1
|
Arkinson C, Dong KC, Gee CL, Costello SM, Soe AC, Hura GL, Marqusee S, Martin A. NUB1 traps unfolded FAT10 for ubiquitin-independent degradation by the 26S proteasome. Nat Struct Mol Biol 2025:10.1038/s41594-025-01527-3. [PMID: 40217121 DOI: 10.1038/s41594-025-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/04/2025] [Indexed: 04/25/2025]
Abstract
The ubiquitin-like modifier FAT10 targets hundreds of proteins in the mammalian immune system to the 26S proteasome for degradation. This degradation pathway requires the cofactor NUB1, yet the underlying mechanisms remain unknown. Here, we reconstituted a minimal in vitro system with human components and revealed that NUB1 uses the intrinsic instability of FAT10 to trap its N-terminal ubiquitin-like domain in an unfolded state and deliver it to the 26S proteasome for engagement, allowing the degradation of FAT10-ylated substrates in a ubiquitin-independent and p97-independent manner. Using hydrogen-deuterium exchange, structural modeling and site-directed mutagenesis, we identified the formation of an intricate complex with FAT10 that activates NUB1 for docking to the 26S proteasome, and our cryo-EM studies visualized the highly dynamic NUB1 complex bound to the proteasomal Rpn1 subunit during FAT10 delivery and the early stages of ATP-dependent degradation. These findings identified a previously unknown mode of cofactor-mediated, ubiquitin-independent substrate delivery to the 26S proteasome that relies on trapping partially unfolded states for engagement by the proteasomal ATPase motor.
Collapse
Affiliation(s)
- Connor Arkinson
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ken C Dong
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Christine L Gee
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Shawn M Costello
- Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA, USA
| | - Aimee Chi Soe
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Susan Marqusee
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Andreas Martin
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Cao J, Aichem A, Basler M, Alvarez Salinas GO, Schmidtke G. Phosphorylated FAT10 Is More Efficiently Conjugated to Substrates, Does Not Bind to NUB1L, and Does Not Alter Degradation by the Proteasome. Biomedicines 2024; 12:2795. [PMID: 39767703 PMCID: PMC11673000 DOI: 10.3390/biomedicines12122795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Background: FAT10 is a member of the ubiquitin-like modifier family. Similar to ubiquitin, FAT10 has a distinct enzyme cascade consisting of E1-activating, E2-conjugating, and possibly several E3-ligating enzymes, which will covalently link FAT10 to substrate proteins in order to target them directly for proteasomal degradation. FAT10 was reported to be phosphorylated by IKKβ during infection with influenza A virus. Methods: To assess the difference between the FAT10-dependent degradation of phosphorylated FAT10 and the non-phosphorylated FAT10 wild type (FAT10 WT), a mutated FAT10 that mimicked phosphorylation (FAT10 D) was constructed by replacing several serine residues and one threonine residue with aspartic or glutamic acid. The FAT10 degradation or conjugation was compared between the phospho-mimetic FAT10 and the wild-type FAT10 with respect to the dependence of the E3 ligase TRIM25, the UBL-UBA protein NUB1L, and the proteasomal ubiquitin receptor RPN10. Results: The phospho-mimetic FAT10 was more efficiently conjugated to substrate proteins as compared to the wild-type FAT10, particularly if TRIM25 was co-expressed. Additionally, the phospho-mimetic FAT10 was not bound by NUB1L. However, this did not affect FAT10 D or FAT10 WT degradation. No differences were found in the binding affinity of phospho-mimetic FAT10 to RPN10. Conclusions: In brief, the phospho-mimetic FAT10 shows enhanced conjugation efficiency, but phosphorylation does not alter its degradation by the proteasome. This reveals that phosphorylation may fine-tune FAT10's interactions with specific interaction partners without disrupting its core function of proteasomal degradation.
Collapse
Affiliation(s)
- Jinjing Cao
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (J.C.); (G.O.A.S.)
| | - Annette Aichem
- Institute of Cell Biology and Immunology Thurgau (BITg), University of Konstanz, 8280 Kreuzlingen, Switzerland; (A.A.); (M.B.)
| | - Michael Basler
- Institute of Cell Biology and Immunology Thurgau (BITg), University of Konstanz, 8280 Kreuzlingen, Switzerland; (A.A.); (M.B.)
| | - Gerardo Omar Alvarez Salinas
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (J.C.); (G.O.A.S.)
| | - Gunter Schmidtke
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (J.C.); (G.O.A.S.)
