1
|
McCole R, Nolan J, Reck DM, Monger C, Rustichelli S, Conway E, Brien GL, Wang C, Deevy O, Neikes HK, Bashore FM, Mooney A, Flavin R, Vandenberghe E, Flanigan SF, Pasini D, Davidovich C, Vermeulen M, James LI, Healy E, Bracken AP. A conserved switch to less catalytically active Polycomb repressive complexes in non-dividing cells. Cell Rep 2025; 44:115192. [PMID: 39799569 PMCID: PMC11931288 DOI: 10.1016/j.celrep.2024.115192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025] Open
Abstract
Polycomb repressive complex 2 (PRC2), composed of the core subunits EED, SUZ12, and either EZH1 or EZH2, is critical for maintaining cellular identity in multicellular organisms. PRC2 deposits H3K27me3, which is thought to recruit the canonical form of PRC1 (cPRC1) to promote gene repression. Here, we show that EZH1-PRC2 and cPRC1 are the primary Polycomb complexes on target genes in non-dividing, quiescent cells. Furthermore, these cells are resistant to PRC2 inhibitors. While PROTAC-mediated degradation of EZH1-PRC2 in quiescent cells does not reduce H3K27me3, it partially displaces cPRC1. Our results reveal an evolutionarily conserved switch to less catalytically active Polycomb complexes in non-dividing cells and raise concerns about using PRC2 inhibitors in cancers with significant populations of non-dividing cells.
Collapse
Affiliation(s)
- Rachel McCole
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - James Nolan
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Department of Haematology, St. James' Hospital, Dublin 8, Ireland
| | - David M Reck
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Craig Monger
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Eric Conway
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Gerard L Brien
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Orla Deevy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Hannah K Neikes
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Frances M Bashore
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aoibhinn Mooney
- Department of Histopathology, St. James' Hospital, Dublin 8, Ireland; Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland
| | - Richard Flavin
- Department of Histopathology, St. James' Hospital, Dublin 8, Ireland; Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland
| | | | - Sarena F Flanigan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia; EMBL-Australia, Clayton, VIC, Australia
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands; Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Evan Healy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
2
|
Grant ZL, Kuang S, Zhang S, Horrillo AJ, Rao KS, Kameswaran V, Joubran C, Lau PK, Dong K, Yang B, Bartosik WM, Zemke NR, Ren B, Kathiriya IS, Pollard KS, Bruneau BG. Dose-dependent sensitivity of human 3D chromatin to a heart disease-linked transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632202. [PMID: 39829922 PMCID: PMC11741296 DOI: 10.1101/2025.01.09.632202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dosage-sensitive transcription factors (TFs) underlie altered gene regulation in human developmental disorders, and cell-type specific gene regulation is linked to the reorganization of 3D chromatin during cellular differentiation. Here, we show dose-dependent regulation of chromatin organization by the congenital heart disease (CHD)-linked, lineage-restricted TF TBX5 in human cardiomyocyte differentiation. Genome organization, including compartments, topologically associated domains, and chromatin loops, are sensitive to reduced TBX5 dosage in a human model of CHD, with variations in response across individual cells. Regions normally bound by TBX5 are especially sensitive, while co-occupancy with CTCF partially protects TBX5-bound TAD boundaries and loop anchors. These results highlight the importance of lineage-restricted TF dosage in cell-type specific 3D chromatin dynamics, suggesting a new mechanism for TF-dependent disease.
Collapse
Affiliation(s)
| | | | - Shu Zhang
- Gladstone Institutes; San Francisco, CA, USA
- Bioinformatics Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | - Abraham J. Horrillo
- Gladstone Institutes; San Francisco, CA, USA
- TETRAD Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | | | | | | | - Pik Ki Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Keyi Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Yang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Weronika M. Bartosik
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Nathan R. Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Irfan S. Kathiriya
- Gladstone Institutes; San Francisco, CA, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco; San Francisco, CA, USA
| | - Katherine S. Pollard
- Gladstone Institutes; San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco; San Francisco, CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Benoit G. Bruneau
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
3
|
Diao L, Xie S, Xu W, Zhang H, Hou Y, Hu Y, Liang X, Liang J, Zhang Q, Xiao Z. CRISPR/Cas13 sgRNA-Mediated RNA-RNA Interaction Mapping in Live Cells with APOBEC RNA Editing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409004. [PMID: 39392366 PMCID: PMC11615753 DOI: 10.1002/advs.202409004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Current research on long non-coding RNA (lncRNA) has predominantly focused on identifying their protein partners and genomic binding sites, leaving their RNA partners largely unknown. To address this gap, the study has developed a method called sarID (sgRNA scaffold assisted RNA-RNA interaction detection), which integrates Cas13-based RNA targeting, sgRNA engineering, and proximity RNA editing to investigate lncRNA-RNA interactomes. By applying sarID to the lncRNA NEAT1, over one thousand previously unidentified binding transcripts are discovered. sarID is further expanded to investigate binders of XIST, MALAT1, NBR2, and DANCR, demonstrating its broad applicability in identifying lncRNA-RNA interactions. The findings suggest that lncRNAs may regulate gene expression by interacting with mRNAs, expanding their roles beyond known functions as protein scaffolds, miRNA sponges, or guides for epigenetic modulators. sarID has the potential to be adapted for studying other specific RNAs, providing a novel immunoprecipitation-free method for uncovering RNA partners and facilitating the exploration of the RNA-RNA interactome.
Collapse
Affiliation(s)
- Li‐Ting Diao
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Shu‐Juan Xie
- Institute of VaccineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Wan‐Yi Xu
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | | | - Ya‐Rui Hou
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Yan‐Xia Hu
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | | | | | - Qi Zhang
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
- Institute of VaccineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Zhen‐Dong Xiao
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| |
Collapse
|
4
|
Kempkes RWM, Prinjha RK, de Winther MPJ, Neele AE. Novel insights into the dynamic function of PRC2 in innate immunity. Trends Immunol 2024; 45:1015-1030. [PMID: 39603889 DOI: 10.1016/j.it.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
The polycomb repressive complex 2 (PRC2) is an established therapeutic target in cancer. PRC2 catalyzes methylation of histone H3 at lysine 27 (H3K27me3) and is known for maintaining eukaryote cell identity. Recent discoveries show that modulation of PRC2 not only impacts cell differentiation and tumor growth but also has immunomodulatory properties. Here, we integrate multiple immunological fields to understand PRC2 and its subunits in epigenetic canonical regulation and non-canonical mechanisms within innate immunity. We discuss how PRC2 regulates hematopoietic stem cell proliferation, myeloid cell differentiation, and shapes innate immune responses. The PRC2 catalytic domain EZH2 is upregulated in various human inflammatory diseases and its deletion or inhibition in experimental mouse models can reduce disease severity, emphasizing its importance in regulating inflammation.
Collapse
Affiliation(s)
- Rosalie W M Kempkes
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands
| | | | - Menno P J de Winther
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands.
| | - Annette E Neele
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Disease, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Gong L, Liu X, Yang X, Yu Z, Chen S, Xing C, Liu X. EPOP Restricts PRC2.1 Targeting to Chromatin by Directly Modulating Enzyme Complex Dimerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612337. [PMID: 39314288 PMCID: PMC11419040 DOI: 10.1101/2024.09.10.612337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Polycomb repressive complex 2 (PRC2) mediates developmental gene repression as two classes of holocomplexes, PRC2.1 and PRC2.2. EPOP is an accessory subunit specific to PRC2.1, which also contains PCL proteins. Unlike other accessory subunits that collectively facilitate PRC2 targeting, EPOP was implicated in an enigmatic inhibitory role, together with its interactor Elongin BC. We report an unusual molecular mechanism whereby EPOP regulates PRC2.1 by directly modulating its oligomerization state. EPOP disrupts the PRC2.1 dimer and weakens its chromatin association, likely by disabling the avidity effect conferred by the dimeric complex. Congruently, an EPOP mutant specifically defective in PRC2 binding enhances genome-wide enrichments of MTF2 and H3K27me3 in mouse epiblast-like cells. Elongin BC is largely dispensable for the EPOP-mediated inhibition of PRC2.1. EPOP defines a distinct subclass of PRC2.1, which uniquely maintains an epigenetic program by preventing the over-repression of key gene regulators along the continuum of early differentiation.
