1
|
Xie L, Song D, Lan J, Liu P, Qin S, Ning Y, Liu Q. Plasma protein levels and hepatocellular carcinoma: a Mendelian randomization study with drug screening implications. Discov Oncol 2025; 16:567. [PMID: 40252200 PMCID: PMC12009266 DOI: 10.1007/s12672-025-02307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/03/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a significant cause of cancer-related mortality, highlighting the need for novel therapeutic strategies. Identifying key proteins and potential therapeutic agents is critical for improving treatment outcomes. METHODS We employed Mendelian randomization to identify proteins associated with HCC risk and utilized drug enrichment and molecular docking analyses to discover potential therapeutic agents. The efficacy of identified drugs was evaluated in vitro using immune-tumor co-culture systems and in vivo in a murine HCC model. Single-cell expression profiling and clinical sample analyses were conducted to explore expression patterns. RESULTS Our analyses identified 16 proteins linked to HCC pathogenesis. Among the therapeutic agents tested, Belinostat significantly enhanced T cell-mediated cytotoxicity against HCC cells and effectively reduced tumor growth in vivo. Single-cell analysis revealed significant modulation of immune cells within the tumor microenvironment, suggesting potential mechanisms for the observed therapeutic effects. CONCLUSION This study highlights the potential of Belinostat as a promising therapeutic agent for HCC. By modulating immune responses and tumor growth, Belinostat offers a novel approach to HCC treatment, warranting further clinical investigation to validate its efficacy and therapeutic potential.
Collapse
Affiliation(s)
- Longhui Xie
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Yongzhou Central Hospital, Yongzhou, Hunan, China
| | - Dekun Song
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Jianwei Lan
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Pengpeng Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuang Qin
- Yongzhou Central Hospital, Yongzhou, Hunan, China
| | - Yinkuan Ning
- Department of Interventional Vascular Surgery, Shaoyang Central Hospital Shaoyang, Shaoyang, Hunan, China.
| | - Quanyan Liu
- Department of Hepatobiliary Surgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
2
|
Filisola-Villaseñor JG, Arroyo-Sánchez BI, Navarro-González LJ, Morales-Ríos E, Olin-Sandoval V. Ornithine decarboxylase and its role in cancer. Arch Biochem Biophys 2025; 765:110321. [PMID: 39870288 DOI: 10.1016/j.abb.2025.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Cancer is among the leading causes of death worldwide. The effectiveness of conventional chemotherapy has some drawbacks, therefore, there is an urgency to develop novel strategies to fight this disease. Ornithine decarboxylase (ODC) is the most finely tuned enzyme of the polyamine (PA) biosynthesis pathway as it is regulated at different levels: transcriptional, translational, post-translational, and by feedback inhibition. In cancer, this enzyme is overexpressed due to its regulation by the protooncogene c-Myc, thus it has been proposed as a drug target against this disease. This review describes information regarding the biochemistry and regulation of the ODC at different levels and its role in cancer. Moreover, we discuss the molecules aiming on the inhibition of the ODC activity that have been tested as therapeutic options. ODC remains as a therapeutic opportunity that needs to be more explored.
Collapse
Affiliation(s)
| | - Beatriz Irene Arroyo-Sánchez
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Janiel Navarro-González
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Edgar Morales-Ríos
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Viridiana Olin-Sandoval
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
3
|
Khamees N, Al-Ani A, Tamimi TA, Sarhan O, Matouq Y, Laswi D, Arabiyat D, Rayyan N, Ali MR, Al-Slaimieh AI, Rayyan YM. Epidemiology and clinical characteristics of colorectal cancer and advanced adenoma: a single center experience in Jordan. BMC Gastroenterol 2025; 25:120. [PMID: 40016635 PMCID: PMC11866683 DOI: 10.1186/s12876-024-03531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/21/2024] [Indexed: 03/01/2025] Open
Abstract
OBJECTIVES We evaluated the epidemiology and clinical characteristics of colorectal polyps to formulate an appropriate screening program. METHODS A retrospective chart review was conducted on all patients who underwent complete colonoscopy at Jordan University Hospital from January to September 2018. Demographics, comorbidities, lifestyle habits, medication history, family history of cancer, laboratory parameters, quality of bowel preparation, and polyp characteristics were evaluated. Binary logistic regression was utilized to find predictors of colorectal polyps. RESULTS A total of 965 patients were included in the study, with a mean age of 53.9 ± 17.1 years and a male predominance (52.7%). Polyps were detected in 28.1% of patients, with 18% having one polyp, 10.4% having two polyps, and 3.3% having more than two polyps. Multivariate analysis demonstrated that older age, high BMI, male gender, diabetes mellitus, dyslipidemia, ischemic heart disease, and family history of CRC were positive predictors of polyps. The right colon (cecum and ascending colon) was the most common location for polyps (51%), followed by the sigmoid colon (24.8%). The most common histologic subtype of polyps was tubular adenoma (48.2%). The prevalence of CRC was 18.65 per 1000 patients. CONCLUSION We highlight the fair prevalence of colorectal polyps and CRC in a Jordanian cohort. Awareness campaigns, screening strategies, and promotion of healthy lifestyles could help alleviate the burden of the disease, particularly among patients with classical risk factors for CRC.
Collapse
Affiliation(s)
- Nadia Khamees
- Department of Internal Medicine, Section of Gastroenterology, Jordan University Hospital, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Abdallah Al-Ani
- School of Medicine, The University of Jordan, Amman, Jordan
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
- King Hussein Cancer Center, Amman, Jordan
| | - Tarek A Tamimi
- Department of Internal Medicine, Section of Gastroenterology, Jordan University Hospital, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Omar Sarhan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Yazan Matouq
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Dana Laswi
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Dima Arabiyat
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Nadin Rayyan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Mustafa Rami Ali
- School of Medicine, The University of Jordan, Amman, Jordan
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | | | - Yaser M Rayyan
- Department of Internal Medicine, Section of Gastroenterology, Jordan University Hospital, Amman, Jordan.
- School of Medicine, The University of Jordan, Amman, Jordan.
| |
Collapse
|
4
|
González A, Odriozola I, Fullaondo A, Odriozola A. Microbiota and detrimental protein derived metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:255-308. [PMID: 39396838 DOI: 10.1016/bs.adgen.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third leading cancer in incidence and the second leading cancer in mortality worldwide. There is growing scientific evidence to support the crucial role of the gut microbiota in the development of CRC. The gut microbiota is the complex community of microorganisms that inhabit the host gut in a symbiotic relationship. Diet plays a crucial role in modulating the risk of CRC, with a high intake of red and processed meat being a risk factor for the development of CRC. The production of metabolites derived from protein fermentation by the gut microbiota is considered a crucial element in the interaction between red and processed meat consumption and the development of CRC. This paper examines several metabolites derived from the bacterial fermentation of proteins associated with an increased risk of CRC. These metabolites include ammonia, polyamines, trimethylamine N-oxide (TMAO), N-nitroso compounds (NOC), hydrogen sulphide (H2S), phenolic compounds (p-cresol) and indole compounds (indolimines). These compounds are depicted and reviewed for their association with CRC risk, possible mechanisms promoting carcinogenesis and their relationship with the gut microbiota. Additionally, this paper analyses the evidence related to the role of red and processed meat intake and CRC risk and the factors and pathways involved in bacterial proteolytic fermentation in the large intestine.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
5
|
Hogarty MD, Ziegler DS, Franson A, Chi YY, Tsao-Wei D, Liu K, Vemu R, Gerner EW, Bruckheimer E, Shamirian A, Hasenauer B, Balis FM, Groshen S, Norris MD, Haber M, Park JR, Matthay KK, Marachelian A. Phase 1 study of high-dose DFMO, celecoxib, cyclophosphamide and topotecan for patients with relapsed neuroblastoma: a New Approaches to Neuroblastoma Therapy trial. Br J Cancer 2024; 130:788-797. [PMID: 38200233 PMCID: PMC10912730 DOI: 10.1038/s41416-023-02525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND MYC genes regulate ornithine decarboxylase (Odc) to increase intratumoral polyamines. We conducted a Phase I trial [NCT02030964] to determine the maximum tolerated dose (MTD) of DFMO, an Odc inhibitor, with celecoxib, cyclophosphamide and topotecan. METHODS Patients 2-30 years of age with relapsed/refractory high-risk neuroblastoma received oral DFMO at doses up to 9000 mg/m2/day, with celecoxib (500 mg/m2 daily), cyclophosphamide (250 mg/m2/day) and topotecan (0.75 mg/m2/day) IV for 5 days, for up to one year with G-CSF support. RESULTS Twenty-four patients (median age, 6.8 years) received 136 courses. Slow platelet recovery with 21-day courses (dose-levels 1 and 2) led to subsequent dose-levels using 28-day courses (dose-levels 2a-4a). There were three course-1 dose-limiting toxicities (DLTs; hematologic; anorexia; transaminases), and 23 serious adverse events (78% fever-related). Five patients (21%) completed 1-year of therapy. Nine stopped for PD, 2 for DLT, 8 by choice. Best overall response included two PR and four MR. Median time-to-progression was 19.8 months, and 3 patients remained progression-free at >4 years without receiving additional therapy. The MTD of DFMO with this regimen was 6750 mg/m2/day. CONCLUSION High-dose DFMO is tolerable when added to chemotherapy in heavily pre-treated patients. A randomized Phase 2 trial of DFMO added to chemoimmunotherapy is ongoing [NCT03794349].
Collapse
Affiliation(s)
- Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Andrea Franson
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yueh-Yun Chi
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Denice Tsao-Wei
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kangning Liu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rohan Vemu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Anasheh Shamirian
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Beth Hasenauer
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Frank M Balis
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Groshen
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Julie R Park
- St. Jude Children's Research Hospital, University of Tennessee, Memphis, TN, USA
| | - Katherine K Matthay
- UCSF Benioff Children's Hospital, UCSF School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Araz Marachelian
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
6
|
Buelvas N, Ugarte-Vio I, Asencio-Leal L, Muñoz-Uribe M, Martin-Martin A, Rojas-Fernández A, Jara JA, Tapia JC, Arias ME, López-Muñoz RA. Indomethacin Induces Spermidine/Spermine-N 1-Acetyltransferase-1 via the Nucleolin-CDK1 Axis and Synergizes with the Polyamine Oxidase Inhibitor Methoctramine in Lung Cancer Cells. Biomolecules 2023; 13:1383. [PMID: 37759783 PMCID: PMC10526249 DOI: 10.3390/biom13091383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Indomethacin is a non-selective NSAID used against pain and inflammation. Although cyclooxygenase (COX) inhibition is considered indomethacin's primary action mechanism, COX-independent ways are associated with beneficial effects in cancer. In colon cancer cells, the activation of the peroxisome proliferator-activated receptor-γ (PPAR-γ) is related to the increase in spermidine/spermine-N1-acetyltransferase-1 (SSAT-1), a key enzyme for polyamine degradation, and related to cell cycle arrest. Indomethacin increases the SSAT-1 levels in lung cancer cells; however, the mechanism relying on the SSAT-1 increase is unclear. Thus, we asked for the influence of the PPAR-γ on the SSAT-1 expression in two lung cancer cell lines: H1299 and A549. We found that the inhibition of PPAR-γ with GW9662 did not revert the increase in SSAT-1 induced by indomethacin. Because the mRNA of SSAT-1 suffers a pre-translation retention step by nucleolin, a nucleolar protein, we explored the relationship between indomethacin and the upstream translation regulators of SSAT-1. We found that indomethacin decreases the nucleolin levels and the cyclin-dependent kinase 1 (CDK1) levels, which phosphorylates nucleolin in mitosis. Overexpression of nucleolin partially reverts the effect of indomethacin over cell viability and SSAT-1 levels. On the other hand, Casein Kinase, known for phosphorylating nucleolin during interphase, is not modified by indomethacin. SSAT-1 exerts its antiproliferative effect by acetylating polyamines, a process reverted by the polyamine oxidase (PAOX). Recently, methoctramine was described as the most specific inhibitor of PAOX. Thus, we asked if methoctramine could increase the effect of indomethacin. We found that, when combined, indomethacin and methoctramine have a synergistic effect against NSCLC cells in vitro. These results suggest that indomethacin increases the SSAT-1 levels by reducing the CDK1-nucleolin regulatory axis, and the PAOX inhibition with methoctramine could improve the antiproliferative effect of indomethacin.
