1
|
Kulig H, Polasik D, Drozd R, Grzesiak W, Hukowska-Szematowicz B, Yu YH, Cheng YH, Dybus A. Structural impact of GSR and LRP8 gene polymorphisms on protein function and their role in racing performance of homing pigeons. Int J Biol Macromol 2025; 310:143181. [PMID: 40246119 DOI: 10.1016/j.ijbiomac.2025.143181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Glutathione reductase (GSR) plays a critical role in the prevention of oxidative damage within the cell. Apolipoprotein E receptor 2 (LRP8) participates in a pathway that modulates synaptic plasticity events crucial for learning and memory. The above aspects are very important when homing pigeons participate in sports competitions. The aim of the study was to analyze single nucleotide polymorphisms (SNPs) in the GSR and LRP8 genes in homing pigeons and to evaluate the potential impact of these genotypes on racing performance, as well as their structural consequences for the encoded proteins. The research included a total of 311 young individuals. DNA was extracted from the blood. Genotypes were determined by the ACRS-PCR test designed. Statistical analysis revealed that the c.606G > T polymorphism in LRP8 gene significantly influenced racing performance, was associated with race performance heterozygous GT pigeons achieving higher mean values of ace points (AP) than homozygous individuals. Therefore, the GT genotype may serve as a selection criterion in pigeon breeding. Further research is necessary to confirm the functionality of the GSR KB376299.1:62398C > T SNP in shaping the racing phenotype of pigeons.
Collapse
Affiliation(s)
- Hanna Kulig
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Daniel Polasik
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland.
| | - Wilhelm Grzesiak
- Biostatistics, Bioinformatics and Animal Research Methods Research Team, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland; Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-412 Szczecin, Poland
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, No. 1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, No. 1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| | - Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| |
Collapse
|
2
|
Raum HN, Modig K, Akke M, Weininger U. Proton Transfer Kinetics in Histidine Side Chains Determined by pH-Dependent Multi-Nuclear NMR Relaxation. J Am Chem Soc 2024; 146:22284-22294. [PMID: 39103163 PMCID: PMC11328173 DOI: 10.1021/jacs.4c04647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Histidine is a key amino-acid residue in proteins with unique properties engendered by its imidazole side chain that can exist in three different states: two different neutral tautomeric forms and a protonated, positively charged one with a pKa value close to physiological pH. Commonly, two or all three states coexist and interchange rapidly, enabling histidine to act as both donor and acceptor of hydrogen bonds, coordinate metal ions, and engage in acid/base catalysis. Understanding the exchange dynamics among the three states is critical for assessing histidine's mechanistic role in catalysis, where the rate of proton exchange and interconversion among tautomers might be rate limiting for turnover. Here, we determine the exchange kinetics of histidine residues with pKa values representative of the accessible range from 5 to 9 by measuring pH-dependent 15N, 13C, and 1H transverse relaxation rate constants for 5 nuclei in each imidazole. Proton exchange between the imidazole and the solvent is mediated by hydronium ions at acidic and neutral pH, whereas hydroxide mediated exchange becomes the dominant mechanism at basic pH. Proton transfer is very fast and reaches the diffusion limit for pKa values near neutral pH. We identify a direct pathway between the two tautomeric forms, likely mediated by a bridging water molecule or, in the case of high pH, hydroxide ion. For histidines with pKa 7, we determine all rate constants (lifetimes) involving protonation over the entire pH range. Our approach should enable critical insights into enzymatic acid/base catalyzed reactions involving histidines in proteins.
Collapse
Affiliation(s)
- Heiner N Raum
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) D-06120, Germany
| | - Kristofer Modig
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) D-06120, Germany
| |
Collapse
|
3
|
Guo HB, Huntington B, Perminov A, Smith K, Hastings N, Dennis P, Kelley-Loughnane N, Berry R. AlphaFold2 modeling and molecular dynamics simulations of an intrinsically disordered protein. PLoS One 2024; 19:e0301866. [PMID: 38739602 PMCID: PMC11090348 DOI: 10.1371/journal.pone.0301866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/23/2024] [Indexed: 05/16/2024] Open
Abstract
We use AlphaFold2 (AF2) to model the monomer and dimer structures of an intrinsically disordered protein (IDP), Nvjp-1, assisted by molecular dynamics (MD) simulations. We observe relatively rigid dimeric structures of Nvjp-1 when compared with the monomer structures. We suggest that protein conformations from multiple AF2 models and those from MD trajectories exhibit a coherent trend: the conformations of an IDP are deviated from each other and the conformations of a well-folded protein are consistent with each other. We use a residue-residue interaction network (RIN) derived from the contact map which show that the residue-residue interactions in Nvjp-1 are mainly transient; however, those in a well-folded protein are mainly persistent. Despite the variation in 3D shapes, we show that the AF2 models of both disordered and ordered proteins exhibit highly consistent profiles of the pLDDT (predicted local distance difference test) scores. These results indicate a potential protocol to justify the IDPs based on multiple AF2 models and MD simulations.
Collapse
Affiliation(s)
- Hao-Bo Guo
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
- UES Inc., Dayton, OH, United States of America
| | - Baxter Huntington
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
- Miami University, Oxford, OH, United States of America
| | - Alexander Perminov
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
- Miami University, Oxford, OH, United States of America
| | - Kenya Smith
- United States Air Force Academy, Colorado Springs, CO, United States of America
| | - Nicholas Hastings
- United States Air Force Academy, Colorado Springs, CO, United States of America
| | - Patrick Dennis
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
| | - Nancy Kelley-Loughnane
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
| | - Rajiv Berry
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
| |
Collapse
|
4
|
Tiwari VP, De D, Thapliyal N, Kay LE, Vallurupalli P. Beyond slow two-state protein conformational exchange using CEST: applications to three-state protein interconversion on the millisecond timescale. JOURNAL OF BIOMOLECULAR NMR 2024; 78:39-60. [PMID: 38169015 DOI: 10.1007/s10858-023-00431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Although NMR spectroscopy is routinely used to study the conformational dynamics of biomolecules, robust analyses of the data are challenged in cases where exchange is more complex than two-state, such as when a 'visible' major conformer exchanges with two 'invisible' minor states on the millisecond timescale. It is becoming increasingly clear that chemical exchange saturation transfer (CEST) NMR experiments that were initially developed to study systems undergoing slow interconversion are also sensitive to intermediate-fast timescale biomolecular conformational exchange. Here we investigate the utility of the amide 15N CEST experiment to characterise protein three-state exchange occurring on the millisecond timescale by studying the interconversion between the folded (F) state of the FF domain from human HYPA/FBP11 (WT FF) and two of its folding intermediates I1 and I2. Although 15N CPMG experiments are consistent with the F state interconverting with a single minor state on the millisecond timescale, 15N CEST data clearly establish an exchange process between F and a pair of minor states. A unique three-state exchange model cannot be obtained by analysis of 15N CEST data recorded at a single temperature. However, including the relative sign of the difference in the chemical shifts of the two minor states based on a simple two-state analysis of CEST data recorded at multiple temperatures, results in a robust three-state model in which the F, I1 and I2 states interconvert with each other on the millisecond timescale ( k e x , F I 1 ~ 550 s-1, k e x , F I 2 ~ 1200 s-1, k e x , I 1 I 2 ~ 5000 s-1), with I1 and I2 sparsely populated at ~ 0.15% and ~ 0.35%, respectively, at 15 °C. A computationally demanding grid-search of exchange parameter space is not required to extract the best-fit exchange parameters from the CEST data. The utility of the CEST experiment, thus, extends well beyond studies of conformers in slow exchange on the NMR chemical shift timescale, to include systems with interconversion rates on the order of thousands/second.
Collapse
Affiliation(s)
- Ved Prakash Tiwari
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Debajyoti De
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Nemika Thapliyal
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India.
| |
Collapse
|
5
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
6
|
Varghese CN, Jaladeep A, Sekhar A. Measuring Hydroxyl Exchange Rates in Glycans Using a Synergistic Combination of Saturation Transfer and Relaxation Dispersion NMR. J Am Chem Soc 2024; 146:3825-3835. [PMID: 38293947 PMCID: PMC7615893 DOI: 10.1021/jacs.3c10982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Molecular recognition events mediated by glycans play pivotal roles in controlling the fate of diverse biological processes such as cellular communication and the immune response. The affinity of glycans for their target receptors is governed primarily by the hydrogen bonds formed by hydroxyl groups decorating the glycan surface. Hydroxyl exchange rate constants are therefore vital parameters that report on glycan structure and dynamics. Here we present a strategy for characterizing hydroxyl hydrogen/deuterium (H/D) exchange in glycans that employs a synergistic combination of 13C chemical exchange saturation transfer (CEST) and Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG) NMR methods. We show that the combination of CEST and CPMG experiments facilitates the sensitive detection of the small (∼0.1 ppm) two-bond deuterium isotope shift on a 13C nucleus when the attached hydroxyl group fluctuates between protonated and deuterated states. This shift is leveraged for measuring site-specific kinetic H/D exchange rate constants as well as thermodynamic free energies of isotope fractionation. The CEST and CPMG modules are integrated with a selective J-cross-polarization scheme that provides the flexibility for rapid characterization of H/D exchange at a specific hydroxyl site. Moreover, our approach enables the precise isothermal measurement of hydroxyl exchange rate constants without the need for cumbersome isotope labeling. The H/D exchange rate constants of three different glycans assessed using this method highlight its potential for detecting transient intra- and intermolecular hydrogen bonds. In addition, the trends in H/D exchange rate constants establish site-specific steric accessibility as a key determinant of solvent exchange dynamics in glycans.