| |
Collapse
|
3
|
Song J. In the Beginning: Let Hydration Be Coded in Proteins for Manifestation and Modulation by Salts and Adenosine Triphosphate. Int J Mol Sci 2024; 25:12817. [PMID: 39684527 DOI: 10.3390/ijms252312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Water exists in the beginning and hydrates all matter. Life emerged in water, requiring three essential components in compartmentalized spaces: (1) universal energy sources driving biochemical reactions and processes, (2) molecules that store, encode, and transmit information, and (3) functional players carrying out biological activities and structural organization. Phosphorus has been selected to create adenosine triphosphate (ATP) as the universal energy currency, nucleic acids for genetic information storage and transmission, and phospholipids for cellular compartmentalization. Meanwhile, proteins composed of 20 α-amino acids have evolved into extremely diverse three-dimensional forms, including folded domains, intrinsically disordered regions (IDRs), and membrane-bound forms, to fulfill functional and structural roles. This review examines several unique findings: (1) insoluble proteins, including membrane proteins, can become solubilized in unsalted water, while folded cytosolic proteins can acquire membrane-inserting capacity; (2) Hofmeister salts affect protein stability by targeting hydration; (3) ATP biphasically modulates liquid-liquid phase separation (LLPS) of IDRs; (4) ATP antagonizes crowding-induced protein destabilization; and (5) ATP and triphosphates have the highest efficiency in inducing protein folding. These findings imply the following: (1) hydration might be encoded in protein sequences, central to manifestation and modulation of protein structures, dynamics, and functionalities; (2) phosphate anions have a unique capacity in enhancing μs-ms protein dynamics, likely through ionic state exchanges in the hydration shell, underpinning ATP, polyphosphate, and nucleic acids as molecular chaperones for protein folding; and (3) ATP, by linking triphosphate with adenosine, has acquired the capacity to spacetime-specifically release energy and modulate protein hydration, thus possessing myriad energy-dependent and -independent functions. In light of the success of AlphaFolds in accurately predicting protein structures by neural networks that store information as distributed patterns across nodes, a fundamental question arises: Could cellular networks also handle information similarly but with more intricate coding, diverse topological architectures, and spacetime-specific ATP energy supply in membrane-compartmentalized aqueous environments?
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
4
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
5
|
Chen X, Wu W, Jeong JH, Rokavec M, Wei R, Feng S, Schroth W, Brauch H, Zhong S, Luo JL. Cytokines-activated nuclear IKKα-FAT10 pathway induces breast cancer tamoxifen-resistance. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1413-1426. [PMID: 38565741 DOI: 10.1007/s11427-023-2460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/26/2023] [Indexed: 04/04/2024]
Abstract
Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive (ER+) breast cancer. However, the efficacy of agents such as tamoxifen (Tam) is often compromised by the development of resistance. Here we report that cytokines-activated nuclear IKKα confers Tam resistance to ER+ breast cancer by inducing the expression of FAT10, and that the expression of FAT10 and nuclear IKKα in primary ER+ human breast cancer was correlated with lymphotoxin β (LTB) expression and significantly associated with relapse and metastasis in patients treated with adjuvant mono-Tam. IKKα activation or enforced FAT10 expression promotes Tam-resistance while loss of IKKα or FAT10 augments Tam sensitivity. The induction of FAT10 by IKKα is mediated by the transcription factor Pax5, and coordinated via an IKKα-p53-miR-23a circuit in which activation of IKKα attenuates p53-directed repression of FAT10. Thus, our findings establish IKKα-to-FAT10 pathway as a new therapeutic target for the treatment of Tam-resistant ER+ breast cancer.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Weilin Wu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Ji-Hak Jeong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Matjaz Rokavec
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Rui Wei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shaolong Feng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, 70376, Germany
- iFIT Cluster of Excellence, University of Tübingen, Tübingen, 72074, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, 70376, Germany
- iFIT Cluster of Excellence, University of Tübingen, Tübingen, 72074, Germany
| | - Shangwei Zhong
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA.
- The Cancer Research Institute and the Second Affiliated Hospital, Henyang Medical School, University of South China, Hengyang, 421001, China.
| | - Jun-Li Luo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, 33458, USA.
- The Cancer Research Institute and the Second Affiliated Hospital, Henyang Medical School, University of South China, Hengyang, 421001, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China.
| |
Collapse
|
6
|
Arkinson C, Dong KC, Gee CL, Costello SM, Marqusee S, Martin A. Nub1 traps unfolded FAT10 for ubiquitin-independent degradation by the 26S proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598715. [PMID: 38915702 PMCID: PMC11195292 DOI: 10.1101/2024.06.12.598715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The ubiquitin-like modifier FAT10 targets hundreds of proteins in the mammalian immune system to the 26S proteasome for degradation. This degradation pathway requires the cofactor Nub1, yet the underlying mechanisms remain unknown. Here, we reconstituted a minimal in vitro system and revealed that Nub1 utilizes FAT10's intrinsic instability to trap its N-terminal ubiquitin-like domain in an unfolded state and deliver it to the 26S proteasome for engagement, allowing the degradation of FAT10-ylated substrates in a ubiquitin- and p97-independent manner. Through hydrogen-deuterium exchange, structural modeling, and site-directed mutagenesis, we identified the formation of a peculiar complex with FAT10 that activates Nub1 for docking to the 26S proteasome, and our cryo-EM studies visualized the highly dynamic Nub1 complex bound to the proteasomal Rpn1 subunit during FAT10 delivery and the early stages of ATP-dependent degradation. These studies thus identified a novel mode of cofactor-mediated, ubiquitin-independent substrate delivery to the 26S proteasome that relies on trapping partially unfolded states for engagement by the proteasomal ATPase motor.