Collapse
|
6
|
Lin YY, Müller P, Karagianni E, Hepp N, Mueller-Planitz F, Vanderlinden W, Lipfert J. Epigenetic Histone Modifications H3K36me3 and H4K5/8/12/16ac Induce Open Polynucleosome Conformations via Different Mechanisms. J Mol Biol 2024; 436:168671. [PMID: 38908785 DOI: 10.1016/j.jmb.2024.168671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Nucleosomes are the basic compaction unit of chromatin and nucleosome structure and their higher-order assemblies regulate genome accessibility. Many post-translational modifications alter nucleosome dynamics, nucleosome-nucleosome interactions, and ultimately chromatin structure and gene expression. Here, we investigate the role of two post-translational modifications associated with actively transcribed regions, H3K36me3 and H4K5/8/12/16ac, in the contexts of tri-nucleosome arrays that provide a tractable model system for quantitative single-molecule analysis, while enabling us to probe nucleosome-nucleosome interactions. Direct visualization by AFM imaging reveals that H3K36me3 and H4K5/8/12/16ac nucleosomes adopt significantly more open and loose conformations than unmodified nucleosomes. Similarly, magnetic tweezers force spectroscopy shows a reduction in DNA outer turn wrapping and nucleosome-nucleosome interactions for the modified nucleosomes. The results suggest that for H3K36me3 the increased breathing and outer DNA turn unwrapping seen in mononucleosomes propagates to more open conformations in nucleosome arrays. In contrast, the even more open structures of H4K5/8/12/16ac nucleosome arrays do not appear to derive from the dynamics of the constituent mononucleosomes, but are driven by reduced nucleosome-nucleosome interactions, suggesting that stacking interactions can overrule DNA breathing of individual nucleosomes. We anticipate that our methodology will be broadly applicable to reveal the influence of other post-translational modifications and to observe the activity of nucleosome remodelers.
Collapse
Affiliation(s)
- Yi-Yun Lin
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Peter Müller
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Evdoxia Karagianni
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Nicola Hepp
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Current address: Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Felix Mueller-Planitz
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands; School of Physics and Astronomy, University of Edinburg, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom.
| | - Jan Lipfert
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands.
| |
Collapse
|
7
|
Shi TH, Sugishita H, Gotoh Y. Crosstalk within and beyond the Polycomb repressive system. J Cell Biol 2024; 223:e202311021. [PMID: 38506728 PMCID: PMC10955045 DOI: 10.1083/jcb.202311021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
The development of multicellular organisms depends on spatiotemporally controlled differentiation of numerous cell types and their maintenance. To generate such diversity based on the invariant genetic information stored in DNA, epigenetic mechanisms, which are heritable changes in gene function that do not involve alterations to the underlying DNA sequence, are required to establish and maintain unique gene expression programs. Polycomb repressive complexes represent a paradigm of epigenetic regulation of developmentally regulated genes, and the roles of these complexes as well as the epigenetic marks they deposit, namely H3K27me3 and H2AK119ub, have been extensively studied. However, an emerging theme from recent studies is that not only the autonomous functions of the Polycomb repressive system, but also crosstalks of Polycomb with other epigenetic modifications, are important for gene regulation. In this review, we summarize how these crosstalk mechanisms have improved our understanding of Polycomb biology and how such knowledge could help with the design of cancer treatments that target the dysregulated epigenome.
Collapse
Affiliation(s)
- Tianyi Hideyuki Shi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Sugishita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Konuma T, Zhou MM. Distinct Histone H3 Lysine 27 Modifications Dictate Different Outcomes of Gene Transcription. J Mol Biol 2024; 436:168376. [PMID: 38056822 DOI: 10.1016/j.jmb.2023.168376] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Site-specific histone modifications have long been recognized to play an important role in directing gene transcription in chromatin in biology of health and disease. However, concrete illustration of how different histone modifications in a site-specific manner dictate gene transcription outcomes, as postulated in the influential "Histone code hypothesis", introduced by Allis and colleagues in 2000, has been lacking. In this review, we summarize our latest understanding of the dynamic regulation of gene transcriptional activation, silence, and repression in chromatin that is directed distinctively by histone H3 lysine 27 acetylation, methylation, and crotonylation, respectively. This represents a special example of a long-anticipated verification of the "Histone code hypothesis."
Collapse
Affiliation(s)
- Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
9
|
Bharti H, Han S, Chang HW, Reinberg D. Polycomb repressive complex 2 accessory factors: rheostats for cell fate decision? Curr Opin Genet Dev 2024; 84:102137. [PMID: 38091876 DOI: 10.1016/j.gde.2023.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024]
Abstract
Epigenetic reprogramming during development is key to cell identity and the activities of the Polycomb repressive complexes are vital for this process. We focus on polycomb repressive complex 2 (PRC2), which catalyzes H3K27me1/2/3 and safeguards cellular integrity by ensuring proper gene repression. Notably, various accessory factors associate with PRC2, strongly influencing cell fate decisions, and their deregulation contributes to various illnesses. Yet, the exact role of these factors during development and carcinogenesis is not fully understood. Here, we present recent progress toward addressing these points and an analysis of the expression levels of PRC2 accessory factors in various tissues and developmental stages to highlight their abundance and roles. Last, we evaluate their contribution to cancer-specific phenotypes, providing insight into novel anticancer therapies.
Collapse
Affiliation(s)
- Hina Bharti
- Howard Hughes Medical Institute, University of Miami, Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Sungwook Han
- Howard Hughes Medical Institute, University of Miami, Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Han-Wen Chang
- Howard Hughes Medical Institute, University of Miami, Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, University of Miami, Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA.
| |
Collapse
|
10
|
Barrasa JI, Kahn TG, Lundkvist MJ, Schwartz YB. DNA elements tether canonical Polycomb Repressive Complex 1 to human genes. Nucleic Acids Res 2023; 51:11613-11633. [PMID: 37855680 PMCID: PMC10681801 DOI: 10.1093/nar/gkad889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Development of multicellular animals requires epigenetic repression by Polycomb group proteins. The latter assemble in multi-subunit complexes, of which two kinds, Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2), act together to repress key developmental genes. How PRC1 and PRC2 recognize specific genes remains an open question. Here we report the identification of several hundreds of DNA elements that tether canonical PRC1 to human developmental genes. We use the term tether to describe a process leading to a prominent presence of canonical PRC1 at certain genomic sites, although the complex is unlikely to interact with DNA directly. Detailed analysis indicates that sequence features associated with PRC1 tethering differ from those that favour PRC2 binding. Throughout the genome, the two kinds of sequence features mix in different proportions to yield a gamut of DNA elements that range from those tethering predominantly PRC1 or PRC2 to ones capable of tethering both complexes. The emerging picture is similar to the paradigmatic targeting of Polycomb complexes by Polycomb Response Elements (PREs) of Drosophila but providing for greater plasticity.
Collapse
Affiliation(s)
- Juan I Barrasa
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Tatyana G Kahn
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Moa J Lundkvist
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
11
|
Liu Y, Hu G, Yang S, Yao M, Liu Z, Yan C, Wen Y, Ping W, Wang J, Song Y, Dong X, Pan G, Yao H. Functional dissection of PRC1 subunits RYBP and YAF2 during neural differentiation of embryonic stem cells. Nat Commun 2023; 14:7164. [PMID: 37935677 PMCID: PMC10630410 DOI: 10.1038/s41467-023-42507-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) comprises two different complexes: CBX-containing canonical PRC1 (cPRC1) and RYBP/YAF2-containing variant PRC1 (vPRC1). RYBP-vPRC1 or YAF2-vPRC1 catalyzes H2AK119ub through a positive-feedback model; however, whether RYBP and YAF2 have different regulatory functions is still unclear. Here, we show that the expression of RYBP and YAF2 decreases and increases, respectively, during neural differentiation of embryonic stem cells (ESCs). Rybp knockout impairs neural differentiation by activating Wnt signaling and derepressing nonneuroectoderm-associated genes. However, Yaf2 knockout promotes neural differentiation and leads to redistribution of RYBP binding, increases enrichment of RYBP and H2AK119ub on the RYBP-YAF2 cotargeted genes, and prevents ectopic derepression of nonneuroectoderm-associated genes in neural-differentiated cells. Taken together, this study reveals that RYBP and YAF2 function differentially in regulating mESC neural differentiation.
Collapse
Affiliation(s)
- Yanjiang Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gongcheng Hu
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Shengxiong Yang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
| | - Mingze Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zicong Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chenghong Yan
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yulin Wen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wangfang Ping
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Juehan Wang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yawei Song
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaotao Dong
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guangjin Pan
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
- Department of Basic Research, Guangzhou National Laboratory, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Ngubo M, Moradi F, Ito CY, Stanford WL. Tissue-Specific Tumour Suppressor and Oncogenic Activities of the Polycomb-like Protein MTF2. Genes (Basel) 2023; 14:1879. [PMID: 37895228 PMCID: PMC10606531 DOI: 10.3390/genes14101879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The Polycomb repressive complex 2 (PRC2) is a conserved chromatin-remodelling complex that catalyses the trimethylation of histone H3 lysine 27 (H3K27me3), a mark associated with gene silencing. PRC2 regulates chromatin structure and gene expression during organismal and tissue development and tissue homeostasis in the adult. PRC2 core subunits are associated with various accessory proteins that modulate its function and recruitment to target genes. The multimeric composition of accessory proteins results in two distinct variant complexes of PRC2, PRC2.1 and PRC2.2. Metal response element-binding transcription factor 2 (MTF2) is one of the Polycomb-like proteins (PCLs) that forms the PRC2.1 complex. MTF2 is highly conserved, and as an accessory subunit of PRC2, it has important roles in embryonic stem cell self-renewal and differentiation, development, and cancer progression. Here, we review the impact of MTF2 in PRC2 complex assembly, catalytic activity, and spatiotemporal function. The emerging paradoxical evidence suggesting that MTF2 has divergent roles as either a tumour suppressor or an oncogene in different tissues merits further investigations. Altogether, our review illuminates the context-dependent roles of MTF2 in Polycomb group (PcG) protein-mediated epigenetic regulation. Its impact on disease paves the way for a deeper understanding of epigenetic regulation and novel therapeutic strategies.