Collapse
Affiliation(s)
- Claris Niya Varghese
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Ahallya Jaladeep
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| |
Collapse
|
7
|
Jiang Y, Chiu TP, Mitra R, Rohs R. Probing the role of the protonation state of a minor groove-linker histidine in Exd-Hox-DNA binding. Biophys J 2024; 123:248-259. [PMID: 38130056 PMCID: PMC10808038 DOI: 10.1016/j.bpj.2023.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/22/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
DNA recognition and targeting by transcription factors (TFs) through specific binding are fundamental in biological processes. Furthermore, the histidine protonation state at the TF-DNA binding interface can significantly influence the binding mechanism of TF-DNA complexes. Nevertheless, the role of histidine in TF-DNA complexes remains underexplored. Here, we employed all-atom molecular dynamics simulations using AlphaFold2-modeled complexes based on previously solved co-crystal structures to probe the role of the His-12 residue in the Extradenticle (Exd)-Sex combs reduced (Scr)-DNA complex when binding to Scr and Ultrabithorax (Ubx) target sites. Our results demonstrate that the protonation state of histidine notably affected the DNA minor-groove width profile and binding free energy. Examining flanking sequences of various binding affinities derived from SELEX-seq experiments, we analyzed the relationship between binding affinity and specificity. We uncovered how histidine protonation leads to increased binding affinity but can lower specificity. Our findings provide new mechanistic insights into the role of histidine in modulating TF-DNA binding.
Collapse
Affiliation(s)
- Yibei Jiang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Raktim Mitra
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California; Department of Chemistry, University of Southern California, Los Angeles, California; Department of Physics and Astronomy, University of Southern California, Los Angeles, California; Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, California.
| |
Collapse
|
8
|
Miyagi M, Nakazawa T. Significance of Histidine Hydrogen-Deuterium Exchange Mass Spectrometry in Protein Structural Biology. BIOLOGY 2024; 13:37. [PMID: 38248468 PMCID: PMC10813008 DOI: 10.3390/biology13010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
Histidine residues play crucial roles in shaping the function and structure of proteins due to their unique ability to act as both acids and bases. In other words, they can serve as proton donors and acceptors at physiological pH. This exceptional property is attributed to the side-chain imidazole ring of histidine residues. Consequently, determining the acid-base dissociation constant (Ka) of histidine imidazole rings in proteins often yields valuable insights into protein functions. Significant efforts have been dedicated to measuring the pKa values of histidine residues in various proteins, with nuclear magnetic resonance (NMR) spectroscopy being the most commonly used technique. However, NMR-based methods encounter challenges in assigning signals to individual imidazole rings and require a substantial amount of proteins. To address these issues associated with NMR-based approaches, a mass-spectrometry-based method known as histidine hydrogen-deuterium exchange mass spectrometry (His-HDX-MS) has been developed. This technique not only determines the pKa values of histidine imidazole groups but also quantifies their solvent accessibility. His-HDX-MS has proven effective across diverse proteins, showcasing its utility. This review aims to clarify the fundamental principles of His-HDX-MS, detail the experimental workflow, explain data analysis procedures and provide guidance for interpreting the obtained results.
Collapse
Affiliation(s)
- Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4988, USA
| | - Takashi Nakazawa
- Department of Chemistry, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
9
|
Augustine J, Baksh KA, Prosser RS, Zamble DB. Insights into the Allosteric Response to Acidity by the Helicobacter pylori NikR Transcription Factor. Biochemistry 2023; 62:3265-3275. [PMID: 37917856 DOI: 10.1021/acs.biochem.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Helicobacter pylori NikR (HpNikR) is a nickel-responsive transcription factor that regulates genes involved in nickel homeostasis, which is essential for the survival of this pathogen within the acidic human stomach. HpNikR also responds to drops in pH and regulates genes controlling acid acclimation of the bacteria, independently of nickel. We previously showed that nickel binding biases the conformational ensemble of HpNikR to the more DNA-binding competent states via an allosteric network of residues encompassing the nickel binding sites and the interface between the metal- and DNA-binding domains. Here, we examine how acidity promotes this response using 19F-NMR, mutagenesis, and DNA-binding studies. 19F-NMR revealed that a drop in pH from 7.6 to 6.0 does little to shift the conformational ensemble of HpNikR to the DNA binding-compatible cis conformer. Nevertheless, DNA-binding affinities of apo-HpNikR at pH 6.0 and Ni(II)-HpNikR at pH 7.6 are comparable for the ureA promoter. Histidine residues of the nickel binding sites were shown to be important for pH-dependent DNA binding and thus likely impart positive charge to the protein, initiating long-range electrostatic interactions with DNA that induce DNA complexation. The results point to a different DNA-binding mechanism in response to acidity compared to the conformational selection mechanism in response to nickel and overall provide new insights into the influence of pH on HpNikR activity, which contributes to H. pylori viability.
Collapse
Affiliation(s)
- Jerry Augustine
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Karina A Baksh
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Robert Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
10
|
Neville N, Lehotsky K, Yang Z, Klupt KA, Denoncourt A, Downey M, Jia Z. Modification of histidine repeat proteins by inorganic polyphosphate. Cell Rep 2023; 42:113082. [PMID: 37660293 DOI: 10.1016/j.celrep.2023.113082] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate that is present in nearly all organisms studied to date. A remarkable function of polyP involves its attachment to lysine residues via non-enzymatic post-translational modification (PTM), which is presumed to be covalent. Here, we show that proteins containing tracts of consecutive histidine residues exhibit a similar modification by polyP, which confers an electrophoretic mobility shift on NuPAGE gels. Our screen uncovers 30 human and yeast histidine repeat proteins that undergo histidine polyphosphate modification (HPM). This polyP modification is histidine dependent and non-covalent in nature, although remarkably it withstands harsh denaturing conditions-a hallmark of covalent PTMs. Importantly, we show that HPM disrupts phase separation and the phosphorylation activity of the human protein kinase DYRK1A, and inhibits the activity of the transcription factor MafB, highlighting HPM as a potential protein regulatory mechanism.
Collapse
Affiliation(s)
- Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kirsten Lehotsky
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Zhiyun Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kody A Klupt
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
11
|
Zhao Y, Jiang H, Yu J, Wang L, Du J. Engineered Histidine-Rich Peptides Enhance Endosomal Escape for Antibody-Targeted Intracellular Delivery of Functional Proteins. Angew Chem Int Ed Engl 2023; 62:e202304692. [PMID: 37283024 DOI: 10.1002/anie.202304692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
Currently, the clinical application of protein/peptide therapeutics is mainly limited to the modulation of diseases in extracellular spaces. Intracellular targets are hardly accessed, owing largely to the endosomal entrapment of internalized proteins/peptides. Here, we report a strategy to design and construct peptides that enable endosome-to-cytosol delivery based on an extension of the "histidine switch" principle. By substituting the Arg/Lys residues in cationic cell-penetrating peptides (CPPs) with histidine, we obtained peptides with pH-dependent membrane-perturbation activity. These peptides do not randomly penetrate cells like CPPs, but imitate the endosomal escape of CPPs following cellular uptake. Working with one such 16-residue peptide (hsLMWP) with high endosomal escape capacity, we engineered modular fusion proteins and achieved antibody-targeted delivery of diverse protein cargoes-including the pro-apoptotic protein BID (BH3-interacting domain death agonist) and Cre recombinase-into the cytosol of multiple cancer cell types. After extensive in vitro testing, an in vivo analysis with xenograft mice ultimately demonstrated that a trastuzumab-hsLMWP-BID fusion conferred strong anti-tumor efficacy without apparent side effects. Notably, our fusion protein features a modular design, allowing flexible applications for any antibody/cargo combination of choice. Therefore, the potential applications extend throughout life science and biomedicine, including gene editing, cancer treatment, and immunotherapy.
Collapse
Affiliation(s)
- Yan Zhao
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University-National Institute Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haolin Jiang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University-Tsinghua University-National Institute Biological Sciences (PTN) Joint Graduate Program, Peking University, Beijing, 100871, China
| | - Jiazhen Yu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Luyao Wang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Guan J, Lu Y, Sen K, Abdul Nasir J, Desmoutier AW, Hou Q, Zhang X, Logsdail AJ, Dutta G, Beale AM, Strange RW, Yong C, Sherwood P, Senn HM, Catlow CRA, Keal TW, Sokol AA. Computational infrared and Raman spectra by hybrid QM/MM techniques: a study on molecular and catalytic material systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220234. [PMID: 37211033 PMCID: PMC10200352 DOI: 10.1098/rsta.2022.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/04/2023] [Indexed: 05/23/2023]
Abstract
Vibrational spectroscopy is one of the most well-established and important techniques for characterizing chemical systems. To aid the interpretation of experimental infrared and Raman spectra, we report on recent theoretical developments in the ChemShell computational chemistry environment for modelling vibrational signatures. The hybrid quantum mechanical and molecular mechanical approach is employed, using density functional theory for the electronic structure calculations and classical forcefields for the environment. Computational vibrational intensities at chemical active sites are reported using electrostatic and fully polarizable embedding environments to achieve more realistic vibrational signatures for materials and molecular systems, including solvated molecules, proteins, zeolites and metal oxide surfaces, providing useful insight into the effect of the chemical environment on the signatures obtained from experiment. This work has been enabled by the efficient task-farming parallelism implemented in ChemShell for high-performance computing platforms. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- Jingcheng Guan
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - You Lu
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD, UK
| | - Kakali Sen
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD, UK
| | - Jamal Abdul Nasir
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | | | - Qing Hou
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Institute of Photonic Chips, University of Shanghai for Science of Technology, Shanghai 201512, People’s Republic of China
| | - Xingfan Zhang
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Andrew J. Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Gargi Dutta
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Department of Physics, Balurghat College, Balurghat 733101, West Bengal, India
| | - Andrew M. Beale
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, UK
| | - Richard W. Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Chin Yong
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD, UK
| | - Paul Sherwood
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Hans M. Senn
- School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | - C. Richard A. Catlow
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, UK
| | - Thomas W. Keal
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD, UK
| | - Alexey A. Sokol
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| |
Collapse
|
13
|
Gielnik M, Szymańska A, Dong X, Jarvet J, Svedružić ŽM, Gräslund A, Kozak M, Wärmländer SKTS. Prion Protein Octarepeat Domain Forms Transient β-Sheet Structures upon Residue-Specific Binding to Cu(II) and Zn(II) Ions. Biochemistry 2023. [PMID: 37163663 DOI: 10.1021/acs.biochem.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Misfolding of the cellular prion protein (PrPC) is associated with the development of fatal neurodegenerative diseases called transmissible spongiform encephalopathies (TSEs). Metal ions appear to play a crucial role in PrPC misfolding. PrPC is a combined Cu(II) and Zn(II) metal-binding protein, where the main metal-binding site is located in the octarepeat (OR) region. Thus, the biological function of PrPC may involve the transport of divalent metal ions across membranes or buffering concentrations of divalent metal ions in the synaptic cleft. Recent studies have shown that an excess of Cu(II) ions can result in PrPC instability, oligomerization, and/or neuroinflammation. Here, we have used biophysical methods to characterize Cu(II) and Zn(II) binding to the isolated OR region of PrPC. Circular dichroism (CD) spectroscopy data suggest that the OR domain binds up to four Cu(II) ions or two Zn(II) ions. Binding of the first metal ion results in a structural transition from the polyproline II helix to the β-turn structure, while the binding of additional metal ions induces the formation of β-sheet structures. Fluorescence spectroscopy data indicate that the OR region can bind both Cu(II) and Zn(II) ions at neutral pH, but under acidic conditions, it binds only Cu(II) ions. Molecular dynamics simulations suggest that binding of either metal ion to the OR region results in the formation of β-hairpin structures. As the formation of β-sheet structures can be a first step toward amyloid formation, we propose that high concentrations of either Cu(II) or Zn(II) ions may have a pro-amyloid effect in TSE diseases.