Collapse
Affiliation(s)
- Connor Arkinson
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA94720, USA
| | - Ken C. Dong
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA94720, USA
| | - Christine L. Gee
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA94720, USA
| | - Shawn M. Costello
- Biophysics Graduate Program, University of California, Berkeley, CA, USA
| | - Susan Marqusee
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA94720, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Andreas Martin
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA94720, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA94720, USA
- Lead contact
| |
Collapse
|
7
|
Hong F, Gong Z, Chen C, Hua T, Huang Q, Liu Y, Ma P, Zhang X, Wang H, Chen J. UBDP1 pseudogene and UBD network competitively bind miR‑6072 to promote glioma progression. Int J Oncol 2024; 64:29. [PMID: 38275102 PMCID: PMC10836499 DOI: 10.3892/ijo.2024.5617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Increasing evidence suggests that pseudogenes play crucial roles in various cancers, yet their functions and regulatory mechanisms in glioma pathogenesis remain enigmatic. In the present study, a novel pseudogene was identified, UBDP1, which is significantly upregulated in glioblastoma and positively correlated with the expression of its parent gene, UBD. Additionally, high levels of these paired genes are linked with a poor prognosis for patients. In the present study, clinical samples were collected followed by various analyses including microarray for long non‑coding RNAs, reverse transcription‑quantitative PCR, fluorescence in situ hybridization and western blotting. Cell lines were authenticated and cultured then subjected to various assays for proliferation, migration, and invasion to investigate the molecular mechanisms. Bioinformatic tools identified miRNA targets, and luciferase reporter assays validated these interactions. A tumor xenograft model in mice was used for in vivo studies. In vitro and in vivo studies have demonstrated that UBDP1, localized in the cytoplasm, functions as a tumor‑promoting factor influencing cell proliferation, migration, invasion and tumor growth. Mechanistic investigations have indicated that UBDP1 exerts its oncogenic effects by decoying miR‑6072 from UBD mRNA, thus forming a competitive endogenous RNA network, which results in the enhanced oncogenic activity of UBD. The present findings offered new insights into the role of pseudogenes in glioma progression, suggesting that targeting the UBDP1/miR‑6072/UBD network may serve as a potential therapeutic strategy for glioma patients.
Collapse
Affiliation(s)
- Fan Hong
- Department of Neurosurgery, Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230601, P.R. China
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Tianzhen Hua
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Qilin Huang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Peipei Ma
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Xu Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
8
|
Schnell L, Zubrod A, Catone N, Bialas J, Aichem A. Tumor necrosis factor mediates USE1-independent FAT10ylation under inflammatory conditions. Life Sci Alliance 2023; 6:e202301985. [PMID: 37604583 PMCID: PMC10442930 DOI: 10.26508/lsa.202301985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
The ubiquitin-like modifier FAT10 is up-regulated in many different cell types by IFNγ and TNFα (TNF) and directly targets proteins for proteasomal degradation. FAT10 gets covalently conjugated to its conjugation substrates by the E1 activating enzyme UBA6, the E2 conjugating enzyme USE1, and E3 ligases including Parkin. To date, USE1 was supposed to be the only E2 enzyme for FAT10ylation, and we show here that a knockout of USE1 strongly diminished FAT10 conjugation. Remarkably, under inflammatory conditions in the presence of TNF, FAT10 conjugation appears to be independent of USE1. We report on the identification of additional E2 conjugating enzymes, which were previously not associated with FAT10. We confirm their capacity to be charged with FAT10 onto their active site cysteine, and to rescue FAT10 conjugation in the absence of USE1. This finding strongly widens the field of FAT10 research by pointing to multiple, so far unknown pathways for the conjugation of FAT10, disclosing novel possibilities for pharmacological interventions to regulate FAT10 conjugation under inflammatory conditions and/or viral infections.
