays an important role; for instance, the expression of angiotensin I converting enzyme 2 (ACE2) receptor, an important factor in human infection with SARS-CoV-2, is epigenetically regulated; further, DNA methylation status is reported to be unique to patients with COVID-19. In this review, we focus on epigenetic mechanisms to provide a new molecular framework for elucidating the pathogenesis of SARS-CoV-2 infection in humans and of COVID-19, along with the possibility of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Norio Shinkai
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Amina Bolatkan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masayoshi Yamada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- National Cancer Center Hospital, Department of Endoscopy, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Kazuma Kobayashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (K.T.); (K.A.); (N.S.); (A.B.); (M.Y.); (S.T.); (H.M.); (K.K.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
34
|
Sinha S, Molla S, Kundu CN. PARP1-modulated chromatin remodeling is a new target for cancer treatment. Med Oncol 2021; 38:118. [PMID: 34432161 DOI: 10.1007/s12032-021-01570-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Cancer progression requires certain tumorigenic mutations in genes encoding for different cellular and nuclear proteins. Altered expressions of these mutated genes are mediated by post-translational modifications and chromatin remodeling. Chromatin remodeling is mainly regulated by the chromatin remodeling enzyme complexes and histone modifications. Upon DNA damage, Poly-(ADP-ribose) Polymerase1 (PARP1) plays a very important role in the induction of chromatin modifications and activation of DNA repair pathways to repair the DNA lesion. It has been targeted to develop different anti-cancer therapeutic interventions and PARP inhibitors have been approved by the U.S. Food and Drug Administration (FDA) for clinical use. But it has been found that the cancer cells often develop resistance to these PARP inhibitors and chromatin remodeling helps in enhancing this process. Hence, it may be beneficial to target PARP1-mediated chromatin remodeling, which may allow to reverse the drug resistance. In the current review, we have discussed the role of chromatin remodeling in DNA repair, how PARP1 regulates modifications of chromatin dynamics, and the role of chromatin modifications in cancer. It has also been discussed how the PARP1-mediated chromatin remodeling can be targeted by PARP inhibitors alone or in combination with other chemotherapeutic agents to establish novel anti-cancer therapeutics. We have also considered the use of PARG inhibitors that may enhance the action of PARP inhibitors to target different types of cancers.
Collapse
Affiliation(s)
- Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Sefinew Molla
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
35
|
Zhao X, Zhang X, Zhang X, Jiang T, Zhai J, Wang H, Huang M, Lang R, He Q. MiR-374b-5p inhibits KDM5B-induced epithelial-mesenchymal transition in pancreatic cancer. Am J Cancer Res 2021; 11:3907-3920. [PMID: 34522457 PMCID: PMC8414380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023] Open
Abstract
Micro(mi)RNAs play a critical regulatory role in the progression and metastasis of pancreatic cancer (PC). In this study, we aimed to reveal the mechanisms of miR-374b-5p in regulating epithelial-mesenchymal transition (EMT) in PC. Gene Expression Omnibus datasets (GSE24279 and GSE71533) and the pancreatic ductal adenocarcinoma (PDAC) cohort of The Cancer Genome Atlas were employed to screen for potential prognostic miRNAs. The expression of miR-374b-5p was measured by quantitative real-time polymerase chain reaction (qRT-PCR) in 78 paired PDAC tissue samples. The biological effects of miR-374b-5p were investigated using in vitro and in vivo assays. Luciferase reporter assays and immunohistochemical tests were conducted to verify the interaction between miR-374b-5p and its predicted direct target, KDM5B. MiR-374b-5p was downregulated in PC tissues, and a low level of miR-374b-5p was associated with poor overall survival, greater tumor size, and more lymph node metastasis in PC. In vitro assays indicated that overexpression of miR-374b-5p suppressed the proliferation, migration, and invasion of PC cells. Mechanistically, miR-374b-5p suppressed the expression of KDM5B, which inhibited E-cadherin expression but promoted N-cadherin and vimentin expression. Finally, in vivo assays demonstrated that miR-374b-5p overexpression suppressed tumor growth and lung metastasis in PANC-1 cells. Thus, our findings indicate that miR-374b-5p could be a potential prognostic biomarker and therapeutic target for KDM5B-induced EMT in PC.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University Beijing, China
