1
|
Wang Y, Duan Y, Yue K, Li L, Cao J, Shi W, Liu J, Wu Y, Wang X, Jing C. Blocking PSMD14-mediated E2F1/ERK/AKT signaling pathways suppresses the progression of anaplastic thyroid cancer. Cell Signal 2025; 132:111826. [PMID: 40262717 DOI: 10.1016/j.cellsig.2025.111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 04/02/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive subtype of thyroid cancer with few effective therapeutic strategies. Recent studies have identified the deubiquitinating enzyme (DUB) 26S proteasome non-ATPase regulatory subunit 14 (PSMD14) as a promising therapeutic target for multiple cancers; however, the role of PSMD14 in ATC remains largely unknown. Here, we found that PSMD14 was upregulated in ATC tissues and that its aberrant expression was negatively associated with the overall survival of patients with ATC. Functionally, PSMD14 promotes the proliferation and invasiveness of ATC cells, whereas the depletion of PSMD14 or PSMD14 inhibitor thiolutin (THL) inhibits the growth, invasiveness, and epithelial-mesenchymal transition ((EMT) of ATC cells. In addition, the cell cycle was arrested and apoptosis was increased in PSMD14-depleted ATC or ATC cells treated with THL in vitro. An in vivo assay indicated that THL exerted a potent inhibitory effect on ATC xenografts. Mechanistically, PSMD14 increased E2F1 stabilization by binding to and deubiquitinating E2F1. PSMD14-regulated E2F1 improved the activation of the ERK and AKT signaling pathways, which are instrumental in ATC tumorigenesis and progression. Overall, our findings reveal the oncogenic role of PSMD14 in ATC and provide a promising therapeutic target for the treatment of ATC.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Tianjin 300060, China
| | - Yuansheng Duan
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Tianjin 300060, China
| | - Kai Yue
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Tianjin 300060, China
| | - Linqi Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Tianjin 300060, China
| | - Jiayan Cao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Tianjin 300060, China
| | - Weifeng Shi
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Tianjin 300060, China
| | - Jin Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Tianjin 300060, China
| | - Yansheng Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Tianjin 300060, China.
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Tianjin 300060, China.
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, Tianjin 300060, China.
| |
Collapse
|
2
|
Peddada N, Zhong X, Yin Y, Lazaro DR, Wang J, Lyon S, Choi JH, Bai XC, Moresco EMY, Beutler B. Structural insights into the ubiquitin-independent midnolin-proteasome pathway. Proc Natl Acad Sci U S A 2025; 122:e2505345122. [PMID: 40339123 DOI: 10.1073/pnas.2505345122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/02/2025] [Indexed: 05/10/2025] Open
Abstract
The protein midnolin (MIDN) augments proteasome activity in lymphocytes and dramatically facilitates the survival and proliferation of B-lymphoid malignancies. MIDN binds both to proteasomes and to substrates, but the mode of interaction with the proteasome is unknown, and the mechanism by which MIDN facilitates substrate degradation in a ubiquitin-independent manner is incompletely understood. Here, we present cryoelectron microscopy (cryo-EM) structures of the substrate-engaged, MIDN-bound human proteasome in two conformational states. MIDN induces proteasome conformations similarly to ubiquitinated substrates by using its ubiquitin-like domain to bind to the deubiquitinase RPN11 (PSMD14). By simultaneously binding to RPN1 (PSMD2) with its C-terminal α-helix, MIDN positions its substrate-carrying Catch domain above the proteasome ATPase channel through which substrates are translocated before degradation. Our findings suggest that both ubiquitin-like domain and C-terminal α-helix must bind to the proteasome for MIDN to stimulate proteasome activity.
Collapse
Affiliation(s)
- Nagesh Peddada
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yan Yin
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Danielle Renee Lazaro
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Stephen Lyon
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
3
|
Shah S, Shi CM, Elgizawy KK, Yan WH, Wu G, Wang XP, Yang FL. E3 Siah ubiquitin ligase regulates dichotomous spermatogenesis in Sitotroga cerealella. Front Cell Dev Biol 2025; 12:1507725. [PMID: 39866841 PMCID: PMC11759277 DOI: 10.3389/fcell.2024.1507725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Spermatogenesis in Lepidoptera holds significant importance due to its unique process of dichotomous spermatogenesis, yielding eupyrene and apyrene spermatozoa through a complex molecular mechanism. While E3 ubiquitin ligases are known to play vital roles in spermatogenesis across various processes, their functions in dichotomous spermatogenesis remain less known. We utilized the RNAi, biochemical and microscopic procedures to unravel the function of ScE3 Siah in dichotomous spermatogenesis of adult Sitotroga cerealella. In S. cerealella E3 ligase Siah predominantly expressed in adult tissues. Knockdown of ScE3 Siah leads to disruptions in testes and sperm morphology, affecting the structure of eupyrene and apyrene sperm bundles and causing defective ultrastructure in eupyrene sperm. This disruption results in a reduction in the number of dichotomous sperms and significantly reduces their motility. Moreover, ScE3 Siah knockdown inhibits the transfer and motility of dichotomous sperm, impacting spermatophore formation in females and ultimately reducing egg production. Understanding the role of ScE3 Siah is not only crucial for comprehending the complex processes involved in dichotomous spermatogenesis and fertilization but also provides an avenue for sustainable pest control management.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chun-Mei Shi
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Karam Khamis Elgizawy
- Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh, Egypt
| | - Wen-Han Yan
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gang Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Du WX, Goodman CA, Gregorevic P. Deubiquitinases in skeletal muscle-the underappreciated side of the ubiquitination coin. Am J Physiol Cell Physiol 2024; 327:C1651-C1665. [PMID: 39344415 DOI: 10.1152/ajpcell.00553.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Ubiquitination is a posttranslational modification that plays important roles in regulating protein stability, function, localization, and protein-protein interactions. Proteins are ubiquitinated via a process involving specific E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. Simultaneously, protein ubiquitination is opposed by deubiquitinating enzymes (DUBs). DUB-mediated deubiquitination can change protein function or fate and recycle ubiquitin to maintain the free ubiquitin pool. Approximately 100 DUBs have been identified in the mammalian genome, and characterized into seven classes [ubiquitin-specific protease (USP), ovarian tumor proteases (OTU), ubiquitin C-terminal hydrolase (UCH), Machado-Josephin disease (MJD), JAB1/MPN/Mov34 metalloprotease (JAMM), Ub-containing novel DUB family (MINDY), and zinc finger containing ubiquitin peptidase (ZUP) classes]. Of these 100 DUBs, there has only been relatively limited investigation of 20 specifically in skeletal muscle cells, in vitro or in vivo, using overexpression, knockdown, and knockout models. To date, evidence indicates roles for individual DUBs in regulating aspects of myogenesis, protein turnover, muscle mass, and muscle metabolism. However, the exact mechanism by which these DUBs act (i.e., the specific targets of these DUBs and the type of ubiquitin chains they target) is still largely unknown, underscoring how little we know about DUBs in skeletal muscle. This review endeavors to comprehensively summarize the current state of knowledge of the function of DUBs in skeletal muscle and highlight the opportunities for gaining a greater understanding through further research into this important area of skeletal muscle and ubiquitin biology.
Collapse
Affiliation(s)
- Wayne X Du
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul Gregorevic
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
5
|
Guo X, Mutch M, Torres AY, Nano M, Rauth N, Harwood J, McDonald D, Chen Z, Montell C, Dai W, Montell DJ. The Zn 2+ transporter ZIP7 enhances endoplasmic-reticulum-associated protein degradation and prevents neurodegeneration in Drosophila. Dev Cell 2024; 59:1655-1667.e6. [PMID: 38670102 PMCID: PMC11233247 DOI: 10.1016/j.devcel.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/15/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Proteotoxic stress drives numerous degenerative diseases. Cells initially adapt to misfolded proteins by activating the unfolded protein response (UPR), including endoplasmic-reticulum-associated protein degradation (ERAD). However, persistent stress triggers apoptosis. Enhancing ERAD is a promising therapeutic approach for protein misfolding diseases. The ER-localized Zn2+ transporter ZIP7 is conserved from plants to humans and required for intestinal self-renewal, Notch signaling, cell motility, and survival. However, a unifying mechanism underlying these diverse phenotypes was unknown. In studying Drosophila border cell migration, we discovered that ZIP7-mediated Zn2+ transport enhances the obligatory deubiquitination of proteins by the Rpn11 Zn2+ metalloproteinase in the proteasome lid. In human cells, ZIP7 and Zn2+ are limiting for deubiquitination. In a Drosophila model of neurodegeneration caused by misfolded rhodopsin (Rh1), ZIP7 overexpression degrades misfolded Rh1 and rescues photoreceptor viability and fly vision. Thus, ZIP7-mediated Zn2+ transport is a previously unknown, rate-limiting step for ERAD in vivo with therapeutic potential in protein misfolding diseases.
