1
|
Debatisse K, Lopez P, Poli M, Rousseau P, Campos M, Coddeville M, Cocaign-Bousquet M, Le Bourgeois P. Redefining the bacteriophage mv4 site-specific recombination system and the sequence specificity of its attB and core-attP sites. Mol Microbiol 2024; 121:1200-1216. [PMID: 38705589 DOI: 10.1111/mmi.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Through their involvement in the integration and excision of a large number of mobile genetic elements, such as phages and integrative and conjugative elements (ICEs), site-specific recombination systems based on heterobivalent tyrosine recombinases play a major role in genome dynamics and evolution. However, despite hundreds of these systems having been identified in genome databases, very few have been described in detail, with none from phages that infect Bacillota (formerly Firmicutes). In this study, we reanalyzed the recombination module of Lactobacillus delbrueckii subsp. bulgaricus phage mv4, previously considered atypical compared with classical systems. Our results reveal that mv4 integrase is a 369 aa protein with all the structural hallmarks of recombinases from the Tn916 family and that it cooperatively interacts with its recombination sites. Using randomized DNA libraries, NGS sequencing, and other molecular approaches, we show that the 21-bp core-attP and attB sites have structural similarities to classical systems only if considering the nucleotide degeneracy, with two 7-bp inverted regions corresponding to mv4Int core-binding sites surrounding a 7-bp strand-exchange region. We also examined the different compositional constraints in the core-binding regions, which define the sequence space of permissible recombination sites.
Collapse
Affiliation(s)
- Kevin Debatisse
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Pierre Lopez
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Maryse Poli
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Philippe Rousseau
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Manuel Campos
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Michèle Coddeville
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | | | - Pascal Le Bourgeois
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| |
Collapse
|
2
|
Lunt BL, Hatfull GF. Brujita Integrase: A Simple, Arm-Less, Directionless, and Promiscuous Tyrosine Integrase System. J Mol Biol 2016; 428:2289-2306. [PMID: 27113630 DOI: 10.1016/j.jmb.2016.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 11/29/2022]
Abstract
Mycobacteriophage Brujita is an unusual temperate phage in which establishment of superinfection immunity is dependent on chromosomal integration. Integration is mediated by a non-canonical tyrosine integrase (Int) lacking an N-terminal domain typically associated with binding to arm-type sites within the phage attachment site (attP). This raises the question as to how these Ints bind their DNA substrates, if they form higher-order protein DNA complexes, and how site selection and recombinational directionality are determined. Here we show that Brujita Int is a simple recombinase, whose properties more closely resemble those of FLP and Cre than it does the canonical phage Ints. Brujita Int uses relatively small DNA substrates, fails to discriminate between attP and attB, cleaves attachment site DNA to form a 6-base overlap region, and lacks directional control. Brujita Int also has an unusual pattern of binding to its DNA substrates. It binds to two half sites (B and B') at attB, although binding to the B half site is strongly dependent on occupancy of B'. In contrast, binding to the P half site is not observed, even when Int is bound at P'. However, an additional Int binding site (P1) is displaced to the left of the crossover site at attP, is required for recombination and is predicted to facilitate binding of Int to the P half site during synapsis. These simple phage Int systems may reflect ancestral states of phage evolution with the complexities of higher-order complex formation and directional control representing subsequent adaptations.
Collapse
Affiliation(s)
- Bryce L Lunt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
3
|
Singh S, Plaks JG, Homa NJ, Amrich CG, Héroux A, Hatfull GF, VanDemark AP. The structure of Xis reveals the basis for filament formation and insight into DNA bending within a mycobacteriophage intasome. J Mol Biol 2013; 426:412-22. [PMID: 24112940 DOI: 10.1016/j.jmb.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 11/27/2022]
Abstract
The recombination directionality factor, Xis, is a DNA bending protein that determines the outcome of integrase-mediated site-specific recombination by redesign of higher-order protein-DNA architectures. Although the attachment site DNA of mycobacteriophage Pukovnik is likely to contain four sites for Xis binding, Xis crystals contain five subunits in the asymmetric unit, four of which align into a Xis filament and a fifth that is generated by an unusual domain swap. Extensive intersubunit contacts stabilize a bent filament-like arrangement with Xis monomers aligned head to tail. The structure implies a DNA bend of ~120°, which is in agreement with DNA bending measured in vitro. Formation of attR-containing intasomes requires only Int and Xis, distinguishing Pukovnik from lambda. Therefore, we conclude that, in Pukovnik, Xis-induced DNA bending is sufficient to promote intramolecular Int-mediated bridges during intasome formation.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joseph G Plaks
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nicholas J Homa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; Present address: N. J. Homa, 426 CARL Building, Duke University, Durham, NC 27710, USA.