Collapse
Affiliation(s)
- Neudo Buelvas
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Isidora Ugarte-Vio
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Laura Asencio-Leal
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Matías Muñoz-Uribe
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Antonia Martin-Martin
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Alejandro Rojas-Fernández
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - José A. Jara
- Instituto de Investigaciones en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago P.O. Box 8380544, Chile
| | - Julio C. Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago P.O. Box 8380453, Chile
| | - María Elena Arias
- Departamento de Producción Agropecuaria, Universidad de La Frontera, Temuco P.O. Box 4811230, Chile
| | - Rodrigo A. López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| |
Collapse
|
7
|
Chen Y, León-Letelier RA, Abdel Sater AH, Vykoukal J, Dennison JB, Hanash S, Fahrmann JF. c-MYC-Driven Polyamine Metabolism in Ovarian Cancer: From Pathogenesis to Early Detection and Therapy. Cancers (Basel) 2023; 15:623. [PMID: 36765581 PMCID: PMC9913358 DOI: 10.3390/cancers15030623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
c-MYC and its paralogues MYCN and MYCL are among the most frequently amplified and/or overexpressed oncoproteins in ovarian cancer. c-MYC plays a key role in promoting ovarian cancer initiation and progression. The polyamine pathway is a bona fide target of c-MYC signaling, and polyamine metabolism is strongly intertwined with ovarian malignancy. Targeting of the polyamine pathway via small molecule inhibitors has garnered considerable attention as a therapeutic strategy for ovarian cancer. Herein, we discuss the involvement of c-MYC signaling and that of its paralogues in promoting ovarian cancer tumorigenesis. We highlight the potential of targeting c-MYC-driven polyamine metabolism for the treatment of ovarian cancers and the utility of polyamine signatures in biofluids for early detection applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Polyamines and Their Metabolism: From the Maintenance of Physiological Homeostasis to the Mediation of Disease. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10030038. [PMID: 35893120 PMCID: PMC9326668 DOI: 10.3390/medsci10030038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The polyamines spermidine and spermine are positively charged aliphatic molecules. They are critical in the regulation of nucleic acid and protein structures, protein synthesis, protein and nucleic acid interactions, oxidative balance, and cell proliferation. Cellular polyamine levels are tightly controlled through their import, export, de novo synthesis, and catabolism. Enzymes and enzymatic cascades involved in polyamine metabolism have been well characterized. This knowledge has been used for the development of novel compounds for research and medical applications. Furthermore, studies have shown that disturbances in polyamine levels and their metabolic pathways, as a result of spontaneous mutations in patients, genetic engineering in mice or experimentally induced injuries in rodents, are associated with multiple maladaptive changes. The adverse effects of altered polyamine metabolism have also been demonstrated in in vitro models. These observations highlight the important role these molecules and their metabolism play in the maintenance of physiological normalcy and the mediation of injury. This review will attempt to cover the extensive and diverse knowledge of the biological role of polyamines and their metabolism in the maintenance of physiological homeostasis and the mediation of tissue injury.
Collapse
|
9
|
Miller AK, Tavera G, Dominguez RL, Camargo MC, Waterboer T, Wilson KT, Williams SM, Morgan DR. Ornithine decarboxylase (ODC1) gene variant (rs2302615) is associated with gastric cancer independently of Helicobacter pylori CagA serostatus. Oncogene 2021; 40:5963-5969. [PMID: 34376808 PMCID: PMC8692072 DOI: 10.1038/s41388-021-01981-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The primary cause of gastric cancer is chronic infection with Helicobacter pylori (H. pylori), particularly the high-risk genotype cagA, and risk modification by human genetic variants. We studied 94 variants in 54 genes for association with gastric cancer, including rs2302615 in ornithine decarboxylase (ODC1), which may affect response to chemoprevention with the ODC inhibitor, eflornithine (difluoromethylornithine; DFMO). Our population-based, case-control study included 1366 individuals (664 gastric cancer cases and 702 controls) from Western Honduras, a high incidence region of Latin America. CagA seropositivity was strongly associated with cancer (OR = 3.6; 95% CI: 2.6, 5.1). The ODC1 variant rs2302615 was associated with gastric cancer (OR = 1.36; p = 0.018) in a model adjusted for age, sex, and CagA serostatus. Two additional single nucleotide polymorphisms (SNPs) in CASP1 (rs530537) and TLR4 (rs1927914) genes were also associated with gastric cancer in univariate models as well as models adjusted for age, sex, and CagA serostatus. The ODC1 SNP association with gastric cancer was stronger in individuals who carried the TT genotype at the associating TLR4 polymorphism, rs1927914 (OR = 1.77; p = 1.85 × 10-3). In conclusion, the ODC1 variant, rs2302615, is associated with gastric cancer and supports chemoprevention trials with DFMO, particularly in individuals homozygous for the T allele at rs1927914.
Collapse
Affiliation(s)
- Anna K Miller
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gloria Tavera
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ricardo L Dominguez
- Hospital de Occidente, Ministry of Health, Santa Rosa de Copan, Copan, Honduras
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Keith T Wilson
- Vanderbilt University Medical Center, Division of Gastroenterology, Hepatology, and Nutrition, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Scott M Williams
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Douglas R Morgan
- UAB Division of Gastroenterology and Hepatology, The University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
10
|
Fadista J, Yakimov V, Võsa U, Hansen CS, Kasela S, Skotte L, Geller F, Courraud J, Esko T, Kukuškina V, Buil A, Melbye M, Werge TM, Hougaard DM, Milani L, Bybjerg-Grauholm J, Cohen AS, Feenstra B. Genetic regulation of spermine oxidase activity and cancer risk: a Mendelian randomization study. Sci Rep 2021; 11:17463. [PMID: 34465810 PMCID: PMC8408253 DOI: 10.1038/s41598-021-97069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
Spermine oxidase (SMOX) catalyzes the oxidation of spermine to spermidine. Observational studies have reported SMOX as a source of reactive oxygen species associated with cancer, implying that inhibition of SMOX could be a target for chemoprevention. Here we test causality of SMOX levels with cancer risk using a Mendelian randomization analysis. We performed a GWAS of spermidine/spermine ratio to identify genetic variants associated with regulation of SMOX activity. Replication analysis was performed in two datasets of SMOX gene expression. We then did a Mendelian randomization analysis by testing the association between the SMOX genetic instrument and neuroblastoma, gastric, lung, breast, prostate, and colorectal cancers using GWAS summary statistics. GWAS of spermidine/spermine ratio identified SMOX locus (P = 1.34 × 10-49) explaining 32% of the variance. The lead SNP rs1741315 was also associated with SMOX gene expression in newborns (P = 8.48 × 10-28) and adults (P = 2.748 × 10-8) explaining 37% and 6% of the variance, respectively. Genetically determined SMOX activity was not associated with neuroblastoma, gastric, lung, breast, prostate nor colorectal cancer (P > 0.05). A PheWAS of rs1741315 did not reveal any relevant associations. Common genetic variation in the SMOX gene was strongly associated with SMOX activity in newborns, and less strongly in adults. Genetic down-regulation of SMOX was not significantly associated with lower odds of neuroblastoma, gastric, lung, breast, prostate and colorectal cancer. These results may inform studies of SMOX inhibition as a target for chemoprevention.
Collapse
Affiliation(s)
- João Fadista
- Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
- Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden.
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - Victor Yakimov
- Section of Neonatal Genetics, Danish Centre for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christine S Hansen
- Section of Neonatal Genetics, Danish Centre for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Silva Kasela
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Line Skotte
- Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark
| | - Julie Courraud
- Section of Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Viktorija Kukuškina
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Alfonso Buil
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Roskilde, Denmark
| | - Mads Melbye
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas M Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Roskilde, Denmark
| | - David M Hougaard
- Section of Neonatal Genetics, Danish Centre for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jonas Bybjerg-Grauholm
- Section of Neonatal Genetics, Danish Centre for Neonatal Screening, Department of Congenital Diseases, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Arieh S Cohen
- Section of Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen, Denmark.
| |
Collapse
|
11
|
Johnstone MS, Lynch G, Park J, McSorley S, Edwards J. Novel Methods of Risk Stratifying Patients for Metachronous, Pre-Malignant Colorectal Polyps: A Systematic Review. Crit Rev Oncol Hematol 2021; 164:103421. [PMID: 34246774 DOI: 10.1016/j.critrevonc.2021.103421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Despite conventional measures of future polyp risk (histology, dysplasia, size, number), surveillance places a burden on patients and colonoscopy services. We aimed to review novel risk stratification techniques. METHODS A systematic literature review was performed for studies using genomics, transcriptomics, IHC or microbiome as markers of metachronous polyp risk. RESULTS 4165 papers underwent title, 303 abstract and 215 full paper review. 25 papers were included. 49 mutations/ SNPs/ haplotypes in 23 genes/ chromosomal regions (KRAS, APC, EGFR, COX1/2, IL23R, DRD2, CYP2C9/24A1/7A1, UGT1A6, ODC, ALOX12/15, PGDH, SRC, IGSF5, KCNS3, EPHB1/ KY, FAM188b, 3p24.1, 9q33.2, 13q33.2) correlated with metachronous adenoma / advanced adenoma risk. Expression levels of 6 proteins correlated with metachronous adenoma (p53, β-catenin, COX2, Adnab-9, ALDH1A1) or sessile serrated polyp (ANXA10) risk. CONCLUSION Although genomic and IHC markers correlated with metachronous polyp risk, it seems likely that a panel of novel markers will be required to refine this risk.