Collapse
Affiliation(s)
- Leonie Schnell
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alina Zubrod
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Johanna Bialas
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
9
|
Chen H, Tao L, Liang J, Pan C, Wei H. Ubiquitin D promotes the progression of rheumatoid arthritis via activation of the p38 MAPK pathway. Mol Med Rep 2023; 27:53. [PMID: 36660934 PMCID: PMC9879075 DOI: 10.3892/mmr.2023.12940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/18/2022] [Indexed: 01/19/2023] Open
Abstract
Ubiquitin D (UBD), a member of the ubiquitin‑like modifier family, has been reported to be highly expressed in various types of cancer and its overexpression is positively associated with tumor progression. However, the role and mechanism of UBD in rheumatoid arthritis (RA) remain elusive. In the present study, the gene expression profiles of GSE55457 were downloaded from the Gene Expression Omnibus database to assess differentially expressed genes and perform functional enrichment analyses. UBD was overexpressed by lentivirus transfection. The protein level of UBD, p‑p38 and p38 in RA‑fibroblast‑like synoviocytes (FLSs) were examined by western blotting. Cell Counting Kit‑8 and flow cytometry assays were used to detect the functional changes of RA‑FLSs transfected with UBD and MAPK inhibitor SB202190. The concentrations of inflammatory factors (IL‑2, IL‑6, IL‑10 and TNF‑α) were evaluated using ELISA kits. The results revealed that UBD was overexpressed in RA tissues compared with in the healthy control tissues. Functionally, UBD significantly accelerated the viability and proliferation of RA‑FLSs, whereas it inhibited their apoptosis. Furthermore, UBD significantly promoted the secretion of inflammatory factors (IL‑2, IL‑6, IL‑10 and TNF‑α). Mechanistically, elevated UBD activated phospohorylated‑p38 in RA‑FLSs. By contrast, UBD overexpression and treatment with the p38 MAPK inhibitor SB202190 not only partially relieved the UBD‑dependent effects on cell viability and proliferation, but also reversed its inhibitory effects on cell apoptosis. Furthermore, SB202190 partially inhibited the effects of UBD overexpression on the enhanced secretion of inflammatory factors. The present study indicated that UBD may mediate the activation of p38 MAPK, thereby facilitating the proliferation of RA‑FLSs and ultimately promoting the progression of RA. Therefore, UBD may be considered a potential therapeutic target and a promising prognostic biomarker for RA.
Collapse
Affiliation(s)
- Hong Chen
- Department of Rheumatology and Immunology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Liju Tao
- Department of Rheumatology and Immunology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Juhua Liang
- Laboratory Department, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Chunfeng Pan
- Department of Rheumatology and Immunology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Hua Wei
- Department of General Practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China,Correspondence to: Professor Hua Wei, Department of General Practice, Affiliated Hospital of Youjiang Medical University for Nationalities, 18 Zhongshan Second Road, Youjiang, Baise, Guangxi 533000, P.R. China, E-mail:
| |
Collapse
|
10
|
Um H, Jeong H, Lee B, Kim Y, Lee J, Roh JS, Lee SG, Park HR, Robinson WH, Sohn DH. FAT10 Induces cancer cell migration by stabilizing phosphorylated ABI3/NESH. Anim Cells Syst (Seoul) 2023; 27:53-60. [PMID: 36926204 PMCID: PMC10013321 DOI: 10.1080/19768354.2023.2186486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The WAVE regulatory complex (WRC) is involved in various cellular processes by regulating actin polymerization. The dysregulation of WRC components is associated with cancer development. ABI family member 3 (ABI3)/new molecule including SH3 (NESH) is one of the WRC components and it has been reported that ABI3 phosphorylation can affect WRC function. Although several residues of ABI3 have been reported to be possible phosphorylation sites, it is still unclear which residues are important for the function of ABI3. Furthermore, it is unclear how the phosphorylated form of ABI3 is regulated. Here, we demonstrate that ABI3 is stabilized by its interaction with human leukocyte antigen-F adjacent transcript 10 (FAT10). Using phospho-dead or phospho-mimetic mutants of ABI3, we showed that serine 213 and 216 are important phosphorylation sites of ABI3. In particular, FAT10 has a higher affinity for the phosphorylated form of ABI3 than the non-phosphorylated form, and it stabilizes the phosphorylated form more than the non-phosphorylated form through this differential affinity. The interaction between FAT10 and the phosphorylated form of ABI3 promoted cancer cell migration. Therefore, our results suggest that FAT10 stabilizes the phosphorylated form of ABI3, which may lead to WRC activation, thereby promoting cancer cell migration.
Collapse
Affiliation(s)
- Hyojin Um
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yerin Kim
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jihyeon Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jong Seong Roh
- Department of Herbal Prescription, College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Seung-Geun Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
11
|
Yuan L, Gao F, Lv Z, Nayak D, Nayak A, Santos Bury PD, Cano KE, Jia L, Oleinik N, Atilgan FC, Ogretmen B, Williams KM, Davies C, El Oualid F, Wasmuth EV, Olsen SK. Crystal structures reveal catalytic and regulatory mechanisms of the dual-specificity ubiquitin/FAT10 E1 enzyme Uba6. Nat Commun 2022; 13:4880. [PMID: 35986001 PMCID: PMC9391358 DOI: 10.1038/s41467-022-32613-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022] Open
Abstract
The E1 enzyme Uba6 initiates signal transduction by activating ubiquitin and the ubiquitin-like protein FAT10 in a two-step process involving sequential catalysis of adenylation and thioester bond formation. To gain mechanistic insights into these processes, we determined the crystal structure of a human Uba6/ubiquitin complex. Two distinct architectures of the complex are observed: one in which Uba6 adopts an open conformation with the active site configured for catalysis of adenylation, and a second drastically different closed conformation in which the adenylation active site is disassembled and reconfigured for catalysis of thioester bond formation. Surprisingly, an inositol hexakisphosphate (InsP6) molecule binds to a previously unidentified allosteric site on Uba6. Our structural, biochemical, and biophysical data indicate that InsP6 allosterically inhibits Uba6 activity by altering interconversion of the open and closed conformations of Uba6 while also enhancing its stability. In addition to revealing the molecular mechanisms of catalysis by Uba6 and allosteric regulation of its activities, our structures provide a framework for developing Uba6-specific inhibitors and raise the possibility of allosteric regulation of other E1s by naturally occurring cellular metabolites.