| | - Christopher G Amrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Annie Héroux
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
4
|
Abstract
The study of mycobacteriophages provides insights into viral diversity and evolution, as well as the genetics and physiology of their pathogenic hosts. Genomic characterization of 80 mycobacteriophages reveals a high degree of genetic diversity and an especially rich reservoir of interesting genes. These include a vast number of genes of unknown function that do not match known database entries and many genes whose functions can be predicted but which are not typically found as components of phage genomes. Thus many mysteries surround these genomes, such as why the genes are there, what do they do, how are they expressed and regulated, how do they influence the physiology of the host bacterium, and what forces of evolution directed them to their genomic homes? Although the genetic diversity and novelty of these phages is full of intrigue, it is a godsend for the mycobacterial geneticist, presenting an abundantly rich toolbox that can be exploited to devise new and effective ways for understanding the genetics and physiology of human tuberculosis. As the number of sequenced genomes continues to grow, their mysteries continue to thicken, and the time has come to learn more about the secret lives of mycobacteriophages.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennslyvania, USA
| |
Collapse
|
5
|
Broussard GW, Oldfield LM, Villanueva VM, Lunt BL, Shine EE, Hatfull GF. Integration-dependent bacteriophage immunity provides insights into the evolution of genetic switches. Mol Cell 2012; 49:237-48. [PMID: 23246436 DOI: 10.1016/j.molcel.2012.11.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/05/2012] [Accepted: 11/07/2012] [Indexed: 02/06/2023]
Abstract
Genetic switches are critical components of developmental circuits. Because temperate bacteriophages are vastly abundant and greatly diverse, they are rich resources for understanding the mechanisms and evolution of switches and the molecular control of genetic circuitry. Here, we describe a new class of small, compact, and simple switches that use site-specific recombination as the key decision point. The phage attachment site attP is located within the phage repressor gene such that chromosomal integration results in removal of a C-terminal tag that destabilizes the virally encoded form of the repressor. Integration thus not only confers prophage stability but also is a requirement for lysogenic establishment. The variety of these self-contained integration-dependent immunity systems in different genomic contexts suggests that these represent ancestral states in switch evolution from which more-complex switches have evolved. They also provide a powerful toolkit for building synthetic biological circuits.
Collapse
Affiliation(s)
- Gregory W Broussard
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
6
|
Saviola B. Phage L5 integrating vectors are present within the Mycobacterial Cell in an equilibrium between integrated and excised states. CANCER THERAPY 2009; 7:35-42. [PMID: 26316877 PMCID: PMC4548942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Integrating mycobacterial plasmids containing the phage L5 attachment site (attP) are able to insert into the mycobacterial chromosome attB site. Plasmids containing the attP site and chromosome containing the attB site are present in equilibrium between the inserted and the excised states in the presence of the phage L5 integrase.
Collapse
Affiliation(s)
- Beatrice Saviola
- Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, 309 E. Second St. Pomona CA 91766
| |
Collapse
|
7
|
Frumerie C, Sylwan L, Ahlgren-Berg A, Haggård-Ljungquist E. Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox. Virology 2005; 332:284-94. [PMID: 15661160 DOI: 10.1016/j.virol.2004.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 11/09/2004] [Accepted: 11/15/2004] [Indexed: 10/26/2022]
Abstract
Bacteriophage P2 integrase (Int) mediates site-specific recombination leading to integration or excision of the phage genome in or out of the bacterial chromosome. Int belongs to the large family of tyrosine recombinases that have two different DNA recognition motifs binding to the arm and core sites, respectively, which are located within the phage attachment sites (attP). In addition to the P2 integrase, the accessory proteins Escherichia coli IHF and P2 Cox are needed for recombination. IHF is a structural protein needed for integration and excision by bending the DNA. As opposed to lambda, only one IHF site is found in P2 attP. P2 Cox controls the direction of recombination by inhibiting integration but being required for excision. In this work, the effects of accessory proteins on the capacity of Int to bind to its DNA recognition sequences are analyzed using electromobility shifts. P2 Int binds with low affinity to the arm site, and this binding is greatly enhanced by IHF. The arm binding domain of Int is located at the N-terminus. P2 Int binds with high affinity to the core site, and this binding is also enhanced by IHF. The fact that the cooperative binding of Int and IHF is strongly reduced by lengthening the distance between the IHF and core binding sites indicates that the distance between these sites may be important for cooperative binding. The Int and Cox proteins also bind cooperatively to attP.