Collapse
Affiliation(s)
- Mark S Johnstone
- Academic Unit of Surgery, School of Medicine, University of Glasgow, United Kingdom.
| | - Gerard Lynch
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| | - James Park
- Academic Unit of Surgery, School of Medicine, University of Glasgow, United Kingdom
| | - Stephen McSorley
- Academic Unit of Surgery, School of Medicine, University of Glasgow, United Kingdom
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
12
|
Gamble LD, Purgato S, Henderson MJ, Di Giacomo S, Russell AJ, Pigini P, Murray J, Valli E, Milazzo G, Giorgi FM, Cowley M, Ashton LJ, Bhalshankar J, Schleiermacher G, Rihani A, Van Maerken T, Vandesompele J, Speleman F, Versteeg R, Koster J, Eggert A, Noguera R, Stallings RL, Tonini GP, Fong K, Vaksman Z, Diskin SJ, Maris JM, London WB, Marshall GM, Ziegler DS, Hogarty MD, Perini G, Norris MD, Haber M. A G316A Polymorphism in the Ornithine Decarboxylase Gene Promoter Modulates MYCN-Driven Childhood Neuroblastoma. Cancers (Basel) 2021; 13:cancers13081807. [PMID: 33918978 PMCID: PMC8069650 DOI: 10.3390/cancers13081807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
Simple Summary Neuroblastoma is a devasting childhood cancer in which multiple copies (amplification) of the cancer-causing gene MYCN strongly predict poor outcome. Neuroblastomas are reliant on high levels of cellular components called polyamines for their growth and malignant behavior, and the gene regulating polyamine synthesis is called ODC1. ODC1 is often coamplified with MYCN, and in fact is regulated by MYCN, and like MYCN is prognostic of poor outcome. Here we studied a naturally occurring genetic variant or polymorphism that occurs in the ODC1 gene, and used gene editing to demonstrate the functional importance of this variant in terms of ODC1 levels and growth of neuroblastoma cells. We showed that this variant impacts the ability of MYCN to regulate ODC1, and that it also influences outcome in neuroblastoma, with the rarer variant associated with a better survival. This study addresses the important topic of genetic polymorphisms in cancer. Abstract Ornithine decarboxylase (ODC1), a critical regulatory enzyme in polyamine biosynthesis, is a direct transcriptional target of MYCN, amplification of which is a powerful marker of aggressive neuroblastoma. A single nucleotide polymorphism (SNP), G316A, within the first intron of ODC1, results in genotypes wildtype GG, and variants AG/AA. CRISPR-cas9 technology was used to investigate the effects of AG clones from wildtype MYCN-amplified SK-N-BE(2)-C cells and the effect of the SNP on MYCN binding, and promoter activity was investigated using EMSA and luciferase assays. AG clones exhibited decreased ODC1 expression, growth rates, and histone acetylation and increased sensitivity to ODC1 inhibition. MYCN was a stronger transcriptional regulator of the ODC1 promoter containing the G allele, and preferentially bound the G allele over the A. Two neuroblastoma cohorts were used to investigate the clinical impact of the SNP. In the study cohort, the minor AA genotype was associated with improved survival, while poor prognosis was associated with the GG genotype and AG/GG genotypes in MYCN-amplified and non-amplified patients, respectively. These effects were lost in the GWAS cohort. We have demonstrated that the ODC1 G316A polymorphism has functional significance in neuroblastoma and is subject to allele-specific regulation by the MYCN oncoprotein.
Collapse
Affiliation(s)
- Laura D. Gamble
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Stefania Purgato
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Michelle J. Henderson
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Amanda J. Russell
- Cancer Research Program, The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
| | - Paolo Pigini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Jayne Murray
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Emanuele Valli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Federico M. Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Mark Cowley
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Lesley J. Ashton
- Research Portfolio, University of Sydney, Sydney, NSW 2008, Australia;
| | - Jaydutt Bhalshankar
- SIREDO, Department of Paediatric, Adolescents and Young Adults Oncology and INSERM U830, Institut Curie, 26 rue d’Ulm, 75005 Paris, France; (J.B.); (G.S.)
| | - Gudrun Schleiermacher
- SIREDO, Department of Paediatric, Adolescents and Young Adults Oncology and INSERM U830, Institut Curie, 26 rue d’Ulm, 75005 Paris, France; (J.B.); (G.S.)
| | - Ali Rihani
- Center for Medical Genetics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (A.R.); (T.V.M.); (J.V.); (F.S.)
| | - Tom Van Maerken
- Center for Medical Genetics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (A.R.); (T.V.M.); (J.V.); (F.S.)
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (A.R.); (T.V.M.); (J.V.); (F.S.)
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (A.R.); (T.V.M.); (J.V.); (F.S.)
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1100 Amsterdam, The Netherlands; (R.V.); (J.K.)
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1100 Amsterdam, The Netherlands; (R.V.); (J.K.)
| | - Angelika Eggert
- Department of Pediatric Hematology, Oncology and SCT, Charité-University Hospital Berlin, Campus Virchow-Klinikum, 10117 Berlin, Germany;
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia, 46010 Valencia, Spain;
- CIBERONC-INCLIVA, Biomedical Health Research Institute, 46010 Valencia, Spain
| | - Raymond L. Stallings
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland;
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy;
| | - Kwun Fong
- Thoracic Research Centre, University of Queensland, The Prince Charles Hospital, Brisbane, QLD 4032, Australia;
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Z.V.); (S.J.D.); (J.M.M.); (M.D.H.)
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Z.V.); (S.J.D.); (J.M.M.); (M.D.H.)
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Z.V.); (S.J.D.); (J.M.M.); (M.D.H.)
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wendy B. London
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Glenn M. Marshall
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
- Kids Cancer Centre, Sydney Children’s Hospital, High St, Randwick, NSW 2031, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
- Kids Cancer Centre, Sydney Children’s Hospital, High St, Randwick, NSW 2031, Australia
| | - Michael D. Hogarty
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Z.V.); (S.J.D.); (J.M.M.); (M.D.H.)
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Murray D. Norris
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
- Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
- Correspondence: ; Tel.: +61-(02)-9385-2170
| |
Collapse
|
13
|
Prokop JW, Bupp CP, Frisch A, Bilinovich SM, Campbell DB, Vogt D, Schultz CR, Uhl KL, VanSickle E, Rajasekaran S, Bachmann AS. Emerging Role of ODC1 in Neurodevelopmental Disorders and Brain Development. Genes (Basel) 2021; 12:genes12040470. [PMID: 33806076 PMCID: PMC8064465 DOI: 10.3390/genes12040470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Ornithine decarboxylase 1 (ODC1 gene) has been linked through gain-of-function variants to a rare disease featuring developmental delay, alopecia, macrocephaly, and structural brain anomalies. ODC1 has been linked to additional diseases like cancer, with growing evidence for neurological contributions to schizophrenia, mood disorders, anxiety, epilepsy, learning, and suicidal behavior. The evidence of ODC1 connection to neural disorders highlights the need for a systematic analysis of ODC1 genotype-to-phenotype associations. An analysis of variants from ClinVar, Geno2MP, TOPMed, gnomAD, and COSMIC revealed an intellectual disability and seizure connected loss-of-function variant, ODC G84R (rs138359527, NC_000002.12:g.10444500C > T). The missense variant is found in ~1% of South Asian individuals and results in 2.5-fold decrease in enzyme function. Expression quantitative trait loci (eQTLs) reveal multiple functionally annotated, non-coding variants regulating ODC1 that associate with psychiatric/neurological phenotypes. Further dissection of RNA-Seq during fetal brain development and within cerebral organoids showed an association of ODC1 expression with cell proliferation of neural progenitor cells, suggesting gain-of-function variants with neural over-proliferation and loss-of-function variants with neural depletion. The linkage from the expression data of ODC1 in early neural progenitor proliferation to phenotypes of neurodevelopmental delay and to the connection of polyamine metabolites in brain function establish ODC1 as a bona fide neurodevelopmental disorder gene.
Collapse
Affiliation(s)
- Jeremy W. Prokop
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (J.W.P.); (A.S.B.)
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Spectrum Health Medical Genetics, Grand Rapids, MI 49503, USA;
| | - Austin Frisch
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | - Stephanie M. Bilinovich
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | - Daniel B. Campbell
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Center for Research in Autism, Intellectual, and Other Neurodevelopmental Disabilities, Michigan State University, East Lansing, MI 48824, USA
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Chad R. Schultz
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | - Katie L. Uhl
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
| | | | - Surender Rajasekaran
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Pediatric Intensive Care Unit, Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA
- Office of Research, Spectrum Health, Grand Rapids, MI 49503, USA
| | - André S. Bachmann
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (C.P.B.); (A.F.); (S.M.B.); (D.B.C.); (D.V.); (C.R.S.); (K.L.U.); (S.R.)
- Correspondence: (J.W.P.); (A.S.B.)
| |
Collapse
|
14
|
Belayneh YM, Amare GG, Meharie BG. Updates on the molecular mechanisms of aspirin in the prevention of colorectal cancer: Review. J Oncol Pharm Pract 2021; 27:954-961. [PMID: 33427041 DOI: 10.1177/1078155220984846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Colorectal cancer is one of the commonest malignancies worldwide. The estimated lifetime risk of the disease is about 5% with an incidence of one million new cases and 600,000 deaths worldwide every year. It is estimated that in 2019, approximately 134,490 new cases of colorectal cancer will be diagnosed with 49,190 mortalities. Though the disease is regarded as a disorder of the more developed world, the occurrence is steadily increasing in many developing countries. Since chronic inflammation is a known aggravating risk factor for colorectal cancer, anti-inflammatory agents such as aspirin have been used to prevent the development of colorectal cancer and related mortality. The potential mechanisms for the effect of aspirin in the prevention of colorectal cancer have been proposed and broadly classified as cyclooxygenase (COX) dependent and COX-independent. Some of the primary effectors of COX-dependent mechanisms in carcinogenesis are likely to be prostaglandins. In contrast to the reversible action of other nonsteroidal anti-inflammatory drugs, aspirin is known to irreversibly inactivate COX enzymes to suppress production of prostaglandins. COX-independent mechanisms of anticancer effects of aspirin include down-regulation of nuclear factor kappa B activity and Akt activation, modulation of Bcl-2 and Bax family proteins, suppression of vascular endothelial growth factor, induction of apoptosis, disruption of DNA repair mechanisms, and induction of spermidine/spermine N1-acetyltransferase that modulates polyamine catabolism.
Collapse
Affiliation(s)
- Yaschilal Muche Belayneh
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Gedefew Getnet Amare
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Birhanu Geta Meharie
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
15
|
Tajada S, Villalobos C. Calcium Permeable Channels in Cancer Hallmarks. Front Pharmacol 2020; 11:968. [PMID: 32733237 PMCID: PMC7358640 DOI: 10.3389/fphar.2020.00968] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer, the second cause of death worldwide, is characterized by several common criteria, known as the “cancer hallmarks” such as unrestrained cell proliferation, cell death resistance, angiogenesis, invasion and metastasis. Calcium permeable channels are proteins present in external and internal biological membranes, diffusing Ca2+ ions down their electrochemical gradient. Numerous physiological functions are mediated by calcium channels, ranging from intracellular calcium homeostasis to sensory transduction. Consequently, calcium channels play important roles in human physiology and it is not a surprise the increasing number of evidences connecting calcium channels disorders with tumor cells growth, survival and migration. Multiple studies suggest that calcium signals are augmented in various cancer cell types, contributing to cancer hallmarks. This review focuses in the role of calcium permeable channels signaling in cancer with special attention to the mechanisms behind the remodeling of the calcium signals. Transient Receptor Potential (TRP) channels and Store Operated Channels (SOC) are the main extracellular Ca2+ source in the plasma membrane of non-excitable cells, while inositol trisphosphate receptors (IP3R) are the main channels releasing Ca2+ from the endoplasmic reticulum (ER). Alterations in the function and/or expression of these calcium channels, as wells as, the calcium buffering by mitochondria affect intracellular calcium homeostasis and signaling, contributing to the transformation of normal cells into their tumor counterparts. Several compounds reported to counteract several cancer hallmarks also modulate the activity and/or the expression of these channels including non-steroidal anti-inflammatory drugs (NSAIDs) like sulindac and aspirin, and inhibitors of polyamine biosynthesis, like difluoromethylornithine (DFMO). The possible role of the calcium permeable channels targeted by these compounds in cancer and their action mechanism will be discussed also in the review.