| | - Xiaoshi Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University Beijing, China
| | - Xinxue Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University Beijing, China
| | - Tao Jiang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University Beijing, China
| | - Jialei Zhai
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University Beijing, China
| | - Huaguang Wang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University Beijing, China
| | - Mengxiu Huang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University Beijing, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University Beijing, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University Beijing, China
| |
Collapse
|
36
|
Guha S, Bhaumik SR. Transcription-coupled DNA double-strand break repair. DNA Repair (Amst) 2021; 109:103211. [PMID: 34883263 DOI: 10.1016/j.dnarep.2021.103211] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022]
Abstract
The genomic DNA is constantly under attack by cellular and/or environmental factors. Fortunately, the cell is armed to safeguard its genome by various mechanisms such as nucleotide excision, base excision, mismatch and DNA double-strand break repairs. While these processes maintain the integrity of the genome throughout, DNA repair occurs preferentially faster at the transcriptionally active genes. Such transcription-coupled repair phenomenon plays important roles to maintain active genome integrity, failure of which would interfere with transcription, leading to an altered gene expression (and hence cellular pathologies/diseases). Among the various DNA damages, DNA double-strand breaks are quite toxic to the cells. If DNA double-strand break occurs at the active gene, it would interfere with transcription/gene expression, thus threatening cellular viability. Such DNA double-strand breaks are found to be repaired faster at the active gene in comparison to its inactive state or the inactive gene, thus supporting the existence of a new phenomenon of transcription-coupled DNA double-strand break repair. Here, we describe the advances of this repair process.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA.
| |
Collapse
|
37
|
Role of Histone Methylation in Maintenance of Genome Integrity. Genes (Basel) 2021; 12:genes12071000. [PMID: 34209979 PMCID: PMC8307007 DOI: 10.3390/genes12071000] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Packaging of the eukaryotic genome with histone and other proteins forms a chromatin structure that regulates the outcome of all DNA mediated processes. The cellular pathways that ensure genomic stability detect and repair DNA damage through mechanisms that are critically dependent upon chromatin structures established by histones and, particularly upon transient histone post-translational modifications. Though subjected to a range of modifications, histone methylation is especially crucial for DNA damage repair, as the methylated histones often form platforms for subsequent repair protein binding at damaged sites. In this review, we highlight and discuss how histone methylation impacts the maintenance of genome integrity through effects related to DNA repair and repair pathway choice.
Collapse
|
38
|
Gaillard S, Charasson V, Ribeyre C, Salifou K, Pillaire MJ, Hoffmann JS, Constantinou A, Trouche D, Vandromme M. KDM5A and KDM5B histone-demethylases contribute to HU-induced replication stress response and tolerance. Biol Open 2021; 10:268370. [PMID: 34184733 PMCID: PMC8181900 DOI: 10.1242/bio.057729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/20/2021] [Indexed: 12/25/2022] Open
Abstract
KDM5A and KDM5B histone-demethylases are overexpressed in many cancers and have been involved in drug tolerance. Here, we describe that KDM5A, together with KDM5B, contribute to replication stress (RS) response and tolerance. First, they positively regulate RRM2, the regulatory subunit of ribonucleotide reductase. Second, they are required for optimal levels of activated Chk1, a major player of the intra-S phase checkpoint that protects cells from RS. We also found that KDM5A is enriched at ongoing replication forks and associates with both PCNA and Chk1. Because RRM2 is a major determinant of replication stress tolerance, we developed cells resistant to HU, and show that KDM5A/B proteins are required for both RRM2 overexpression and tolerance to HU. Altogether, our results indicate that KDM5A/B are major players of RS management. They also show that drugs targeting the enzymatic activity of KDM5 proteins may not affect all cancer-related consequences of KDM5A/B overexpression.