Collapse
Affiliation(s)
- Lingmin Yuan
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Fei Gao
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Research & Development, Beijing IPE Center for Clinical Laboratory CO, Beijing, 100176, China
| | - Zongyang Lv
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Digant Nayak
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Anindita Nayak
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Priscila Dos Santos Bury
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kristin E Cano
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lijia Jia
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Natalia Oleinik
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Firdevs Cansu Atilgan
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Katelyn M Williams
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Davies
- Department of Biochemistry & Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Farid El Oualid
- UbiQ Bio B.V., Science Park 408, 1098 XH, Amsterdam, The Netherlands
| | - Elizabeth V Wasmuth
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shaun K Olsen
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
12
|
Fernandes MT, Yassuda V, Bragança J, Link W, Ferreira BI, De Sousa-Coelho AL. Tribbles Gene Expression Profiles in Colorectal Cancer. GASTROINTESTINAL DISORDERS 2021; 3:218-236. [DOI: https:/doi.org/10.3390/gidisord3040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death due to cancer in the world. Therefore, the identification of novel druggable targets is urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored role for these proteins in the context of CRC. Differential Tribbles expression was also explored in diverse cellular experimental conditions where either genetic or pharmacological approaches were used, providing novel hints for future research. This comprehensive bioinformatic analysis provides new insights into Tribbles gene expression and transcript regulation in CRC.
Collapse
Affiliation(s)
- Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Victor Yassuda
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisboa, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Bibiana I. Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Centro de Estudos e Desenvolvimento em Saúde (CES), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
13
|
Fernandes MT, Yassuda V, Bragança J, Link W, Ferreira BI, De Sousa-Coelho AL. Tribbles Gene Expression Profiles in Colorectal Cancer. GASTROINTESTINAL DISORDERS 2021; 3:218-236. [DOI: 10.3390/gidisord3040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death due to cancer in the world. Therefore, the identification of novel druggable targets is urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored role for these proteins in the context of CRC. Differential Tribbles expression was also explored in diverse cellular experimental conditions where either genetic or pharmacological approaches were used, providing novel hints for future research. This comprehensive bioinformatic analysis provides new insights into Tribbles gene expression and transcript regulation in CRC.
Collapse
Affiliation(s)
- Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Victor Yassuda
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisboa, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Bibiana I. Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Centro de Estudos e Desenvolvimento em Saúde (CES), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
14
|
Arshad M, Abdul Hamid N, Chan MC, Ismail F, Tan GC, Pezzella F, Tan KL. NUB1 and FAT10 Proteins as Potential Novel Biomarkers in Cancer: A Translational Perspective. Cells 2021; 10:2176. [PMID: 34571823 PMCID: PMC8468723 DOI: 10.3390/cells10092176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer increases the global disease burden substantially, but it remains a challenge to manage it. The search for novel biomarkers is essential for risk assessment, diagnosis, prognosis, prediction of treatment response, and cancer monitoring. This paper examined NEDD8 ultimate buster-1 (NUB1) and F-adjacent transcript 10 (FAT10) proteins as novel biomarkers in cancer. This literature review is based on the search of the electronic database, PubMed. NUB1 is an interferon-inducible protein that mediates apoptotic and anti-proliferative actions in cancer, while FAT10 is a ubiquitin-like modifier that promotes cancer. The upregulated expression of both NUB1 and FAT10 has been observed in various cancers. NUB1 protein binds to FAT10 non-covalently to promote FAT10 degradation. An overexpressed FAT10 stimulates nuclear factor-kappa β, activates the inflammatory pathways, and induces the proliferation of cancer. The FAT10 protein interacts with the mitotic arrest deficient 2 protein, causing chromosomal instability and breast tumourigenesis. FAT10 binds to the proliferating cell nuclear antigen protein and inhibits the DNA damage repair response. In addition, FAT10 involves epithelial-mesenchymal transition, invasion, apoptosis, and multiplication in hepatocellular carcinoma. Our knowledge about them is still limited. There is a need to further develop NUB1 and FAT10 as novel biomarkers.