Collapse
Affiliation(s)
- Clara Frumerie
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Svante Arrhenius väg 16, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
8
|
Doulatov S, Hodes A, Dai L, Mandhana N, Liu M, Deora R, Simons RW, Zimmerly S, Miller JF. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 2004; 431:476-81. [PMID: 15386016 DOI: 10.1038/nature02833] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 07/12/2004] [Indexed: 11/09/2022]
Abstract
Bordetella bacteriophages generate diversity in a gene that specifies host tropism. This microevolutionary adaptation is produced by a genetic element that combines the basic retroelement life cycle of transcription, reverse transcription and integration with site-directed, adenine-specific mutagenesis. Central to this process is a reverse transcriptase-mediated exchange between two repeats; one serving as a donor template (TR) and the other as a recipient of variable sequence information (VR). Here we describe the genetic basis for diversity generation. The directionality of information transfer is determined by a 21-base-pair sequence present at the 3' end of VR. On the basis of patterns of marker transfer in response to variant selective pressures, we propose that a TR reverse transcript is mutagenized, integrated into VR as a single non-coding strand, and then partially converted to the parental VR sequence. This allows the diversity-generating system to minimize variability to the subset of bases under selection. Using the Bordetella phage cassette as a signature, we have identified numerous related elements in diverse bacteria. These elements constitute a new family of retroelements with the potential to confer selective advantages to their host genomes.
Collapse
Affiliation(s)
- Sergei Doulatov
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Saviola B, Bishai WR. Method to integrate multiple plasmids into the mycobacterial chromosome. Nucleic Acids Res 2004; 32:e11. [PMID: 14718555 PMCID: PMC373307 DOI: 10.1093/nar/gnh005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In order to create a system in which two independent plasmids can be integrated into a mycobacterial chromosome, a mycobacterial plasmid was constructed containing the phage attachment site attP from the mycobacteriophage L5 genome and additionally containing the bacterial attachment site, attB. This plasmid will integrate into the mycobacterial chromosome via recombination of the plasmid-borne attP site with the chromosomal attB site in the presence of a mycobacterial vector carrying the L5 integrase (int) gene. The integrated plasmid has a plasmid-borne attB site that is preserved and will accept the integration of additional mycobacterial plasmids containing the L5 attP site. This system should be useful in the construction of novel mycobacterial strains. In particular, this system provides a method by which several recombinant antigens or reporter constructs can be sequentially inserted into a mycobacterial strain and subsequently tested.
Collapse
Affiliation(s)
- Beatrice Saviola
- Basic Medical Sciences, College of Osteopathic Medicine, Western University, 309 E. Second Street, Pomona, CA 91766-1854, USA.
| | | |
Collapse
|
10
|
Cassell GD, Segall AM. Mechanism of inhibition of site-specific recombination by the Holliday junction-trapping peptide WKHYNY: insights into phage lambda integrase-mediated strand exchange. J Mol Biol 2003; 327:413-29. [PMID: 12628247 DOI: 10.1016/s0022-2836(03)00058-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Holliday junctions are central intermediates in site-specific recombination reactions mediated by tyrosine recombinases. Because these intermediates are extremely transient, only artificially assembled Holliday junctions have been available for study. We have recently identified hexapeptides that cause the accumulation of natural Holliday junctions of bacteriophage lambda Integrase (Int)-mediated reactions. We now show that one of these peptides acts after the first DNA cleavage event to stabilize protein-bound junctions and to prevent their resolution. The peptide acts before the step affected by site affinity (saf) mutations in the core region, in agreement with a model that the peptide stabilizes the products of strand exchange (i.e. Holliday junctions) while saf mutations reduce ligation of exchanged strands.Strand exchange events leading to Holliday junctions in phage lambda integration and excision are asymmetric, presumably because interactions between Int and some of its core-binding sites determine the order of strand cleavage. We have compared the structure of Holliday junctions in one unidirectional and in two bidirectional Int-mediated pathways and show that the strand cleavage steps are much more symmetric in the bidirectional pathways. Thus Int-DNA interactions which determine the order of top and bottom strand cleavage and exchange are unique in each recombination pathway.