Collapse
Affiliation(s)
- Mzwanele Ngubo
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Fereshteh Moradi
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Caryn Y. Ito
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - William L. Stanford
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
13
|
Fong KW, Zhao JC, Lu X, Kim J, Piunti A, Shilatifard A, Yu J. PALI1 promotes tumor growth through competitive recruitment of PRC2 to G9A-target chromatin for dual epigenetic silencing. Mol Cell 2022; 82:4611-4626.e7. [PMID: 36476474 PMCID: PMC9812274 DOI: 10.1016/j.molcel.2022.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/12/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
PALI1 is a newly identified accessory protein of the Polycomb repressive complex 2 (PRC2) that catalyzes H3K27 methylation. However, the roles of PALI1 in cancer are yet to be defined. Here, we report that PALI1 is upregulated in advanced prostate cancer (PCa) and competes with JARID2 for binding to the PRC2 core subunit SUZ12. PALI1 further interacts with the H3K9 methyltransferase G9A, bridging the formation of a unique G9A-PALI1-PRC2 super-complex that occupies a subset of G9A-target genes to mediate dual H3K9/K27 methylation and gene repression. Many of these genes are developmental regulators required for cell differentiation, and their loss in PCa predicts poor prognosis. Accordingly, PALI1 and G9A drive PCa cell proliferation and invasion in vitro and xenograft tumor growth in vivo. Collectively, our study shows that PALI1 harnesses two central epigenetic mechanisms to suppress cellular differentiation and promote tumorigenesis, which can be targeted by dual EZH2 and G9A inhibition.
Collapse
Affiliation(s)
- Ka-Wing Fong
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jonathan C Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaodong Lu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jung Kim
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrea Piunti
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Kang H, Cabrera JR, Zee BM, Kang HA, Jobe JM, Hegarty MB, Barry AE, Glotov A, Schwartz YB, Kuroda MI. Variant Polycomb complexes in Drosophila consistent with ancient functional diversity. SCIENCE ADVANCES 2022; 8:eadd0103. [PMID: 36070387 PMCID: PMC9451159 DOI: 10.1126/sciadv.add0103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Polycomb group (PcG) mutants were first identified in Drosophila on the basis of their failure to maintain proper Hox gene repression during development. The proteins encoded by the corresponding fly genes mainly assemble into one of two discrete Polycomb repressive complexes: PRC1 or PRC2. However, biochemical analyses in mammals have revealed alternative forms of PRC2 and multiple distinct types of noncanonical or variant PRC1. Through a series of proteomic analyses, we identify analogous PRC2 and variant PRC1 complexes in Drosophila, as well as a broader repertoire of interactions implicated in early development. Our data provide strong support for the ancient diversity of PcG complexes and a framework for future analysis in a longstanding and versatile genetic system.
Collapse
Affiliation(s)
- Hyuckjoon Kang
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Janel R. Cabrera
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Biology Department, Emmanuel College, Boston, MA 02115, USA
| | - Barry M. Zee
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Heather A. Kang
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Alexander Glotov
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Yuri B. Schwartz
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Mitzi I. Kuroda
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Critical Roles of Polycomb Repressive Complexes in Transcription and Cancer. Int J Mol Sci 2022; 23:ijms23179574. [PMID: 36076977 PMCID: PMC9455514 DOI: 10.3390/ijms23179574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Polycomp group (PcG) proteins are members of highly conserved multiprotein complexes, recognized as gene transcriptional repressors during development and shown to play a role in various physiological and pathological processes. PcG proteins consist of two Polycomb repressive complexes (PRCs) with different enzymatic activities: Polycomb repressive complexes 1 (PRC1), a ubiquitin ligase, and Polycomb repressive complexes 2 (PRC2), a histone methyltransferase. Traditionally, PRCs have been described to be associated with transcriptional repression of homeotic genes, as well as gene transcription activating effects. Particularly in cancer, PRCs have been found to misregulate gene expression, not only depending on the function of the whole PRCs, but also through their separate subunits. In this review, we focused especially on the recent findings in the transcriptional regulation of PRCs, the oncogenic and tumor-suppressive roles of PcG proteins, and the research progress of inhibitors targeting PRCs.
Collapse
|
16
|
Hernández-Romero IA, Valdes VJ. De Novo Polycomb Recruitment and Repressive Domain Formation. EPIGENOMES 2022; 6:25. [PMID: 35997371 PMCID: PMC9397058 DOI: 10.3390/epigenomes6030025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Every cell of an organism shares the same genome; even so, each cellular lineage owns a different transcriptome and proteome. The Polycomb group proteins (PcG) are essential regulators of gene repression patterning during development and homeostasis. However, it is unknown how the repressive complexes, PRC1 and PRC2, identify their targets and elicit new Polycomb domains during cell differentiation. Classical recruitment models consider the pre-existence of repressive histone marks; still, de novo target binding overcomes the absence of both H3K27me3 and H2AK119ub. The CpG islands (CGIs), non-core proteins, and RNA molecules are involved in Polycomb recruitment. Nonetheless, it is unclear how de novo targets are identified depending on the physiological context and developmental stage and which are the leading players stabilizing Polycomb complexes at domain nucleation sites. Here, we examine the features of de novo sites and the accessory elements bridging its recruitment and discuss the first steps of Polycomb domain formation and transcriptional regulation, comprehended by the experimental reconstruction of the repressive domains through time-resolved genomic analyses in mammals.
Collapse
Affiliation(s)
| | - Victor Julian Valdes
- Department of Cell Biology and Development, Institute of Cellular Physiology (IFC), National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
17
|
The Role of Polycomb Proteins in Cell Lineage Commitment and Embryonic Development. EPIGENOMES 2022; 6:epigenomes6030023. [PMID: 35997369 PMCID: PMC9397020 DOI: 10.3390/epigenomes6030023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Embryonic development is a highly intricate and complex process. Different regulatory mechanisms cooperatively dictate the fate of cells as they progress from pluripotent stem cells to terminally differentiated cell types in tissues. A crucial regulator of these processes is the Polycomb Repressive Complex 2 (PRC2). By catalyzing the mono-, di-, and tri-methylation of lysine residues on histone H3 tails (H3K27me3), PRC2 compacts chromatin by cooperating with Polycomb Repressive Complex 1 (PRC1) and represses transcription of target genes. Proteomic and biochemical studies have revealed two variant complexes of PRC2, namely PRC2.1 which consists of the core proteins (EZH2, SUZ12, EED, and RBBP4/7) interacting with one of the Polycomb-like proteins (MTF2, PHF1, PHF19), and EPOP or PALI1/2, and PRC2.2 which contains JARID2 and AEBP2 proteins. MTF2 and JARID2 have been discovered to have crucial roles in directing and recruiting PRC2 to target genes for repression in embryonic stem cells (ESCs). Following these findings, recent work in the field has begun to explore the roles of different PRC2 variant complexes during different stages of embryonic development, by examining molecular phenotypes of PRC2 mutants in both in vitro (2D and 3D differentiation) and in vivo (knock-out mice) assays, analyzed with modern single-cell omics and biochemical assays. In this review, we discuss the latest findings that uncovered the roles of different PRC2 proteins during cell-fate and lineage specification and extrapolate these findings to define a developmental roadmap for different flavors of PRC2 regulation during mammalian embryonic development.