Collapse
Affiliation(s)
- Xiaoran Guo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Morgan Mutch
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Alba Yurani Torres
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Nishi Rauth
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Jacob Harwood
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Drew McDonald
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Zijing Chen
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Craig Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA
| | - Wei Dai
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA; Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA.
| |
Collapse
|
6
|
Ragwan ER, Kisker FM, Morning AR, Weiser KR, Lago AV, Kraut DA. Slippery sequences stall the 26S proteasome at multiple points along the translocation pathway. Protein Sci 2024; 33:e5034. [PMID: 38801231 PMCID: PMC11129623 DOI: 10.1002/pro.5034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
In eukaryotes, the ubiquitin-proteasome system is responsible for intracellular protein degradation. Proteins tagged with ubiquitin are recognized by ubiquitin receptors on the 19S regulatory particle (RP) of the 26S proteasome, unfolded, routed through the translocation channel of the RP, and are then degraded in the 20S core particle (CP). Aromatic paddles on the pore-1 loops of the RP's Rpt subunits grip the substrate and pull folded domains into the channel, thereby unfolding them. The sequence that the aromatic paddles grip while unfolding a substrate is therefore expected to influence the extent of unfolding, and low complexity sequences have been shown to interfere with grip. However, the detailed spatial requirements for grip while unfolding proteins, particularly from the N-terminus, remain unknown. We determined how the location of glycine-rich tracts relative to a folded domain impairs unfolding. We find that, in contrast to a previous report, inserting glycine-rich sequences closer to the folded domain reduced unfolding ability more than positioning them further away. Locations that have the biggest effect on unfolding map onto the regions where the aromatic paddles are predicted to interact with the substrate. Effects on unfolding from locations up to 67 amino acids away from the folded domain suggest that there are additional interactions between the substrate and the proteasome beyond the aromatic paddles that facilitate translocation of the substrate. In sum, this study deepens understanding of the mechanical interactions within the substrate channel by mapping the spacing of interactions between the substrate and the proteasome during unfolding.
Collapse
Affiliation(s)
- Edwin R. Ragwan
- Department of ChemistryVillanova UniversityVillanovaPennsylvaniaUSA
| | - Faith M. Kisker
- Department of ChemistryVillanova UniversityVillanovaPennsylvaniaUSA
| | | | - Kaya R. Weiser
- Department of ChemistryVillanova UniversityVillanovaPennsylvaniaUSA
| | - Athena V. Lago
- Department of ChemistryVillanova UniversityVillanovaPennsylvaniaUSA
| | - Daniel A. Kraut
- Department of ChemistryVillanova UniversityVillanovaPennsylvaniaUSA
| |
Collapse
|
7
|
Hsieh Y, Augur ZM, Arbery M, Ashour N, Barrett K, Pearse RV, Tio ES, Duong DM, Felsky D, De Jager PL, Bennett DA, Seyfried NT, Young‐Pearse TL. Person-specific differences in ubiquitin-proteasome mediated proteostasis in human neurons. Alzheimers Dement 2024; 20:2952-2967. [PMID: 38470006 PMCID: PMC11032531 DOI: 10.1002/alz.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND Impairment of the ubiquitin-proteasome system (UPS) has been implicated in abnormal protein accumulation in Alzheimer's disease. It remains unclear if genetic variation affects the intrinsic properties of neurons that render some individuals more vulnerable to UPS impairment. METHODS Induced pluripotent stem cell (iPSC)-derived neurons were generated from over 50 genetically variant and highly characterized participants of cohorts of aging. Proteomic profiling, proteasome activity assays, and Western blotting were employed to examine neurons at baseline and in response to UPS perturbation. RESULTS Neurons with lower basal UPS activity were more vulnerable to tau accumulation following mild UPS inhibition. Chronic reduction in proteasome activity in human neurons induced compensatory elevation of regulatory proteins involved in proteostasis and several proteasome subunits. DISCUSSION These findings reveal that genetic variation influences basal UPS activity in human neurons and differentially sensitizes them to external factors perturbing the UPS, leading to the accumulation of aggregation-prone proteins such as tau. HIGHLIGHTS Polygenic risk score for AD is associated with the ubiquitin-proteasome system (UPS) in neurons. Basal proteasome activity correlates with aggregation-prone protein levels in neurons. Genetic variation affects the response to proteasome inhibition in neurons. Neuronal proteasome perturbation induces an elevation in specific proteins involved in proteostasis. Low basal proteasome activity leads to enhanced tau accumulation with UPS challenge.
Collapse
Affiliation(s)
- Yi‐Chen Hsieh
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Zachary M. Augur
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Mason Arbery
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Nancy Ashour
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Katharine Barrett
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Richard V. Pearse
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Earvin S. Tio
- Department of Psychiatry and Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Duc M. Duong
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Daniel Felsky
- Department of Psychiatry and Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Krembil Centre for NeuroinformaticsCentre for Addiction and Mental HealthTorontoOntarioCanada
| | - Philip L. De Jager
- Center for Translational and Computational NeuroimmunologyDepartment of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - David A. Bennett
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Nicholas T. Seyfried
- Department of BiochemistryEmory University School of MedicineAtlantaGeorgiaUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Tracy L. Young‐Pearse
- Ann Romney Centerfor Neurologic DiseasesDepartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Harvard Stem Cell InstituteHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
8
|
Shah S, Elgizawy KK, Wu MY, Yao H, Yan WH, Li Y, Wang XP, Wu G, Yang FL. Diallyl Trisulfide Causes Male Infertility with Oligoasthenoteratospermia in Sitotroga cerealella through the Ubiquitin-Proteasome Pathway. Cells 2023; 12:2507. [PMID: 37887351 PMCID: PMC10605923 DOI: 10.3390/cells12202507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Essential oils extracted from plant sources along with their biologically active components may have negative effects on insects. Diallyl trisulfide (DAT) is an active component of garlic essential oil, and it exhibits multi-targeted activity against many organisms. Previously we reported that DAT induces male infertility and leads to apyrene and eupyrene sperm dysfunction in Sitotroga cerealella. In this study, we conducted an analysis of testis-specific RNA-Seq data and identified 449 downregulated genes and 60 upregulated genes in the DAT group compared to the control group. The downregulated genes were significantly enriched in the ubiquitin-proteasome pathway. Furthermore, DAT caused a significant reduction in mRNA expression of proteasome regulatory subunit particles required for ATP-dependent degradation of ubiquitinated proteins as well as decreased the expression profile of proteasome core particles, including β1, β2, and β5. Sperm physiological analysis showed that DAT decreased the chymotrypsin-like activity of the 20S proteasome and formed aggresomes in spermatozoa. Overall, our findings suggest that DAT impairs the testis proteasome, ultimately causing male infertility characterized by oligoasthenoteratospermia due to disruption in sperm proteasome assembly in S. cerealella.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Karam Khamis Elgizawy
- Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt;
| | - Meng-Ya Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Hucheng Yao
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Wen-Han Yan
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Yu Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Gang Wu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.S.); (M.-Y.W.); (W.-H.Y.); (Y.L.); (X.-P.W.); (G.W.)
| |
Collapse
|
9
|
Loy CA, Muli CS, Ali EMH, Xie D, Ahmed MH, Beth Post C, Trader DJ. Discovery of a non-covalent ligand for Rpn-13, a therapeutic target for hematological cancers. Bioorg Med Chem Lett 2023; 95:129485. [PMID: 37714498 PMCID: PMC10639113 DOI: 10.1016/j.bmcl.2023.129485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The ubiquitin-proteasome system serves as the major proteolytic degradation pathway in eukaryotic cells. Many inhibitors that covalently bind to the proteasome's active sites have been developed for hematological cancers, but resistance can arise in patients. To overcome limitations of active-site proteasome inhibitors, we and others have focused on developing ligands that target subunits on the 19S regulatory particle (19S RP). One such 19S RP subunit, Rpn-13, is a ubiquitin receptor required for hematological cancers to rapidly degrade proteins to avoid apoptosis. Reported Rpn-13 inhibitors covalently bind to the Rpn-13's Pru domain and have been effective anti-hematological cancer agents. Here, we describe the discovery of TCL-1, a non-covalent binder to the Pru domain. Optimization of TCL-1's carboxylate group to an ester increases its cytotoxicity in hematological cancer cell lines. Altogether, our data provides a new scaffold for future medicinal chemistry optimization to target Rpn-13 therapeutically.
Collapse
Affiliation(s)
- Cody A Loy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, United States
| | - Christine S Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, United States
| | - Eslam M H Ali
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, United States
| | - Dan Xie
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, United States
| | | | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, United States.
| |
Collapse
|
10
|
Zhang C, Xu T, Ji K, Cao S, Cao Y, Ai J, Jing L, Sun JH. An integrative analysis reveals the prognostic value and potential functions of PSMD11 in hepatocellular carcinoma. Mol Carcinog 2023; 62:1355-1368. [PMID: 37212487 DOI: 10.1002/mc.23568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
The global burden of hepatocellular carcinoma (HCC) as a preeminent etiology of cancer-related mortalities sheds light on the imperative necessity for a more profound comprehension of its fundamental biological mechanisms. In this context, the precise function of the 26S proteasome non-ATPase regulatory subunit 11 (PSMD11) in HCC remains equivocal. To address this vital knowledge gap, we interrogated the cancer genome atlas, genotype-tissue expression, International cancer genome consortium, gene expression omnibus, the cancer cell line encyclopedia, and tumor immune single-cell hub databases to evaluate the expression pattern of PSMD11, further confirmed by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) in LO2, MHCC-97H, HepG2, and SMMC7721 cell lines. Additionally, we meticulously assessed the clinical significance and prognostic value of PSMD11, while also exploring its potential molecular mechanisms in HCC. Our findings demonstrated that PSMD11 was highly expressed in HCC tissues, correlating with pathologic stage and histologic grade, thereby conferring a poor prognosis. Mechanistically, PSMD11 appears to exert its tumorigenic effects through the modulation of tumor metabolism-related pathways. Impressively, low PSMD11 expression was associated with increased immune effector cell infiltration, heightened responsiveness to molecular targeted drugs such as dasatinib, erlotinib, gefitinib, and imatinib, as well as reduced somatic mutation rate. Additionally, we demonstrated that PSMD11 might modulate HCC development through intricate interactions with cuproptosis-related genes ATP7A, DLAT, and PDHA1. Our comprehensive analyses collectively suggest that PSMD11 represents a promising therapeutic target in HCC.