Collapse
Affiliation(s)
- Sendoa Tajada
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Carlos Villalobos
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
16
|
Sankaranarayanan R, Kumar DR, Patel J, Bhat GJ. Do Aspirin and Flavonoids Prevent Cancer through a Common Mechanism Involving Hydroxybenzoic Acids?-The Metabolite Hypothesis. Molecules 2020; 25:molecules25092243. [PMID: 32397626 PMCID: PMC7249170 DOI: 10.3390/molecules25092243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Despite decades of research to elucidate the cancer preventive mechanisms of aspirin and flavonoids, a consensus has not been reached on their specific modes of action. This inability to accurately pinpoint the mechanism involved is due to the failure to differentiate the primary targets from its associated downstream responses. This review is written in the context of the recent findings on the potential pathways involved in the prevention of colorectal cancers (CRC) by aspirin and flavonoids. Recent reports have demonstrated that the aspirin metabolites 2,3-dihydroxybenzoic acid (2,3-DHBA), 2,5-dihydroxybenzoic acid (2,5-DHBA) and the flavonoid metabolites 2,4,6-trihydroxybenzoic acid (2,4,6-THBA), 3,4-dihydroxybenzoic acid (3,4-DHBA) and 3,4,5-trihydroxybenzoic acid (3,4,5-THBA) were effective in inhibiting cancer cell growth in vitro. Limited in vivo studies also provide evidence that some of these hydroxybenzoic acids (HBAs) inhibit tumor growth in animal models. This raises the possibility that a common pathway involving HBAs may be responsible for the observed cancer preventive actions of aspirin and flavonoids. Since substantial amounts of aspirin and flavonoids are left unabsorbed in the intestinal lumen upon oral consumption, they may be subjected to degradation by the host and bacterial enzymes, generating simpler phenolic acids contributing to the prevention of CRC. Interestingly, these HBAs are also abundantly present in fruits and vegetables. Therefore, we suggest that the HBAs produced through microbial degradation of aspirin and flavonoids or those consumed through the diet may be common mediators of CRC prevention.
Collapse
Affiliation(s)
- Ranjini Sankaranarayanan
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University, College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA; (R.S.); (J.P.)
| | - D. Ramesh Kumar
- Department of Entomology, University of Kentucky, Lexington, KY 40506, USA;
| | - Janki Patel
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University, College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA; (R.S.); (J.P.)
| | - G. Jayarama Bhat
- Department of Pharmaceutical Sciences and Translational Cancer Research Center, South Dakota State University, College of Pharmacy and Allied Health Professions, Brookings, SD 57007, USA; (R.S.); (J.P.)
- Correspondence: ; Tel.: +1-605-688-6894
| |
Collapse
|
17
|
Zhang C, Aldrees M, Arif M, Li X, Mardinoglu A, Aziz MA. Elucidating the Reprograming of Colorectal Cancer Metabolism Using Genome-Scale Metabolic Modeling. Front Oncol 2019; 9:681. [PMID: 31417867 PMCID: PMC6682621 DOI: 10.3389/fonc.2019.00681] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/10/2019] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer is the third most incidental cancer worldwide, and the response rate of current treatment for colorectal cancer is very low. Genome-scale metabolic models (GEMs) are systems biology platforms, and they had been used to assist researchers in understanding the metabolic alterations in different types of cancer. Here, we reconstructed a generic colorectal cancer GEM by merging 374 personalized GEMs from the Human Pathology Atlas and used it as a platform for systematic investigation of the difference between tumor and normal samples. The reconstructed model revealed the metabolic reprogramming in glutathione as well as the arginine and proline metabolism in response to tumor occurrence. In addition, six genes including ODC1, SMS, SRM, RRM2, SMOX, and SAT1 associated with arginine and proline metabolism were found to be key players in this metabolic alteration. We also investigated these genes in independent colorectal cancer patients and cell lines and found that many of these genes showed elevated level in colorectal cancer and exhibited adverse effect in patients. Therefore, these genes could be promising therapeutic targets for treatment of a specific colon cancer patient group.
Collapse
Affiliation(s)
- Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mohammed Aldrees
- Department of Medical Genomics, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- Ministry of the National Guard- Health Affairs, Riyadh, Saudi Arabia
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Host–Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| | - Mohammad Azhar Aziz
- King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
- Ministry of the National Guard- Health Affairs, Riyadh, Saudi Arabia
- Colorectal Cancer Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
OHNO KI, HASEGAWA T, TAMURA T, UTSUMI H, YAMASHITA K. Proton Affinitive Derivatization for Highly Sensitive Determination of Testosterone and Dihydrotestosterone in Saliva Samples by LC-ESI-MS/MS. ANAL SCI 2018; 34:1017-1021. [DOI: 10.2116/analsci.18scp08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ken-ichi OHNO
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Tomomi HASEGAWA
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Tomomi TAMURA
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Haruka UTSUMI
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | | |
Collapse
|
19
|
|
20
|
Alpha-Difluoromethylornithine, an Irreversible Inhibitor of Polyamine Biosynthesis, as a Therapeutic Strategy against Hyperproliferative and Infectious Diseases. Med Sci (Basel) 2018; 6:medsci6010012. [PMID: 29419804 PMCID: PMC5872169 DOI: 10.3390/medsci6010012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/18/2022] Open
Abstract
The fluorinated ornithine analog α-difluoromethylornithine (DFMO, eflornithine, ornidyl) is an irreversible suicide inhibitor of ornithine decarboxylase (ODC), the first and rate-limiting enzyme of polyamine biosynthesis. The ubiquitous and essential polyamines have many functions, but are primarily important for rapidly proliferating cells. Thus, ODC is potentially a drug target for any disease state where rapid growth is a key process leading to pathology. The compound was originally discovered as an anticancer drug, but its effectiveness was disappointing. However, DFMO was successfully developed to treat African sleeping sickness and is currently one of few clinically used drugs to combat this neglected tropical disease. The other Food and Drug Administration (FDA) approved application for DFMO is as an active ingredient in the hair removal cream Vaniqa. In recent years, renewed interest in DFMO for hyperproliferative diseases has led to increased research and promising preclinical and clinical trials. This review explores the use of DFMO for the treatment of African sleeping sickness and hirsutism, as well as its potential as a chemopreventive and chemotherapeutic agent against colorectal cancer and neuroblastoma.
Collapse
|
21
|
Zetner DB, Bisgaard ML. Familial Colorectal Cancer Type X. Curr Genomics 2017; 18:341-359. [PMID: 29081690 PMCID: PMC5635618 DOI: 10.2174/1389202918666170307161643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 12/26/2016] [Accepted: 01/22/2017] [Indexed: 12/12/2022] Open
Abstract
The genetic background is unknown for the 50-60% of the HNPCC families, who fulfill the Amsterdam criteria, but do not have a mutation in an MMR gene, and is referred to as FCCTX. This study reviews the clinical, morphological and molecular characteristics of FCCTX, and discusses the molecular genetic methods used to localize new FCCTX genes, along with an overview of the genes and chromosomal areas that possibly relate to FCCTX. FCCTX is a heterogeneous group, mainly comprising cases caused by single high-penetrance genes, or by multiple low-penetrance genes acting together, and sporadic CRC cases. FCCTX differs in clinical, morphological and molecular genetic characteristics compared to LS, including a later age of onset, distal location of tumours in the colon, lower risk of developing extracolonic tumours and a higher adenoma/carcinoma ratio, which indicates a slower progression to CRC. Certain characteristics are shared with sporadic CRC, e.g. similarities in gene expression and a high degree of CIN+, with significanly increased 20q gain in FCCTX. Other molecular characteristics of FCCTX include longer telomere length and hypomethylation of LINE-1, both being a possible explanation for CIN+. Some genes in FCCTX families (RPS20, BMPR1A, SEMA4A) have been identified by using a combination of linkage analysis and sequencing. Sequencing strategies and subsequent bioinformatics are improving fast. Exome sequencing and whole genome sequencing are currently the most promising tools. Finally, the involvement of CNV’s and regulatory sequences are widely unexplored and would be interesting for further investigation in FCCTX.
Collapse
Affiliation(s)
- Diana Bregner Zetner
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Luise Bisgaard
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Deshpande AR, Pochapsky TC, Ringe D. The Metal Drives the Chemistry: Dual Functions of Acireductone Dioxygenase. Chem Rev 2017; 117:10474-10501. [PMID: 28731690 DOI: 10.1021/acs.chemrev.7b00117] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acireductone dioxygenase (ARD) from the methionine salvage pathway (MSP) is a unique enzyme that exhibits dual chemistry determined solely by the identity of the divalent transition-metal ion (Fe2+ or Ni2+) in the active site. The Fe2+-containing isozyme catalyzes the on-pathway reaction using substrates 1,2-dihydroxy-3-keto-5-methylthiopent-1-ene (acireductone) and dioxygen to generate formate and the ketoacid precursor of methionine, 2-keto-4-methylthiobutyrate, whereas the Ni2+-containing isozyme catalyzes an off-pathway shunt with the same substrates, generating methylthiopropionate, carbon monoxide, and formate. The dual chemistry of ARD was originally discovered in the bacterium Klebsiella oxytoca, but it has recently been shown that mammalian ARD enzymes (mouse and human) are also capable of catalyzing metal-dependent dual chemistry in vitro. This is particularly interesting, since carbon monoxide, one of the products of off-pathway reaction, has been identified as an antiapoptotic molecule in mammals. In addition, several biochemical and genetic studies have indicated an inhibitory role of human ARD in cancer. This comprehensive review describes the biochemical and structural characterization of the ARD family, the proposed experimental and theoretical approaches to establishing mechanisms for the dual chemistry, insights into the mechanism based on comparison with structurally and functionally similar enzymes, and the applications of this research to the field of artificial metalloenzymes and synthetic biology.
Collapse
Affiliation(s)
- Aditi R Deshpande
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Thomas C Pochapsky
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Dagmar Ringe
- Departments of Biochemistry and ‡Chemistry and §the Rosenstiel Institute for Basic Biomedical Research, Brandeis University , Waltham, Massachusetts 02454, United States
| |
Collapse
|
23
|
Hammerling U, Bergman Laurila J, Grafström R, Ilbäck NG. Consumption of Red/Processed Meat and Colorectal Carcinoma: Possible Mechanisms Underlying the Significant Association. Crit Rev Food Sci Nutr 2016; 56:614-34. [PMID: 25849747 DOI: 10.1080/10408398.2014.972498] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiology and experimental studies provide an overwhelming support of the notion that diets high in red or processed meat accompany an elevated risk of developing pre-neoplastic colorectal adenoma and frank colorectal carcinoma (CRC). The underlying mechanisms are disputed; thus several hypotheses have been proposed. A large body of reports converges, however, on haem and nitrosyl haem as major contributors to the CRC development, presumably acting through various mechanisms. Apart from a potentially higher intestinal mutagenic load among consumers on a diet rich in red/processed meat, other mechanisms involving subtle interference with colorectal stem/progenitor cell survival or maturation are likewise at play. From an overarching perspective, suggested candidate mechanisms for red/processed meat-induced CRC appear as three partly overlapping tenets: (i) increased N-nitrosation/oxidative load leading to DNA adducts and lipid peroxidation in the intestinal epithelium, (ii) proliferative stimulation of the epithelium through haem or food-derived metabolites that either act directly or subsequent to conversion, and (iii) higher inflammatory response, which may trigger a wide cascade of pro-malignant processes. In this review, we summarize and discuss major findings of the area in the context of potentially pertinent mechanisms underlying the above-mentioned association between consumption of red/processed meat and increased risk of developing CRC.