Collapse
|
18
|
Tavares M, Khandelwal G, Muter J, Viiri K, Beltran M, Brosens JJ, Jenner RG. JAZF1-SUZ12 dysregulates PRC2 function and gene expression during cell differentiation. Cell Rep 2022; 39:110889. [PMID: 35649353 PMCID: PMC9637993 DOI: 10.1016/j.celrep.2022.110889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 (H3K27me3) to maintain gene repression and is essential for cell differentiation. In low-grade endometrial stromal sarcoma (LG-ESS), the PRC2 subunit SUZ12 is often fused with the NuA4/TIP60 subunit JAZF1. We show that JAZF1-SUZ12 dysregulates PRC2 composition, genome occupancy, histone modification, gene expression, and cell differentiation. Loss of the SUZ12 N terminus in the fusion protein abrogates interaction with specific PRC2 accessory factors, reduces occupancy at PRC2 target genes, and diminishes H3K27me3. Fusion to JAZF1 increases H4Kac at PRC2 target genes and triggers recruitment to JAZF1 binding sites during cell differentiation. In human endometrial stromal cells, JAZF1-SUZ12 upregulated PRC2 target genes normally activated during decidualization while repressing genes associated with immune clearance, and JAZF1-SUZ12-induced genes were also overexpressed in LG-ESS. These results reveal defects in chromatin regulation, gene expression, and cell differentiation caused by JAZF1-SUZ12 that may underlie its role in oncogenesis.
Collapse
Affiliation(s)
- Manuel Tavares
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Garima Khandelwal
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Joanne Muter
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Keijo Viiri
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Manuel Beltran
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Jan J Brosens
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK.
| |
Collapse
|
19
|
Owen BM, Davidovich C. DNA binding by polycomb-group proteins: searching for the link to CpG islands. Nucleic Acids Res 2022; 50:4813-4839. [PMID: 35489059 PMCID: PMC9122586 DOI: 10.1093/nar/gkac290] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/25/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Polycomb group proteins predominantly exist in polycomb repressive complexes (PRCs) that cooperate to maintain the repressed state of thousands of cell-type-specific genes. Targeting PRCs to the correct sites in chromatin is essential for their function. However, the mechanisms by which PRCs are recruited to their target genes in mammals are multifactorial and complex. Here we review DNA binding by polycomb group proteins. There is strong evidence that the DNA-binding subunits of PRCs and their DNA-binding activities are required for chromatin binding and CpG targeting in cells. In vitro, CpG-specific binding was observed for truncated proteins externally to the context of their PRCs. Yet, the mere DNA sequence cannot fully explain the subset of CpG islands that are targeted by PRCs in any given cell type. At this time we find very little structural and biophysical evidence to support a model where sequence-specific DNA-binding activity is required or sufficient for the targeting of CpG-dinucleotide sequences by polycomb group proteins while they are within the context of their respective PRCs, either PRC1 or PRC2. We discuss the current knowledge and open questions on how the DNA-binding activities of polycomb group proteins facilitate the targeting of PRCs to chromatin.
Collapse
Affiliation(s)
- Brady M Owen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.,EMBL-Australia, Clayton, VIC, Australia
| |
Collapse
|
20
|
Fischer S, Weber LM, Liefke R. Evolutionary adaptation of the Polycomb repressive complex 2. Epigenetics Chromatin 2022; 15:7. [PMID: 35193659 PMCID: PMC8864842 DOI: 10.1186/s13072-022-00439-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/08/2022] [Indexed: 12/31/2022] Open
Abstract
The Polycomb repressive complex 2 (PRC2) is an essential chromatin regulatory complex involved in repressing the transcription of diverse developmental genes. PRC2 consists of a core complex; possessing H3K27 methyltransferase activity and various associated factors that are important to modulate its function. During evolution, the composition of PRC2 and the functionality of PRC2 components have changed considerably. Here, we compare the PRC2 complex members of Drosophila and mammals and describe their adaptation to altered biological needs. We also highlight how the PRC2.1 subcomplex has gained multiple novel functions and discuss the implications of these changes for the function of PRC2 in chromatin regulation.
Collapse
Affiliation(s)
- Sabrina Fischer
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043, Marburg, Germany
| | - Lisa Marie Weber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043, Marburg, Germany
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, 35043, Marburg, Germany. .,Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, 35043, Marburg, Germany.
| |
Collapse
|
21
|
Chan N, Huang J, Ma G, Zeng H, Donahue K, Wang Y, Li L, Xu W. The transcriptional elongation factor CTR9 demarcates PRC2-mediated H3K27me3 domains by altering PRC2 subtype equilibrium. Nucleic Acids Res 2022; 50:1969-1992. [PMID: 35137163 PMCID: PMC8887485 DOI: 10.1093/nar/gkac047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
CTR9 is the scaffold subunit in polymerase-associated factor complex (PAFc), a multifunctional complex employed in multiple steps of RNA Polymerase II (RNAPII)-mediated transcription. CTR9/PAFc is well known as an evolutionarily conserved elongation factor that regulates gene activation via coupling with histone modifications enzymes. However, little is known about its function to restrain repressive histone markers. Using inducible and stable CTR9 knockdown breast cancer cell lines, we discovered that the H3K27me3 levels are strictly controlled by CTR9. Quantitative profiling of histone modifications revealed a striking increase of H3K27me3 levels upon loss of CTR9. Moreover, loss of CTR9 leads to genome-wide expansion of H3K27me3, as well as increased recruitment of PRC2 on chromatin, which can be reversed by CTR9 restoration. Further, CTR9 depletion triggers a PRC2 subtype switch from the less active PRC2.2, to the more active PRC2.1 with higher methyltransferase activity. As a consequence, CTR9 depletion generates vulnerability that renders breast cancer cells hypersensitive to PRC2 inhibitors. Our findings that CTR9 demarcates PRC2-mediated H3K27me3 levels and genomic distribution provide a unique mechanism that explains the transition from transcriptionally active chromatin states to repressive chromatin states and sheds light on the biological functions of CTR9 in development and cancer.
Collapse
Affiliation(s)
- Ngai Ting Chan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gui Ma
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hao Zeng
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kristine Donahue
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA,Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Xu
- To whom correspondence should be addressed. Tel: +1 608 265 5540; Fax: +1 608 262 2824; Email :
| |
Collapse
|
22
|
Alerasool N, Leng H, Lin ZY, Gingras AC, Taipale M. Identification and functional characterization of transcriptional activators in human cells. Mol Cell 2022; 82:677-695.e7. [PMID: 35016035 DOI: 10.1016/j.molcel.2021.12.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Transcription is orchestrated by thousands of transcription factors (TFs) and chromatin-associated proteins, but how these are causally connected to transcriptional activation is poorly understood. Here, we conduct an unbiased proteome-scale screen to systematically uncover human proteins that activate transcription in a natural chromatin context. By combining interaction proteomics and chemical inhibitors, we delineate the preference of these transcriptional activators for specific co-activators, highlighting how even closely related TFs can function via distinct cofactors. We also identify potent transactivation domains among the hits and use AlphaFold2 to predict and experimentally validate interaction interfaces of two activation domains with BRD4. Finally, we show that many novel activators are partners in fusion events in tumors and functionally characterize a myofibroma-associated fusion between SRF and C3orf62, a potent p300-dependent activator. Our work provides a functional catalog of potent transactivators in the human proteome and a platform for discovering transcriptional regulators at genome scale.
Collapse
Affiliation(s)
- Nader Alerasool
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - He Leng
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
23
|
Pokrovsky D, Forné I, Straub T, Imhof A, Rupp RAW. A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis. PLoS Biol 2021; 19:e3001377. [PMID: 34491983 PMCID: PMC8535184 DOI: 10.1371/journal.pbio.3001377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/22/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022] Open
Abstract
Forming an embryo from a zygote poses an apparent conflict for epigenetic regulation. On the one hand, the de novo induction of cell fate identities requires the establishment and subsequent maintenance of epigenetic information to harness developmental gene expression. On the other hand, the embryo depends on cell proliferation, and every round of DNA replication dilutes preexisting histone modifications by incorporation of new unmodified histones into chromatin. Here, we investigated the possible relationship between the propagation of epigenetic information and the developmental cell proliferation during Xenopus embryogenesis. We systemically inhibited cell proliferation during the G1/S transition in gastrula embryos and followed their development until the tadpole stage. Comparing wild-type and cell cycle-arrested embryos, we show that the inhibition of cell proliferation is principally compatible with embryo survival and cellular differentiation. In parallel, we quantified by mass spectrometry the abundance of a large set of histone modification states, which reflects the developmental maturation of the embryonic epigenome. The arrested embryos developed abnormal stage-specific histone modification profiles (HMPs), in which transcriptionally repressive histone marks were overrepresented. Embryos released from the cell cycle block during neurulation reverted toward normality on morphological, molecular, and epigenetic levels. These results suggest that the cell cycle block by HUA alters stage-specific HMPs. We propose that this influence is strong enough to control developmental decisions, specifically in cell populations that switch between resting and proliferating states such as stem cells.