Collapse
Affiliation(s)
- Cong Zhang
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Tiantian Xu
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Kun Ji
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Shoujin Cao
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Yunbo Cao
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Jing Ai
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Li Jing
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
| | - Jun-Hui Sun
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Betancourt D, Lawal T, Tomko RJ. Wiggle and Shake: Managing and Exploiting Conformational Dynamics during Proteasome Biogenesis. Biomolecules 2023; 13:1223. [PMID: 37627288 PMCID: PMC10452565 DOI: 10.3390/biom13081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The 26S proteasome is the largest and most complicated protease known, and changes to proteasome assembly or function contribute to numerous human diseases. Assembly of the 26S proteasome from its ~66 individual polypeptide subunits is a highly orchestrated process requiring the concerted actions of both intrinsic elements of proteasome subunits, as well as assistance by extrinsic, dedicated proteasome assembly chaperones. With the advent of near-atomic resolution cryo-electron microscopy, it has become evident that the proteasome is a highly dynamic machine, undergoing numerous conformational changes in response to ligand binding and during the proteolytic cycle. In contrast, an appreciation of the role of conformational dynamics during the biogenesis of the proteasome has only recently begun to emerge. Herein, we review our current knowledge of proteasome assembly, with a particular focus on how conformational dynamics guide particular proteasome biogenesis events. Furthermore, we highlight key emerging questions in this rapidly expanding area.
Collapse
Affiliation(s)
| | | | - Robert J. Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA; (D.B.); (T.L.)
| |
Collapse
|
12
|
Guo X, Mutch M, Torres AY, Nano M, McDonald D, Chen Z, Montell C, Dai W, Montell DJ. Rescue of proteotoxic stress and neurodegeneration by the Zn 2+ transporter ZIP7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541645. [PMID: 37292980 PMCID: PMC10245811 DOI: 10.1101/2023.05.22.541645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteotoxic stress drives numerous degenerative diseases. In response to misfolded proteins, cells adapt by activating the unfolded protein response (UPR), including endoplasmic reticulum-associated protein degradation (ERAD). However persistent stress triggers apoptosis. Enhancing ERAD is a promising therapeutic approach for protein misfolding diseases. From plants to humans, loss of the Zn2+ transporter ZIP7 causes ER stress, however the mechanism is unknown. Here we show that ZIP7 enhances ERAD and that cytosolic Zn2+ is limiting for deubiquitination of client proteins by the Rpn11 Zn2+ metalloproteinase as they enter the proteasome in Drosophila and human cells. ZIP7 overexpression rescues defective vision caused by misfolded rhodopsin in Drosophila. Thus ZIP7 overexpression may prevent diseases caused by proteotoxic stress, and existing ZIP inhibitors may be effective against proteasome-dependent cancers.
Collapse
Affiliation(s)
- Xiaoran Guo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
- present address: Biochemistry Department, Stanford University, Stanford, CA 94305
| | - Morgan Mutch
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Alba Yurani Torres
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Drew McDonald
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Zijing Chen
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Craig Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| | - Wei Dai
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110
| |
Collapse
|
13
|
Yu P, Hua Z. To Kill or to Be Killed: How Does the Battle between the UPS and Autophagy Maintain the Intracellular Homeostasis in Eukaryotes? Int J Mol Sci 2023; 24:ijms24032221. [PMID: 36768543 PMCID: PMC9917186 DOI: 10.3390/ijms24032221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquitin-26S proteasome system and autophagy are two major protein degradation machineries encoded in all eukaryotic organisms. While the UPS is responsible for the turnover of short-lived and/or soluble misfolded proteins under normal growth conditions, the autophagy-lysosomal/vacuolar protein degradation machinery is activated under stress conditions to remove long-lived proteins in the forms of aggregates, either soluble or insoluble, in the cytoplasm and damaged organelles. Recent discoveries suggested an integrative function of these two seemly independent systems for maintaining the proteome homeostasis. One such integration is represented by their reciprocal degradation, in which the small 76-amino acid peptide, ubiquitin, plays an important role as the central signaling hub. In this review, we summarized the current knowledge about the activity control of proteasome and autophagosome at their structural organization, biophysical states, and turnover levels from yeast and mammals to plants. Through comprehensive literature studies, we presented puzzling questions that are awaiting to be solved and proposed exciting new research directions that may shed light on the molecular mechanisms underlying the biological function of protein degradation.
Collapse
Affiliation(s)
- Peifeng Yu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
14
|
Bustamante HA, Albornoz N, Morselli E, Soza A, Burgos PV. Novel insights into the non-canonical roles of PSMD14/POH1/Rpn11 in proteostasis and in the modulation of cancer progression. Cell Signal 2023; 101:110490. [PMID: 36241058 DOI: 10.1016/j.cellsig.2022.110490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
PSMD14/POH1/Rpn11 plays a crucial role in cellular homeostasis. PSMD14 is a structural subunit of the lid subcomplex of the proteasome 19S regulatory particle with constitutive deubiquitinase activity. Canonically, PSMD14 removes the full ubiquitin chains with K48-linkages by hydrolyzing the isopeptide bond between the substrate and the C-terminus of the first ubiquitin, a crucial step for the entry of substrates into the catalytic barrel of the 20S proteasome and their subsequent degradation, all in context of the 26S proteasome. However, more recent discoveries indicate PSMD14 DUB activity is not only coupled to the translocation of substrates into the core of 20S proteasome. During the assembly of the lid, activity of PSMD14 has been detected in the context of the heterodimer with PSMD7. Additionally, assembly of the lid subcomplex occurs as an independent event of the base subcomplex and 20S proteasome. This feature opens the possibility that the regulatory particle, free lid subcomplex or the heterodimer PSMD14-PSMD7 might play other physiological roles including a positive function on protein stability through deubiquitination. Here we discuss scenarios that could enhance this PSMD14 non-canonical pathway, the potential impact in preventing degradation of substrates by autophagy highlighting the main findings that support this hypothesis. Finally, we discuss why this information should be investigated in biomedicine specifically with focus on cancer progression to design new therapeutic strategies against the lid subcomplex and the heterodimer PSMD14-PSMD7, highlighting PSMD14 as a druggable target for cancer therapy.
Collapse
Affiliation(s)
- Hianara A Bustamante
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile.
| | - Nicolás Albornoz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile; Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile.
| | - Eugenia Morselli
- Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile; Centro de Investigación en Autofagia, Santiago, Chile.
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile; Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago 8331150, Chile; Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile.
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile; Centro de Investigación en Autofagia, Santiago, Chile; Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago 8331150, Chile; Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile.
| |
Collapse
|
15
|
Xie G, Dong KC, Worden EJ, Martin A. High-Throughput Assay for Characterizing Rpn11 Deubiquitinase Activity. Methods Mol Biol 2023; 2591:79-100. [PMID: 36350544 PMCID: PMC11111417 DOI: 10.1007/978-1-0716-2803-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rpn11 is an essential metalloprotease responsible for the en bloc removal of ubiquitin chains from protein substrates that are targeted for degradation by the 26S proteasome. A unique feature of Rpn11 is that its deubiquitinase (DUB) activity is greatly stimulated by the mechanical translocation of the substrate into the proteasomal AAA+ (ATPase Associated with diverse cellular Activities) motor, which delivers the scissile isopeptide bond between a substrate lysine and the proximal moiety of an attached ubiquitin chain to the DUB catalytic active site. As a consequence, Rpn11 cleaves at the base of ubiquitin chains and lacks selectivity towards specific ubiquitin-chain linkage types, which is in contrast to other DUBs, including the related AMSH that selectively cleaves Lys63-linked chains. Prevention of Rpn11's deubiquitinase activity leads to inhibition of proteasomal degradation by stalling substrate translocation. With the proteasome as an approved anticancer target, Rpn11 is therefore an attractive point of attack for the development of new inhibitors, which requires robust biochemical assays to measure DUB activity. Here we describe a method for the purification of the Rpn8/Rpn11 heterodimer and ubiquitin-GC-TAMRA, a model substrate that can be used to characterize the DUB activity of Rpn11 in isolation without the need of purifying 26S proteasomes. This assay thus enables a high-throughput screening platform for Rpn11-targeted small-molecule discovery.
Collapse
Affiliation(s)
- Gang Xie
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
| | - Ken C Dong
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | | | - Andreas Martin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
16
|
Jonsson E, Htet ZM, Bard JA, Dong KC, Martin A. Ubiquitin modulates 26 S proteasome conformational dynamics and promotes substrate degradation. SCIENCE ADVANCES 2022; 8:eadd9520. [PMID: 36563145 PMCID: PMC9788759 DOI: 10.1126/sciadv.add9520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The 26S proteasome recognizes thousands of appropriate protein substrates in eukaryotic cells through attached ubiquitin chains and uses its adenosine triphosphatase (ATPase) motor for mechanical unfolding and translocation into a proteolytic chamber. Here, we used single-molecule Förster resonance energy transfer measurements to monitor the conformational dynamics of the proteasome, observe individual substrates during their progression toward degradation, and elucidate how these processes are regulated by ubiquitin chains. Rapid transitions between engagement- and processing-competent proteasome conformations control substrate access to the ATPase motor. Ubiquitin chain binding functions as an allosteric regulator to slow these transitions, stabilize the engagement-competent state, and aid substrate capture to accelerate degradation initiation. Upon substrate engagement, the proteasome remains in processing-competent states for translocation and unfolding, except for apparent motor slips when encountering stably folded domains. Our studies revealed how ubiquitin chains allosterically regulate degradation initiation, which ensures substrate selectivity in a crowded cellular environment.