Collapse
Affiliation(s)
- Ulf Hammerling
- a Cancer Pharmacology & Computational Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital , Uppsala , Sweden
| | - Jonas Bergman Laurila
- b Sahlgrenska Biobank, Gothia Forum, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Roland Grafström
- c Institute of Environmental Medicine, The Karolinska Institute , Stockholm , Sweden.,d Knowledge Intensive Products and Services, VTT Technical Research Centre of Finland , Turku , Finland
| | - Nils-Gunnar Ilbäck
- e Clinical Microbiology & Infectious Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital , Uppsala , Sweden
| |
Collapse
|
24
|
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers in the developed world and is the second leading cause of cancer-related mortality in the UK and USA. Regular use of aspirin can reduce cancer incidence, recurrence, metastasis and cancer-related mortality. SOURCES OF DATA Peer-reviewed journals, governmental and professional society publications. AREAS OF AGREEMENT There is a wide body of evidence from observational studies and randomized trials that aspirin reduces risk of CRC. There is a delay of several years between initiation and effect. There is interpersonal variation in aspirin metabolism but pharmacogenetic testing is not yet sufficiently sensitive or specific to justify routine use. AREAS OF DISAGREEMENT There is uncertainty about the optimal dose and the duration of aspirin. There is debate around use for the general population but there is growing consensus on use in those at increased risk of developing cancer. GROWING POINTS Understanding is growing of the possible mechanisms by which aspirin exerts its anticancer effects. Large-scale meta-analyses are quantifying the cost-benefit ratio in the general population. International trials are underway to assess the optimal dose in high-risk individuals and the role of aspirin as an adjuvant in those who present with a malignancy.
Collapse
Affiliation(s)
- John Burn
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne NE1 4EP, UK
| | - Harsh Sheth
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne NE1 4EP, UK
| |
Collapse
|
25
|
Miao H, Ou J, Peng Y, Zhang X, Chen Y, Hao L, Xie G, Wang Z, Pang X, Ruan Z, Li J, Yu L, Xue B, Shi H, Shi C, Liang H. Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat Commun 2016; 7:11716. [PMID: 27189574 PMCID: PMC4873969 DOI: 10.1038/ncomms11716] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/22/2016] [Indexed: 12/26/2022] Open
Abstract
Metabolic reprogramming in stromal cells plays an essential role in regulating tumour growth. The metabolic activities of tumour-associated macrophages (TAMs) in colorectal cancer (CRC) are incompletely characterized. Here, we identify TAM-derived factors and their roles in the development of CRC. We demonstrate that ABHD5, a lipolytic co-activator, is ectopically expressed in CRC-associated macrophages. We demonstrate in vitro and in mouse models that macrophage ABHD5 potentiates growth of CRC cells. Mechanistically, ABHD5 suppresses spermidine synthase (SRM)-dependent spermidine production in macrophages by inhibiting the reactive oxygen species-dependent expression of C/EBPɛ, which activates transcription of the srm gene. Notably, macrophage-specific ABHD5 transgene-induced CRC growth in mice can be prevented by an additional SRM transgene in macrophages. Altogether, our results show that the lipolytic factor ABHD5 suppresses SRM-dependent spermidine production in TAMs and potentiates the growth of CRC. The ABHD5/SRM/spermidine axis in TAMs might represent a potential target for therapy. ABHD5 is a co-activator of lipolysis. Here the authors show that in tumour-associated macrophages ABHD5 inhibits ROS-dependent induction of C/EBPɛ, which transcriptionally activates spermidine synthase, and that blocking ABHD5 delays colorectal cancer growth in mice by inhibiting spermidine production.
Collapse
Affiliation(s)
- Hongming Miao
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Juanjuan Ou
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yuan Peng
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yujuan Chen
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Lijun Hao
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Ganfeng Xie
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhe Wang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xueli Pang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhihua Ruan
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
26
|
Gebicke-Haerter PJ. Systems psychopharmacology: A network approach to developing novel therapies. World J Psychiatry 2016; 6:66-83. [PMID: 27014599 PMCID: PMC4804269 DOI: 10.5498/wjp.v6.i1.66] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/10/2016] [Accepted: 02/23/2016] [Indexed: 02/05/2023] Open
Abstract
The multifactorial origin of most chronic disorders of the brain, including schizophrenia, has been well accepted. Consequently, pharmacotherapy would require multi-targeted strategies. This contrasts to the majority of drug therapies used until now, addressing more or less specifically only one target molecule. Nevertheless, quite some searches for multiple molecular targets specific for mental disorders have been undertaken. For example, genome-wide association studies have been conducted to discover new target genes of disease. Unfortunately, these attempts have not fulfilled the great hopes they have started with. Polypharmacology and network pharmacology approaches of drug treatment endeavor to abandon the one-drug one-target thinking. To this end, most approaches set out to investigate network topologies searching for modules, endowed with "important" nodes, such as "hubs" or "bottlenecks", encompassing features of disease networks, and being useful as tentative targets of drug therapies. This kind of research appears to be very promising. However, blocking or inhibiting "important" targets may easily result in destruction of network integrity. Therefore, it is suggested here to study functions of nodes with lower centrality for more subtle impact on network behavior. Targeting multiple nodes with low impact on network integrity by drugs with multiple activities ("dirty drugs") or by several drugs, simultaneously, avoids to disrupt network integrity and may reset deviant dynamics of disease. Natural products typically display multi target functions and therefore could help to identify useful biological targets. Hence, future efforts should consider to combine drug-target networks with target-disease networks using mathematical (graph theoretical) tools, which could help to develop new therapeutic strategies in long-term psychiatric disorders.
Collapse
|
27
|
Abstract
Aspirin (acetylsalicylic acid) has become one of the most commonly used drugs, given its role as an analgesic, antipyretic and agent for cardiovascular prophylaxis. Several decades of research have provided considerable evidence demonstrating its potential for the prevention of cancer, particularly colorectal cancer. Broader clinical recommendations for aspirin-based chemoprevention strategies have recently been established; however, given the known hazards of long-term aspirin use, larger-scale adoption of an aspirin chemoprevention strategy is likely to require improved identification of individuals for whom the protective benefits outweigh the harms. Such a precision medicine approach may emerge through further clarification of aspirin's mechanism of action.
Collapse
Affiliation(s)
- David A Drew
- Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, 55 Fruit Street, Bartlett Ext. 9, Boston, Massachusetts 02114, USA
| | - Yin Cao
- Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, and Harvard T.H. Chan School of Public Health, Department of Nutrition, 55 Fruit Street, Bartlett Ext. 9, Boston, Massachusetts 02114, USA
| | - Andrew T Chan
- Massachusetts General Hospital and Harvard Medical School, Clinical and Translational Epidemiology Unit, Division of Gastroenterology, GRJ-825C, Boston, Massachusetts 02114, USA
| |
Collapse
|
28
|
Lochhead PJ, Chan AT. Aspirin and the Prevention of Colorectal Cancer. NSAIDS AND ASPIRIN 2016:219-240. [DOI: 10.1007/978-3-319-33889-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
29
|
Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J Mol Biol 2015; 427:3389-406. [DOI: 10.1016/j.jmb.2015.06.020] [Citation(s) in RCA: 401] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/12/2015] [Accepted: 06/29/2015] [Indexed: 11/23/2022]
|
30
|
Li P, Wu H, Zhang H, Shi Y, Xu J, Ye Y, Xia D, Yang J, Cai J, Wu Y. Aspirin use after diagnosis but not prediagnosis improves established colorectal cancer survival: a meta-analysis. Gut 2015; 64:1419-25. [PMID: 25239119 DOI: 10.1136/gutjnl-2014-308260] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/07/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The objective of this meta-analysis was to systematically assess the survival benefit of aspirin use before or after diagnosis for patients with colorectal cancer (CRC). DESIGN Relevant studies were identified through searching PubMed, Embase and Cochrane databases before May 2014. Two investigators extracted data independently for baseline characteristics and outcomes from the included studies. Either a fixed-effects or a random-effects model was derived to composite the pooled HR for overall mortality and CRC-specific mortality of CRC. RESULTS Seven studies on postdiagnosis aspirin therapy and seven studies on prediagnosis aspirin use were finally included in this meta-analysis. The overall survival benefit associated with postdiagnosis aspirin use represented an HR of 0.84 (95% CI 0.75 to 0.94). This effect was observed both in colon cancer (HR=0.78, 95% CI 0.64 to 0.96) and in rectal cancer (HR=0.90, 95% CI 0.83 to 0.98). Besides, the survival benefit of postdiagnosis aspirin use appeared to be confined to those patients with positive prostaglandin endoperoxide synthase 2 (PTGS2, also known as cyclooxygenase-2, COX-2) expression (HR=0.65, 95% CI 0.50 to 0.85) and with mutated PIK3CA tumours (HR=0.58, 95% CI 0.37 to 0.90). Aspirin use postdiagnosis was not associated with CRC-specific mortality (HR=0.77, 95% CI 0.52 to 1.14). We observed no evidence of an association between prediagnosis aspirin use and CRC overall mortality (HR=1.01, 95% CI 0.96 to 1.06) or CRC-specific mortality (HR=0.93, 95% CI 0.82 to 1.05). CONCLUSIONS These findings provide further indication that postdiagnosis aspirin therapy improved CRC overall survival, especially for patients with positive PTGS2 (COX-2) expression and mutated PIK3CA tumours.
Collapse
Affiliation(s)
- Peiwei Li
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han Wu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinming Xu
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Yao Ye
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Dajing Xia
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China
| | - Jun Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China Department of Biomedicine, College of Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Jianting Cai
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihua Wu
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health, Hangzhou, China
| |
Collapse
|
31
|
Saulnier Sholler GL, Gerner EW, Bergendahl G, MacArthur RB, VanderWerff A, Ashikaga T, Bond JP, Ferguson W, Roberts W, Wada RK, Eslin D, Kraveka JM, Kaplan J, Mitchell D, Parikh NS, Neville K, Sender L, Higgins T, Kawakita M, Hiramatsu K, Moriya SS, Bachmann AS. A Phase I Trial of DFMO Targeting Polyamine Addiction in Patients with Relapsed/Refractory Neuroblastoma. PLoS One 2015; 10:e0127246. [PMID: 26018967 PMCID: PMC4446210 DOI: 10.1371/journal.pone.0127246] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/11/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common cancer in infancy and most frequent cause of death from extracranial solid tumors in children. Ornithine decarboxylase (ODC) expression is an independent indicator of poor prognosis in NB patients. This study investigated safety, response, pharmacokinetics, genetic and metabolic factors associated with ODC in a clinical trial of the ODC inhibitor difluoromethylornithine (DFMO) ± etoposide for patients with relapsed or refractory NB. METHODS AND FINDINGS Twenty-one patients participated in a phase I study of daily oral DFMO alone for three weeks, followed by additional three-week cycles of DFMO plus daily oral etoposide. No dose limiting toxicities (DLTs) were identified in patients taking doses of DFMO between 500-1500 mg/m2 orally twice a day. DFMO pharmacokinetics, single nucleotide polymorphisms (SNPs) in the ODC gene and urinary levels of substrates for the tissue polyamine exporter were measured. Urinary polyamine levels varied among patients at baseline. Patients with the minor T-allele at rs2302616 of the ODC gene had higher baseline levels (p=0.02) of, and larger decreases in, total urinary polyamines during the first cycle of DFMO therapy (p=0.003) and had median progression free survival (PFS) that was over three times longer, compared to patients with the major G allele at this locus although this last result was not statistically significant (p=0.07). Six of 18 evaluable patients were progression free during the trial period with three patients continuing progression free at 663, 1559 and 1573 days after initiating treatment. Median progression-free survival was less among patients having increased urinary polyamines, especially diacetylspermine, although this result was not statistically significant (p=0.056). CONCLUSIONS DFMO doses of 500-1500 mg/m2/day are safe and well tolerated in children with relapsed NB. Children with the minor T allele at rs2302616 of the ODC gene with relapsed or refractory NB had higher levels of urinary polyamine markers and responded better to therapy containing DFMO, compared to those with the major G allele at this locus. These findings suggest that this patient subset may display dependence on polyamines and be uniquely susceptible to therapies targeting this pathway. TRIAL REGISTRATION Clinicaltrials.gov NCT#01059071.