Collapse
Affiliation(s)
- Daniil Pokrovsky
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ignasi Forné
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tobias Straub
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Axel Imhof
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ralph A. W. Rupp
- Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
24
|
PALI1 facilitates DNA and nucleosome binding by PRC2 and triggers an allosteric activation of catalysis. Nat Commun 2021; 12:4592. [PMID: 34321472 PMCID: PMC8319299 DOI: 10.1038/s41467-021-24866-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
The polycomb repressive complex 2 (PRC2) is a histone methyltransferase that maintains cell identities. JARID2 is the only accessory subunit of PRC2 that known to trigger an allosteric activation of methyltransferase. Yet, this mechanism cannot be generalised to all PRC2 variants as, in vertebrates, JARID2 is mutually exclusive with most of the accessory subunits of PRC2. Here we provide functional and structural evidence that the vertebrate-specific PRC2 accessory subunit PALI1 emerged through a convergent evolution to mimic JARID2 at the molecular level. Mechanistically, PRC2 methylates PALI1 K1241, which then binds to the PRC2-regulatory subunit EED to allosterically activate PRC2. PALI1 K1241 is methylated in mouse and human cell lines and is essential for PALI1-induced allosteric activation of PRC2. High-resolution crystal structures revealed that PALI1 mimics the regulatory interactions formed between JARID2 and EED. Independently, PALI1 also facilitates DNA and nucleosome binding by PRC2. In acute myelogenous leukemia cells, overexpression of PALI1 leads to cell differentiation, with the phenotype altered by a separation-of-function PALI1 mutation, defective in allosteric activation and active in DNA binding. Collectively, we show that PALI1 facilitates catalysis and substrate binding by PRC2 and provide evidence that subunit-induced allosteric activation is a general property of holo-PRC2 complexes. The polycomb repressive complex 2 (PRC2) is a histone methyltransferase regulating cell differentiation and identity. Here, the authors show that the vertebrate-specific PRC2 accessory subunit PALI1 facilitates substrate binding by the complex and elucidate the allosteric mechanism of PALI1- mediated PRC2 activation.
Collapse
|
25
|
Guo Y, Zhao S, Wang GG. Polycomb Gene Silencing Mechanisms: PRC2 Chromatin Targeting, H3K27me3 'Readout', and Phase Separation-Based Compaction. Trends Genet 2021; 37:547-565. [PMID: 33494958 PMCID: PMC8119337 DOI: 10.1016/j.tig.2020.12.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
Modulation of chromatin structure and/or modification by Polycomb repressive complexes (PRCs) provides an important means to partition the genome into functionally distinct subdomains and to regulate the activity of the underlying genes. Both the enzymatic activity of PRC2 and its chromatin recruitment, spreading, and eviction are exquisitely regulated via interactions with cofactors and DNA elements (such as unmethylated CpG islands), histones, RNA (nascent mRNA and long noncoding RNA), and R-loops. PRC2-catalyzed histone H3 lysine 27 trimethylation (H3K27me3) is recognized by distinct classes of effectors such as canonical PRC1 and BAH module-containing proteins (notably BAHCC1 in human). These effectors mediate gene silencing by different mechanisms including phase separation-related chromatin compaction and histone deacetylation. We discuss recent advances in understanding the structural architecture of PRC2, the regulation of its activity and chromatin recruitment, and the molecular mechanisms underlying Polycomb-mediated gene silencing. Because PRC deregulation is intimately associated with the development of diseases, a better appreciation of Polycomb-based (epi)genomic regulation will have far-reaching implications in biology and medicine.
Collapse
Affiliation(s)
- Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuai Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
26
|
Piunti A, Shilatifard A. The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol 2021; 22:326-345. [PMID: 33723438 DOI: 10.1038/s41580-021-00341-1] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
More than 80 years ago, the first Polycomb-related phenotype was identified in Drosophila melanogaster. Later, a group of diverse genes collectively called Polycomb group (PcG) genes were identified based on common mutant phenotypes. PcG proteins, which are well-conserved in animals, were originally characterized as negative regulators of gene transcription during development and subsequently shown to function in various biological processes; their deregulation is associated with diverse phenotypes in development and in disease, especially cancer. PcG proteins function on chromatin and can form two distinct complexes with different enzymatic activities: Polycomb repressive complex 1 (PRC1) is a histone ubiquitin ligase and PRC2 is a histone methyltransferase. Recent studies have revealed the existence of various mutually exclusive PRC1 and PRC2 variants. In this Review, we discuss new concepts concerning the biochemical and molecular functions of these new PcG complex variants, and how their epigenetic activities are involved in mammalian development and cancer.
Collapse
Affiliation(s)
- Andrea Piunti
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
27
|
The Role of Polycomb Group Protein BMI1 in DNA Repair and Genomic Stability. Int J Mol Sci 2021; 22:ijms22062976. [PMID: 33804165 PMCID: PMC7998361 DOI: 10.3390/ijms22062976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
The polycomb group (PcG) proteins are a class of transcriptional repressors that mediate gene silencing through histone post-translational modifications. They are involved in the maintenance of stem cell self-renewal and proliferation, processes that are often dysregulated in cancer. Apart from their canonical functions in epigenetic gene silencing, several studies have uncovered a function for PcG proteins in DNA damage signaling and repair. In particular, members of the poly-comb group complexes (PRC) 1 and 2 have been shown to recruit to sites of DNA damage and mediate DNA double-strand break repair. Here, we review current understanding of the PRCs and their roles in cancer development. We then focus on the PRC1 member BMI1, discussing the current state of knowledge of its role in DNA repair and genome integrity, and outline how it can be targeted pharmacologically.
Collapse
|
28
|
Abstract
Polycomb Repressive Complex 2 (PRC2) is a major repressive chromatin complex formed by the Polycomb Group (PcG) proteins. PRC2 mediates trimethylation of histone H3 lysine 27 (H3K27me3), a hallmark of gene silencing. PRC2 is a key regulator of development, impacting many fundamental biological processes, like stem cell differentiation in mammals and vernalization in plants. Misregulation of PRC2 function is linked to a variety of human cancers and developmental disorders. In correlation with its diverse roles in development, PRC2 displays a high degree of compositional complexity and plasticity. Structural biology research over the past decade has shed light on the molecular mechanisms of the assembly, catalysis, allosteric activation, autoinhibition, chemical inhibition, dimerization and chromatin targeting of various developmentally regulated PRC2 complexes. In addition to these aspects, structure-function analysis is also discussed in connection with disease data in this chapter.
Collapse
Affiliation(s)
- Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
29
|
Structural basis for PRC2 engagement with chromatin. Curr Opin Struct Biol 2020; 67:135-144. [PMID: 33232890 DOI: 10.1016/j.sbi.2020.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
The polycomb repressive complex 2 (PRC2) is a conserved multiprotein, repressive chromatin complex essential for development and maintenance of eukaryotic cellular identity. PRC2 comprises a trimeric core of SUZ12, EED and EZH1/2, which together with RBBP4/7 is sufficient to catalyse mono-methylation, di-methylation and tri-methylation of histone H3 at lysine 27 (H3K27me1/2/3). These histone methyltransferase activities of PRC2 are deregulated in several human cancers and certain developmental disorders, such as Weaver Syndrome. Core PRC2 associates with several accessory proteins, which organise to define two main subassemblies, PRC2.1 and PRC2.2. Here we review new biochemical and structural studies that are providing critical insights into how core and accessory PRC2 subunits coordinate the faithful deposition of H3K27 methylations genome-wide.
Collapse
|
30
|
Yang Y, Li G. Post-translational modifications of PRC2: signals directing its activity. Epigenetics Chromatin 2020; 13:47. [PMID: 33129354 PMCID: PMC7603765 DOI: 10.1186/s13072-020-00369-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a chromatin-modifying enzyme that catalyses the methylation of histone H3 at lysine 27 (H3K27me1/2/3). This complex maintains gene transcriptional repression and plays an essential role in the maintenance of cellular identity as well as normal organismal development. The activity of PRC2, including its genomic targeting and catalytic activity, is controlled by various signals. Recent studies have revealed that these signals involve cis chromatin features, PRC2 facultative subunits and post-translational modifications (PTMs) of PRC2 subunits. Overall, these findings have provided insight into the biochemical signals directing PRC2 function, although many mysteries remain.