Collapse
Affiliation(s)
- Erik Jonsson
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Zaw Min Htet
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | | | - Ken C. Dong
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
The Ubiquitin–Proteasome System (UPS) and Viral Infection in Plants. PLANTS 2022; 11:plants11192476. [PMID: 36235343 PMCID: PMC9572368 DOI: 10.3390/plants11192476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
The ubiquitin–proteasome system (UPS) is crucial in maintaining cellular physiological balance. The UPS performs quality control and degrades proteins that have already fulfilled their regulatory purpose. The UPS is essential for cellular and organic homeostasis, and its functions regulate DNA repair, gene transcription, protein activation, and receptor trafficking. Besides that, the UPS protects cellular immunity and acts on the host’s defense system. In order to produce successful infections, viruses frequently need to manipulate the UPS to maintain the proper level of viral proteins and hijack defense mechanisms. This review highlights and updates the mechanisms and strategies used by plant viruses to subvert the defenses of their hosts. Proteins involved in these mechanisms are important clues for biotechnological approaches in viral resistance.
Collapse
|
18
|
Structural and Functional Basis of JAMM Deubiquitinating Enzymes in Disease. Biomolecules 2022; 12:biom12070910. [PMID: 35883466 PMCID: PMC9313428 DOI: 10.3390/biom12070910] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Deubiquitinating enzymes (DUBs) are a group of proteases that are important for maintaining cell homeostasis by regulating the balance between ubiquitination and deubiquitination. As the only known metalloproteinase family of DUBs, JAB1/MPN/Mov34 metalloenzymes (JAMMs) are specifically associated with tumorigenesis and immunological and inflammatory diseases at multiple levels. The far smaller numbers and distinct catalytic mechanism of JAMMs render them attractive drug targets. Currently, several JAMM inhibitors have been successfully developed and have shown promising therapeutic efficacy. To gain greater insight into JAMMs, in this review, we focus on several key proteins in this family, including AMSH, AMSH-LP, BRCC36, Rpn11, and CSN5, and emphatically discuss their structural basis, diverse functions, catalytic mechanism, and current reported inhibitors targeting JAMMs. These advances set the stage for the exploitation of JAMMs as a target for the treatment of various diseases.
Collapse
|
19
|
Cheng X, Wang W, Zhang L, Yang RR, Ma Y, Bao YY. ATPase subunits of the 26S proteasome are important for oocyte maturation in the brown planthopper. INSECT MOLECULAR BIOLOGY 2022; 31:317-333. [PMID: 35084067 DOI: 10.1111/imb.12761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The 26S proteasome is the major engine of protein degradation in all eukaryotic cells. Adenosine triphosphatase (ATPase) regulatory subunits (Rpts) are constituents of the proteasome that are involved in the unfolding and translocation of substrate proteins into the core particle. In this study, by using the brown planthopper Nilaparvata lugens as a model insect, we report the biological importance of Rpts in female reproduction. We identified six homologous Rpt genes (Rpt1-6) in N. lugens. These genes were detected at high transcript levels in eggs and ovaries of females but at low transcript levels in males. RNA interference-mediated knockdown of N. lugens Rpt genes significantly decreased the proteolytic activity of the proteasome and impeded the transcription of triacylglycerol lipase and vitellogenin genes in the fat bodies and ovaries of adult females and reduced the triglyceride content in the ovaries. The decrease in the proteolytic activity of the proteasome via knockdown of Rpts also downregulated the transcription of the CYP307A2 gene encoding an important rate-limiting enzyme in the 20-hydroxyecdysone biosynthetic pathway in the ovaries, reduced 20E production in adult females and impaired ovarian development and oocyte maturation, leading to the failure of egg production and egg-laying. These novel findings indicate that Rpts are required for the proteolytic activity of the proteasome, which is important for female reproductive success in N. lugens.
Collapse
Affiliation(s)
- Xu Cheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Wei Wang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lu Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Rui-Rui Yang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ya Ma
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yan-Yuan Bao
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
On the Study of Deubiquitinases: Using the Right Tools for the Job. Biomolecules 2022; 12:biom12050703. [PMID: 35625630 PMCID: PMC9139131 DOI: 10.3390/biom12050703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Deubiquitinases (DUBs) have been the subject of intense scrutiny in recent years. Many of their diverse enzymatic mechanisms are well characterized in vitro; however, our understanding of these enzymes at the cellular level lags due to the lack of quality tool reagents. DUBs play a role in seemingly every biological process and are central to many human pathologies, thus rendering them very desirable and challenging therapeutic targets. This review aims to provide researchers entering the field of ubiquitination with knowledge of the pharmacological modulators and tool molecules available to study DUBs. A focus is placed on small molecule inhibitors, ubiquitin variants (UbVs), and activity-based probes (ABPs). Leveraging these tools to uncover DUB biology at the cellular level is of particular importance and may lead to significant breakthroughs. Despite significant drug discovery efforts, only approximately 15 chemical probe-quality small molecule inhibitors have been reported, hitting just 6 of about 100 DUB targets. UbV technology is a promising approach to rapidly expand the library of known DUB inhibitors and may be used as a combinatorial platform for structure-guided drug design.
Collapse
|
21
|
Spataro V, Buetti-Dinh A. POH1/Rpn11/PSMD14: a journey from basic research in fission yeast to a prognostic marker and a druggable target in cancer cells. Br J Cancer 2022; 127:788-799. [PMID: 35501388 PMCID: PMC9428165 DOI: 10.1038/s41416-022-01829-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
POH1/Rpn11/PSMD14 is a highly conserved protein in eukaryotes from unicellular organisms to human and has a crucial role in cellular homoeostasis. It is a subunit of the regulatory particle of the proteasome, where it acts as an intrinsic deubiquitinase removing polyubiquitin chains from substrate proteins. This function is not only coupled to the translocation of substrates into the core of the proteasome and their subsequent degradation but also, in some instances, to the stabilisation of ubiquitinated proteins through their deubiquitination. POH1 was initially discovered as a functional homologue of the fission yeast gene pad1+, which confers drug resistance when overexpressed. In translational studies, expression of POH1 has been found to be increased in several tumour types relative to normal adjacent tissue and to correlate with tumour progression, higher tumour grade, decreased sensitivity to cytotoxic drugs and poor prognosis. Proteasome inhibitors targeting the core particle of the proteasome are highly active in the treatment of myeloma, and recently developed POH1 inhibitors, such as capzimin and thiolutin, have shown promising anticancer activity in cell lines of solid tumours and leukaemia. Here we give an overview of POH1 function in the cell, of its potential role in oncogenesis and of recent progress in developing POH1-targeting drugs.
Collapse
Affiliation(s)
- Vito Spataro
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Via Gallino, 6500, Bellinzona, Switzerland.
| | - Antoine Buetti-Dinh
- Institute of Microbiology, Department of Environmental Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, 1015, Lausanne, Switzerland
| |
Collapse
|
22
|
van der Wal L, Bezstarosti K, Demmers JAA. A ubiquitinome analysis to study the functional roles of the proteasome associated deubiquitinating enzymes USP14 and UCH37. J Proteomics 2022; 262:104592. [PMID: 35489684 DOI: 10.1016/j.jprot.2022.104592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022]
Abstract
The removal of (poly)ubiquitin chains at the proteasome is a key step in the protein degradation pathway that determines which proteins are degraded and ultimately decides cell fate. Three different deubiquitinating enzymes (DUBs) are associated to the human proteasome, PSMD14 (RPN11), USP14 and UCH37 (UCHL5). However, the functional roles and specificities of these proteasomal DUBs remain elusive. To reveal the specificities of proteasome associated DUBs, we used SILAC based quantitative ubiquitinomics to study the effects of CRISPR-Cas9 based knockout of each of these DUBs on the dynamic cellular ubiquitinome. We observed distinct effects on the global ubiquitinome upon removal of either USP14 or UCH37, while the simultaneous removal of both DUBs suggested less functional redundancy than previously anticipated. We also investigated whether the small molecule inhibitor b-AP15 has the potential to specifically target USP14 and UCH37 by comparing treatment of wild-type versus USP14/UCH37 double-knockout cells with this drug. Strikingly, broad and severe off-target effects were observed, questioning the alleged specificity of this inhibitor. In conclusion, this work presents novel insights into the function of proteasome associated DUBs and illustrates the power of in-depth ubiquitinomics for screening the activity of DUBs and of DUB modulating compounds. SIGNIFICANCE Introduction: The removal of (poly)ubiquitin chains at the proteasome is a key step in the protein degradation pathway that determines which proteins are degraded and ultimately decides cell fate. Three different deubiquitinating enzymes (DUBs) are associated to the human proteasome, PSMD14/RPN11, USP14 and UCH37/UCHL5. However, the functional roles and specificities of these proteasomal DUBs remains elusive. MATERIALS & METHODS We have applied a SILAC based quantitative ubiquitinomics to study the effects of CRISPR-Cas9 based knockout of each of these DUBs on the dynamic cellular ubiquitinome. Also, we have studied the function of the small molecule inhibitor b-AP15, which has the potential to specifically target USP14 and UCH37. RESULTS We report distinct effects on the ubiquitinome and the ability of the proteasome to clear proteins upon removal of either USP14 or UCH37, while the simultaneous removal of both DUBs suggests less redundancy than previously anticipated. In addition, broad and severe off-target effects were observed for b-AP15, questioning the alleged specificity of this inhibitor. CONCLUSIONS This work presents novel insights into the function of proteasome associated DUBs and illustrates the power of in-depth ubiquitinomics for screening the activity of DUBs and of DUB modulating compounds.