Collapse
Affiliation(s)
- Giselle L. Saulnier Sholler
- Helen DeVos Children’s Hospital, Grand Rapids, Michigan, United States of America
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Eugene W. Gerner
- Cancer Prevention Pharmaceuticals, Tucson, Arizona, United States of America
| | - Genevieve Bergendahl
- Helen DeVos Children’s Hospital, Grand Rapids, Michigan, United States of America
| | - Robert B. MacArthur
- Cancer Prevention Pharmaceuticals, Tucson, Arizona, United States of America
| | - Alyssa VanderWerff
- Helen DeVos Children’s Hospital, Grand Rapids, Michigan, United States of America
| | - Takamaru Ashikaga
- Medical Biostatistics, University of Vermont, Burlington, Vermont, United States of America
| | - Jeffrey P. Bond
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - William Ferguson
- Cardinal Glennon Children's Hospital, St. Louis, Missouri, United States of America
| | - William Roberts
- University of California San Diego School of Medicine and Rady Children's Hospital, San Diego, California, United States of America
| | - Randal K. Wada
- Kapiolani Medical Center for Women and Children, Honolulu, Hawaii, United States of America
| | - Don Eslin
- Arnold Palmer Hospital for Children, Orlando, Florida, United States of America
| | - Jacqueline M. Kraveka
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Joel Kaplan
- Levine Children's Hospital, Charlotte, North Carolina, United States of America
| | - Deanna Mitchell
- Helen DeVos Children’s Hospital, Grand Rapids, Michigan, United States of America
| | - Nehal S. Parikh
- Connecticut Children's Medical Center, Hartford, Connecticut, United States of America
| | - Kathleen Neville
- Children's Mercy Hospitals and Clinics, Kansas City, Missouri, United States of America
| | - Leonard Sender
- Children’s Hospital of Orange County, Orange, California, United States of America
| | - Timothy Higgins
- Medical Biostatistics, University of Vermont, Burlington, Vermont, United States of America
| | - Masao Kawakita
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Hiramatsu
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - André S. Bachmann
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, Hilo, Hawaii, United States of America
| |
Collapse
|
32
|
Xu L, Long J, Wang P, Liu K, Mai L, Guo Y. Association between the ornithine decarboxylase G316A polymorphism and breast cancer survival. Oncol Lett 2015; 10:485-491. [PMID: 26171056 DOI: 10.3892/ol.2015.3201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/19/2015] [Indexed: 11/05/2022] Open
Abstract
Ornithine decarboxylase (ODC) is a significant rate-limiting enzyme in polyamine synthesis, required for normal cell growth, and is highly expressed in various malignancies, including colorectal and breast cancer. In the present study, the associations between the ODC G316A single nucleotide polymorphism (SNP) and breast cancer-specific survival were investigated. In addition, the functional effects of this SNP were examined in the MCF-7 human breast cancer cell line. The present study recruited 300 stage I-III breast cancer cases, which were diagnosed at the Affiliated Cancer Hospital of Zhengzhou University (Zhengzhou, China) between 2002 and 2003, with follow-up visits conducted until May 2013. ODC G316A was genotyped (ODC GG vs. ODC AG/AA) in the 300 cases and the association of the genotypes with cancer-specific survival was analyzed. In the MCF-7 cell line, the ODC allele-specific binding of E-box transcription factors was determined using western blot and chromatin immunoprecipitation assays. Survival differences were observed between the two genotypes: Compared with the ODC GG genotype, patients with ODC GA/AA exhibited significantly higher survival rates (P<0.05). In cultured cells, the ODC SNP, which is flanked by two E-boxes, appeared to predict ODC promoter activity. Furthermore, the E-box activator c-MYC and repressor MAX interactor 1 were found to preferentially bind to ODC minor A-alleles compared with major G-alleles, in cultured MCF-7 cells. In conclusion, the results of the current study suggest that the regulation of ODC may affect survival in breast cancer patients and indicate a model in which the ODC SNP may be protective for breast adenoma recurrence and detrimental for survival following a diagnosis of breast cancer.
Collapse
Affiliation(s)
- Linping Xu
- Department of Scientific Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jianping Long
- Department of Breast Surgery, Maternity and Child-Care Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Peng Wang
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Kangdong Liu
- Department of Scientific Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Ling Mai
- Department of Scientific Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yongjun Guo
- Department of Scientific Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
33
|
Traitement adjuvant du cancer colorectal : l’aspirine, une biothérapie ciblée ? ONCOLOGIE 2014. [DOI: 10.1007/s10269-014-2463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Ishikawa H, Mutoh M, Suzuki S, Tokudome S, Saida Y, Abe T, Okamura S, Tajika M, Joh T, Tanaka S, Kudo SE, Matsuda T, Iimuro M, Yukawa T, Takayama T, Sato Y, Lee K, Kitamura S, Mizuno M, Sano Y, Gondo N, Sugimoto K, Kusunoki M, Goto C, Matsuura N, Sakai T, Wakabayashi K. The preventive effects of low-dose enteric-coated aspirin tablets on the development of colorectal tumours in Asian patients: a randomised trial. Gut 2014; 63:1755-9. [PMID: 24488498 DOI: 10.1136/gutjnl-2013-305827] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the influence of low-dose, enteric-coated aspirin tablets (100 mg/day for 2 years) on colorectal tumour recurrence in Asian patients with single/multiple colorectal tumours excised by endoscopy. DESIGN A double-blinded, randomised, placebo-controlled multicentre clinical trial was conducted. PARTICIPANTS 311 subjects with single/multiple colorectal adenomas and adenocarcinomas excised by endoscopy were enrolled in the study (152 patients in the aspirin group and 159 patients in the placebo group). Enrolment began at the hospitals (n=19) in 2007 and was completed in 2009. RESULTS The subjects treated with aspirin displayed reduced colorectal tumourigenesis and primary endpoints with an adjusted OR of 0.60 (95% CI 0.36 to 0.98) compared with the subjects in the placebo group. Subgroup analysis revealed that subjects who were non-smokers, defined as those who had smoked in the past or who had never smoked, had a marked reduction in the number of recurrent tumours in the aspirin-treated group. The adjusted OR for aspirin treatment in non-smokers was 0.37 (CI 0.21 to 0.68, p<0.05). Interestingly, the use of aspirin in smokers resulted in an increased risk, with an OR of 3.44. In addition, no severe adverse effects were observed in either group. CONCLUSIONS Low-dose, enteric-coated aspirin tablets reduced colorectal tumour recurrence in an Asian population. The results are consistent with those obtained from other randomised controlled trials in Western countries. THE CLINICAL TRIAL REGISTRY WEBSITE AND THE CLINICAL TRIAL NUMBER: http://www.umin.ac.jp (number UMIN000000697).
Collapse
Affiliation(s)
- Hideki Ishikawa
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihiro Mutoh
- Division of Cancer Prevention Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Shinkan Tokudome
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan National Institute of Health and Nutrition, Tokyo, Japan
| | | | - Takashi Abe
- Department of Gastroenterology, Takarazuka Municipal Hospital, Hyogo, Japan
| | - Shozo Okamura
- Department of Internal Medicine, Toyohashi Municipal Hospital, Aichi, Japan
| | - Masahiro Tajika
- Department of Endoscopy, Aichi Cancer Center Hospital, Aichi, Japan
| | - Takashi Joh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center Northern Yokohama Hospital Showa University, School of Medicine, Kanagawa, Japan
| | - Takahisa Matsuda
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Masaki Iimuro
- Higashisumiyoshi Morimoto Hospital, Osaka, Japan Department of Lower Gastroenterology, Hyogo College of Medicine, Hyogo, Japan
| | | | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Yasushi Sato
- 4th Department of Internal Medicine, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| | - Kyowon Lee
- Moriguchi Keijinkai Hospital, Osaka, Japan
| | - Shinji Kitamura
- Department of Gastroenterology, Sakai City Hospital, Osaka, Japan
| | - Motowo Mizuno
- Department of Internal Medicine, Hiroshima City Hospital, Hiroshima, Japan
| | - Yasushi Sano
- Division of Digestive Endoscopy and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | | | | | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Chiho Goto
- Department of Health and Nutrition, Nagoya-Bunri University, Aichi, Japan
| | - Nariaki Matsuura
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
35
|
Allpress CJ, Berreau LM. A Nickel‐Containing Model System of Acireductone Dioxygenases that Utilizes a C(1)‐H Acireductone Substrate. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Caleb J. Allpress
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322‐0300, USA, http://lisaberreau.org/
| | - Lisa M. Berreau
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322‐0300, USA, http://lisaberreau.org/
| |
Collapse
|
36
|
LINSALATA MICHELE, ORLANDO ANTONELLA, RUSSO FRANCESCO. Pharmacological and dietary agents for colorectal cancer chemoprevention: Effects on polyamine metabolism (Review). Int J Oncol 2014; 45:1802-12. [PMID: 25119812 DOI: 10.3892/ijo.2014.2597] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/04/2014] [Indexed: 11/06/2022] Open
|
37
|
Vosooghi M, Amini M. The discovery and development of cyclooxygenase-2 inhibitors as potential anticancer therapies. Expert Opin Drug Discov 2014; 9:255-67. [PMID: 24483845 DOI: 10.1517/17460441.2014.883377] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION In the past, clinical studies had demonstrated that aspirin and NSAIDs reduce the risk of colorectal cancer. After the discovery of selective prostaglandin-endoperoxide synthase 2 (PTGS2) inhibitors, the further beneficial effects of celecoxib and some other related structures (coxibs) have been demonstrated in both in vivo and in vitro studies. AREAS COVERED The authors illustrate the role of prostaglandins following the overexpression of PTGS2 (COX-2) in signaling pathways. The authors elucidate the role of coxibs in cell proliferation, apoptosis, angiogenesis and multi-drug resistance and discuss the molecular mechanisms involved. The authors also present the strong evidence related to the usefulness of coxibs in several cancer cell lines. EXPERT OPINION There have been a number of PTGS2 (COX-2) selective inhibitors suggested as potential anticancer therapies. In recent years, the development of nanotechnology has also had an impact on chemotherapy. Indeed, nanoparticles of cytotoxic drug carriers have demonstrated potential through their accumulation in cancer cells, and targeting these nanoparticles has been under evaluation. This area could be opened up for coxib development as they are potentially important targets in cancer cells. Further research using celecoxib as a co-drug with PTGS2-overexpressed and PTGS2-independent cancer is still needed.