Collapse
Affiliation(s)
- Maciej Gielnik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, PL 61-614 Poznań, Poland
| | - Aneta Szymańska
- Department of Biomedical Chemistry, Faculty of Chemistry, Gdańsk University, PL 80-308 Gdańsk, Poland
| | - Xiaolin Dong
- Chemistry Section, Stockholm University, 10691 Stockholm, Sweden
| | - Jüri Jarvet
- Chemistry Section, Stockholm University, 10691 Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Željko M Svedružić
- Department of Biotechnology, University of Rijeka, HR 51000 Rijeka, Croatia
| | - Astrid Gräslund
- Chemistry Section, Stockholm University, 10691 Stockholm, Sweden
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, PL 61-614 Poznań, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, PL 30-392 Kraków, Poland
| | | |
Collapse
|
14
|
Shahfar H, O'Brien CJ, Budyak IL, Roberts CJ. Predicting Experimental B22 Values and the Effects of Histidine Charge States for Monoclonal Antibodies Using Coarse-Grained Molecular Simulations. Mol Pharm 2022; 19:3820-3830. [PMID: 36194430 DOI: 10.1021/acs.molpharmaceut.2c00337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Static light scattering (SLS) was used to characterize five monoclonal antibodies (MAbs) as a function of total ionic strength (TIS) at pH values between 5.5 and 7.0. Second osmotic virial coefficient (B22) values were determined experimentally for each MAb as a function of TIS using low protein concentration SLS data. Coarse-grained molecular simulations were performed to predict the B22 values for each MAb at a given pH and TIS. To include the effect of charge fluctuations of titratable residues in the B22 calculations, a statistical approach was introduced in the Monte Carlo algorithm based on the protonation probability based on a given pH value and the Henderson-Hasselbalch equation. The charged residues were allowed to fluctuate individually, based on the sampled microstates and the influence of electrostatic interactions on net protein-protein interactions during the simulations. Compared to static charge simulations, the new approach provided improved results compared to experimental B22 values at pH conditions near the pKa of titratable residues.
Collapse
Affiliation(s)
- Hassan Shahfar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Christopher J O'Brien
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Ivan L Budyak
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| |
Collapse
|
15
|
Nierzwicki Ł, East KW, Binz JM, Hsu RV, Ahsan M, Arantes PR, Skeens E, Pacesa M, Jinek M, Lisi GP, Palermo G. Principles of target DNA cleavage and the role of Mg2+ in the catalysis of CRISPR-Cas9. Nat Catal 2022; 5:912-922. [PMID: 36778082 PMCID: PMC9909973 DOI: 10.1038/s41929-022-00848-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022]
Abstract
At the core of the CRISPR-Cas9 genome-editing technology, the endonuclease Cas9 introduces site-specific breaks in DNA. However, precise mechanistic information to ameliorating Cas9 function is still missing. Here, multi-microsecond molecular dynamics, free-energy and multiscale simulations are combined with solution NMR and DNA cleavage experiments to resolve the catalytic mechanism of target DNA cleavage. We show that the conformation of an active HNH nuclease is tightly dependent on the catalytic Mg2+, unveiling its cardinal structural role. This activated Mg2+-bound HNH is consistently described through molecular simulations, solution NMR and DNA cleavage assays, revealing also that the protonation state of the catalytic H840 is strongly affected by active site mutations. Finally, ab-initio QM(DFT)/MM simulations and metadynamics establish the catalytic mechanism, showing that the catalysis is activated by H840 and completed by K866, rationalising DNA cleavage experiments. This information is critical to enhance the enzymatic function of CRISPR-Cas9 toward improved genome-editing.
Collapse
Affiliation(s)
- Łukasz Nierzwicki
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Kyle W. East
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, United States
| | - Jonas M. Binz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Rohaine V. Hsu
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Mohd Ahsan
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Pablo R. Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, United States
| | - Martin Pacesa
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, United States
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
- Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| |
Collapse
|
16
|
Rossi MA, Palzkill T, Almeida FCL, Vila AJ. Slow Protein Dynamics Elicits New Enzymatic Functions by Means of Epistatic Interactions. Mol Biol Evol 2022; 39:6711538. [PMID: 36136729 PMCID: PMC9547502 DOI: 10.1093/molbev/msac194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein evolution depends on the adaptation of these molecules to different functional challenges. This occurs by tuning their biochemical, biophysical, and structural traits through the accumulation of mutations. While the role of protein dynamics in biochemistry is well recognized, there are limited examples providing experimental evidence of the optimization of protein dynamics during evolution. Here we report an NMR study of four variants of the CTX-M β-lactamases, in which the interplay of two mutations outside the active site enhances the activity against a cephalosporin substrate, ceftazidime. The crystal structures of these enzymes do not account for this activity enhancement. By using NMR, here we show that the combination of these two mutations increases the backbone dynamics in a slow timescale and the exposure to the solvent of an otherwise buried β-sheet. The two mutations located in this β-sheet trigger conformational changes in loops located at the opposite side of the active site. We postulate that the most active variant explores alternative conformations that enable binding of the more challenging substrate ceftazidime. The impact of the mutations in the dynamics is context-dependent, in line with the epistatic effect observed in the catalytic activity of the different variants. These results reveal the existence of a dynamic network in CTX-M β-lactamases that has been exploited in evolution to provide a net gain-of-function, highlighting the role of alternative conformations in protein evolution.
Collapse
Affiliation(s)
- Maria-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, Rosario, Argentina
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, USA,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, USA
| | | | | |
Collapse
|
17
|
Cancer-related Mutations with Local or Long-range Effects on an Allosteric Loop of p53. J Mol Biol 2022; 434:167663. [PMID: 35659507 DOI: 10.1016/j.jmb.2022.167663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
The tumor protein 53 (p53) is involved in transcription-dependent and independent processes. Several p53 variants related to cancer have been found to impact protein stability. Other variants, on the contrary, might have little impact on structural stability and have local or long-range effects on the p53 interactome. Our group previously identified a loop in the DNA binding domain (DBD) of p53 (residues 207-213) which can recruit different interactors. Experimental structures of p53 in complex with other proteins strengthen the importance of this interface for protein-protein interactions. We here characterized with structure-based approaches somatic and germline variants of p53 which could have a marginal effect in terms of stability and act locally or allosterically on the region 207-213 with consequences on the cytosolic functions of this protein. To this goal, we studied 1132 variants in the p53 DBD with structure-based approaches, accounting also for protein dynamics. We focused on variants predicted with marginal effects on structural stability. We then investigated each of these variants for their impact on DNA binding, dimerization of the p53 DBD, and intramolecular contacts with the 207-213 region. Furthermore, we identified variants that could modulate long-range the conformation of the region 207-213 using a coarse-grain model for allostery and all-atom molecular dynamics simulations. Our predictions have been further validated using enhanced sampling methods for 15 variants. The methodologies used in this study could be more broadly applied to other p53 variants or cases where conformational changes of loop regions are essential in the function of disease-related proteins.
Collapse
|
18
|
Vaz da Cruz V, Büchner R, Fondell M, Pietzsch A, Eckert S, Föhlisch A. Targeting Individual Tautomers in Equilibrium by Resonant Inelastic X-ray Scattering. J Phys Chem Lett 2022; 13:2459-2466. [PMID: 35266716 PMCID: PMC8935368 DOI: 10.1021/acs.jpclett.1c03453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Tautomerism is one of the most important forms of isomerism, owing to the facile interconversion between species and the large differences in chemical properties introduced by the proton transfer connecting the tautomers. Spectroscopic techniques are often used for the characterization of tautomers. In this context, separating the overlapping spectral response of coexisting tautomers is a long-standing challenge in chemistry. Here, we demonstrate that by using resonant inelastic X-ray scattering tuned to the core excited states at the site of proton exchange between tautomers one is able to experimentally disentangle the manifold of valence excited states of each tautomer in a mixture. The technique is applied to the prototypical keto-enol equilibrium of 3-hydroxypyridine in aqueous solution. We detect transitions from the occupied orbitals into the LUMO for each tautomer in solution, which report on intrinsic and hydrogen-bond-induced orbital polarization within the π and σ manifolds at the proton-transfer site.