Collapse
Affiliation(s)
- Lennart van der Wal
- Proteomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Hung KYS, Klumpe S, Eisele MR, Elsasser S, Tian G, Sun S, Moroco JA, Cheng TC, Joshi T, Seibel T, Van Dalen D, Feng XH, Lu Y, Ovaa H, Engen JR, Lee BH, Rudack T, Sakata E, Finley D. Allosteric control of Ubp6 and the proteasome via a bidirectional switch. Nat Commun 2022; 13:838. [PMID: 35149681 PMCID: PMC8837689 DOI: 10.1038/s41467-022-28186-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/10/2022] [Indexed: 11/09/2022] Open
Abstract
The proteasome recognizes ubiquitinated proteins and can also edit ubiquitin marks, allowing substrates to be rejected based on ubiquitin chain topology. In yeast, editing is mediated by deubiquitinating enzyme Ubp6. The proteasome activates Ubp6, whereas Ubp6 inhibits the proteasome through deubiquitination and a noncatalytic effect. Here, we report cryo-EM structures of the proteasome bound to Ubp6, based on which we identify mutants in Ubp6 and proteasome subunit Rpt1 that abrogate Ubp6 activation. The Ubp6 mutations define a conserved region that we term the ILR element. The ILR is found within the BL1 loop, which obstructs the catalytic groove in free Ubp6. Rpt1-ILR interaction opens the groove by rearranging not only BL1 but also a previously undescribed network of three interconnected active-site-blocking loops. Ubp6 activation and noncatalytic proteasome inhibition are linked in that they are eliminated by the same mutations. Ubp6 and ubiquitin together drive proteasomes into a unique conformation associated with proteasome inhibition. Thus, a multicomponent allosteric switch exerts simultaneous control over both Ubp6 and the proteasome.
Collapse
Affiliation(s)
| | - Sven Klumpe
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Markus R Eisele
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Suzanne Elsasser
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Geng Tian
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shuangwu Sun
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.,Life Sciences Institute (LSI), Zhejiang University, Hangzhou, 310058, China
| | - Jamie A Moroco
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Tat Cheung Cheng
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.,Institute for Auditory Neuroscience, University Medical Center Göttingen, 37077, Göttingen, Germany
| | - Tapan Joshi
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Timo Seibel
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Duco Van Dalen
- Leiden University Medical Center, Einthovenweg 20, 2333, Leiden, ZC, the Netherlands
| | - Xin-Hua Feng
- Life Sciences Institute (LSI), Zhejiang University, Hangzhou, 310058, China
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Huib Ovaa
- Leiden University Medical Center, Einthovenweg 20, 2333, Leiden, ZC, the Netherlands
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Byung-Hoon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea.
| | - Till Rudack
- Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, 44801, Bochum, Germany. .,Department of Biophysics, Ruhr University Bochum, 44801, Bochum, Germany.
| | - Eri Sakata
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany. .,Institute for Auditory Neuroscience, University Medical Center Göttingen, 37077, Göttingen, Germany. .,Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Goettingen, 37073, Göttingen, Germany.
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
25
|
van den Biggelaar RHGA, van der Maas L, Meiring HD, Pennings JLA, van Eden W, Rutten VPMG, Jansen CA. Proteomic analysis of chicken bone marrow-derived dendritic cells in response to an inactivated IBV + NDV poultry vaccine. Sci Rep 2021; 11:12666. [PMID: 34135356 PMCID: PMC8209092 DOI: 10.1038/s41598-021-89810-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Inactivated poultry vaccines are subject to routine potency testing for batch release, requiring large numbers of animals. The replacement of in vivo tests for cell-based alternatives can be facilitated by the identification of biomarkers for vaccine-induced immune responses. In this study, chicken bone marrow-derived dendritic cells were stimulated with an inactivated vaccine for infectious bronchitis virus and Newcastle disease virus, as well as inactivated infectious bronchitis virus only, and lipopolysaccharides as positive control, or left unstimulated for comparison with the stimulated samples. Next, the cells were lysed and subjected to proteomic analysis. Stimulation with the vaccine resulted in 66 differentially expressed proteins associated with mRNA translation, immune responses, lipid metabolism and the proteasome. For the eight most significantly upregulated proteins, mRNA expression levels were assessed. Markers that showed increased expression at both mRNA and protein levels included PLIN2 and PSMB1. Stimulation with infectious bronchitis virus only resulted in 25 differentially expressed proteins, which were mostly proteins containing Src homology 2 domains. Stimulation with lipopolysaccharides resulted in 118 differentially expressed proteins associated with dendritic cell maturation and antimicrobial activity. This study provides leads to a better understanding of the activation of dendritic cells by an inactivated poultry vaccine, and identified PLIN2 and PSMB1 as potential biomarkers for cell-based potency testing.
Collapse
Affiliation(s)
- Robin H G A van den Biggelaar
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Hugo D Meiring
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Utrecht, The Netherlands
| | - Willem van Eden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P M G Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
26
|
Xu X, Xuan X, Zhang J, Xu H, Yang X, Zhang L, Zhao Y, Xu H, Li D. PSMD7 downregulation suppresses lung cancer progression by regulating the p53 pathway. J Cancer 2021; 12:4945-4957. [PMID: 34234864 PMCID: PMC8247365 DOI: 10.7150/jca.53613] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/22/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the second most common cancer in both men and women. The deubiquitinase PSMD7, as a core component of the 26S proteasome, is critical for the degradation of ubiquitinated proteins in the proteasome. Currently, PSMD7 expression and its roles in the progression of lung cancer remain largely unknown. In this study, we assessed PSMD7 expression and investigated the underlying molecular events by which PSMD7 regulates tumor progression in non-small cell lung cancer (NSCLC). The results showed that PSMD7 is more highly expressed in NSCLC tissues than in adjacent noncancerous tissues. PSMD7 expression was also closely associated with lymph node invasion and the laterality of the tumor in lung adenocarcinoma (LUAD). A high PSMD7 level predicted poor overall survival (OS) and disease-free survival (DFS) in LUAD patients, and PSMD7 knockdown significantly reduced cell proliferation and induced G0/G1-phase cell cycle arrest, cell senescence and apoptosis. PSMD7 knockdown inhibited expression of a set of proteins regulating cell cycle progression. Depletion of PSMD7 increased p53 levels and induced p21 and puma expression in a p53-dependent manner. Importantly, knockdown of PSMD7 markedly inhibited LUAD tumor growth in a xenograft mouse model. Taken together, these findings indicate that PSMD7 may serve as a valuable prognostic indicator and potential therapeutic target in LUAD.
Collapse
Affiliation(s)
- Xinchun Xu
- Department of Ultrasound, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xiaofeng Xuan
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Jieru Zhang
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Hui Xu
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Xiaomei Yang
- Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Ling Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Yuanjie Zhao
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Hong Xu
- Department of Ultrasound, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| | - Dawei Li
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang West Road, Suzhou, 215600, China
| |
Collapse
|
27
|
Identification of PSMD7 as a prognostic factor correlated with immune infiltration in head and neck squamous cell carcinoma. Biosci Rep 2021; 41:228046. [PMID: 33687056 PMCID: PMC7990087 DOI: 10.1042/bsr20203829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recurrent locally advanced or metastatic head and neck squamous cell carcinoma (HNSCC) is associated with dismal prognosis because of its highly invasive behavior and resistance to conventional intensive chemotherapy. The identification of effective markers for early diagnosis and prognosis is important for reducing mortality and ensuring that therapy for HNSCC is effective. Proteasome 26S subunit, non-ATPase 7 (PSMD7) is an ATP-independent component of the 19S regulatory subunit. The prognostic value of PSMD7 and the association with immune infiltration in HNSCC remains unclear. METHODS The Sangerbox, Oncomine, UALCAN and Human Protein Atlas (HPA) databases were used to examine PSMD7 expression profiles in HNSCC. The CVCDAP was used to analysis the association of PSMD7 with the prognosis of patients with HNSCC. The mechanism was investigated with gene set enrichment analysis (GSEA). The association between expression of PSMD7 and immune infiltration in HNSCC was investigated using the Tumor Immune Estimation Resource (TIMER), TISIDB database and CIBERSORT algorithm. RESULTS PSMD7 expression was significantly up-regulated in HNSCC compared with relative normal tissues. In addition, up-regulated PSMD7 expression was associated with various clinicopathological parameters. High expression of PSMD7 suggested inferior survival of HNSCC patients. GSEA and CERES score indicated that PSMD7 was closely correlated with tumor-related signaling pathways and cell survival. Functional analyses revealed that PSMD7 was positively correlated with various infiltration levels. Moreover, PSMD7 influenced the prognosis of HNSCC patients partially via immune infiltration. CONCLUSION Our findings suggest that PSMD7 is associated poor prognosis in patients with HNSCC and plays an important role in tumor-related immune infiltration.