Collapse
Affiliation(s)
- Solenne Gaillard
- MCD, Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Virginie Charasson
- MCD, Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Cyril Ribeyre
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Kader Salifou
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Marie-Jeanne Pillaire
- Cancer Research Center of Toulouse, INSERM U1037, CNRS ERL5294, University of Toulouse 3, 31037 Toulouse, France
| | - Jean-Sebastien Hoffmann
- Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Didier Trouche
- MCD, Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marie Vandromme
- MCD, Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
39
|
Kumbhar R, Sanchez A, Perren J, Gong F, Corujo D, Medina F, Devanathan SK, Xhemalce B, Matouschek A, Buschbeck M, Buck-Koehntop BA, Miller KM. Poly(ADP-ribose) binding and macroH2A mediate recruitment and functions of KDM5A at DNA lesions. J Cell Biol 2021; 220:212163. [PMID: 34003252 PMCID: PMC8135068 DOI: 10.1083/jcb.202006149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The histone demethylase KDM5A erases histone H3 lysine 4 methylation, which is involved in transcription and DNA damage responses (DDRs). While DDR functions of KDM5A have been identified, how KDM5A recognizes DNA lesion sites within chromatin is unknown. Here, we identify two factors that act upstream of KDM5A to promote its association with DNA damage sites. We have identified a noncanonical poly(ADP-ribose) (PAR)–binding region unique to KDM5A. Loss of the PAR-binding region or treatment with PAR polymerase (PARP) inhibitors (PARPi’s) blocks KDM5A–PAR interactions and DNA repair functions of KDM5A. The histone variant macroH2A1.2 is also specifically required for KDM5A recruitment and function at DNA damage sites, including homology-directed repair of DNA double-strand breaks and repression of transcription at DNA breaks. Overall, this work reveals the importance of PAR binding and macroH2A1.2 in KDM5A recognition of DNA lesion sites that drive transcriptional and repair activities at DNA breaks within chromatin that are essential for maintaining genome integrity.
Collapse
Affiliation(s)
- Ramhari Kumbhar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Jullian Perren
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Fade Gong
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX
| | - David Corujo
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukaemia Cancer Institute, Barcelona, Spain
| | - Frank Medina
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Sravan K Devanathan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
| | - Marcus Buschbeck
- Cancer and Leukemia Epigenetics and Biology Program, Josep Carreras Leukaemia Cancer Institute, Barcelona, Spain.,Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Badalona, Spain
| | | | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| |
Collapse
|
40
|
Brabson JP, Leesang T, Mohammad S, Cimmino L. Epigenetic Regulation of Genomic Stability by Vitamin C. Front Genet 2021; 12:675780. [PMID: 34017357 PMCID: PMC8129186 DOI: 10.3389/fgene.2021.675780] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.
Collapse
Affiliation(s)
- John P Brabson
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tiffany Leesang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sofia Mohammad
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
41
|
Control of the chromatin response to DNA damage: Histone proteins pull the strings. Semin Cell Dev Biol 2021; 113:75-87. [DOI: 10.1016/j.semcdb.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
|
42
|
Di Nisio E, Lupo G, Licursi V, Negri R. The Role of Histone Lysine Methylation in the Response of Mammalian Cells to Ionizing Radiation. Front Genet 2021; 12:639602. [PMID: 33859667 PMCID: PMC8042281 DOI: 10.3389/fgene.2021.639602] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic genomes are wrapped around nucleosomes and organized into different levels of chromatin structure. Chromatin organization has a crucial role in regulating all cellular processes involving DNA-protein interactions, such as DNA transcription, replication, recombination and repair. Histone post-translational modifications (HPTMs) have a prominent role in chromatin regulation, acting as a sophisticated molecular code, which is interpreted by HPTM-specific effectors. Here, we review the role of histone lysine methylation changes in regulating the response to radiation-induced genotoxic damage in mammalian cells. We also discuss the role of histone methyltransferases (HMTs) and histone demethylases (HDMs) and the effects of the modulation of their expression and/or the pharmacological inhibition of their activity on the radio-sensitivity of different cell lines. Finally, we provide a bioinformatic analysis of published datasets showing how the mRNA levels of known HMTs and HDMs are modulated in different cell lines by exposure to different irradiation conditions.
Collapse
Affiliation(s)
- Elena Di Nisio
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Counsil (IBPM-CNR), Rome, Italy
| |
Collapse
|
43
|
Osrodek M, Wozniak M. Targeting Genome Stability in Melanoma-A New Approach to an Old Field. Int J Mol Sci 2021; 22:3485. [PMID: 33800547 PMCID: PMC8036881 DOI: 10.3390/ijms22073485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Despite recent groundbreaking advances in the treatment of cutaneous melanoma, it remains one of the most treatment-resistant malignancies. Due to resistance to conventional chemotherapy, the therapeutic focus has shifted away from aiming at melanoma genome stability in favor of molecularly targeted therapies. Inhibitors of the RAS/RAF/MEK/ERK (MAPK) pathway significantly slow disease progression. However, long-term clinical benefit is rare due to rapid development of drug resistance. In contrast, immune checkpoint inhibitors provide exceptionally durable responses, but only in a limited number of patients. It has been increasingly recognized that melanoma cells rely on efficient DNA repair for survival upon drug treatment, and that genome instability increases the efficacy of both MAPK inhibitors and immunotherapy. In this review, we discuss recent developments in the field of melanoma research which indicate that targeting genome stability of melanoma cells may serve as a powerful strategy to maximize the efficacy of currently available therapeutics.