Collapse
Affiliation(s)
- Yiqi Yang
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Macau, China. .,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China. .,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
31
|
Kang SJ, Chun T. Structural heterogeneity of the mammalian polycomb repressor complex in immune regulation. Exp Mol Med 2020; 52:1004-1015. [PMID: 32636442 PMCID: PMC8080698 DOI: 10.1038/s12276-020-0462-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/21/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Epigenetic regulation is mainly mediated by enzymes that can modify the structure of chromatin by altering the structure of DNA or histones. Proteins involved in epigenetic processes have been identified to study the detailed molecular mechanisms involved in the regulation of specific mRNA expression. Evolutionarily well-conserved polycomb group (PcG) proteins can function as transcriptional repressors by the trimethylation of histone H3 at the lysine 27 residue (H3K27me3) and the monoubiquitination of histone H2A at the lysine 119 residue (H2AK119ub). PcG proteins form two functionally distinct protein complexes: polycomb repressor complex 1 (PRC1) and PRC2. In mammals, the structural heterogeneity of each PRC complex is dramatically increased by several paralogs of its subunit proteins. Genetic studies with transgenic mice along with RNA-seq and chromatin immunoprecipitation (ChIP)-seq analyses might be helpful for defining the cell-specific functions of paralogs of PcG proteins. Here, we summarize current knowledge about the immune regulatory role of PcG proteins related to the compositional diversity of each PRC complex and introduce therapeutic drugs that target PcG proteins in hematopoietic malignancy. Protein complexes that suppress gene activity by remodeling chromatin, the substance that contains most of a cell’s DNA, play a critical role in regulating the immune system and provide a therapeutic target for treating blood cancers. Seok-Jin Kang and Taehoon Chun from Korea University in Seoul, South Korea, review how polycomb group proteins, best known for their function in embryonic development, also contribute to the formation of immune cells from blood stem cell precursors. Studies with stem cells and cancer cells have begun to reveal many targets of these proteins, and drug companies are evaluating candidate agents directed against some polycomb group proteins in patients with lymphoma and other cancers. More comprehensive profiling of protein function across a broad range of immune cell types could reveal new targets for additional diseases associated with immune dysfunction.
Collapse
Affiliation(s)
- Seok-Jin Kang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Taehoon Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
32
|
Abstract
Predicting regulatory potential from primary DNA sequences or transcription factor binding patterns is not possible. However, the annotation of the genome by chromatin proteins, histone modifications, and differential compaction is largely sufficient to reveal the locations of genes and their differential activity states. The Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are the central players in this cell type-specific chromatin organization. PcG function was originally viewed as being solely repressive and irreversible, as observed at the homeotic loci in flies and mammals. However, it is now clear that modular and reversible PcG function is essential at most developmental genes. Focusing mainly on recent advances, we review evidence for how PcG and TrxG patterns change dynamically during cell type transitions. The ability to implement cell type-specific transcriptional programming with exquisite fidelity is essential for normal development.
Collapse
Affiliation(s)
- Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Hyuckjoon Kang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Sandip De
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
33
|
Silva-Fisher JM, Dang HX, White NM, Strand MS, Krasnick BA, Rozycki EB, Jeffers GGL, Grossman JG, Highkin MK, Tang C, Cabanski CR, Eteleeb A, Mudd J, Goedegebuure SP, Luo J, Mardis ER, Wilson RK, Ley TJ, Lockhart AC, Fields RC, Maher CA. Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat Commun 2020; 11:2156. [PMID: 32358485 PMCID: PMC7195452 DOI: 10.1038/s41467-020-15547-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/16/2020] [Indexed: 01/14/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy in the U.S.A. and approximately 50% of patients develop metastatic disease (mCRC). Despite our understanding of long non-coding RNAs (lncRNAs) in primary colon cancer, their role in mCRC and treatment resistance remains poorly characterized. Therefore, through transcriptome sequencing of normal, primary, and distant mCRC tissues we find 148 differentially expressed RNAs Associated with Metastasis (RAMS). We prioritize RAMS11 due to its association with poor disease-free survival and promotion of aggressive phenotypes in vitro and in vivo. A FDA-approved drug high-throughput viability assay shows that elevated RAMS11 expression increases resistance to topoisomerase inhibitors. Subsequent experiments demonstrate RAMS11-dependent recruitment of Chromobox protein 4 (CBX4) transcriptionally activates Topoisomerase II alpha (TOP2α). Overall, recent clinical trials using topoisomerase inhibitors coupled with our findings of RAMS11-dependent regulation of TOP2α supports the potential use of RAMS11 as a biomarker and therapeutic target for mCRC.
Collapse
Affiliation(s)
- Jessica M Silva-Fisher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ha X Dang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- The McDonnell Genome Institute, St. Louis, MO, USA
| | - Nicole M White
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew S Strand
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley A Krasnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily B Rozycki
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gejae G L Jeffers
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie G Grossman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Maureen K Highkin
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia Tang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Abdallah Eteleeb
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Timothy J Ley
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Ryan C Fields
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
- The McDonnell Genome Institute, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
34
|
Multiplexed capture of spatial configuration and temporal dynamics of locus-specific 3D chromatin by biotinylated dCas9. Genome Biol 2020; 21:59. [PMID: 32138752 PMCID: PMC7059722 DOI: 10.1186/s13059-020-01973-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
The spatiotemporal control of 3D genome is fundamental for gene regulation, yet it remains challenging to profile high-resolution chromatin structure at cis-regulatory elements (CREs). Using C-terminally biotinylated dCas9, endogenous biotin ligases, and pooled sgRNAs, we describe the dCas9-based CAPTURE method for multiplexed analysis of locus-specific chromatin interactions. The redesigned system allows for quantitative analysis of the spatial configuration of a few to hundreds of enhancers or promoters in a single experiment, enabling comparisons across CREs within and between gene clusters. Multiplexed analyses of the spatiotemporal configuration of erythroid super-enhancers and promoter-centric interactions reveal organizational principles of genome structure and function.
Collapse
|
35
|
Chammas P, Mocavini I, Di Croce L. Engaging chromatin: PRC2 structure meets function. Br J Cancer 2019; 122:315-328. [PMID: 31708574 PMCID: PMC7000746 DOI: 10.1038/s41416-019-0615-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a key epigenetic multiprotein complex involved in the regulation of gene expression in metazoans. PRC2 is formed by a tetrameric core that endows the complex with histone methyltransferase activity, allowing it to mono-, di- and tri-methylate histone H3 on lysine 27 (H3K27me1/2/3); H3K27me3 is a hallmark of facultative heterochromatin. The core complex of PRC2 is bound by several associated factors that are responsible for modulating its targeting specificity and enzymatic activity. Depletion and/or mutation of the subunits of this complex can result in severe developmental defects, or even lethality. Furthermore, mutations of these proteins in somatic cells can be drivers of tumorigenesis, by altering the transcriptional regulation of key tumour suppressors or oncogenes. In this review, we present the latest results from structural studies that have characterised PRC2 composition and function. We compare this information with data and literature for both gain-of function and loss-of-function missense mutations in cancers to provide an overview of the impact of these mutations on PRC2 activity.
Collapse
Affiliation(s)
- Paul Chammas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Ivano Mocavini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,ICREA, Pg Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
36
|
C10ORF12 modulates PRC2 histone methyltransferase activity and H3K27me3 levels. Acta Pharmacol Sin 2019; 40:1457-1465. [PMID: 31186533 DOI: 10.1038/s41401-019-0247-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/05/2019] [Indexed: 01/03/2023]
Abstract
The polycomb repressive complex 2 (PRC2) catalyzes the methylation of histone H3 on lysine 27 (H3K27) to generate trimethyl-H3K27 (H3K27me3) marks, thereby leading to a repressive chromatin state that inhibits gene expression. C10ORF12 was recently identified as a novel PRC2 interactor. Here, we show that C10ORF12 specifically interacts with PRC2 through its middle region (positions 619-718). C10ORF12 significantly enhances the histone methyltransferase activity of PRC2 in vitro and dramatically increases the total H3K27me3 levels in HeLa cells. C10ORF12 also antagonizes Jarid2, which is an auxiliary factor of the PRC2.2 subcomplex, to promote increased H3K27me3 levels in HeLa cells. Moreover, C10ORF12 alters the substrate preference of PRC2. These results indicate that C10ORF12 functions as a positive regulator of PRC2 and facilitates PRC2-mediated H3K27me3 modification of chromatin. These findings provide new insight into the roles of C10ORF12 in regulating the activity of the PRC2 complex.
Collapse
|
37
|
Abstract
Polycomb repressive complex 2 (PRC2) is a conserved chromatin regulator that is responsible for the methylation of histone H3 lysine 27 (H3K27). PRC2 is essential for normal development and its loss of function thus results in a range of developmental phenotypes. Here, we review the latest advances in our understanding of mammalian PRC2 activity and present an updated summary of the phenotypes associated with its loss of function in mice. We then discuss recent studies that have highlighted regulatory interplay between the modifications laid down by PRC2 and other chromatin modifiers, including NSD1 and DNMT3A. Finally, we propose a model in which the dysregulation of these modifications at intergenic regions is a shared molecular feature of genetically distinct but highly phenotypically similar overgrowth syndromes in humans.