Collapse
Affiliation(s)
- Vinícius Vaz da Cruz
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Robby Büchner
- Universität
Potsdam, Institut für Physik und Astronomie, 14476 Potsdam, Germany
| | - Mattis Fondell
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Annette Pietzsch
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Sebastian Eckert
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| |
Collapse
|
19
|
Wang Z, Li Q, Li J, Shang L, Li J, Chou S, Lyu Y, Shan A. pH-Responsive Antimicrobial Peptide with Selective Killing Activity for Bacterial Abscess Therapy. J Med Chem 2022; 65:5355-5373. [PMID: 35294199 DOI: 10.1021/acs.jmedchem.1c01485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The unusual acidic pH of the abscess milieu is an adverse factor that decreases the therapeutic efficacy of traditional antibiotics. Moreover, avoiding both the undesired killing of commensal bacteria and the development of drug resistance remains difficult during abscess therapy. Hence, we synthesized a series of pH-responsive antimicrobial peptides equipped with efficient bacterial killing activity at pH 6.5 and inactivity at pH 7.4. Among the peptides, F5 exhibited outstanding pH-responsive antimicrobial activity and low toxicity. Fluorescence spectroscopy and electron microscopy illustrated that F5 killed bacteria via a membrane-disruptive mechanism at acidic pH values. Mouse cutaneous abscesses revealed that F5 was equipped with excellent therapeutic ability to reduce the bacterial load and cytokines without causing skin toxicity. In summary, this study reveals a strategy for selectively killing bacteria under the pathologic conditions of abscess sites while avoiding the elimination of commensal bacteria under normal physiological pH levels.
Collapse
Affiliation(s)
- Zhihua Wang
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Qiuke Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Jinze Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Lu Shang
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Jiawei Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Shuli Chou
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Yinfeng Lyu
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| |
Collapse
|
20
|
Bahadoor A, Watt S, Rajotte I, Bates J. Tautomerization and Isomerization in Quantitative NMR: A Case Study with 4-Deoxynivalenol (DON). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2733-2740. [PMID: 35171597 DOI: 10.1021/acs.jafc.1c08053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The regulated mycotoxin 4-deoxynivalenol (DON) has a heterocyclic structure that is readily amenable to tautomerization and conformational isomerization in solution. An analysis of DON in solution by NMR revealed the presence of hemiacetal tautomer(s) and putative conformational isomers, which maintain the intact enone functional group. The extent and type of tautomerization/isomerization vary according to the NMR solvent used and produce different signal patterns in the NMR spectra. Thus, the same proton produces multiple signals depending on which isomer/tautomer it belongs to. To maintain the accuracy of quantitative NMR (qNMR) measurements, it was essential to conclusively identify all signals belonging to the same proton to avoid underestimating its integral value. A strategy to overcome the complications of DON tautomerization and isomerization in solution during qNMR is reported. Of all proton atoms on the DON carbo-skeleton, H-10 produced clearly defined signals centered at 6.6 ppm for suspected conformational isomers and at 5.5 ppm for hemiacetal tautomers. To determine the purity of DON by quantitative proton NMR, the collective integrals of all isomeric and tautomeric signals belonging to H-10 provided the most accurate value. The purity of DON obtained with this protocol is highly accurate and suitable for the value assignment of certified reference materials (CRMs).
Collapse
Affiliation(s)
- Adilah Bahadoor
- National Research Council, Metrology, Ottawa, Ontario K1A 0R6, Canada
| | - Sarah Watt
- National Research Council, Metrology, Ottawa, Ontario K1A 0R6, Canada
| | - Isabelle Rajotte
- National Research Council, Metrology, Ottawa, Ontario K1A 0R6, Canada
| | - Jennifer Bates
- National Research Council, Metrology, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
21
|
Tugarinov V, Ceccon A, Clore GM. NMR methods for exploring 'dark' states in ligand binding and protein-protein interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 128:1-24. [PMID: 35282867 PMCID: PMC8921508 DOI: 10.1016/j.pnmrs.2021.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 05/24/2023]
Abstract
A survey, primarily based on work in the authors' laboratory during the last 10 years, is provided of recent developments in NMR studies of exchange processes involving protein-ligand and protein-protein interactions. We start with a brief overview of the theoretical background of Dark state Exchange Saturation Transfer (DEST) and lifetime line-broadening (ΔR2) NMR methodology. Some limitations of the DEST/ΔR2 methodology in applications to molecular systems with intermediate molecular weights are discussed, along with the means of overcoming these limitations with the help of closely related exchange NMR techniques, such as the measurements of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion, exchange-induced chemical shifts or rapidly-relaxing components of relaxation decays. Some theoretical underpinnings of the quantitative description of global dynamics of proteins on the surface of very high molecular weight particles (nanoparticles) are discussed. Subsequently, several applications of DEST/ΔR2 methodology are described from a methodological perspective with an emphasis on providing examples of how kinetic and relaxation parameters for exchanging systems can be reliably extracted from NMR data for each particular model of exchange. Among exchanging systems that are not associated with high molecular weight species, we describe several exchange NMR-based studies that focus on kinetic modelling of transient pre-nucleation oligomerization of huntingtin peptides that precedes aggregation and fibril formation.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| | - Alberto Ceccon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
22
|
Banerjee S, Muderspach SJ, Tandrup T, Frandsen KEH, Singh RK, Ipsen JØ, Hernández-Rollán C, Nørholm MHH, Bjerrum MJ, Johansen KS, Lo Leggio L. Protonation State of an Important Histidine from High Resolution Structures of Lytic Polysaccharide Monooxygenases. Biomolecules 2022; 12:194. [PMID: 35204695 PMCID: PMC8961595 DOI: 10.3390/biom12020194] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
Lytic Polysaccharide Monooxygenases (LPMOs) oxidatively cleave recalcitrant polysaccharides. The mechanism involves (i) reduction of the Cu, (ii) polysaccharide binding, (iii) binding of different oxygen species, and (iv) glycosidic bond cleavage. However, the complete mechanism is poorly understood and may vary across different families and even within the same family. Here, we have investigated the protonation state of a secondary co-ordination sphere histidine, conserved across AA9 family LPMOs that has previously been proposed to be a potential proton donor. Partial unrestrained refinement of newly obtained higher resolution data for two AA9 LPMOs and re-refinement of four additional data sets deposited in the PDB were carried out, where the His was refined without restraints, followed by measurements of the His ring geometrical parameters. This allowed reliable assignment of the protonation state, as also validated by following the same procedure for the His brace, for which the protonation state is predictable. The study shows that this histidine is generally singly protonated at the Nε2 atom, which is close to the oxygen species binding site. Our results indicate robustness of the method. In view of this and other emerging evidence, a role as proton donor during catalysis is unlikely for this His.
Collapse
Affiliation(s)
- Sanchari Banerjee
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Sebastian J. Muderspach
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Tobias Tandrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Kristian Erik Høpfner Frandsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871 Copenhagen, Denmark;
| | - Raushan K. Singh
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Johan Ørskov Ipsen
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871 Copenhagen, Denmark;
- Department of Geoscience & Natural Resource Management, University of Copenhagen, Frederiksberg 5, DK-1958 Copenhagen, Denmark;
| | - Cristina Hernández-Rollán
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, DK-2800 Kongens Lyngby, Denmark; (C.H.-R.); (M.H.H.N.)
| | - Morten H. H. Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, DK-2800 Kongens Lyngby, Denmark; (C.H.-R.); (M.H.H.N.)
| | - Morten J. Bjerrum
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| | - Katja Salomon Johansen
- Department of Geoscience & Natural Resource Management, University of Copenhagen, Frederiksberg 5, DK-1958 Copenhagen, Denmark;
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark; (S.B.); (S.J.M.); (T.T.); (K.E.H.F.); (R.K.S.); (M.J.B.)
| |
Collapse
|
23
|
Caffrey M, Lavie A. pH-Dependent Mechanisms of Influenza Infection Mediated by Hemagglutinin. Front Mol Biosci 2022; 8:777095. [PMID: 34977156 PMCID: PMC8718792 DOI: 10.3389/fmolb.2021.777095] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza hemagglutinin (HA) is a viral membrane bound protein that plays a critical role in the viral life cycle by mediating entry into target cells. HA exploits the lowering of the pH in the endosomal compartment to initiate a series of conformational changes that promote access of the viral genetic material to the cytoplasm, and hence viral replication. In this review we will first discuss what is known about the structural properties of HA as a function of pH. Next, we will discuss the dynamics and intermediate states of HA. We will then discuss the specific residues that are thought to be titrated by the change in pH and possible mechanisms for the pH triggered conformational changes. Finally, we will discuss small molecules that disrupt the pH trigger and thus serve as potential therapeutic strategies to prevent influenza infection.