Collapse
Affiliation(s)
| | - Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, 92-215 Lodz, Poland;
| |
Collapse
|
44
|
Ummarino S, Hausman C, Di Ruscio A. The PARP Way to Epigenetic Changes. Genes (Basel) 2021; 12:446. [PMID: 33804735 PMCID: PMC8003872 DOI: 10.3390/genes12030446] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
ADP-ribosylation, is a reversible post-translational modification implicated in major biological functions. Poly ADP-ribose polymerases (PARP) are specialized enzymes that catalyze the addition of ADP ribose units from "nicotinamide adenine dinucleotide-donor molecules" to their target substrates. This reaction known as PARylation modulates essential cellular processes including DNA damage response, chromatin remodeling, DNA methylation and gene expression. Herein, we discuss emerging roles of PARP1 in chromatin remodeling and epigenetic regulation, focusing on its therapeutic implications for cancer treatment and beyond.
Collapse
Affiliation(s)
- Simone Ummarino
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA;
| | - Clinton Hausman
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA;
| | - Annalisa Di Ruscio
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA;
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
| |
Collapse
|
45
|
Kelly JB, Carlson DE, Low JS, Rice T, Thacker RW. The Relationship Between Microbiomes and Selective Regimes in the Sponge Genus Ircinia. Front Microbiol 2021; 12:607289. [PMID: 33776953 PMCID: PMC7990798 DOI: 10.3389/fmicb.2021.607289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/18/2021] [Indexed: 01/17/2023] Open
Abstract
Sponges are often densely populated by microbes that benefit their hosts through nutrition and bioactive secondary metabolites; however, sponges must simultaneously contend with the toxicity of microbes and thwart microbial overgrowth. Despite these fundamental tenets of sponge biology, the patterns of selection in the host sponges' genomes that underlie tolerance and control of their microbiomes are still poorly understood. To elucidate these patterns of selection, we performed a population genetic analysis on multiple species of Ircinia from Belize, Florida, and Panama using an F ST -outlier approach on transcriptome-annotated RADseq loci. As part of the analysis, we delimited species boundaries among seven growth forms of Ircinia. Our analyses identified balancing selection in immunity genes that have implications for the hosts' tolerance of high densities of microbes. Additionally, our results support the hypothesis that each of the seven growth forms constitutes a distinct Ircinia species that is characterized by a unique microbiome. These results illuminate the evolutionary pathways that promote stable associations between host sponges and their microbiomes, and that potentially facilitate ecological divergence among Ircinia species.
Collapse
Affiliation(s)
- Joseph B. Kelly
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
- Limnological Institute University Konstanz, Aquatic Ecology and Evolution, Konstanz, Germany
| | - David E. Carlson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Tyler Rice
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Robert W. Thacker
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
- Smithsonian Tropical Research Institute, Balboa, Panama
| |
Collapse
|
46
|
Zhou Y, Shao C. Histone methylation can either promote or reduce cellular radiosensitivity by regulating DNA repair pathways. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108362. [PMID: 34083050 DOI: 10.1016/j.mrrev.2020.108362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Radiotherapy is one of the primary modalities for cancer treatment, and its efficiency usually relies on cellular radiosensitivity. DNA damage repair is a core content of cellular radiosensitivity, and the primary mechanism of which includes non-homologous end-joining (NHEJ) and homologous recombination (HR). By affecting DNA damage repair, histone methylation regulated by histone methyltransferases (HMTs) and histone demethylases (HDMs) participates in the regulation of cellular radiosensitivity via three mechanisms: (a) recruiting DNA repair-related proteins, (b) regulating the expressions of DNA repair genes, and (c) mediating the dynamic change of chromatin. Interestingly, both aberrantly high and low levels of histone methylation could impede DNA repair processes. Here we reviewed the mechanisms of the dual effects of histone methylation on cell response to radiation. Since some inhibitors of HMTs and HDMs are reported to increase cellular radiosensitivity, understanding their molecular mechanisms may be helpful in developing new drugs for the therapy of radioresistant tumors.