Collapse
Affiliation(s)
- Orla Deevy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
38
|
Højfeldt JW, Hedehus L, Laugesen A, Tatar T, Wiehle L, Helin K. Non-core Subunits of the PRC2 Complex Are Collectively Required for Its Target-Site Specificity. Mol Cell 2019; 76:423-436.e3. [PMID: 31521506 DOI: 10.1016/j.molcel.2019.07.031] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/13/2019] [Accepted: 07/19/2019] [Indexed: 12/31/2022]
Abstract
The Polycomb repressive complex 2 (PRC2) catalyzes H3K27 methylation across the genome, which impacts transcriptional regulation and is critical for establishment of cell identity. Because of its essential function during development and in cancer, understanding the delineation of genome-wide H3K27 methylation patterns has been the focus of intense investigation. PRC2 methylation activity is abundant and dispersed throughout the genome, but the highest activity is specifically directed to a subset of target sites that are stably occupied by the complex and highly enriched for H3K27me3. Here, we show, by systematically knocking out single and multiple non-core subunits of the PRC2 complex in mouse embryonic stem cells, that they each contribute to directing PRC2 activity to target sites. Furthermore, combined knockout of six non-core subunits reveals that, while dispensable for global H3K27 methylation levels, the non-core PRC2 subunits are collectively required for focusing H3K27me3 activity to specific sites in the genome.
Collapse
Affiliation(s)
- Jonas Westergaard Højfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Lin Hedehus
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Anne Laugesen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Tülin Tatar
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Laura Wiehle
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N 2200, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen N 2200, Denmark; Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA.
| |
Collapse
|
39
|
Healy E, Mucha M, Glancy E, Fitzpatrick DJ, Conway E, Neikes HK, Monger C, Van Mierlo G, Baltissen MP, Koseki Y, Vermeulen M, Koseki H, Bracken AP. PRC2.1 and PRC2.2 Synergize to Coordinate H3K27 Trimethylation. Mol Cell 2019; 76:437-452.e6. [PMID: 31521505 DOI: 10.1016/j.molcel.2019.08.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/28/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Polycomb repressive complex 2 (PRC2) is composed of EED, SUZ12, and EZH1/2 and mediates mono-, di-, and trimethylation of histone H3 at lysine 27. At least two independent subcomplexes exist, defined by their specific accessory proteins: PRC2.1 (PCL1-3, EPOP, and PALI1/2) and PRC2.2 (AEBP2 and JARID2). We show that PRC2.1 and PRC2.2 share the majority of target genes in mouse embryonic stem cells. The loss of PCL1-3 is sufficient to evict PRC2.1 from Polycomb target genes but only leads to a partial reduction of PRC2.2 and H3K27me3. Conversely, disruption of PRC2.2 function through the loss of either JARID2 or RING1A/B is insufficient to completely disrupt targeting of SUZ12 by PCLs. Instead, the combined loss of both PRC2.1 and PRC2.2 is required, leading to the global mislocalization of SUZ12. This supports a model in which the specific accessory proteins within PRC2.1 and PRC2.2 cooperate to direct H3K27me3 via both synergistic and independent mechanisms.
Collapse
Affiliation(s)
- Evan Healy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Marlena Mucha
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Eleanor Glancy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Eric Conway
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Hannah K Neikes
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Craig Monger
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Guido Van Mierlo
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Marijke P Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
40
|
Lee CH, Yu JR, Granat J, Saldaña-Meyer R, Andrade J, LeRoy G, Jin Y, Lund P, Stafford JM, Garcia BA, Ueberheide B, Reinberg D. Automethylation of PRC2 promotes H3K27 methylation and is impaired in H3K27M pediatric glioma. Genes Dev 2019; 33:1428-1440. [PMID: 31488577 PMCID: PMC6771381 DOI: 10.1101/gad.328773.119] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
In this study, Lee et al. use both in vitro and in vivo approaches to elucidate the regulation of PRC2. They demonstrate a novel PRC2 self-regulatory mechanism through its EZH1/2-mediated automethylation activity. The histone methyltransferase activity of PRC2 is central to the formation of H3K27me3-decorated facultative heterochromatin and gene silencing. In addition, PRC2 has been shown to automethylate its core subunits, EZH1/EZH2 and SUZ12. Here, we identify the lysine residues at which EZH1/EZH2 are automethylated with EZH2-K510 and EZH2-K514 being the major such sites in vivo. Automethylated EZH2/PRC2 exhibits a higher level of histone methyltransferase activity and is required for attaining proper cellular levels of H3K27me3. While occurring independently of PRC2 recruitment to chromatin, automethylation promotes PRC2 accessibility to the histone H3 tail. Intriguingly, EZH2 automethylation is significantly reduced in diffuse intrinsic pontine glioma (DIPG) cells that carry a lysine-to-methionine substitution in histone H3 (H3K27M), but not in cells that carry either EZH2 or EED mutants that abrogate PRC2 allosteric activation, indicating that H3K27M impairs the intrinsic activity of PRC2. Our study demonstrates a PRC2 self-regulatory mechanism through its EZH1/2-mediated automethylation activity.
Collapse
Affiliation(s)
- Chul-Hwan Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Jia-Ray Yu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Jeffrey Granat
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Ricardo Saldaña-Meyer
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Joshua Andrade
- Proteomics Laboratory, New York University School of Medicine, New York, New York 10016, USA
| | - Gary LeRoy
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Ying Jin
- Shared Bioinformatics Core, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Peder Lund
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, New York University School of Medicine, New York, New York 10016, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
41
|
EZHIP constrains Polycomb Repressive Complex 2 activity in germ cells. Nat Commun 2019; 10:3858. [PMID: 31451685 PMCID: PMC6710278 DOI: 10.1038/s41467-019-11800-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
The Polycomb group of proteins is required for the proper orchestration of gene expression due to its role in maintaining transcriptional silencing. It is composed of several chromatin modifying complexes, including Polycomb Repressive Complex 2 (PRC2), which deposits H3K27me2/3. Here, we report the identification of a cofactor of PRC2, EZHIP (EZH1/2 Inhibitory Protein), expressed predominantly in the gonads. EZHIP limits the enzymatic activity of PRC2 and lessens the interaction between the core complex and its accessory subunits, but does not interfere with PRC2 recruitment to chromatin. Deletion of Ezhip in mice leads to a global increase in H3K27me2/3 deposition both during spermatogenesis and at late stages of oocyte maturation. This does not affect the initial number of follicles but is associated with a reduction of follicles in aging. Our results suggest that mature oocytes Ezhip-/- might not be fully functional and indicate that fertility is strongly impaired in Ezhip-/- females. Altogether, our study uncovers EZHIP as a regulator of chromatin landscape in gametes.
Collapse
|
42
|
Abstract
As the process that silences gene expression ensues during development, the stage is set for the activity of Polycomb-repressive complex 2 (PRC2) to maintain these repressed gene profiles. PRC2 catalyzes a specific histone posttranslational modification (hPTM) that fosters chromatin compaction. PRC2 also facilitates the inheritance of this hPTM through its self-contained "write and read" activities, key to preserving cellular identity during cell division. As these changes in gene expression occur without changes in DNA sequence and are inherited, the process is epigenetic in scope. Mutants of mammalian PRC2 or of its histone substrate contribute to the cancer process and other diseases, and research into these aberrant pathways is yielding viable candidates for therapeutic targeting. The effectiveness of PRC2 hinges on its being recruited to the proper chromatin sites; however, resolving the determinants to this process in the mammalian case was not straightforward and thus piqued the interest of many in the field. Here, we chronicle the latest advances toward exposing mammalian PRC2 and its high maintenance.
Collapse
Affiliation(s)
- Jia-Ray Yu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Chul-Hwan Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Ozgur Oksuz
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
43
|
Vidal M. Polycomb Assemblies Multitask to Regulate Transcription. EPIGENOMES 2019; 3:12. [PMID: 34968234 PMCID: PMC8594731 DOI: 10.3390/epigenomes3020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 02/06/2023] Open
Abstract
The Polycomb system is made of an evolutionary ancient group of proteins, present throughout plants and animals. Known initially from developmental studies with the fly Drosophila melanogaster, they were associated with stable sustainment of gene repression and maintenance of cell identity. Acting as multiprotein assemblies with an ability to modify chromatin, through chemical additions to histones and organization of topological domains, they have been involved subsequently in control of developmental transitions and in cell homeostasis. Recent work has unveiled an association of Polycomb components with transcriptionally active loci and the promotion of gene expression, in clear contrast with conventional recognition as repressors. Focusing on mammalian models, I review here advances concerning roles in transcriptional control. Among new findings highlighted is the regulation of their catalytic properties, recruiting to targets, and activities in chromatin organization and compartmentalization. The need for a more integrated approach to the study of the Polycomb system, given its fundamental complexity and its adaptation to cell context, is discussed.