Collapse
Affiliation(s)
- Maria Arshad
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| | - Nazefah Abdul Hamid
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| | - Mun Chiang Chan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Fuad Ismail
- Department of Radiotherapy & Oncology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Francesco Pezzella
- Tumour Pathology Laboratory, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK;
| | - Ka-Liong Tan
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| |
Collapse
|
15
|
Xiang S, Shao X, Cao J, Yang B, He Q, Ying M. FAT10: Function and Relationship with Cancer. Curr Mol Pharmacol 2021; 13:182-191. [PMID: 31729307 DOI: 10.2174/1874467212666191113130312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Posttranslational protein modifications are known to be extensively involved in cancer, and a growing number of studies have revealed that the ubiquitin-like modifier FAT10 is directly involved in cancer development. FAT10 was found to be highly upregulated in various cancer types, such as glioma, hepatocellular carcinoma, breast cancer and gastrointestinal cancer. Protein FAT10ylation and interactions with FAT10 lead to the functional change of proteins, including proteasomal degradation, subcellular delocalization and stabilization, eventually having significant effects on cancer cell proliferation, invasion, metastasis and even tumorigenesis. In this review, we summarized the current knowledge on FAT10 and discussed its biological functions in cancer, as well as potential therapeutic strategies based on the FAT10 pathway.
Collapse
Affiliation(s)
- Senfeng Xiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
16
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
17
|
FAT10 promotes the progression of bladder cancer by upregulating HK2 through the EGFR/AKT pathway. Exp Cell Res 2020; 398:112401. [PMID: 33253711 DOI: 10.1016/j.yexcr.2020.112401] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
The ubiquitin-like protein FAT10 and the hexokinase protein HK2 play vital regulatory roles in several cellular processes. However, the relationship between these two proteins and their role in the pathogenesis of bladder cancer are not well understood. Here, we found that FAT10 and HK2 protein levels were markedly higher in bladder cancer tissues than in normal adjacent tissues. In addition, RNAi-mediated silencing of FAT10 led to reduced HK2 levels and suppressed bladder cancer progression in vivo and in vitro. The results of our in vivo and in vitro experiments revealed that HK2 is critical for FAT10-mediated progression of bladder cancer. The current study demonstrated that FAT10 enhanced the progression of bladder cancer by positively regulating HK2 via the EGFR/AKT pathway. Based on our findings, FAT10 is believed to stabilize EGFR expression by modulating its degradation and ubiquitination. The results of the current study indicate that there is a correlation between FAT10 and HK2 in the progression of bladder cancer. In addition, we identified a new pathway that may be involved in the regulation of HK2. These findings implicate dysfunction of the FAT10, EGFR/AKT, and HK2 regulatory circuit in the progression of bladder cancer.
Collapse
|
18
|
Zhang K, Chen L, Zhang Z, Cao J, He L, Li L. Ubiquitin-like protein FAT10: A potential cardioprotective factor and novel therapeutic target in cancer. Clin Chim Acta 2020; 510:802-811. [DOI: 10.1016/j.cca.2020.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
|
19
|
Aichem A, Groettrup M. The ubiquitin-like modifier FAT10 - much more than a proteasome-targeting signal. J Cell Sci 2020; 133:133/14/jcs246041. [PMID: 32719056 DOI: 10.1242/jcs.246041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10) also called ubiquitin D (UBD) is a member of the ubiquitin-like modifier (ULM) family. The FAT10 gene is localized in the MHC class I locus and FAT10 protein expression is mainly restricted to cells and organs of the immune system. In all other cell types and tissues, FAT10 expression is highly inducible by the pro-inflammatory cytokines interferon (IFN)-γ and tumor necrosis factor (TNF). Besides ubiquitin, FAT10 is the only ULM which directly targets its substrates for degradation by the 26S proteasome. This poses the question as to why two ULMs sharing the proteasome-targeting function have evolved and how they differ from each other. This Review summarizes the current knowledge of the special structure of FAT10 and highlights its differences from ubiquitin. We discuss how these differences might result in differential outcomes concerning proteasomal degradation mechanisms and non-covalent target interactions. Moreover, recent insights about the structural and functional impact of FAT10 interacting with specific non-covalent interaction partners are reviewed.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland .,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
20
|
Jia Y, Ji P, French SW. The Role of FAT10 in Alcoholic Hepatitis Pathogenesis. Biomedicines 2020; 8:biomedicines8070189. [PMID: 32630199 PMCID: PMC7399975 DOI: 10.3390/biomedicines8070189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022] Open
Abstract
FAT10 expression is highly up-regulated by pro-inflammatory cytokines IFNγ and TNFα in all cell types and tissues. Increased FAT10 expression may induce increasing mitotic non-disjunction and chromosome instability, leading to tumorigenesis. In this review, we summarized others’ and our work on FAT10 expression in liver biopsy samples from patients with alcoholic hepatitis (AH). FAT10 is essential to maintain the function of liver cell protein quality control and Mallory–Denk body (MDB) formation. FAT10 overexpression in AH leads to balloon degeneration and MDB aggregation formation, all of which is prevented in fat10-/- mice. FAT10 causes the proteins’ accumulation, overexpression, and forming MDBs through modulating 26s proteasome’s proteases. The pathway that increases FAT10 expression includes TNFα/IFNγ and the interferon sequence response element (ISRE), followed by NFκB and STAT3, which were all up-regulated in AH. FAT10 was only reported in human and mouse specimens but plays critical role for the development of alcoholic hepatitis. Flavanone derivatives of milk thistle inhibit TNFα/IFNγ, NFκB, and STAT3, then inhibit the expression of FAT10. NFκB is the key nodal hub of the IFNα/TNFα-response genes. Studies on Silibinin and other milk thistle derivatives to treat AH confirms that overexpressed FAT10 is the major key molecule in these networks.