Collapse
Affiliation(s)
- Mohsen Vosooghi
- Tehran University of Medical Sciences, Faculty of Pharmacy, Drug Design & Development Research Center, Department of Medicinal Chemistry , Tehran , Iran
| | | |
Collapse
|
38
|
Lango Allen H, Caswell R, Xie W, Xu X, Wragg C, Turnpenny PD, Turner CLS, Weedon MN, Ellard S. Next generation sequencing of chromosomal rearrangements in patients with split-hand/split-foot malformation provides evidence for DYNC1I1 exonic enhancers of DLX5/6 expression in humans. J Med Genet 2014; 51:264-7. [PMID: 24459211 PMCID: PMC3963551 DOI: 10.1136/jmedgenet-2013-102142] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective Split-hand/foot malformation type 1 is an autosomal dominant condition with reduced penetrance and variable expression. We report three individuals from two families with split-hand/split-foot malformation (SHFM) in whom next generation sequencing was performed to investigate the cause of their phenotype. Methods and results The first proband has a de novo balanced translocation t(2;7)(p25.1;q22) identified by karyotyping. Whole genome sequencing showed that the chromosome 7 breakpoint is situated within the SHFM1 locus on chromosome 7q21.3. This separates the DYNC1I1 exons recently identified as limb enhancers in mouse studies from their target genes, DLX5 and DLX6. In the second family, X-linked recessive inheritance was suspected and exome sequencing was performed to search for a mutation in the affected proband and his uncle. No coding mutation was found within the SHFM2 locus at Xq26 or elsewhere in the exome, but a 106 kb deletion within the SHFM1 locus was detected through copy number analysis. Genome sequencing of the deletion breakpoints showed that the DLX5 and DLX6 genes are disomic but the putative DYNC1I1 exon 15 and 17 enhancers are deleted. Conclusions Exome sequencing identified a 106 kb deletion that narrows the SHFM1 critical region from 0.9 to 0.1 Mb and confirms a key role of DYNC1I1 exonic enhancers in normal limb formation in humans.
Collapse
Affiliation(s)
- Hana Lango Allen
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Symes AJ, Eilertsen M, Millar M, Nariculam J, Freeman A, Notara M, Feneley MR, Patel HRH, Masters JRW, Ahmed A. Quantitative analysis of BTF3, HINT1, NDRG1 and ODC1 protein over-expression in human prostate cancer tissue. PLoS One 2013; 8:e84295. [PMID: 24386364 PMCID: PMC3874000 DOI: 10.1371/journal.pone.0084295] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/13/2013] [Indexed: 02/01/2023] Open
Abstract
Prostate carcinoma is the most common cancer in men with few, quantifiable, biomarkers. Prostate cancer biomarker discovery has been hampered due to subjective analysis of protein expression in tissue sections. An unbiased, quantitative immunohistochemical approach provided here, for the diagnosis and stratification of prostate cancer could overcome this problem. Antibodies against four proteins BTF3, HINT1, NDRG1 and ODC1 were used in a prostate tissue array (> 500 individual tissue cores from 82 patients, 41 case pairs matched with one patient in each pair had biochemical recurrence). Protein expression, quantified in an unbiased manner using an automated analysis protocol in ImageJ software, was increased in malignant vs non-malignant prostate (by 2-2.5 fold, p<0.0001). Operating characteristics indicate sensitivity in the range of 0.68 to 0.74; combination of markers in a logistic regression model demonstrates further improvement in diagnostic power. Triple-labeled immunofluorescence (BTF3, HINT1 and NDRG1) in tissue array showed a significant (p<0.02) change in co-localization coefficients for BTF3 and NDRG1 co-expression in biochemical relapse vs non-relapse cancer epithelium. BTF3, HINT1, NDRG1 and ODC1 could be developed as epithelial specific biomarkers for tissue based diagnosis and stratification of prostate cancer.
Collapse
Affiliation(s)
- Andrew J. Symes
- Prostate Cancer Research Centre, Division of Surgery, University College London, London, United Kingdom
| | - Marte Eilertsen
- Prostate Cancer Research Centre, Division of Surgery, University College London, London, United Kingdom
| | - Michael Millar
- The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Joseph Nariculam
- Prostate Cancer Research Centre, Division of Surgery, University College London, London, United Kingdom
| | - Alex Freeman
- Department of Histopathology, University College London Hospital, London, United Kingdom
| | - Maria Notara
- Prostate Cancer Research Centre, Division of Surgery, University College London, London, United Kingdom
| | - Mark R. Feneley
- Prostate Cancer Research Centre, Division of Surgery, University College London, London, United Kingdom
| | - Hitenedra R. H. Patel
- Division of Surgery, Oncology, Urology and Women's Health, University Hospital of Northern Norway, Tromso, Norway
| | - John R. W. Masters
- Prostate Cancer Research Centre, Division of Surgery, University College London, London, United Kingdom
| | - Aamir Ahmed
- Prostate Cancer Research Centre, Division of Surgery, University College London, London, United Kingdom
| |
Collapse
|
40
|
Systemic overexpression of antizyme 1 in mouse reduces ornithine decarboxylase activity without major changes in tissue polyamine homeostasis. Transgenic Res 2013; 23:153-63. [DOI: 10.1007/s11248-013-9763-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/21/2013] [Indexed: 11/27/2022]
|
41
|
Nolfo F, Rametta S, Marventano S, Grosso G, Mistretta A, Drago F, Gangi S, Basile F, Biondi A. Pharmacological and dietary prevention for colorectal cancer. BMC Surg 2013; 13 Suppl 2:S16. [PMID: 24267792 PMCID: PMC3851139 DOI: 10.1186/1471-2482-13-s2-s16] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Colorectal cancer (CRC) is a leading cause of cancer morbidity and mortality. People at higher risk are those individuals with a family history of CRC and familial adenomatous polyposis. Prevention and screening are two milestones for this disease. The aim of this study is to evaluate the chemopreventive role of non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin and cyclooxygenase 2 inhibitors, some micronutrients (folic acid, calcium, selenium, antioxidants) and probiotics. Discussion The studies on aspiring reported promising results, but it is debatable whether aspirin should be used as chemoprevention, because of its side effects and because of poor efficacy evident in subjects at high risk. Similar results were reported for other non-aspirin NSAIDs, such as sulindac and celecoxib, which the potential adverse effects limit their use. Selenium role in prevention of various types of cancer as well as in colon adenomas are often inconclusive or controversial. Several studies suggested that calcium may have a possible chemopreventive effect on colon adenomas and CRC, although contrasting results are reported for the latter. A recent meta-analysis including 13 randomized trial suggested that folic acid supplementation had not a chemiopreventive action on CRC. Several studies investigated the association between antioxidants, administered alone or in combination, and CRC risk, both among general and at risk population, but only few of them supported statistically significant results. Conclusion The results of this literature review showed an unclear role in CRC prevention of both pharmacological and dietary intervention. Despite several options are available to prevent colon cancer, it is challenging to identify a correct strategy to prevent CRC through pharmacological and dietary intervention due to the long latency of cancer promotion and development. Since some of the drugs investigated may have uncertain individual effects, it can be suggested to potentiate such effects by adding them together.
Collapse
|
42
|
The proapoptotic effect of traditional and novel nonsteroidal anti-inflammatory drugs in mammalian and yeast cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:504230. [PMID: 23983899 PMCID: PMC3747411 DOI: 10.1155/2013/504230] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/08/2013] [Indexed: 12/16/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have long been used to treat pain, fever, and inflammation. However, mounting evidence shows that NSAIDs, such as aspirin, have very promising antineoplastic properties. The chemopreventive, antiproliferative behaviour of NSAIDs has been associated with both their inactivation of cyclooxygenases (COX) and their ability to induce apoptosis via pathways that are largely COX-independent. In this review, the various proapoptotic pathways induced by traditional and novel NSAIDs such as phospho-NSAIDs, hydrogen sulfide-releasing NSAIDs and nitric oxide-releasing NSAIDs in mammalian cell lines are discussed, as well as the proapoptotic effects of NSAIDs on budding yeast which retains the hallmarks of mammalian apoptosis. The significance of these mechanisms in terms of the role of NSAIDs in effective cancer prevention is considered.
Collapse
|
43
|
Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev Mol Med 2013; 15:e3. [PMID: 23432971 DOI: 10.1017/erm.2013.3] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyamines are small organic cations that are essential for normal cell growth and development in eukaryotes. Under normal physiological conditions, intracellular polyamine concentrations are tightly regulated through a dynamic network of biosynthetic and catabolic enzymes, and a poorly characterised transport system. This precise regulation ensures that the intracellular concentration of polyamines is maintained within strictly controlled limits. It has frequently been observed that the metabolism of, and the requirement for, polyamines in tumours is frequently dysregulated. Elevated levels of polyamines have been associated with breast, colon, lung, prostate and skin cancers, and altered levels of rate-limiting enzymes in both biosynthesis and catabolism have been observed. Based on these observations and the absolute requirement for polyamines in tumour growth, the polyamine pathway is a rational target for chemoprevention and chemotherapeutics. Here we describe the recent advances made in the polyamine field and focus on the roles of polyamines and polyamine metabolism in neoplasia through a discussion of the current animal models for the polyamine pathway, chemotherapeutic strategies that target the polyamine pathway, chemotherapeutic clinical trials for polyamine pathway-specific drugs and ongoing clinical trials targeting polyamine biosynthesis.
Collapse
|
44
|
Zell JA, Lin BS, Ziogas A, Anton-Culver H. Meat consumption, ornithine decarboxylase gene polymorphism, and outcomes after colorectal cancer diagnosis. J Carcinog 2012; 11:17. [PMID: 23233821 PMCID: PMC3516190 DOI: 10.4103/1477-3163.104004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/16/2012] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Dietary arginine and meat consumption are implicated in colorectal cancer (CRC) progression via polyamine-dependent processes. Polymorphism in the polyamine-regulatory gene, ornithine decarboxylase 1 (Odc1, rs2302615) is prognostic for CRC-specific mortality. Here, we examined joint effects of meat consumption and Odc1 polymorphism on CRC-specific mortality. MATERIALS AND METHODS The analytic cohort was comprised of 329 incident stage I-III CRC cases diagnosed 1994-1996 with follow- up through March 2008. Odc1 genotyping was conducted using primers that amplify a 172-bp fragment containing the polymorphic base at +316. Dietary questionnaires were administered at cohort entry. Multivariate Cox proportional hazards regression analysis for CRC-specific mortality was stratified by tumor, node, metastasis (TNM) stage, and adjusted for clinically relevant variables, plus meat consumption (as a continuous variable, i.e., the number of medium-sized servings/week), Odc1 genotype, and a term representing the meat consumption and Odc1 genotype interaction. The primary outcome was the interaction of Odc1 and meat intake on CRC-specific mortality, as assessed by departures from multiplicative joint effects. RESULTS Odc1 genotype distribution was 51% GG, 49% GA/AA. In the multivariate model, there was a significant interaction between meat consumption and Odc1 genotype, P-int = 0.01. Among Odc1 GA/AA CRC cases in meat consumption Quartiles 1-3, increased mortality risk was observed when compared to GG cases (adjusted hazards ratio (HR) = 7.06 [95% CI 2.34-21.28]) - a difference not found among cases in the highest dietary meat consumption Quartile 4. CONCLUSIONS Effects of meat consumption on CRC-specific mortality risk differ based on genetic polymorphism at Odc1. These results provide further evidence that polyamine metabolism and its modulation by dietary factors such as meat may have relevance to CRC outcomes.