Collapse
|
28
|
Wang W, Yang RR, Peng LY, Zhang L, Yao YL, Bao YY. Proteolytic activity of the proteasome is required for female insect reproduction. Open Biol 2021; 11:200251. [PMID: 33622101 PMCID: PMC8061697 DOI: 10.1098/rsob.200251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Non-ATPase regulatory subunits (Rpns) are components of the 26S proteasome involved in polyubiquitinated substrate recognition and deubiquitination in eukaryotes. Here, we identified 15 homologues sequences of Rpn and associated genes by searching the genome and transcriptome databases of the brown planthopper, Nilaparvata lugens, a hemipteran rice pest. Temporospatial analysis showed that NlRpn genes were significantly highly expressed in eggs and ovaries but were less-highly expressed in males. RNA interference-mediated depletion of NlRpn genes decreased the proteolytic activity of proteasome and impeded the transcription of lipase and vitellogenin genes in the fat bodies and ovaries in adult females, and reduced the triglyceride content in the ovaries. Decrease of the proteolytic activity of the proteasome via knockdown of NlRpns also inhibited the transcription of halloween genes, including NlCYP307A2, NlCYP306A2 and NlCYP314A1, in the 20-hydroxyecdysone (20E) biosynthetic pathway in the ovaries, reduced 20E production in adult females, and impaired ovarian development and oocyte maturation, resulting in reduced fecundity. These novel findings indicate that the proteolytic activity of the proteasome is required for female reproductive processes in N. lugens, thus furthering our understanding of the reproductive and developmental strategies in insects.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Rui-Rui Yang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lu-Yao Peng
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lu Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yue-Lin Yao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.,School of Biological Science, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
29
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Molecular Mechanisms of DUBs Regulation in Signaling and Disease. Int J Mol Sci 2021; 22:ijms22030986. [PMID: 33498168 PMCID: PMC7863924 DOI: 10.3390/ijms22030986] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The large family of deubiquitinating enzymes (DUBs) are involved in the regulation of a plethora of processes carried out inside the cell by protein ubiquitination. Ubiquitination is a basic pathway responsible for the correct protein homeostasis in the cell, which could regulate the fate of proteins through the ubiquitin–proteasome system (UPS). In this review we will focus on recent advances on the molecular mechanisms and specificities found for some types of DUBs enzymes, highlighting illustrative examples in which the regulatory mechanism for DUBs has been understood in depth at the molecular level by structural biology. DUB proteases are responsible for cleavage and regulation of the multiple types of ubiquitin linkages that can be synthesized inside the cell, known as the ubiquitin-code, which are tightly connected to specific substrate functions. We will display some strategies carried out by members of different DUB families to provide specificity on the cleavage of particular ubiquitin linkages. Finally, we will also discuss recent progress made for the development of drug compounds targeting DUB proteases, which are usually correlated to the progress of many pathologies such as cancer and neurodegenerative diseases.
Collapse
|
31
|
Uhlemann EME, Yu CH, Patry J, Dolgova N, Lutsenko S, Muyldermans S, Dmitriev OY. Nanobodies against the metal binding domains of ATP7B as tools to study copper transport in the cell. Metallomics 2020; 12:1941-1950. [PMID: 33094790 DOI: 10.1039/d0mt00191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanobodies are genetically engineered single domain antibodies derived from the unusual heavy-chain only antibodies found in llamas and camels. The small size of the nanobodies and flexible selection schemes make them uniquely versatile tools for protein biochemistry and cell biology. We have developed a panel of nanobodies against the metal binding domains of the human copper transporter ATP7B, a multidomain membrane protein with a complex regulation of enzymatic activity and intracellular localization. To enable the use of the nanobodies as tools to investigate copper transport in the cell, we characterized their binding sites and affinity by isothermal titration calorimetry and NMR. We have identified nanobodies against each of the first four metal binding domains of ATP7B, with a wide affinity range, as evidenced by dissociation constants from below 10-9 to 10-6 M. We found both the inhibitory and activating nanobodies among those tested. The diverse properties of the nanobodies make the panel useful for the structural studies of ATP7B, immunoaffinity purification of the protein, modulation of its activity in the cell, protein dynamics studies, and as mimics of copper chaperone ATOX1, the natural interaction partner of ATP7B.
Collapse
Affiliation(s)
- Eva-Maria E Uhlemann
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | | | | | | | | | |
Collapse
|
32
|
Molecular and cellular dynamics of the 26S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140583. [PMID: 33321258 DOI: 10.1016/j.bbapap.2020.140583] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 01/16/2023]
Abstract
In eukaryotic cells, the ubiquitin-proteasome system serves to remove proteins that are either dysfunctional or no longer needed. The 26S proteasome is a 2.5 MDa multisubunit complex comprising the 20S core particle, where degradation is executed, and one or two regulatory particles which prepare substrates for degradation. Whereas the 20S core particles of several species had been studied extensively by X-ray crystallography, the 26S holocomplex structure had remained elusive for a long time. Recent advances in single-particle cryo-electron microscopy have changed the situation and provided atomic resolution models of this intriguing molecular machine and its dynamics. Besides, cryo-electron tomography enables structural studies in situ, providing molecular resolution images of macromolecules inside pristinely preserved cellular environments. This has greatly contributed to our understanding of proteasome dynamics in the context of cells.
Collapse
|
33
|
Rabl J. BRCA1-A and BRISC: Multifunctional Molecular Machines for Ubiquitin Signaling. Biomolecules 2020; 10:biom10111503. [PMID: 33142801 PMCID: PMC7692841 DOI: 10.3390/biom10111503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
The K63-linkage specific deubiquitinase BRCC36 forms the core of two multi-subunit deubiquitination complexes: BRCA1-A and BRISC. BRCA1-A is recruited to DNA repair foci, edits ubiquitin signals on chromatin, and sequesters BRCA1 away from the site of damage, suppressing homologous recombination by limiting resection. BRISC forms a complex with metabolic enzyme SHMT2 and regulates the immune response, mitosis, and hematopoiesis. Almost two decades of research have revealed how BRCA1-A and BRISC use the same core of subunits to perform very distinct biological tasks.
Collapse
Affiliation(s)
- Julius Rabl
- Cryo-EM Knowledge Hub, ETH Zürich, Otto-Stern-Weg 3, HPM C51, 8093 Zürich, Switzerland
| |
Collapse
|
34
|
Zhao Y, Yang X, Xu X, Zhang J, Zhang L, Xu H, Miao Z, Li D, Wang S. Deubiquitinase PSMD7 regulates cell fate and is associated with disease progression in breast cancer. Am J Transl Res 2020; 12:5433-5448. [PMID: 33042429 PMCID: PMC7540142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Breast cancer is the most common malignant tumor and the leading cause of cancer-related death in women. The ubiquitin-proteasome system regulates the stability of most proteins controlling various biological processes in human cells. PSMD7, as a core component of the 26S proteasome, is critical for the degradation of ubiquitinated proteins in the proteasome. Currently, PSMD7 expression and its roles in the progression of breast cancer remain largely unknown. In this study, we assessed the level of PSMD7 in breast cancer tissues and investigated the underlying molecular events by which PSMD7 could play a role in tumor progression. The results showed that the PSMD7 level was significantly upregulated in breast cancer tissues. PSMD7 expression was closely associated with tumor subtype, tumor size, lymph node invasion, and TNM stage. A high PSMD7 level predicted poor overall survival (OS) and disease-free survival (DFS) in breast cancer patients. Furthermore, univariate Cox regression analysis indicated that lymph node invasion, distant metastasis, and PSMD7 expression were associated with OS and DFS. Multivariate regression analysis indicated that PSMD7 was an independent predictor of OS (HR=1.310, 95% CI=1.038-1.652). Importantly, PSMD7 knockdown induced cell cycle arrest in the G0/G1 phase, leading to cell senescence and apoptosis. PSMD7 knockdown inhibited the expression of key cell cycle-related proteins and promoted the stability of p21 and p27 in breast cancer cells. PSMD7 may be a valuable prognostic indicator and potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yuanjie Zhao
- Department of General Surgery, Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhou 215600, Jiangsu, China
| | - Xiaomei Yang
- Department of Emergency, Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhou 215600, Jiangsu, China
| | - Xinchun Xu
- Department of Ultrasound, Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhou 215600, Jiangsu, China
| | - Jieru Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhou 215600, Jiangsu, China
| | - Ling Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhou 215600, Jiangsu, China
| | - Hui Xu
- Department of Thoracic Surgery, Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhou 215600, Jiangsu, China
| | - Zhiming Miao
- Department of General Surgery, Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhou 215600, Jiangsu, China
| | - Dawei Li
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhou 215600, Jiangsu, China
| | - Shusheng Wang
- Department of General Surgery, Affiliated Zhangjiagang Hospital of Soochow UniversitySuzhou 215600, Jiangsu, China
| |
Collapse
|
35
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
36
|
Majumder P, Baumeister W. Proteasomes: unfoldase-assisted protein degradation machines. Biol Chem 2020; 401:183-199. [PMID: 31665105 DOI: 10.1515/hsz-2019-0344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023]
Abstract
Proteasomes are the principal molecular machines for the regulated degradation of intracellular proteins. These self-compartmentalized macromolecular assemblies selectively degrade misfolded, mistranslated, damaged or otherwise unwanted proteins, and play a pivotal role in the maintenance of cellular proteostasis, in stress response, and numerous other processes of vital importance. Whereas the molecular architecture of the proteasome core particle (CP) is universally conserved, the unfoldase modules vary in overall structure, subunit complexity, and regulatory principles. Proteasomal unfoldases are AAA+ ATPases (ATPases associated with a variety of cellular activities) that unfold protein substrates, and translocate them into the CP for degradation. In this review, we summarize the current state of knowledge about proteasome - unfoldase systems in bacteria, archaea, and eukaryotes, the three domains of life.
Collapse
Affiliation(s)
- Parijat Majumder
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
37
|
Shin JY, Muniyappan S, Tran NN, Park H, Lee SB, Lee BH. Deubiquitination Reactions on the Proteasome for Proteasome Versatility. Int J Mol Sci 2020; 21:E5312. [PMID: 32726943 PMCID: PMC7432943 DOI: 10.3390/ijms21155312] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
The 26S proteasome, a master player in proteolysis, is the most complex and meticulously contextured protease in eukaryotic cells. While capable of hosting thousands of discrete substrates due to the selective recognition of ubiquitin tags, this protease complex is also dynamically checked through diverse regulatory mechanisms. The proteasome's versatility ensures precise control over active proteolysis, yet prevents runaway or futile degradation of many essential cellular proteins. Among the multi-layered processes regulating the proteasome's proteolysis, deubiquitination reactions are prominent because they not only recycle ubiquitins, but also impose a critical checkpoint for substrate degradation on the proteasome. Of note, three distinct classes of deubiquitinating enzymes-USP14, RPN11, and UCH37-are associated with the 19S subunits of the human proteasome. Recent biochemical and structural studies suggest that these enzymes exert dynamic influence over proteasome output with limited redundancy, and at times act in opposition. Such distinct activities occur spatially on the proteasome, temporally through substrate processing, and differentially for ubiquitin topology. Therefore, deubiquitinating enzymes on the proteasome may fine-tune the degradation depending on various cellular contexts and for dynamic proteolysis outcomes. Given that the proteasome is among the most important drug targets, the biology of proteasome-associated deubiquitination should be further elucidated for its potential targeting in human diseases.