Collapse
Affiliation(s)
- Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, 200032, China.
| |
Collapse
|
47
|
ASH2L drives proliferation and sensitivity to bleomycin and other genotoxins in Hodgkin's lymphoma and testicular cancer cells. Cell Death Dis 2020; 11:1019. [PMID: 33257682 PMCID: PMC7705021 DOI: 10.1038/s41419-020-03231-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
It is of clinical importance to identify biomarkers predicting the efficacy of DNA damaging drugs (genotoxins) so that nonresponders are not unduly exposed to the deleterious effects of otherwise inefficient drugs. Here, we initially focused on the bleomycin genotoxin because of the limited information about the genes implicated in the sensitivity or resistance to this compound. Using a whole-genome CRISPR/Cas9 gene knockout approach, we identified ASH2L, a core component of the H3K4 methyl transferase complex, as a protein required for bleomycin sensitivity in L1236 Hodgkin lymphoma. Knocking down ASH2L in these cells and in the NT2D1 testicular cancer cell line rendered them resistant to bleomycin, etoposide, and cisplatin but did not affect their sensitivity toward ATM or ATR inhibitors. ASH2L knockdown decreased cell proliferation and facilitated DNA repair via homologous recombination and nonhomologous end-joining mechanisms. Data from the Tumor Cancer Genome Atlas indicate that patients with testicular cancer carrying alterations in the ASH2L gene are more likely to relapse than patients with unaltered ASH2L genes. The cell models we have used are derived from cancers currently treated either partially (Hodgkin’s lymphoma), or entirely (testicular cancer) with genotoxins. For such cancers, ASH2L levels could be used as a biomarker to predict the response to genotoxins. In situations where tumors are expressing low levels of ASH2L, which may allow them to resist genotoxic treatment, the use of ATR or ATM inhibitors may be more efficacious as our data indicate that ASH2L knockdown does not affect sensitivity to these inhibitors.
Collapse
|
48
|
Zhao Z, Su Z, Liang P, Liu D, Yang S, Wu Y, Ma L, Feng J, Zhang X, Wu C, Huang J, Cui J. USP38 Couples Histone Ubiquitination and Methylation via KDM5B to Resolve Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002680. [PMID: 33240782 PMCID: PMC7675183 DOI: 10.1002/advs.202002680] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Indexed: 05/15/2023]
Abstract
Chromatin modifications, such as histone acetylation, ubiquitination, and methylation, play fundamental roles in maintaining chromatin architecture and regulating gene transcription. Although their crosstalk in chromatin remodeling has been gradually uncovered, the functional relationship between histone ubiquitination and methylation in regulating immunity and inflammation remains unclear. Here, it is reported that USP38 is a novel histone deubiquitinase that works together with the histone H3K4 modifier KDM5B to orchestrate inflammatory responses. USP38 specifically removes the monoubiquitin on H2B at lysine 120, which functions as a prerequisite for the subsequent recruitment of demethylase KDM5B to the promoters of proinflammatory cytokines Il6 and Il23a during LPS stimulation. KDM5B in turn inhibits the binding of NF-κB transcription factors to the Il6 and Il23a promoters by reducing H3K4 trimethylation. Furthermore, USP38 can bind to KDM5B and prevent it from proteasomal degradation, which further enhances the function of KDM5B in the regulation of inflammation-related genes. Loss of Usp38 in mice markedly enhances susceptibility to endotoxin shock and acute colitis, and these mice display a more severe inflammatory phenotype compared to wild-type mice. The studies identify USP38-KDM5B as a distinct chromatin modification complex that restrains inflammatory responses through manipulating the crosstalk of histone ubiquitination and methylation.