Collapse
Affiliation(s)
- Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
24
|
Liberato MS, Cavalcante NGS, Sindu PA, Rodrigues-Jesus MJ, Zelenovskii P, Carreira ACO, Baptista MS, Sogayar MC, Ferreira LCS, Catalani LH. Histidine-based hydrogels via singlet-oxygen photooxidation. SOFT MATTER 2021; 17:10926-10934. [PMID: 34811564 DOI: 10.1039/d1sm01023a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of hydrogels by photosensitized oxidation and crosslinking of histidine-derived polymers is demonstrated for the first time. The photooxidation of pendant His mediated by singlet oxygen was used to promote covalent coupling by its dimerization. As a proof-of-concept, two systems were studied: (i) chondroitin sulfate (CS) functionalized with His, and (ii) an elastin-like peptide (ELP) containing His produced by recombinant techniques. Both materials were crosslinked by irradiation at 425 nm in the presence of Zn-porphyrin derivatives yielding His-based hydrogels. The molecular structure and physicochemical properties of ELP-His and other 5 ELPs with photooxidizable amino acids were studied in silica by computer simulation. A correlation between the protein conformation and its elastic properties is discussed. CS-His hydrogels demonstrate larger storage moduli than ELPs with other amino acids. The obtained results show the potential use of photooxidation to create a new type of His-based hydrogels.
Collapse
Affiliation(s)
- Michelle S Liberato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - Nayara G S Cavalcante
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - P Abinaya Sindu
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - Mônica J Rodrigues-Jesus
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Pavel Zelenovskii
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana C O Carreira
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, 05508-220, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Mari C Sogayar
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
- Cell and Molecular Therapy Center (NUCEL), Medical School, University of São Paulo, 05508-220, São Paulo, Brazil
| | - Luís C S Ferreira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Luiz H Catalani
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil.
| |
Collapse
|
25
|
Zadorozhnyi R, Sarkar S, Quinn CM, Zadrozny KK, Ganser-Pornillos BK, Pornillos O, Gronenborn AM, Polenova T. Determination of Histidine Protonation States in Proteins by Fast Magic Angle Spinning NMR. Front Mol Biosci 2021; 8:767040. [PMID: 34957215 PMCID: PMC8703106 DOI: 10.3389/fmolb.2021.767040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022] Open
Abstract
Histidine residues play important structural and functional roles in proteins, such as serving as metal-binding ligands, mediating enzyme catalysis, and modulating proton channel activity. Many of these activities are modulated by the ionization state of the imidazole ring. Here we present a fast MAS NMR approach for the determination of protonation and tautomeric states of His at frequencies of 40-62 kHz. The experiments combine 1H detection with selective magnetization inversion techniques and transferred echo double resonance (TEDOR)-based filters, in 2D heteronuclear correlation experiments. We illustrate this approach using microcrystalline assemblies of HIV-1 CACTD-SP1 protein.
Collapse
Affiliation(s)
- Roman Zadorozhnyi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sucharita Sarkar
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Caitlin M. Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Kaneil K. Zadrozny
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Barbie K. Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Angela M. Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
26
|
The many ways that nature has exploited the unusual structural and chemical properties of phosphohistidine for use in proteins. Biochem J 2021; 478:3575-3596. [PMID: 34624072 DOI: 10.1042/bcj20210533] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023]
Abstract
Histidine phosphorylation is an important and ubiquitous post-translational modification. Histidine undergoes phosphorylation on either of the nitrogens in its imidazole side chain, giving rise to 1- and 3- phosphohistidine (pHis) isomers, each having a phosphoramidate linkage that is labile at high temperatures and low pH, in contrast with stable phosphomonoester protein modifications. While all organisms routinely use pHis as an enzyme intermediate, prokaryotes, lower eukaryotes and plants also use it for signal transduction. However, research to uncover additional roles for pHis in higher eukaryotes is still at a nascent stage. Since the discovery of pHis in 1962, progress in this field has been relatively slow, in part due to a lack of the tools and techniques necessary to study this labile modification. However, in the past ten years the development of phosphoproteomic techniques to detect phosphohistidine (pHis), and methods to synthesize stable pHis analogues, which enabled the development of anti-phosphohistidine (pHis) antibodies, have accelerated our understanding. Recent studies that employed anti-pHis antibodies and other advanced techniques have contributed to a rapid expansion in our knowledge of histidine phosphorylation. In this review, we examine the varied roles of pHis-containing proteins from a chemical and structural perspective, and present an overview of recent developments in pHis proteomics and antibody development.
Collapse
|
27
|
Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ. Sci Rep 2021; 11:19262. [PMID: 34584131 PMCID: PMC8479085 DOI: 10.1038/s41598-021-98644-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 11/08/2022] Open
Abstract
Amyloid β (Aβ) peptide aggregation plays a central role in Alzheimer's disease (AD) etiology. AD drug candidates have included small molecules or peptides directed towards inhibition of Aβ fibrillogenesis. Although some Aβ-derived peptide fragments suppress Aβ fibril growth, comprehensive analysis of inhibitory potencies of peptide fragments along the whole Aβ sequence has not been reported. The aim of this work is (a) to identify the region(s) of Aβ with highest propensities for aggregation and (b) to use those fragments to inhibit Aβ fibrillogenesis. Structural and aggregation properties of the parent Aβ1-42 peptide and seven overlapping peptide fragments have been studied, i.e. Aβ1-10 (P1), Aβ6-15 (P2), Aβ11-20 (P3), Aβ16-25 (P4), Aβ21-30 (P5), Aβ26-36 (P6), and Aβ31-42 (P7). Structural transitions of the peptides in aqueous buffer have been monitored by circular dichroism and Fourier transform infrared spectroscopy. Aggregation and fibrillogenesis were analyzed by light scattering and thioflavin-T fluorescence. The mode of peptide-peptide interactions was characterized by fluorescence resonance energy transfer. Three peptide fragments, P3, P6, and P7, exhibited exceptionally high propensity for β-sheet formation and aggregation. Remarkably, only P3 and P6 exerted strong inhibitory effect on the aggregation of Aβ1-42, whereas P7 and P2 displayed moderate inhibitory potency. It is proposed that P3 and P6 intercalate between Aβ1-42 molecules and thereby inhibit Aβ1-42 aggregation. These findings may facilitate therapeutic strategies of inhibition of Aβ fibrillogenesis by Aβ-derived peptides.
Collapse
|
28
|
Klabenkova K, Fokina A, Stetsenko D. Chemistry of Peptide-Oligonucleotide Conjugates: A Review. Molecules 2021; 26:5420. [PMID: 34500849 PMCID: PMC8434111 DOI: 10.3390/molecules26175420] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/25/2022] Open
Abstract
Peptide-oligonucleotide conjugates (POCs) represent one of the increasingly successful albeit costly approaches to increasing the cellular uptake, tissue delivery, bioavailability, and, thus, overall efficiency of therapeutic nucleic acids, such as, antisense oligonucleotides and small interfering RNAs. This review puts the subject of chemical synthesis of POCs into the wider context of therapeutic oligonucleotides and the problem of nucleic acid drug delivery, cell-penetrating peptide structural types, the mechanisms of their intracellular transport, and the ways of application, which include the formation of non-covalent complexes with oligonucleotides (peptide additives) or covalent conjugation. The main strategies for the synthesis of POCs are viewed in detail, which are conceptually divided into (a) the stepwise solid-phase synthesis approach and (b) post-synthetic conjugation either in solution or on the solid phase, especially by means of various click chemistries. The relative advantages and disadvantages of both strategies are discussed and compared.
Collapse
Affiliation(s)
- Kristina Klabenkova
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Alesya Fokina
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Dmitry Stetsenko
- Faculty of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia; (K.K.); (D.S.)
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| |
Collapse
|
29
|
Jaladeep A, Varghese CN, Sekhar A. Measuring radiofrequency fields in NMR spectroscopy using offset-dependent nutation profiles. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 330:107032. [PMID: 34311422 PMCID: PMC7612739 DOI: 10.1016/j.jmr.2021.107032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
The application of NMR spectroscopy for studying molecular and reaction dynamics relies crucially on the measurement of the magnitude of radiofrequency (RF) fields that are used to nutate or lock the nuclear magnetization. Here, we report a method for measuring RF field amplitudes that leverages the intrinsic modulations observed in offset-dependent NMR nutation profiles of small molecules. Such nutation profiles are exquisitely sensitive to the magnitude of the RF field, and B1 values ranging from 1 to 2000 Hz, as well the inhomogeneity in B1 distributions, can be determined with high accuracy and precision using this approach. In order to measure B1 fields associated with NMR experiments carried out on protein or nucleic acids, where these modulations are obscured by the large transverse relaxation rate constants of the analyte, our approach can be used in conjunction with a suitable external small molecule standard, expanding the scope of the method for large biomolecules.
Collapse
Affiliation(s)
- Ahallya Jaladeep
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Claris Niya Varghese
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
30
|
Kholodar SA, Lang G, Cortopassi WA, Iizuka Y, Brah HS, Jacobson MP, England PM. Analogs of the Dopamine Metabolite 5,6-Dihydroxyindole Bind Directly to and Activate the Nuclear Receptor Nurr1. ACS Chem Biol 2021; 16:1159-1163. [PMID: 34165961 DOI: 10.1021/acschembio.1c00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The nuclear receptor-related 1 protein, Nurr1, is a transcription factor critical for the development and maintenance of dopamine-producing neurons in the substantia nigra pars compacta, a cell population that progressively loses the ability to make dopamine and degenerates in Parkinson's disease. Recently, we demonstrated that Nurr1 binds directly to and is regulated by the endogenous dopamine metabolite 5,6-dihydroxyindole (DHI). Unfortunately, DHI is an unstable compound, and thus a poor tool for studying Nurr1 function. Here, we report that 5-chloroindole, an unreactive analog of DHI, binds directly to the Nurr1 ligand binding domain with micromolar affinity and stimulates the activity of Nurr1, including the transcription of genes governing the synthesis and packaging of dopamine.