Collapse
Affiliation(s)
- Geoffrey D Cassell
- Department of Biology and Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, CA 92182-4614, USA
| | | |
Collapse
|
11
|
Abstract
Mycobacteriophage L5 is a temperate phage that forms lysogens in Mycobacterium smegmatis. These lysogens carry an integrated L5 prophage inserted at a specific chromosomal location and undergo subsequent excision during induction of lytic growth. Both the integrative and excisive site-specific recombination events are catalyzed by the phage-encoded tyrosine integrase (Int-L5) and require the host-encoded protein, mIHF. The directionality of these recombination events is determined by a second phage-encoded protein, Excise, the product of gene 36 (Xis-L5); integration occurs efficiently in the absence of Xis-L5 while excision is dependent upon it. We show here that Xis-L5 binds to attR DNA, introduces a DNA bend, and facilitates the formation of an intasome-R complex. This complex, which requires mIHF, Xis-L5 and Int-L5, readily recombines with a second intasome formed by Int-L5, mIHF and attL DNA (intasome-L) to generate the attP and attB products of excision. Xis-L5 also strongly inhibits Int-L5-mediated integrative recombination but does not prevent either the protein-DNA interactions that form the attP intasome (intasome-P) or the capture of attB, but acts later in the reaction presumably by preventing the formation of a recombinagenic synaptic intermediate. The mechanism of action of Xis-L5 appears to be purely architectural, influencing the assembly of protein-DNA structures solely through its DNA-binding and DNA-bending properties.
Collapse
Affiliation(s)
- John A Lewis
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
12
|
She Q, Brügger K, Chen L. Archaeal integrative genetic elements and their impact on genome evolution. Res Microbiol 2002; 153:325-32. [PMID: 12234006 DOI: 10.1016/s0923-2508(02)01331-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Integrases encoded in archaeal genomes can be classified into seven families on the basis of their sequences. They constitute a super-family of tyrosine DNA recombinases together with a number of bacterial integrases and they are likely to be responsible for the formation of integrated elements in archaeal chromosomes. An integrated element is defined as possessing an integrase, a block of foreign genes, and a direct repeat at the two ends with one repeat unit overlapping a tRNA gene. There are two types of archaeal integrated elements, the SSV viral type, including those that carry the partitioned integrase gene, intN and intC, and the pNOB8 type, including those with a tRNA gene overlapping the attL site 5' prior to an integrase gene. Both known and unknown genes are present in these integrated elements and their encoded proteins may have facilitated the adaptation of archaea during evolution.
Collapse
Affiliation(s)
- Qunxin She
- Microbial Genome Centre, Institute of Molecular Biology, Copenhagen University, Denmark.
| | | | | |
Collapse
|
13
|
Williams KP. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 2002; 30:866-75. [PMID: 11842097 PMCID: PMC100330 DOI: 10.1093/nar/30.4.866] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most classical integrases of prokaryotic genetic elements specify integration into tRNA or tmRNA genes. Sequences shared between element and host integration sites suggest that crossover can occur at any of three sublocations within a tRNA gene, two with flanking symmetry (anticodon-loop and T-loop tDNA) and the third at the asymmetric 3' end of the gene. Integrase phylogeny matches this classification: integrase subfamilies use exclusively either the symmetric sublocations or the asymmetric sublocation, although tRNA genes of several different aminoacylation identities may be used within any subfamily. These two familial sublocation preferences imply two modes by which new integration site usage evolves. The tmRNA gene has been adopted as an integration site in both modes, and its distinctive structure imposes some constraints on proposed evolutionary mechanisms.
Collapse
Affiliation(s)
- Kelly P Williams
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
14
|
Zhao S, Williams KP. Integrative genetic element that reverses the usual target gene orientation. J Bacteriol 2002; 184:859-60. [PMID: 11790760 PMCID: PMC139527 DOI: 10.1128/jb.184.3.859-860.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic element integrating site specifically into a prokaryotic gene usually carries a copy of the 3' portion of that gene that restores the active gene even as the original is disrupted. A cryptic element in Mesorhizobium loti instead carries a copy of the 5' end of the tRNA gene into which it integrated. This has implications for the evolution of new integrase-site combinations.