Collapse
Affiliation(s)
- Ji Yeong Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Srinivasan Muniyappan
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
| | - Non-Nuoc Tran
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hyeonjeong Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Sung Bae Lee
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Byung-Hoon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
38
|
Postic G, Marcoux J, Reys V, Andreani J, Vandenbrouck Y, Bousquet MP, Mouton-Barbosa E, Cianférani S, Burlet-Schiltz O, Guerois R, Labesse G, Tufféry P. Probing Protein Interaction Networks by Combining MS-Based Proteomics and Structural Data Integration. J Proteome Res 2020; 19:2807-2820. [PMID: 32338910 DOI: 10.1021/acs.jproteome.0c00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions play a major role in the molecular machinery of life, and various techniques such as AP-MS are dedicated to their identification. However, those techniques return lists of proteins devoid of organizational structure, not detailing which proteins interact with which others. Proposing a hierarchical view of the interactions between the members of the flat list becomes highly tedious for large data sets when done by hand. To help hierarchize this data, we introduce a new bioinformatics protocol that integrates information of the multimeric protein 3D structures available in the Protein Data Bank using remote homology detection, as well as information related to Short Linear Motifs and interaction data from the BioGRID. We illustrate on two unrelated use-cases of different complexity how our approach can be useful to decipher the network of interactions hidden in the list of input proteins, and how it provides added value compared to state-of-the-art resources such as Interactome3D or STRING. Particularly, we show the added value of using homology detection to distinguish between orthologs and paralogs, and to distinguish between core obligate and more facultative interactions. We also demonstrate the potential of considering interactions occurring through Short Linear Motifs.
Collapse
Affiliation(s)
- Guillaume Postic
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, 75013 Paris, France.,Institut Français de Bioinformatique (IFB), UMS 3601-CNRS, Universite Paris-Saclay, 91400 Orsay, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Victor Reys
- CBS, Univ. Montpellier, CNRS, INSERM, 34095 Montpellier, France
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Yves Vandenbrouck
- Univ. Grenoble Alpes, INSERM, CEA, IRIG-BGE, U1038, 38000 Grenoble, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Raphael Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gilles Labesse
- CBS, Univ. Montpellier, CNRS, INSERM, 34095 Montpellier, France
| | - Pierre Tufféry
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, 75013 Paris, France
| |
Collapse
|
39
|
Grimmer J, Helm S, Dobritzsch D, Hause G, Shema G, Zahedi RP, Baginsky S. Mild proteasomal stress improves photosynthetic performance in Arabidopsis chloroplasts. Nat Commun 2020; 11:1662. [PMID: 32245955 PMCID: PMC7125294 DOI: 10.1038/s41467-020-15539-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
The proteasome is an essential protein-degradation machinery in eukaryotic cells that controls protein turnover and thereby the biogenesis and function of cell organelles. Chloroplasts import thousands of nuclear-encoded precursor proteins from the cytosol, suggesting that the bulk of plastid proteins is transiently exposed to the cytosolic proteasome complex. Therefore, there is a cytosolic equilibrium between chloroplast precursor protein import and proteasomal degradation. We show here that a shift in this equilibrium, induced by mild genetic proteasome impairment, results in elevated precursor protein abundance in the cytosol and significantly increased accumulation of functional photosynthetic complexes in protein import-deficient chloroplasts. Importantly, a proteasome lid mutant shows improved photosynthetic performance, even in the absence of an import defect, signifying that functional precursors are continuously degraded. Hence, turnover of plastid precursors in the cytosol represents a mechanism to constrain thylakoid membrane assembly and photosynthetic electron transport.
Collapse
Affiliation(s)
- Julia Grimmer
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Saale, Germany
| | - Stefan Helm
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Saale, Germany
| | - Dirk Dobritzsch
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Saale, Germany
| | - Gerd Hause
- Biocenter of the University, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120, Halle, Saale, Germany
| | - Gerta Shema
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e.V., Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Sacha Baginsky
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Saale, Germany.
- Biochemistry of Plants, Faculty for Biology and Biotechnology, Ruhr-University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
40
|
Zhang L, Xu H, Ma C, Zhang J, Zhao Y, Yang X, Wang S, Li D. Upregulation of deubiquitinase PSMD14 in lung adenocarcinoma (LUAD) and its prognostic significance. J Cancer 2020; 11:2962-2971. [PMID: 32226511 PMCID: PMC7086243 DOI: 10.7150/jca.39539] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/24/2020] [Indexed: 01/01/2023] Open
Abstract
PSMD14 is a 19S-proteasome-associated deubiquitinating enzyme that facilitates protein degradation by the 20S proteasome core particle. Although accumulating evidence indicates that PSMD14 has emerged as a critical oncogenic factor by promoting tumor growth, the expression and function of PSMD14 in non-small cell lung cancer (NSCLC) remain largely unknown. In this study, we assessed PSMD14 expression and correlated it with clinical-pathological features and patient survival in NSCLC. We also determined the roles of PSMD14 in the regulation of lung adenocarcinoma (LUAD) cell growth. The results showed that PSMD14 expression was significantly upregulated in human NSCLC tissues compared with adjacent non-cancerous tissues. The PSMD14 level was associated with tumor size, lymph node invasion, and TNM stage in LUAD patients. Importantly, high PSMD14 expression was associated with poor overall survival (OS) and disease-free survival (DFS) in LUAD patients. Further, knockdown of PSMD14 significantly inhibited cell growth and caused G1 arrest and cellular senescence by increasing p21 stability in LUAD cells. PSMD14 knockdown also promoted cell apoptosis by increasing cleaved caspase-3 levels in H1299 cells. PSMD14 may serve as a potential prognostic marker and therapeutic target for LUAD patients.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Hui Xu
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Chunping Ma
- Department of Thoracic Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Jieru Zhang
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Yuanjie Zhao
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Xiaomei Yang
- Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Shusheng Wang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| | - Dawei Li
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, 68 Jiyang W Rd, Suzhou, 215600, China
| |
Collapse
|
41
|
Ford NR, Xiong Y, Hecht KA, Squier TC, Rorrer GL, Roesijadi G. Optimizing the Design of Diatom Biosilica-Targeted Fusion Proteins in Biosensor Construction for Bacillus anthracis Detection. BIOLOGY 2020; 9:biology9010014. [PMID: 31936120 PMCID: PMC7168173 DOI: 10.3390/biology9010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/24/2019] [Accepted: 01/04/2020] [Indexed: 11/16/2022]
Abstract
In vivo functionalization of diatom biosilica frustules by genetic manipulation requires careful consideration of the overall structure and function of complex fusion proteins. Although we previously had transformed Thalassiosira pseudonana with constructs containing a single domain antibody (sdAb) raised against the Bacillus anthracis Sterne strain, which detected an epitope of the surface layer protein EA1 accessible in lysed spores, we initially were unsuccessful with constructs encoding a similar sdAb that detected an epitope of EA1 accessible in intact spores and vegetative cells. This discrepancy limited the usefulness of the system as an environmental biosensor for B. anthracis. We surmised that to create functional biosilica-localized biosensors with certain constructs, the biosilica targeting and protein trafficking functions of the biosilica-targeting peptide Sil3T8 had to be uncoupled. We found that retaining the ER trafficking sequence at the N-terminus and relocating the Sil3T8 targeting peptide to the C-terminus of the fusion protein resulted in successful detection of EA1 with both sdAbs. Homology modeling of antigen binding by the two sdAbs supported the hypothesis that the rescue of antigen binding in the previously dysfunctional sdAb was due to removal of steric hindrances between the antigen binding loops and the diatom biosilica for that particular sdAb.
Collapse
Affiliation(s)
- Nicole R. Ford
- Marine Biotechnology Group, Pacific Northwest National Laboratory, Sequim, WA 98382, USA
- Correspondence:
| | - Yijia Xiong
- Department of Basic Medical Sciences, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Karen A. Hecht
- Marine Biotechnology Group, Pacific Northwest National Laboratory, Sequim, WA 98382, USA
| | - Thomas C. Squier
- Department of Basic Medical Sciences, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Gregory L. Rorrer
- School of Chemical Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Guritno Roesijadi
- Marine Biotechnology Group, Pacific Northwest National Laboratory, Sequim, WA 98382, USA
- School of Chemical Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
42
|
Greene ER, Dong KC, Martin A. Understanding the 26S proteasome molecular machine from a structural and conformational dynamics perspective. Curr Opin Struct Biol 2019; 61:33-41. [PMID: 31783300 DOI: 10.1016/j.sbi.2019.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Abstract
The 26S proteasome is the essential compartmental protease in eukaryotic cells required for the ubiquitin-dependent clearance of damaged polypeptides and obsolete regulatory proteins. Recently, a combination of high-resolution structural, biochemical, and biophysical studies has provided crucial new insights into the mechanisms of this fascinating molecular machine. A multitude of new cryo-electron microscopy structures provided snapshots of the proteasome during ATP-hydrolysis-driven substrate translocation, and detailed biochemical studies revealed the timing of individual degradation steps, elucidating the mechanisms for substrate selection and the commitment to degradation through conformational transitions. It was uncovered how ubiquitin removal from substrates is mechanically coupled to degradation, and cryo-electron tomography studies gave a glimpse of active proteasomes inside the cell, their subcellular localization, and interactions with protein aggregates. Here, we summarize these advances in our mechanistic understanding of the proteasome, with a particular focus on how its structural features and conformational transitions enable the multi-step degradation process.