Collapse
|
31
|
Molecular insight into the early stage of amyloid-β(1-42) Homodimers aggregation influenced by histidine tautomerism. Int J Biol Macromol 2021; 184:887-897. [PMID: 34153362 DOI: 10.1016/j.ijbiomac.2021.06.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/23/2021] [Accepted: 06/10/2021] [Indexed: 11/20/2022]
Abstract
Aggregated amyloid β-peptide (Aβ) in small oligomeric forms inside the brain causes synaptic function disruption and the development of Alzheimer's disease (AD). Histidine is an important amino acid that may lead to structural changes. Aβ42 monomer chain includes 3 histidine residues that considering two ε and δ tautomers 8 isomers, including (εεε) and (εδδ) could be formed. Molecular dynamics simulation on homodimerization of (εεε) (the most common type of tautomers) and (εδδ) tautomers with different initial configurations using monomer chains from our previous work were performed to uncover the tautomeric behavior of histidine on Aβ42 aggregation in a physiological pH which is still largely unknown and impossible to observe experimentally. We found a higher propensity of forming β-sheet in (εδδ) homodimers and specifically in a greater amount from Aβ42 than from Aβ40. A smaller amount of β-sheet formation was observed for (εεε) homodimers compared with (εδδ). Additionally, interactions in (εδδ) homodimers may indicate the importance of the hydrophobic core and C-/N-terminals during oligomerization. Our findings indicate the important role of the tautomeric effect of histidine and (εδδ) homodimers at the early stage of Aβ aggregation.
Collapse
|
32
|
Park SH, Seo H, Seok J, Kim H, Kwon KK, Yeom SJ, Lee SG, Kim KJ. Cβ-Selective Aldol Addition of d-Threonine Aldolase by Spatial Constraint of Aldehyde Binding. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sung-Hyun Park
- Synthetic Biology and Bioengineering Research Center, Korea Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hogyun Seo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jihye Seok
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Haseong Kim
- Synthetic Biology and Bioengineering Research Center, Korea Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Kil Koang Kwon
- Synthetic Biology and Bioengineering Research Center, Korea Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
33
|
The molecular basis for the pH-dependent calcium affinity of the pattern recognition receptor langerin. J Biol Chem 2021; 296:100718. [PMID: 33989634 PMCID: PMC8219899 DOI: 10.1016/j.jbc.2021.100718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
The C-type lectin receptor langerin plays a vital role in the mammalian defense against invading pathogens. Langerin requires a Ca2+ cofactor, the binding affinity of which is regulated by pH. Thus, Ca2+ is bound when langerin is on the membrane but released when langerin and its pathogen substrate traffic to the acidic endosome, allowing the substrate to be degraded. The change in pH is sensed by protonation of the allosteric pH sensor histidine H294. However, the mechanism by which Ca2+ is released from the buried binding site is not clear. We studied the structural consequences of protonating H294 by molecular dynamics simulations (total simulation time: about 120 μs) and Markov models. We discovered a relay mechanism in which a proton is moved into the vicinity of the Ca2+-binding site without transferring the initial proton from H294. Protonation of H294 unlocks a conformation in which a protonated lysine side chain forms a hydrogen bond with a Ca2+-coordinating aspartic acid. This destabilizes Ca2+ in the binding pocket, which we probed by steered molecular dynamics. After Ca2+ release, the proton is likely transferred to the aspartic acid and stabilized by a dyad with a nearby glutamic acid, triggering a conformational transition and thus preventing Ca2+ rebinding. These results show how pH regulation of a buried orthosteric binding site from a solvent-exposed allosteric pH sensor can be realized by information transfer through a specific chain of conformational arrangements.
Collapse
|
34
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
35
|
Galloway JM, Bray HEV, Shoemark DK, Hodgson LR, Coombs J, Mantell JM, Rose RS, Ross JF, Morris C, Harniman RL, Wood CW, Arthur C, Verkade P, Woolfson DN. De Novo Designed Peptide and Protein Hairpins Self-Assemble into Sheets and Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100472. [PMID: 33590708 PMCID: PMC11475375 DOI: 10.1002/smll.202100472] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The design and assembly of peptide-based materials has advanced considerably, leading to a variety of fibrous, sheet, and nanoparticle structures. A remaining challenge is to account for and control different possible supramolecular outcomes accessible to the same or similar peptide building blocks. Here a de novo peptide system is presented that forms nanoparticles or sheets depending on the strategic placement of a "disulfide pin" between two elements of secondary structure that drive self-assembly. Specifically, homodimerizing and homotrimerizing de novo coiled-coil α-helices are joined with a flexible linker to generate a series of linear peptides. The helices are pinned back-to-back, constraining them as hairpins by a disulfide bond placed either proximal or distal to the linker. Computational modeling indicates, and advanced microscopy shows, that the proximally pinned hairpins self-assemble into nanoparticles, whereas the distally pinned constructs form sheets. These peptides can be made synthetically or recombinantly to allow both chemical modifications and the introduction of whole protein cargoes as required.
Collapse
Affiliation(s)
- Johanna M. Galloway
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | | | - Deborah K. Shoemark
- School of BiochemistryUniversity of BristolMedical Sciences BuildingUniversity WalkBristolBS8 1TDUK
| | - Lorna R. Hodgson
- School of BiochemistryUniversity of BristolMedical Sciences BuildingUniversity WalkBristolBS8 1TDUK
- BrisSynBio/Bristol Biodesign InstituteUniversity of BristolLife Sciences Building, Tyndall AvenueBristolBS8 1TQUK
| | - Jennifer Coombs
- School of BiochemistryUniversity of BristolMedical Sciences BuildingUniversity WalkBristolBS8 1TDUK
- Bristol Centre for Functional NanomaterialsSchool of PhysicsUniversity of BristolHH Wills Physics LaboratoryTyndall AvenueBristolBS8 1TLUK
| | - Judith M. Mantell
- School of BiochemistryUniversity of BristolMedical Sciences BuildingUniversity WalkBristolBS8 1TDUK
| | - Ruth S. Rose
- School of Biological and Chemical SciencesFogg BuildingQueen Mary University of LondonMile End RoadLondonE1 4QDUK
| | - James F. Ross
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | - Caroline Morris
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- BrisSynBio/Bristol Biodesign InstituteUniversity of BristolLife Sciences Building, Tyndall AvenueBristolBS8 1TQUK
- School of ChemistryUniversity of Glasgow0/1 125 Novar DriveGlasgowG12 9TAUK
| | | | - Christopher W. Wood
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- BrisSynBio/Bristol Biodesign InstituteUniversity of BristolLife Sciences Building, Tyndall AvenueBristolBS8 1TQUK
- School of Biological SciencesRoger Land Building, King's BuildingsEdinburghEH9 3JQUK
| | | | - Paul Verkade
- School of BiochemistryUniversity of BristolMedical Sciences BuildingUniversity WalkBristolBS8 1TDUK
- BrisSynBio/Bristol Biodesign InstituteUniversity of BristolLife Sciences Building, Tyndall AvenueBristolBS8 1TQUK
| | - Derek N. Woolfson
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- School of BiochemistryUniversity of BristolMedical Sciences BuildingUniversity WalkBristolBS8 1TDUK
- BrisSynBio/Bristol Biodesign InstituteUniversity of BristolLife Sciences Building, Tyndall AvenueBristolBS8 1TQUK
| |
Collapse
|
36
|
Ko S, Jo M, Jung ST. Recent Achievements and Challenges in Prolonging the Serum Half-Lives of Therapeutic IgG Antibodies Through Fc Engineering. BioDrugs 2021; 35:147-157. [PMID: 33608823 PMCID: PMC7894971 DOI: 10.1007/s40259-021-00471-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 01/02/2023]
Abstract
Association of FcRn molecules to the Fc region of IgG in acidified endosomes and subsequent dissociation of the interaction in neutral pH serum enables IgG molecules to be recycled for prolonged serum persistence after internalization by endothelial cells, rather than being degraded in the serum and in the lysosomes inside the cells. Exploiting this intracellular trafficking and recycling mechanism, many researchers have engineered the Fc region to further extend the serum half-lives of therapeutic antibodies by optimizing the pH-dependent IgG Fc-FcRn interaction, and have generated various Fc variants exhibiting significantly improved circulating half-lives of therapeutic IgG antibodies. In order to estimate pharmacokinetic profiles of IgG Fc variants in human serum, not only a variety of in vitro techniques to determine the equilibrium binding constants and instantaneous rate constants for pH-dependent FcRn binding, but also diverse in vivo animal models including wild-type mouse, human FcRn transgenic mouse (Tg32 and Tg276), humanized mouse (Scarlet), or cynomolgus monkey have been harnessed. Currently, multiple IgG Fc variants that have been validated for their prolonged therapeutic potency in preclinical models have been successfully entered into human clinical trials for cancer, infectious diseases, and autoimmune diseases.
Collapse
Affiliation(s)
- Sanghwan Ko
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Institute of Human Genetics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Migyeong Jo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea. .,Institute of Human Genetics, Korea University College of Medicine, Seoul, Republic of Korea. .,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea. .,Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea. .,Biomedical Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Bobkov YV, Walker Iii WB, Cattaneo AM. Altered functional properties of the codling moth Orco mutagenized in the intracellular loop-3. Sci Rep 2021; 11:3893. [PMID: 33594162 PMCID: PMC7887336 DOI: 10.1038/s41598-021-83024-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/27/2021] [Indexed: 12/04/2022] Open
Abstract
Amino acid substitutions within the conserved polypeptide sequence of the insect olfactory receptor co-receptor (Orco) have been demonstrated to influence its pharmacological properties. By sequence analysis and phylogenetic investigation, in the Lepidopteran subgroup Ditrysia we identified a fixed substitution in the intracellular loop-3 (ICL-3) of a conserved histidine to glutamine. By means of HEK293 cells as a heterologous system, we functionally expressed Orco from the Ditrysian model Cydia pomonella (CpomOrco) and compared its functional properties with a site-directed mutagenized version where this ICL-3-glutamine was reverted to histidine (CpomOrcoQ417H). The mutagenized CpomOrcoQ417H displayed decreased responsiveness to VUAA1 and reduced response efficacy to an odorant agonist was observed, when co-transfected with the respective OR subunit. Evidence of reduced responsiveness and sensitivity to ligands for the mutagenized Orco suggest the fixed glutamine substitution to be optimized for functionality of the cation channel within Ditrysia. In addition, contrary to the wild type, the mutagenized CpomOrcoQ417H preserved characteristics of VUAA-binding when physiologic conditions turned to acidic. Taken together, our findings provide further evidence of the importance of ICL-3 in forming basic functional properties of insect Orco- and Orco/OR-channels, and suggest involvement of ICL-3 in the potential functional adaptation of Ditrysian Orcos to acidified extra-/intracellular environment.