Collapse
Affiliation(s)
- Sihui Zhao
- Department of Biology, Indiana University, 1001 East Third St., Bloomington, IN 47405, USA
| | | |
Collapse
|
15
|
Raynal A, Friedmann A, Tuphile K, Guerineau M, Pernodet JL. Characterization of the attP site of the integrative element pSAM2 from Streptomyces ambofaciens. MICROBIOLOGY (READING, ENGLAND) 2002; 148:61-67. [PMID: 11782499 DOI: 10.1099/00221287-148-1-61] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
pSAM2 is integrated into the Streptomyces ambofaciens chromosome through site-specific recombination between the element (attP) and the chromosomal (attB) site. The 43 kDa integrase protein encoded by pSAM2 catalyses this recombination event. Tools have been developed to study site-specific recombination in Escherichia coli. In vivo studies showed that a 360 bp fragment of attP is required for efficient site-specific recombination and that int can be provided in trans. pSAM2 integrase was purified and overexpressed in E. coli and Int binding at the attP site was studied. DNaseI footprinting revealed two sites that bind integrase strongly and appear to be symmetrical with regard to the core site. These two P1/P2 arm-type sites both contain a 17 bp motif that is identical except at one position, GTCACGCAG(A/T)TAGACAC. P1 and P2 are essential for site-specific recombination.
Collapse
Affiliation(s)
- Alain Raynal
- Laboratoire de Biologie et Génétique Moléculaire, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 400, Université Paris-Sud, F-91405 Orsay Cedex, France1
| | - Annick Friedmann
- Laboratoire de Biologie et Génétique Moléculaire, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 400, Université Paris-Sud, F-91405 Orsay Cedex, France1
| | - Karine Tuphile
- Laboratoire de Biologie et Génétique Moléculaire, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 400, Université Paris-Sud, F-91405 Orsay Cedex, France1
| | - Michel Guerineau
- Laboratoire de Biologie et Génétique Moléculaire, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 400, Université Paris-Sud, F-91405 Orsay Cedex, France1
| | - Jean-Luc Pernodet
- Laboratoire de Biologie et Génétique Moléculaire, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 400, Université Paris-Sud, F-91405 Orsay Cedex, France1
| |
Collapse
|
16
|
Sarkar D, Radman-Livaja M, Landy A. The small DNA binding domain of lambda integrase is a context-sensitive modulator of recombinase functions. EMBO J 2001; 20:1203-12. [PMID: 11230143 PMCID: PMC145476 DOI: 10.1093/emboj/20.5.1203] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
lambda Integrase (Int) has the distinctive ability to bridge two different and well separated DNA sequences. This heterobivalent DNA binding is facilitated by accessory DNA bending proteins that bring flanking Int sites into proximity. The regulation of lambda recombination has long been perceived as a structural phenomenon based upon the accessory protein-dependent Int bridges between high-affinity arm-type (bound by the small N-terminal domain) and low-affinity core-type DNA sites (bound by the large C-terminal domain). We show here that the N-terminal domain is not merely a guide for the proper positioning of Int protomers, but is also a context-sensitive modulator of recombinase functions. In full-length Int, it inhibits C-terminal domain binding and cleavage at the core sites. Surprisingly, its presence as a separate molecule stimulates the C-terminal domain functions. The inhibition in full-length Int is reversed or overcome in the presence of arm-type oligonucleotides, which form specific complexes with Int and core-type DNA. We consider how these results might influence models and experiments pertaining to the large family of heterobivalent recombinases.
Collapse
MESH Headings
- Bacteriophage lambda/enzymology
- Binding Sites
- DNA Topoisomerases, Type I/chemistry
- DNA Topoisomerases, Type I/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Electrophoresis, Agar Gel
- Integrases/chemistry
- Integrases/metabolism
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides
- Peptide Fragments
- Protein Binding
- Protein Structure, Tertiary
- Recombinant Proteins
- Recombination, Genetic
- Substrate Specificity
- Topoisomerase I Inhibitors
Collapse
Affiliation(s)
| | | | - Arthur Landy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Box G-J360, Providence, RI 02912, USA
Corresponding author e-mail:
| |
Collapse
|