Collapse
Affiliation(s)
- Eric R Greene
- Department of Molecular Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ken C Dong
- Department of Molecular Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Andreas Martin
- Department of Molecular Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
43
|
The role of DUBs in the post-translational control of cell migration. Essays Biochem 2019; 63:579-594. [DOI: 10.1042/ebc20190022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
AbstractCell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.
Collapse
|
44
|
Hameed DS, Sapmaz A, Burggraaff L, Amore A, Slingerland CJ, Westen GJP, Ovaa H. Development of Ubiquitin‐Based Probe for Metalloprotease Deubiquitinases. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dharjath S. Hameed
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Aysegul Sapmaz
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Lindsey Burggraaff
- Drug Discovery and Safety Leiden Academic Center for Drug Research Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Alessia Amore
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | - Cornelis J. Slingerland
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Gerard J. P. Westen
- Drug Discovery and Safety Leiden Academic Center for Drug Research Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Huib Ovaa
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| |
Collapse
|
45
|
Hameed DS, Sapmaz A, Burggraaff L, Amore A, Slingerland CJ, Westen GJP, Ovaa H. Development of Ubiquitin‐Based Probe for Metalloprotease Deubiquitinases. Angew Chem Int Ed Engl 2019; 58:14477-14482. [DOI: 10.1002/anie.201906790] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Dharjath S. Hameed
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Aysegul Sapmaz
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Lindsey Burggraaff
- Drug Discovery and Safety Leiden Academic Center for Drug Research Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Alessia Amore
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
| | - Cornelis J. Slingerland
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Gerard J. P. Westen
- Drug Discovery and Safety Leiden Academic Center for Drug Research Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Huib Ovaa
- Department of Cell Biology II The Netherlands Cancer Institute Plesmanlaan 121 1066 CX Amsterdam The Netherlands
- Department of Cell and Chemical Biology, Oncode Institute Leiden University Medical Center Einthovenweg 20 2333 ZC Leiden The Netherlands
| |
Collapse
|
46
|
Ribeiro AJM, Das S, Dawson N, Zaru R, Orchard S, Thornton JM, Orengo C, Zeqiraj E, Murphy JM, Eyers PA. Emerging concepts in pseudoenzyme classification, evolution, and signaling. Sci Signal 2019; 12:eaat9797. [PMID: 31409758 DOI: 10.1126/scisignal.aat9797] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 21st century is witnessing an explosive surge in our understanding of pseudoenzyme-driven regulatory mechanisms in biology. Pseudoenzymes are proteins that have sequence homology with enzyme families but that are proven or predicted to lack enzyme activity due to mutations in otherwise conserved catalytic amino acids. The best-studied pseudoenzymes are pseudokinases, although examples from other families are emerging at a rapid rate as experimental approaches catch up with an avalanche of freely available informatics data. Kingdom-wide analysis in prokaryotes, archaea and eukaryotes reveals that between 5 and 10% of proteins that make up enzyme families are pseudoenzymes, with notable expansions and contractions seemingly associated with specific signaling niches. Pseudoenzymes can allosterically activate canonical enzymes, act as scaffolds to control assembly of signaling complexes and their localization, serve as molecular switches, or regulate signaling networks through substrate or enzyme sequestration. Molecular analysis of pseudoenzymes is rapidly advancing knowledge of how they perform noncatalytic functions and is enabling the discovery of unexpected, and previously unappreciated, functions of their intensively studied enzyme counterparts. Notably, upon further examination, some pseudoenzymes have previously unknown enzymatic activities that could not have been predicted a priori. Pseudoenzymes can be targeted and manipulated by small molecules and therefore represent new therapeutic targets (or anti-targets, where intervention should be avoided) in various diseases. In this review, which brings together broad bioinformatics and cell signaling approaches in the field, we highlight a selection of findings relevant to a contemporary understanding of pseudoenzyme-based biology.
Collapse
Affiliation(s)
- António J M Ribeiro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sayoni Das
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Natalie Dawson
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Rossana Zaru
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Christine Orengo
- Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elton Zeqiraj
- Astbury Centre for Structural Molecular Biology, Molecular and Cellular Biology, Faculty of Biological Sciences, Astbury Building, Room 8.109, University of Leeds, Leeds LS2 9JT, UK
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
47
|
Rabl J, Bunker RD, Schenk AD, Cavadini S, Gill ME, Abdulrahman W, Andrés-Pons A, Luijsterburg MS, Ibrahim AFM, Branigan E, Aguirre JD, Marceau AH, Guérillon C, Bouwmeester T, Hassiepen U, Peters AHFM, Renatus M, Gelman L, Rubin SM, Mailand N, van Attikum H, Hay RT, Thomä NH. Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation. Mol Cell 2019; 75:483-497.e9. [PMID: 31253574 PMCID: PMC6695476 DOI: 10.1016/j.molcel.2019.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023]
Abstract
In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions.
Collapse
Affiliation(s)
- Julius Rabl
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Richard D Bunker
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Andreas D Schenk
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Mark E Gill
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Wassim Abdulrahman
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Amparo Andrés-Pons
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Martijn S Luijsterburg
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Adel F M Ibrahim
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Emma Branigan
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Jacob D Aguirre
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Aimee H Marceau
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Claire Guérillon
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
| | - Tewis Bouwmeester
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Ulrich Hassiepen
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Martin Renatus
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
| | - Haico van Attikum
- Leiden University Medical Center, Department of Human Genetics, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 10, 4003 Basel, Switzerland.
| |
Collapse
|
48
|
Muli CS, Tian W, Trader DJ. Small-Molecule Inhibitors of the Proteasome's Regulatory Particle. Chembiochem 2019; 20:1739-1753. [PMID: 30740849 PMCID: PMC6765334 DOI: 10.1002/cbic.201900017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Cells need to synthesize and degrade proteins consistently. Maintaining a balanced level of protein in the cell requires a carefully controlled system and significant energy. Degradation of unwanted or damaged proteins into smaller peptide units can be accomplished by the proteasome. The proteasome is composed of two main subunits. The first is the core particle (20S CP), and within this core particle are three types of threonine proteases. The second is the regulatory complex (19S RP), which has a myriad of activities including recognizing proteins marked for degradation and shuttling the protein into the 20S CP to be degraded. Small-molecule inhibitors of the 20S CP have been developed and are exceptional treatments for multiple myeloma (MM). 20S CP inhibitors disrupt the protein balance, leading to cellular stress and eventually to cell death. Unfortunately, the 20S CP inhibitors currently available have dose-limiting off-target effects and resistance can be acquired rapidly. Herein, we discuss small molecules that have been discovered to interact with the 19S RP subunit or with a protein closely associated with 19S RP activity. These molecules still elicit their toxicity by preventing the proteasome from degrading proteins, but do so through different mechanisms of action.
Collapse
Affiliation(s)
- Christine S. Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Wenzhi Tian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
49
|
Kudriaeva AA, Belogurov AA. Proteasome: a Nanomachinery of Creative Destruction. BIOCHEMISTRY (MOSCOW) 2019; 84:S159-S192. [PMID: 31213201 DOI: 10.1134/s0006297919140104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the middle of the 20th century, it was postulated that degradation of intracellular proteins is a stochastic process. More than fifty years of intense studies have finally proven that protein degradation is a very complex and tightly regulated in time and space process that plays an incredibly important role in the vast majority of metabolic pathways. Degradation of more than a half of intracellular proteins is controlled by a hierarchically aligned and evolutionarily perfect system consisting of many components, the main ones being ubiquitin ligases and proteasomes, together referred to as the ubiquitin-proteasome system (UPS). The UPS includes more than 1000 individual components, and most of them are critical for the cell functioning and survival. In addition to the well-known signaling functions of ubiquitination, such as modification of substrates for proteasomal degradation and DNA repair, polyubiquitin (polyUb) chains are involved in other important cellular processes, e.g., cell cycle regulation, immunity, protein degradation in mitochondria, and even mRNA stability. This incredible variety of ubiquitination functions is related to the ubiquitin ability to form branching chains through the ε-amino group of any of seven lysine residues in its sequence. Deubiquitination is accomplished by proteins of the deubiquitinating enzyme family. The second main component of the UPS is proteasome, a multisubunit proteinase complex that, in addition to the degradation of functionally exhausted and damaged proteins, regulates many important cellular processes through controlled degradation of substrates, for example, transcription factors and cyclins. In addition to the ubiquitin-dependent-mediated degradation, there is also ubiquitin-independent degradation, when the proteolytic signal is either an intrinsic protein sequence or shuttle molecule. Protein hydrolysis is a critically important cellular function; therefore, any abnormalities in this process lead to systemic impairments further transforming into serious diseases, such as diabetes, malignant transformation, and neurodegenerative disorders (multiple sclerosis, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease and Huntington's disease). In this review, we discuss the mechanisms that orchestrate all components of the UPS, as well as the plurality of the fine-tuning pathways of proteasomal degradation.
Collapse
Affiliation(s)
- A A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
50
|
Marshall RS, Vierstra RD. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Front Mol Biosci 2019; 6:40. [PMID: 31231659 PMCID: PMC6568242 DOI: 10.3389/fmolb.2019.00040] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|