Collapse
|
21
|
Regulation of Interferon Induction by the Ubiquitin-Like Modifier FAT10. Biomolecules 2020; 10:biom10060951. [PMID: 32586037 PMCID: PMC7356809 DOI: 10.3390/biom10060951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/28/2022] Open
Abstract
The revelation that the human major histocompatibility complex (MHC) class I locus encodes a ubiquitin-like protein designated HLA-F adjacent transcript 10 (FAT10) or ubiquitin D (UBD) has attracted increasing attention to the function of this protein. Interestingly, the pro-inflammatory cytokines interferon (IFN)-γ and tumor necrosis factor (TNF) α synergize to strongly induce FAT10 expression, thereby suggesting a role of FAT10 in the immune response. Recent reports that FAT10 downregulates type I interferon production while it upregulates IFN-γ pose mechanistic questions on how FAT10 differentially regulates interferon induction. Several covalent and non-covalent binding partners of FAT10 involved in signal transduction pathways leading to IFN synthesis have been identified. After introducing FAT10, we review here recent insights into how FAT10 affects proteins in the interferon pathways, like the virus-responsive pattern recognition receptor RIG-I, the ubiquitin ligase ZNF598, and the deubiquitylating enzyme OTUB1. Moreover, we outline the consequences of FAT10 deficiency on interferon synthesis and viral expansion in mice and human cells. We discuss the need for covalent isopeptide linkage of FAT10 to the involved target proteins and the concomitant targeting for proteasomal degradation. After years of investigating the elusive biological functions of this fascinating ubiquitin-like modifier, we review the emerging evidence for a novel role of FAT10 in interferon regulation.
Collapse
|
22
|
Ubiquitin-like proteins in the DNA damage response: the next generation. Essays Biochem 2020; 64:737-752. [DOI: 10.1042/ebc20190095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 12/29/2022]
Abstract
AbstractDNA suffers constant insult from a variety of endogenous and exogenous sources. To deal with the arising lesions, cells have evolved complex and coordinated pathways, collectively termed the DNA damage response (DDR). Importantly, an improper DDR can lead to genome instability, premature ageing and human diseases, including cancer as well as neurodegenerative disorders. As a crucial process for cell survival, regulation of the DDR is multi-layered and includes several post-translational modifications. Since the discovery of ubiquitin in 1975 and the ubiquitylation cascade in the early 1980s, a number of ubiquitin-like proteins (UBLs) have been identified as post-translational modifiers. However, while the importance of ubiquitin and the UBLs SUMO and NEDD8 in DNA damage repair and signalling is well established, the roles of the remaining UBLs in the DDR are only starting to be uncovered. Herein, we revise the current status of the UBLs ISG15, UBL5, FAT10 and UFM1 as emerging co-regulators of DDR processes. In fact, it is becoming clear that these post-translational modifiers play important pleiotropic roles in DNA damage and/or associated stress-related cellular responses. Expanding our understanding of the molecular mechanisms underlying these emerging UBL functions will be fundamental for enhancing our knowledge of the DDR and potentially provide new therapeutic strategies for various human diseases including cancer.
Collapse
|
23
|
Yu J, Qin B, Lou Z. Ubiquitin and ubiquitin-like molecules in DNA double strand break repair. Cell Biosci 2020; 10:13. [PMID: 32071713 PMCID: PMC7014694 DOI: 10.1186/s13578-020-0380-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/30/2020] [Indexed: 12/23/2022] Open
Abstract
Both environmental and endogenous factors induce various forms of DNA damage. DNA double strand break (DSB) is the most deleterious DNA lesion. The swift initiation of a complexed network of interconnected pathways to repair the DNA lesion is essential for cell survival. In the past years, the roles of ubiquitin and ubiquitin-like proteins in DNA damage response and DNA repair has been explored. These findings help us better understand the complicated mechanism of DSB signaling pathways.