Collapse
Affiliation(s)
- Yuriy V Bobkov
- Whitney Laboratory, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - William B Walker Iii
- Department of Plant Protection Biology, Chemical Ecology Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Alberto Maria Cattaneo
- Whitney Laboratory, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, FL, USA. .,Department of Plant Protection Biology, Chemical Ecology Unit, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
38
|
Lee JG, Lannigan K, Shelton WA, Meissner J, Bharti B. Adsorption of Myoglobin and Corona Formation on Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14157-14165. [PMID: 33210541 PMCID: PMC7735741 DOI: 10.1021/acs.langmuir.0c01613] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/02/2020] [Indexed: 06/01/2023]
Abstract
The adsorption of proteins from aqueous medium leads to the formation of protein corona on nanoparticles. The formation of protein corona is governed by a complex interplay of protein-particle and protein-protein interactions, such as electrostatics, van der Waals, hydrophobic, hydrogen bonding, and solvation. The experimental parameters influencing these interactions, and thus governing the protein corona formation on nanoparticles, are currently poorly understood. This lack of understanding is due to the complexity in the surface charge distribution and anisotropic shape of the protein molecules. Here, we investigate the effect of pH and salinity on the characteristics of corona formed by myoglobin on silica nanoparticles. We experimentally measure and theoretically model the adsorption isotherms of myoglobin binding to silica nanoparticles. By combining adsorption studies with surface electrostatic mapping of myoglobin, we demonstrate that a monolayered hard corona is formed in low salinity dispersions, which transforms into a multilayered hard + soft corona upon the addition of salt. We attribute the observed changes in protein adsorption behavior with increasing pH and salinity to the change in electrostatic interactions and surface charge regulation effects. This study provides insights into the mechanism of protein adsorption and corona formation on nanoparticles, which would guide future studies on optimizing nanoparticle design for maximum functional benefits and minimum toxicity.
Collapse
Affiliation(s)
- Jin Gyun Lee
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Kelly Lannigan
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
- Department
of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - William A. Shelton
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
- Center
for Computation and Technology, Louisiana
State University, Baton Rouge, Louisiana 70808, United States
| | - Jens Meissner
- Institute
for Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70808, United States
| |
Collapse
|
39
|
Braun GA, Pogostin BH, Pucetaite M, Londergan CH, Åkerfeldt KS. Deuterium-Enhanced Raman Spectroscopy for Histidine pK a Determination in a pH-Responsive Hydrogel. Biophys J 2020; 119:1701-1705. [PMID: 33080220 DOI: 10.1016/j.bpj.2020.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
We report here a method for the determination of the pKa of histidine in complex or heterogeneous systems amenable to neither solid-state nor solution NMR spectroscopy. Careful synthesis of a fluorenylmethyloxycarbonyl- and trityl-protected, C2-deuterated histidine produces a vibrational-probe-equipped amino acid that can readily be incorporated into any peptide accessible by standard solid-phase methods. The frequency of the unique, Raman-active stretching vibration of this C2-D probe is a clear reporter of the protonation state of histidine. We investigate here a pH-sensitive peptide that self-assembles to form a hydrogel at neutral pH. The pKa of the lone histidine residue in the peptide, which is likely responsible for this pH-dependent behavior, cannot be investigated by NMR spectroscopy because of the supramolecular, soft nature of the gel. However, after synthesizing a C2-deuterated-histidine-containing peptide, we were able to follow the protonation state of histidine throughout a pH titration using Raman difference spectroscopy, thereby precisely determining the pKa of interest.
Collapse
Affiliation(s)
- Gabriel A Braun
- Department of Chemistry, Haverford College, Haverford, Pennsylvania; Centre for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden, Lund University, Lund, Sweden.
| | - Brett H Pogostin
- Department of Chemistry, Haverford College, Haverford, Pennsylvania
| | - Milda Pucetaite
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| | | | | |
Collapse
|
40
|
Baisden JT, Boyer JA, Zhao B, Hammond SM, Zhang Q. Visualizing a protonated RNA state that modulates microRNA-21 maturation. Nat Chem Biol 2020; 17:80-88. [PMID: 33106660 DOI: 10.1038/s41589-020-00667-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/02/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023]
Abstract
MicroRNAs are evolutionarily conserved small, noncoding RNAs that regulate diverse biological processes. Due to their essential regulatory roles, microRNA biogenesis is tightly regulated, where protein factors are often found to interact with specific primary and precursor microRNAs for regulation. Here, using NMR relaxation dispersion spectroscopy and mutagenesis, we reveal that the precursor of oncogenic microRNA-21 exists as a pH-dependent ensemble that spontaneously reshuffles the secondary structure of the entire apical stem-loop region, including the Dicer cleavage site. We show that the alternative excited conformation transiently sequesters the bulged adenine into a noncanonical protonated A+-G mismatch, conferring a substantial enhancement in Dicer processing over its ground conformational state. These results indicate that microRNA maturation efficiency may be encoded in the intrinsic dynamic ensemble of primary and precursor microRNAs, providing a potential means of regulating microRNA biogenesis in response to environmental and cellular stimuli.
Collapse
Affiliation(s)
- Jared T Baisden
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua A Boyer
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Zhao
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott M Hammond
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Agarwal PK, Bernard DN, Bafna K, Doucet N. Enzyme dynamics: Looking beyond a single structure. ChemCatChem 2020; 12:4704-4720. [PMID: 33897908 PMCID: PMC8064270 DOI: 10.1002/cctc.202000665] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/23/2022]
Abstract
Conventional understanding of how enzymes function strongly emphasizes the role of structure. However, increasing evidence clearly indicates that enzymes do not remain fixed or operate exclusively in or close to their native structure. Different parts of the enzyme (from individual residues to full domains) undergo concerted motions on a wide range of time-scales, including that of the catalyzed reaction. Information obtained on these internal motions and conformational fluctuations has so far uncovered and explained many aspects of enzyme mechanisms, which could not have been understood from a single structure alone. Although there is wide interest in understanding enzyme dynamics and its role in catalysis, several challenges remain. In addition to technical difficulties, the vast majority of investigations are performed in dilute aqueous solutions, where conditions are significantly different than the cellular milieu where a large number of enzymes operate. In this review, we discuss recent developments, several challenges as well as opportunities related to this topic. The benefits of considering dynamics as an integral part of the enzyme function can also enable new means of biocatalysis, engineering enzymes for industrial and medicinal applications.
Collapse
Affiliation(s)
- Pratul K. Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, Oklahoma 74078
- Arium BioLabs, 2519 Caspian Drive, Knoxville, Tennessee 37932
| | - David N. Bernard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, Quebec, H7V 1B7, Canada
| | - Khushboo Bafna
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, Quebec, H7V 1B7, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Structure, and Engineering, 1045 Avenue de la Médecine, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
42
|
Tiwari VP, Vallurupalli P. A CEST NMR experiment to obtain glycine 1H α chemical shifts in 'invisible' minor states of proteins. JOURNAL OF BIOMOLECULAR NMR 2020; 74:443-455. [PMID: 32696193 DOI: 10.1007/s10858-020-00336-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Chemical exchange saturation transfer (CEST) experiments are routinely used to study protein conformational exchange between a 'visible' major state and 'invisible' minor states because they can detect minor states with lifetimes varying from ~ 3 to ~ 100 ms populated to just ~ 0.5%. Consequently several 1H, 15N and 13C CEST experiments have been developed to study exchange and obtain minor state chemical shifts at almost all backbone and sidechain sites in proteins. Conspicuously missing from this extensive set of CEST experiments is a 1H CEST experiment to study exchange at glycine (Gly) 1Hα sites as the existing 1H CEST experiments that have been designed to study dynamics in amide 1H-15N spin systems and methyl 13CH3 groups with three equivalent protons while suppressing 1H-1H NOE induced dips are not suitable for studying exchange in methylene 13CH2 groups with inequivalent protons. Here a Gly 1Hα CEST experiment to obtain the minor state Gly 1Hα chemical shifts is presented. The utility of this experiment is demonstrated on the L99A cavity mutant of T4 Lysozyme (T4L L99A) that undergoes conformational exchange between two compact conformers. The CEST derived minor state Gly 1Hα chemical shifts of T4L L99A are in agreement with those obtained previously using CPMG techniques. The experimental strategy presented here can also be used to obtain methylene proton minor state chemical shifts from protein sidechain and nucleic acid backbone sites.