Collapse
Affiliation(s)
- Jason A Zell
- Department of Epidemiology, California, University of California, USA ; Genetic Epidemiology Research Institute, University of California, Irvine, California, USA ; Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA ; Division of Hematology/Oncology, University of California, Irvine, California, USA
| | | | | | | |
Collapse
|
45
|
Sheth RA, Kunin A, Stangenberg L, Sinnamon M, Hung KE, Kucherlapati R, Mahmood U. In Vivo Optical Molecular Imaging of Matrix Metalloproteinase Activity following Celecoxib Therapy for Colorectal Cancer. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Rahul A. Sheth
- From the Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, and Departments of Genetics and Medicine, Harvard Medical School, Boston, MA, and the Department of Gastroenterology, Tufts Medical School, Boston, MA
| | - Alexandra Kunin
- From the Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, and Departments of Genetics and Medicine, Harvard Medical School, Boston, MA, and the Department of Gastroenterology, Tufts Medical School, Boston, MA
| | - Lars Stangenberg
- From the Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, and Departments of Genetics and Medicine, Harvard Medical School, Boston, MA, and the Department of Gastroenterology, Tufts Medical School, Boston, MA
| | - Mark Sinnamon
- From the Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, and Departments of Genetics and Medicine, Harvard Medical School, Boston, MA, and the Department of Gastroenterology, Tufts Medical School, Boston, MA
| | - Kenneth E. Hung
- From the Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, and Departments of Genetics and Medicine, Harvard Medical School, Boston, MA, and the Department of Gastroenterology, Tufts Medical School, Boston, MA
| | - Raju Kucherlapati
- From the Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, and Departments of Genetics and Medicine, Harvard Medical School, Boston, MA, and the Department of Gastroenterology, Tufts Medical School, Boston, MA
| | - Umar Mahmood
- From the Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, and Departments of Genetics and Medicine, Harvard Medical School, Boston, MA, and the Department of Gastroenterology, Tufts Medical School, Boston, MA
| |
Collapse
|
46
|
Sheth RA, Kunin A, Stangenberg L, Sinnamon M, Hung K, Kucherlapati R, Mahmood U. In vivo optical molecular imaging of matrix metalloproteinase activity following celecoxib therapy for colorectal cancer. Mol Imaging 2012; 11:417-425. [PMID: 22954186 PMCID: PMC3683544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Abstract
We present an optical molecular imaging approach to measure the efficacy of the cyclooxygenase-2 (COX-2) inhibitor celecoxib on tumor growth rate through its effect on matrix metalloproteinase (MMP) activity. A xenograft model of colorectal cancer was generated in nude mice, which were then randomized to receive celecoxib versus vehicle. MMP activity was measured by an enzyme-activatable optical molecular probe. A novel genetically engineered mouse (GEM) model of colorectal cancer was also used to assess celecoxib's effect on MMP activity, which was measured by quantitative fluorescence colonoscopy. Subcutaneously implanted xenograft tumors were 84% (SD 20.2%) smaller in volume in the treatment group versus the control group. Moreover, treated animals exhibited only a 7.6% (SEM 9%) increase in MMP activity versus 106% (SEM 8%) for untreated animals. There was an apparent linear relationship (r = .91) between measured MMP activity and tumor growth rate. Finally, in the GEM model experiment, treated murine tumors remained relatively unchanged in volume and MMP activity; however, untreated tumors grew significantly and showed an increase in MMP activity. This method may provide for the improved identification of patients for whom COX-2 inhibition therapy is indicated by allowing one to balance the patient's cardiovascular risk with the cancer's responsiveness to celecoxib.
Collapse
Affiliation(s)
- Rahul A Sheth
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alexandra Kunin
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lars Stangenberg
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Mark Sinnamon
- Department of Gastroenterology, Tufts Medical School, Boston, MA
| | - Kenneth Hung
- Department of Gastroenterology, Tufts Medical School, Boston, MA
| | - Raju Kucherlapati
- Departments of Genetics and Medicine, Harvard Medical School, Boston, MA
| | - Umar Mahmood
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
47
|
COX-2-independent induction of apoptosis by celecoxib and polyamine naphthalimide conjugate mediated by polyamine depression in colorectal cancer cell lines. Int J Colorectal Dis 2012; 27:861-8. [PMID: 22159752 DOI: 10.1007/s00384-011-1379-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Polyamine metabolism is an intriguing tumor therapeutic target. The present study was designed to assess the synergistic antitumor effects of NPC-16, a novel polyamine naphthalimide conjugate, with celecoxib and to elucidate the mechanism of these effects on human colorectal cancer cells. METHODS Cell proliferation was assessed by the MTT assay. Cell apoptosis and mitochondria membrane potential were evaluated by high content screening analysis. Intracellular polyamine content was detected by HPLC. Protein expression was detected by western blot analysis. RESULTS The co-treatment with celecoxib enhanced NPC-16-induced apoptosis in HCT116 (COX-2 no expression), HT29 (COX-2 higher expression) and Caco-2 (COX-2 higher expression) colorectal cancer cells, which was mediated by the elevated NPC-16 uptake via the effect of celecoxib on polyamine metabolism, including the up-regulated spermidine/spermine N(1)-acetyltransferase (SSAT) activity and reduced intracellular polyamine levels. The presence of celecoxib does not result in obviously different effect on the NPC-16-triggered apoptosis in diverse COX-2 expressed colorectal cell lines, suggesting that COX-2 was not one vital factor in the apoptotic mechanism. Furthermore, this synergistic apoptosis was involved in the PKB/AKT signal pathway, Bcl-2 and caspase family members. Z-VAD-FMK, a cell permeable pan caspase inhibitor, almost completely inhibited celecoxib and NPC-16 co-induced apoptosis, indicating that this apoptosis was caspase dependent. CONCLUSIONS Co-treatment of celecoxib and NPC-16 could induce colorectal cancer cell apoptosis via COX-2-independent and caspase-dependent mechanisms. The combination therapy with these agents might provide a novel therapeutic model for colorectal cancer.
Collapse
|
48
|
Vargas AJ, Wertheim BC, Gerner EW, Thomson CA, Rock CL, Thompson PA. Dietary polyamine intake and risk of colorectal adenomatous polyps. Am J Clin Nutr 2012; 96:133-41. [PMID: 22648715 PMCID: PMC3374737 DOI: 10.3945/ajcn.111.030353] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Putrescine, spermidine, and spermine are the polyamines required for human cell growth. The inhibition of ornithine decarboxylase (ODC), which is the rate-limiting enzyme of polyamine biosynthesis, decreases tumor growth and the development of colorectal adenomas. A database was developed to estimate dietary polyamine exposure and relate exposure to health outcomes. OBJECTIVE We hypothesized that high polyamine intake would increase risk of colorectal adenoma and that the allelic variation at ODC G>A +316 would modify the association. DESIGN Polyamine exposure was estimated in subjects pooled (n = 1164) from the control arms of 2 randomized trials for colorectal adenoma prevention [Wheat Bran Fiber low-fiber diet arm (n = 585) and Ursodeoxycholic Acid placebo arm (n = 579)] by using baseline food-frequency questionnaire data. All subjects had to have a diagnosis of colorectal adenoma to be eligible for the trial. RESULTS A dietary intake of polyamines above the median amount in the study population was associated with 39% increased risk of colorectal adenoma at follow-up (adjusted OR: 1.39; 95% CI: 1.06, 1.83) in the pooled sample. In addition, younger participants (OR: 1.94; 95% CI: 1.23, 3.08), women (OR: 2.43; 95% CI: 1.48, 4.00), and ODC GG genotype carriers (OR: 1.59; 95% CI: 1.00, 2.53) had significantly increased odds of colorectal adenoma if they consumed above-median polyamine amounts. CONCLUSIONS This study showed a role for dietary polyamines in colorectal adenoma risk. Corroboration of these findings would confirm a previously unrecognized, modifiable dietary risk factor for colorectal adenoma.
Collapse
Affiliation(s)
- Ashley J Vargas
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Avivi D, Moshkowitz M, Detering E, Arber N. The role of low-dose aspirin in the prevention of colorectal cancer. Expert Opin Ther Targets 2012; 16 Suppl 1:S51-62. [PMID: 22313430 DOI: 10.1517/14728222.2011.647810] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a prevalent disease that is associated with considerable morbidity and mortality. The progression of normal mucosa through adenomatous polyps to overt cancer can span for 10 - 15 years, making early detection, as well as the use of chemopreventive agents such as aspirin, an attractive option. The effects of aspirin in reducing CRC incidence and mortality have consistently been demonstrated in a number of studies. However, a greater understanding of how aspirin exerts its anti-cancer effects is warranted. AREAS COVERED The aim of this non-systematic review, which was developed using published randomized and epidemiological studies, as well as key references known to the authors, was to consider the role of aspirin in CRC prevention. Areas covered include the effects of aspirin on cardiovascular disease, CRC and colorectal adenoma (CRA) prevention, mode of action of aspirin and the benefit-to-risk of aspirin in disease prevention. EXPERT OPINION Incorporating CRC and CRA benefits into coronary heart disease (CHD) risk scores would be particularly useful for determining the benefit-to-risk ratio for aspirin use in borderline cases. For instance, patients with an annual CHD risk around 0.7 - 1.4%, but with a high risk of colorectal neoplasm may benefit from aspirin. The strong association between CRC and age may also be useful for re-examining the benefit-to-risk ratio for aspirin use in older patients. However, it has to be noted that a cancer prevention indication for aspirin is not approved regulatory-wise anywhere.
Collapse
Affiliation(s)
- Doran Avivi
- Tel-Aviv University, Integrated Cancer Prevention Center, Tel-Aviv Medical Center and Sackler School of Medicine, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
50
|
Wertheim BC, Smith JW, Fang C, Alberts DS, Lance P, Thompson PA. Risk modification of colorectal adenoma by CYP7A1 polymorphisms and the role of bile acid metabolism in carcinogenesis. Cancer Prev Res (Phila) 2012; 5:197-204. [PMID: 22058145 PMCID: PMC3400261 DOI: 10.1158/1940-6207.capr-11-0320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in the conversion of cholesterol to bile acids, is a postulated gene modifier of colorectal cancer risk and target for the therapeutic bile acid, ursodeoxycholic acid (UDCA). We investigated associations between CYP7A1 polymorphisms and fecal bile acids, colorectal adenoma (CRA), and UDCA efficacy for CRA prevention. Seven tagging, single-nucleotide polymorphisms (SNP) in CYP7A1 were measured in 703 (355 UDCA, 348 placebo) participants of a phase III chemoprevention trial, of which 495 had known baseline fecal bile acid concentrations. In the placebo arm, participants with two minor G(rs8192871) alleles (tag for a low activity promoter polymorphism at -204) had lower odds of high secondary bile acids (OR = 0.26, 95% CI: 0.10-0.69), and CRA at 3 years' follow-up (OR = 0.41, 95% CI: 0.19-0.89), than AA carriers. Haplotype construction from the six polymorphic SNPs showed participants with the third most common haplotype (C(rs10957057)C(rs8192879)G(rs8192877)T(rs11786580)A(rs8192871)G(rs13251096)) had higher odds of high primary bile acids (OR = 2.34, 95% CI: 1.12-4.89) and CRA (OR = 1.89, 95% CI: 1.00-3.57) than those with the most common CTACAG haplotype. Furthermore, three SNPs (rs8192877, rs8192871, and rs13251096) each modified UDCA efficacy for CRA prevention, and CCGTAG-haplotype carriers experienced 71% lower odds of CRA recurrence with UDCA treatment, an effect not present for other haplotypes (test for UDCA-haplotype interaction, P = 0.020). Our findings support CYP7A1 polymorphisms as determinants of fecal bile acids and risk factors for CRA. Furthermore, UDCA efficacy for CRA prevention may be modified by genetic variation in CYP7A1, limiting treatment benefit to a subgroup of the population.
Collapse
Affiliation(s)
| | | | - Changming Fang
- Sanford-Burnham Medical Research Institute, La Jolla, CA
| | - David S. Alberts
- Arizona Cancer Center, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| | - Peter Lance
- Arizona Cancer Center, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| | - Patricia A. Thompson
- Arizona Cancer Center, University of Arizona, Tucson, AZ
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|