Collapse
Affiliation(s)
- Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
44
|
van Mierlo G, Veenstra GJC, Vermeulen M, Marks H. The Complexity of PRC2 Subcomplexes. Trends Cell Biol 2019; 29:660-671. [PMID: 31178244 DOI: 10.1016/j.tcb.2019.05.004] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
Polycomb repressive complex 2 (PRC2) is a multisubunit protein complex essential for the development of multicellular organisms. Recruitment of PRC2 to target genes, followed by deposition and propagation of its catalytic product histone H3 lysine 27 trimethylation (H3K27me3), are key to the spatiotemporal control of developmental gene expression. Recent breakthrough studies have uncovered unexpected roles for substoichiometric PRC2 subunits in these processes. Here, we elaborate on how the facultative PRC2 subunits regulate catalytic activity, locus-specific PRC2 binding, and propagation of H3K27me3, and how this affects chromatin structure, gene expression, and cell fate.
Collapse
Affiliation(s)
- Guido van Mierlo
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen 6525GA, The Netherlands; Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6500HB, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen 6525GA, The Netherlands; Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University, Nijmegen 6525GA, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen 6525GA, The Netherlands.
| |
Collapse
|
45
|
Bracken AP, Brien GL, Verrijzer CP. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev 2019; 33:936-959. [PMID: 31123059 PMCID: PMC6672049 DOI: 10.1101/gad.326066.119] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, Bracken et al. discuss the functional organization and biochemical activities of remodelers and Polycomb and explore how they work together to control cell differentiation and the maintenance of cell identity. They also discuss how mutations in the genes encoding these various chromatin regulators contribute to oncogenesis by disrupting the chromatin equilibrium. Changes in chromatin structure mediated by ATP-dependent nucleosome remodelers and histone modifying enzymes are integral to the process of gene regulation. Here, we review the roles of the SWI/SNF (switch/sucrose nonfermenting) and NuRD (nucleosome remodeling and deacetylase) and the Polycomb system in chromatin regulation and cancer. First, we discuss the basic molecular mechanism of nucleosome remodeling, and how this controls gene transcription. Next, we provide an overview of the functional organization and biochemical activities of SWI/SNF, NuRD, and Polycomb complexes. We describe how, in metazoans, the balance of these activities is central to the proper regulation of gene expression and cellular identity during development. Whereas SWI/SNF counteracts Polycomb, NuRD facilitates Polycomb repression on chromatin. Finally, we discuss how disruptions of this regulatory equilibrium contribute to oncogenesis, and how new insights into the biological functions of remodelers and Polycombs are opening avenues for therapeutic interventions on a broad range of cancer types.
Collapse
Affiliation(s)
- Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| |
Collapse
|
46
|
Laugesen A, Højfeldt JW, Helin K. Molecular Mechanisms Directing PRC2 Recruitment and H3K27 Methylation. Mol Cell 2019; 74:8-18. [PMID: 30951652 PMCID: PMC6452890 DOI: 10.1016/j.molcel.2019.03.011] [Citation(s) in RCA: 391] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/12/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
The polycomb repressive complex 2 (PRC2) is a chromatin-associated methyltransferase catalyzing mono-, di-, and trimethylation of lysine 27 on histone H3 (H3K27). This activity is required for normal organismal development and maintenance of gene expression patterns to uphold cell identity. PRC2 function is often deregulated in disease and is a promising candidate for therapeutic targeting in cancer. In this review, we discuss the molecular mechanisms proposed to take part in modulating PRC2 recruitment and shaping H3K27 methylation patterns across the genome. This includes consideration of factors influencing PRC2 residence time on chromatin and PRC2 catalytic activity with a focus on the mechanisms giving rise to regional preferences and differential deposition of H3K27 methylation. We further discuss existing evidence for functional diversity between distinct subsets of PRC2 complexes with the aim of extracting key concepts and highlighting major open questions toward a more complete understanding of PRC2 function.
Collapse
Affiliation(s)
- Anne Laugesen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Jonas Westergaard Højfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark; The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
47
|
Loubiere V, Martinez AM, Cavalli G. Cell Fate and Developmental Regulation Dynamics by Polycomb Proteins and 3D Genome Architecture. Bioessays 2019; 41:e1800222. [PMID: 30793782 DOI: 10.1002/bies.201800222] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/22/2018] [Indexed: 12/14/2022]
Abstract
Targeted transitions in chromatin states at thousands of genes are essential drivers of eukaryotic development. Therefore, understanding the in vivo dynamics of epigenetic regulators is crucial for deciphering the mechanisms underpinning cell fate decisions. This review illustrates how, in addition to its cell memory function, the Polycomb group of transcriptional regulators orchestrates temporal, cell and tissue-specific expression of master genes during development. These highly sophisticated developmental transitions are dependent on the context- and tissue-specific assembly of the different types of Polycomb Group (PcG) complexes, which regulates their targeting and/or activities on chromatin. Here, an overview is provided of how PcG complexes function at multiple scales to regulate transcription, local chromatin environment, and higher order structures that support normal differentiation and are perturbed in tumorigenesis.
Collapse
Affiliation(s)
- Vincent Loubiere
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| |
Collapse
|
48
|
Chen S, Jiao L, Shubbar M, Yang X, Liu X. Unique Structural Platforms of Suz12 Dictate Distinct Classes of PRC2 for Chromatin Binding. Mol Cell 2019; 69:840-852.e5. [PMID: 29499137 DOI: 10.1016/j.molcel.2018.01.039] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/19/2017] [Accepted: 01/30/2018] [Indexed: 01/09/2023]
Abstract
Developmentally regulated accessory subunits dictate PRC2 function. Here, we report the crystal structures of a 120 kDa heterotetrameric complex consisting of Suz12, Rbbp4, Jarid2, and Aebp2 fragments that is minimally active in nucleosome binding and of an inactive binary complex of Suz12 and Rbbp4. Suz12 contains two unique structural platforms that define distinct classes of PRC2 holo complexes for chromatin binding. Aebp2 and Phf19 compete for binding of a non-canonical C2 domain of Suz12; Jarid2 and EPOP occupy an overlapped Suz12 surface required for chromatin association of PRC2. Suz12 and Aebp2 progressively block histone H3K4 binding to Rbbp4, suggesting that Rbbp4 may not be directly involved in PRC2 inhibition by the active H3K4me3 histone mark. Nucleosome binding enabled by Jarid2 and Aebp2 is in part accounted for by the structures, which also reveal that disruption of the Jarid2-Suz12 interaction may underlie the disease mechanism of an oncogenic chromosomal translocation of Suz12.
Collapse
Affiliation(s)
- Siming Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lianying Jiao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Murtada Shubbar
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Yang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
49
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
50
|
Conway E, Jerman E, Healy E, Ito S, Holoch D, Oliviero G, Deevy O, Glancy E, Fitzpatrick DJ, Mucha M, Watson A, Rice AM, Chammas P, Huang C, Pratt-Kelly I, Koseki Y, Nakayama M, Ishikura T, Streubel G, Wynne K, Hokamp K, McLysaght A, Ciferri C, Di Croce L, Cagney G, Margueron R, Koseki H, Bracken AP. A Family of Vertebrate-Specific Polycombs Encoded by the LCOR/LCORL Genes Balance PRC2 Subtype Activities. Mol Cell 2018; 70:408-421.e8. [PMID: 29628311 DOI: 10.1016/j.molcel.2018.03.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/11/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
The polycomb repressive complex 2 (PRC2) consists of core subunits SUZ12, EED, RBBP4/7, and EZH1/2 and is responsible for mono-, di-, and tri-methylation of lysine 27 on histone H3. Whereas two distinct forms exist, PRC2.1 (containing one polycomb-like protein) and PRC2.2 (containing AEBP2 and JARID2), little is known about their differential functions. Here, we report the discovery of a family of vertebrate-specific PRC2.1 proteins, "PRC2 associated LCOR isoform 1" (PALI1) and PALI2, encoded by the LCOR and LCORL gene loci, respectively. PALI1 promotes PRC2 methyltransferase activity in vitro and in vivo and is essential for mouse development. Pali1 and Aebp2 define mutually exclusive, antagonistic PRC2 subtypes that exhibit divergent H3K27-tri-methylation activities. The balance of these PRC2.1/PRC2.2 activities is required for the appropriate regulation of polycomb target genes during differentiation. PALI1/2 potentially link polycombs with transcriptional co-repressors in the regulation of cellular identity during development and in cancer.
Collapse
Affiliation(s)
- Eric Conway
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Emilia Jerman
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Evan Healy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Shinsuke Ito
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Daniel Holoch
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France
| | - Giorgio Oliviero
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Orla Deevy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Eleanor Glancy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Marlena Mucha
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Ariane Watson
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Alan M Rice
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Paul Chammas
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Christine Huang
- Department of Structural Biology, Genentech, San Francisco, CA 94080, USA
| | - Indigo Pratt-Kelly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Manabu Nakayama
- Chromosome Engineering Team, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Tomoyuki Ishikura
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Gundula Streubel
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Kieran Wynne
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Aoife McLysaght
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Claudio Ciferri
- Chromosome Engineering Team, Department of Technology Development, Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Luciano Di Croce
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Raphaël Margueron
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|