Collapse
Affiliation(s)
- Ved Prakash Tiwari
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India.
| |
Collapse
|
43
|
Nam Y, Kalathingal M, Saito S, Lee JY. Tautomeric Effect of Histidine on β-Sheet Formation of Amyloid Beta 1-40: 2D-IR Simulations. Biophys J 2020; 119:831-842. [PMID: 32730791 DOI: 10.1016/j.bpj.2020.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
Histidine state (protonated or δ or ε tautomer) has been considered the origin of abnormal misfolding and aggregation of β-amyloid (Aβ). Our previous studies reported that the δδδ isomer of Aβ (1-40) has a greater propensity for β-sheet conformation compared to other isomers. However, direct proof of the tautomeric effect has not been reported. In this context, we calculated histidine site-specific two-dimensional infrared spectroscopy of the δδδ, εεε, and πππ (all protonated histidine) systems within the framework of classical molecular dynamics simulations aiming at connecting our previous results with the current experimental observations. Our results showed that β-sheet formation is favored for the δδδ and πππ tautomers compared with the εεε tautomer, consistent with our previous studies. This result was further supported by contact map analyses and the strength of dipole coupling between the amide-I bonds of each residue. The two-dimensional infrared diagonal trace for each tautomer included three distinctive spectrally resolvable peaks near 1680, 1686, and 1693 cm-1, as was also observed for histidine dipeptides. However, the peak positions at His6, His13, and His14 did not show a consensus trend with the histidine or protonation state but were instead affected by the presence of surrounding hydrogen bonds. Our study provides a deeper insight into the influence of tautomerism and protonation of histidine residues in Aβ (1-40) on amyloid misfolding and provides a connection between our previous simulations and experimental observations.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea; Institute for Molecular Science, Myodaiji, Okazaki, Japan
| | | | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Japan; The Graduate University for Advanced Studies, Myodaiji, Okazaki, Japan.
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
44
|
Arroyuelo A, Martin OA, Scheraga HA, Vila JA. Assessing the One-Bond C α-H Spin-Spin Coupling Constants in Proteins: Pros and Cons of Different Approaches. J Phys Chem B 2020; 124:735-741. [PMID: 31928007 PMCID: PMC7082799 DOI: 10.1021/acs.jpcb.9b10123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the present work, we explore three different approaches for the computation of the one-bond spin-spin coupling constants (SSCC) 1JCαH in proteins: density functional theory (DFT) calculations, a Karplus-like equation, and Gaussian process regression. The main motivation of this work is to select the best method for fast and accurate computation of the 1JCαH SSCC, for its use in everyday applications in protein structure validation, refinement, and/or determination. Our initial results showed a poor agreement between the DFT-computed and observed 1JCαH SSCC values. Further analysis leads us to the understanding that the model chosen for the DFT computations is inappropriate and that more complex models will require a higher, if not prohibitively, computational cost. Finally, we show that the Karplus-like equation and Gaussian Process regression provide faster and more accurate results than DFT-based calculations.
Collapse
Affiliation(s)
- Agustina Arroyuelo
- IMASL-CONICET, Universidad Nacional de San Luis , Ejército de Los Andes 950 , 5700 San Luis , Argentina
| | - Osvaldo A Martin
- IMASL-CONICET, Universidad Nacional de San Luis , Ejército de Los Andes 950 , 5700 San Luis , Argentina
| | - Harold A Scheraga
- Baker Laboratory of Chemistry , Cornell University , Ithaca , New York 14850 , United States
| | - Jorge A Vila
- IMASL-CONICET, Universidad Nacional de San Luis , Ejército de Los Andes 950 , 5700 San Luis , Argentina
- Baker Laboratory of Chemistry , Cornell University , Ithaca , New York 14850 , United States
| |
Collapse
|
45
|
Alderson TR, Kay LE. Unveiling invisible protein states with NMR spectroscopy. Curr Opin Struct Biol 2020; 60:39-49. [DOI: 10.1016/j.sbi.2019.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022]
|
46
|
Zhao B, Baisden JT, Zhang Q. Probing excited conformational states of nucleic acids by nitrogen CEST NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 310:106642. [PMID: 31785475 PMCID: PMC6934915 DOI: 10.1016/j.jmr.2019.106642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Characterizing low-populated and short-lived excited conformational states has become increasingly important for understanding mechanisms of RNA function. Interconversion between RNA ground and excited conformational states often involves base pairing rearrangements that lead to changes in the hydrogen-bond network. Here, we present two 15N chemical exchange saturation transfer (CEST) NMR experiments that utilize protonated and non-protonated nitrogens, which are key hydrogen-bond donors and acceptors, for characterizing excited conformational states in RNA. We demonstrated these approaches on the B. Cereus fluoride riboswitch, where 15N CEST profiles complement 13C CEST profiles in depicting a potential pathway for ligand-dependent allosteric regulation of the excited conformational state of the fluoride riboswitch.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jared T Baisden
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
47
|
Ramanujam V, Charlier C, Bax A. Observation and Kinetic Characterization of Transient Schiff Base Intermediates by CEST NMR Spectroscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Venkatraman Ramanujam
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases Bethesda MD 20892 USA
| | - Cyril Charlier
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases Bethesda MD 20892 USA
| | - Ad Bax
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases Bethesda MD 20892 USA
| |
Collapse
|
48
|
Ramanujam V, Charlier C, Bax A. Observation and Kinetic Characterization of Transient Schiff Base Intermediates by CEST NMR Spectroscopy. Angew Chem Int Ed Engl 2019; 58:15309-15312. [PMID: 31449352 DOI: 10.1002/anie.201908416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Indexed: 01/15/2023]
Abstract
In aqueous solution, many biochemical reaction pathways involve reaction of an aldehyde with an amine, which progresses through generally unstable, hydrated and dehydrated, Schiff base intermediates that often are unobservable by conventional NMR. There are 4 states in the relevant equilibrium: 1) gem-diol, 2) aldehyde, 3) hemiaminal, and 4) Schiff base. For the reaction between protein amino groups and DOPAL, a highly toxic metabolite of dopamine, the 1 H resonances of both the hemiaminal and the dehydrated Schiff base can be observed by CEST NMR, even when their populations fall below 0.1 %. CEST NMR reveals the quantitative exchange kinetics between reactants and Schiff base intermediates, explaining why the Schiff base NMR signals are rarely observed. The reactivity of DOPAL with Nα -amino groups is greater than with lysine Nϵ -amines and, in the presence of O2 , both types of Schiff base DOPAL-peptide intermediates rapidly react with free DOPAL to irreversibly form dicatechol pyrrole adducts.
Collapse
Affiliation(s)
- Venkatraman Ramanujam
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Cyril Charlier
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| |
Collapse
|
49
|
Holm R, Schwiertz D, Weber B, Schultze J, Kuhn J, Koynov K, Lächelt U, Barz M. Multifunctional Cationic PeptoStars as siRNA Carrier: Influence of Architecture and Histidine Modification on Knockdown Potential. Macromol Biosci 2019; 20:e1900152. [PMID: 31430057 DOI: 10.1002/mabi.201900152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Indexed: 12/23/2022]
Abstract
RNA interference provides enormous potential for the treatment of several diseases, including cancer. Nevertheless, successful therapies based on siRNA require overcoming various challenges, such as poor pharmacokinetic characteristics of the small RNA molecule and inefficient cytosolic accumulation. In this respect, the development of functional siRNA carrier systems is a major task in biomedical research. To provide such a desired system, the synthesis of 3-arm and 6-arm PeptoStars is aimed for. The different branched polypept(o)idic architectures share a stealth-like polysarcosine corona for efficient shielding and a multifunctional polylysine core, which can be independently varied in size and functionality for siRNA complexation-, transport and intra cellular release. The special feature of star-like polypept(o)ides is in their uniform small size (<20 nm) and a core-shell structure, which implies a high stability and stealth-like properties and thus, they may combine long circulation times and a deep penetration of cancerous tissue. Initial toxicity and complement studies demonstrate well tolerated cationic PeptoStars with high complexation capability toward siRNA (N/P ratio up to 3:1), which can lead to potent RNAi for optimized systems. Here, the synthetic development of 3-arm and 6-arm polypept(o)idic star polymers, their modification with endosomolytic moieties, and first in vitro insights on RNA interference are reported on.
Collapse
Affiliation(s)
- Regina Holm
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - David Schwiertz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Benjamin Weber
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Jennifer Schultze
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jasmin Kuhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
50
|
Kemme CA, Luu RH, Chen C, Pletka CC, Pettitt BM, Iwahara J. Mobility of Histidine Side Chains Analyzed with 15N NMR Relaxation and Cross-Correlation Data: Insight into Zinc-Finger-DNA Interactions. J Phys Chem B 2019; 123:3706-3710. [PMID: 30963768 DOI: 10.1021/acs.jpcb.9b03132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to chemical exchange, the mobility of histidine (His) side chains of proteins is typically difficult to analyze by NMR spectroscopy. Using an NMR approach that is uninfluenced by chemical exchange, we investigated internal motions of the His imidazole NH groups that directly interact with DNA phosphates in the Egr-1 zinc-finger-DNA complex. In this approach, the transverse and longitudinal cross-correlation rates for 15N chemical shift anisotropy and 15N-1H dipole-dipole relaxation interference were analyzed together with 15N longitudinal relaxation rates and heteronuclear Overhauser effect data at two magnetic field strengths. We found that the zinc-coordinating His side chains directly interacting with DNA phosphates are strongly restricted in mobility. This makes a contrast to the arginine and lysine side chains that retain high mobility despite their interactions with DNA phosphates in the same complex. The entropic effects of side-chain mobility on the molecular association are discussed.
Collapse
Affiliation(s)
- Catherine A Kemme
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics , University of Texas Medical Branch , Galveston , Texas 77555-1068 , United States
| | - Ross H Luu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics , University of Texas Medical Branch , Galveston , Texas 77555-1068 , United States
| | - Chuanying Chen
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics , University of Texas Medical Branch , Galveston , Texas 77555-1068 , United States
| | - Channing C Pletka
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics , University of Texas Medical Branch , Galveston , Texas 77555-1068 , United States
| | - B Montgomery Pettitt
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics , University of Texas Medical Branch , Galveston , Texas 77555-1068 , United States
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics , University of Texas Medical Branch , Galveston , Texas 77555-1068 , United States
| |
Collapse
|