Collapse
Affiliation(s)
- Zhiyao Zhao
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
- Department of Internal MedicineGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhouGuangdong510623China
| | - Zexiong Su
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Puping Liang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Di Liu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Yaoxing Wu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Ling Ma
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Junyan Feng
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Xiya Zhang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Chenglei Wu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| |
Collapse
|
49
|
Fletcher SC, Coleman ML. Human 2-oxoglutarate-dependent oxygenases: nutrient sensors, stress responders, and disease mediators. Biochem Soc Trans 2020; 48:1843-1858. [PMID: 32985654 PMCID: PMC7609023 DOI: 10.1042/bst20190333] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Fe(II)/2-oxoglutarate (2OG)-dependent oxygenases are a conserved enzyme class that catalyse diverse oxidative reactions across nature. In humans, these enzymes hydroxylate a broad range of biological substrates including DNA, RNA, proteins and some metabolic intermediates. Correspondingly, members of the 2OG-dependent oxygenase superfamily have been linked to fundamental biological processes, and found dysregulated in numerous human diseases. Such findings have stimulated efforts to understand both the biochemical activities and cellular functions of these enzymes, as many have been poorly studied. In this review, we focus on human 2OG-dependent oxygenases catalysing the hydroxylation of protein and polynucleotide substrates. We discuss their modulation by changes in the cellular microenvironment, particularly with respect to oxygen, iron, 2OG and the effects of oncometabolites. We also describe emerging evidence that these enzymes are responsive to cellular stresses including hypoxia and DNA damage. Moreover, we examine how dysregulation of 2OG-dependent oxygenases is associated with human disease, and the apparent paradoxical role for some of these enzymes during cancer development. Finally, we discuss some of the challenges associated with assigning biochemical activities and cellular functions to 2OG-dependent oxygenases.
Collapse
Affiliation(s)
- Sally C. Fletcher
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Mathew L. Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
50
|
Li G, Kanagasabai T, Lu W, Zou MR, Zhang SM, Celada SI, Izban MG, Liu Q, Lu T, Ballard BR, Zhou X, Adunyah SE, Matusik RJ, Yan Q, Chen Z. KDM5B Is Essential for the Hyperactivation of PI3K/AKT Signaling in Prostate Tumorigenesis. Cancer Res 2020; 80:4633-4643. [PMID: 32868382 DOI: 10.1158/0008-5472.can-20-0505] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/29/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022]
Abstract
KDM5B (lysine[K]-specific demethylase 5B) is frequently upregulated in various human cancers including prostate cancer. KDM5B controls H3K4me3/2 levels and regulates gene transcription and cell differentiation, yet the contributions of KDM5B to prostate cancer tumorigenesis remain unknown. In this study, we investigated the functional role of KDM5B in epigenetic dysregulation and prostate cancer progression in cultured cells and in mouse models of prostate epithelium-specific mutant Pten/Kdm5b. Kdm5b deficiency resulted in a significant delay in the onset of prostate cancer in Pten-null mice, whereas Kdm5b loss alone caused no morphologic abnormalities in mouse prostates. At 6 months of age, the prostate weight of Pten/Kdm5b mice was reduced by up to 70% compared with that of Pten mice. Pathologic analysis revealed Pten/Kdm5b mice displayed mild morphologic changes with hyperplasia in prostates, whereas age-matched Pten littermates developed high-grade prostatic intraepithelial neoplasia and prostate cancer. Mechanistically, KDM5B governed PI3K/AKT signaling in prostate cancer in vitro and in vivo. KDM5B directly bound the PIK3CA promoter, and KDM5B knockout resulted in a significant reduction of P110α and PIP3 levels and subsequent decrease in proliferation of human prostate cancer cells. Conversely, KDM5B overexpression resulted in increased PI3K/AKT signaling. Loss of Kdm5b abrogated the hyperactivation of AKT signaling by decreasing P110α/P85 levels in Pten/Kdm5b mice. Taken together, our findings reveal that KDM5B acts as a key regulator of PI3K/AKT signaling; they also support the concept that targeting KDM5B is a novel and effective therapeutic strategy against prostate cancer. SIGNIFICANCE: This study demonstrates that levels of histone modification enzyme KDM5B determine hyperactivation of PI3K/AKT signaling in prostate cancer and that targeting KDM5B could be a novel strategy against prostate cancer.
Collapse
Affiliation(s)
- Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Wenfu Lu
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Mike R Zou
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Shang-Min Zhang
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Sherly I Celada
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee
| | - Michael G Izban
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, Tennessee
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tao Lu
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee
| | - Billy R Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, Tennessee
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee
| | - Robert J Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qin Yan
- Department of Pathology, Yale University, New Haven, Connecticut.
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee.
| |
Collapse
|