Collapse
Affiliation(s)
- Jia Yu
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| | - Bo Qin
- 1Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA.,2Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA.,3Gastrointestinal Research Unit, Mayo Clinic, Rochester, MN 55905 USA
| | - Zhenkun Lou
- 2Department of Oncology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
24
|
Li J, Johnson JA, Su H. Ubiquitin and Ubiquitin-like proteins in cardiac disease and protection. Curr Drug Targets 2019; 19:989-1002. [PMID: 26648080 DOI: 10.2174/1389450117666151209114608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/01/2015] [Indexed: 01/10/2023]
Abstract
Post-translational modification represents an important mechanism to regulate protein function in cardiac cells. Ubiquitin (Ub) and ubiquitin-like proteins (UBLs) are a family of protein modifiers that share a certain extent of sequence and structure similarity. Conjugation of Ub or UBLs to target proteins is dynamically regulated by a set of UBL-specific enzymes and modulates the physical and physiological properties of protein substrates. Ub and UBLs control a strikingly wide spectrum of cellular processes and not surprisingly are involved in the development of multiple human diseases including cardiac diseases. Further identification of novel UBL targets will expand our understanding of the functional diversity of UBL pathways in physiology and pathology. Here we review recent findings on the mechanisms, proteome and functions of a subset of UBLs and highlight their potential impacts on the development and progression of various forms of cardiac diseases.
Collapse
Affiliation(s)
- Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - John A Johnson
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
25
|
Aichem A, Sailer C, Ryu S, Catone N, Stankovic-Valentin N, Schmidtke G, Melchior F, Stengel F, Groettrup M. The ubiquitin-like modifier FAT10 interferes with SUMO activation. Nat Commun 2019; 10:4452. [PMID: 31575873 PMCID: PMC6773726 DOI: 10.1038/s41467-019-12430-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
The covalent attachment of the cytokine-inducible ubiquitin-like modifier HLA-F adjacent transcript 10 (FAT10) to hundreds of substrate proteins leads to their rapid degradation by the 26 S proteasome independently of ubiquitylation. Here, we identify another function of FAT10, showing that it interferes with the activation of SUMO1/2/3 in vitro and down-regulates SUMO conjugation and the SUMO-dependent formation of promyelocytic leukemia protein (PML) bodies in cells. Mechanistically, we show that FAT10 directly binds to and impedes the activity of the heterodimeric SUMO E1 activating enzyme AOS1/UBA2 by competing very efficiently with SUMO for activation and thioester formation. Nevertheless, activation of FAT10 by AOS1/UBA2 does not lead to covalent conjugation of FAT10 with substrate proteins which relies on its cognate E1 enzyme UBA6. Hence, we report that one ubiquitin-like modifier (FAT10) inhibits the conjugation and function of another ubiquitin-like modifier (SUMO) by impairing its activation. FAT10 is an ubiquitin-like modifier that targets proteins to proteasomal degradation. Here, the authors show that FAT10 also regulates SUMO activation in vitro and in cells, providing evidence for functional crosstalk between two ubiquitin-like modifiers.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland. .,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany.
| | - Carolin Sailer
- Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Stella Ryu
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Gunter Schmidtke
- Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, Division of Immunology, University of Konstanz, D-78457, Konstanz, Germany
| |
Collapse
|
26
|
Liu Y, Liu K, Yin L, Yu Y, Qi J, Shen WH, Zhu J, Zhang Y, Dong A. H3K4me2 functions as a repressive epigenetic mark in plants. Epigenetics Chromatin 2019; 12:40. [PMID: 31266517 PMCID: PMC6604379 DOI: 10.1186/s13072-019-0285-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In animals, H3K4me2 and H3K4me3 are enriched at the transcription start site (TSS) and function as epigenetic marks that regulate gene transcription, but their functions in plants have not been fully characterized. RESULTS We used chromatin immunoprecipitation sequencing to analyze the rice genome-wide changes to H3K4me1/H3K4me2/H3K4me3 following the loss of an H3K4-specific methyltransferase, SDG701. The knockdown of SDG701 resulted in a global decrease in H3K4me2/H3K4me3 levels throughout the rice genome. An RNA-sequencing analysis revealed that many genes related to diverse developmental processes were misregulated in the SDG701 knockdown mutant. In rice, H3K4me3 and H3K36me3 are positively correlated with gene transcription; however, surprisingly, the H3K4me2 level was negatively associated with gene transcription levels. Furthermore, the H3K4me3 level at the TSS region decreased significantly in the genes that exhibited down-regulated expression in the SDG701 knockdown mutant. In contrast, the genes with up-regulated expression in the mutant were associated with a considerable decrease in H3K4me2 levels over the gene body region. CONCLUSION A comparison of the genome-wide distributions of H3K4me2 in eukaryotes indicated that the H3K4me2 level is not correlated with the gene transcription level in yeast, but is positively and negatively correlated with gene expression in animals and plants, respectively. Our results uncovered H3K4me2 as a novel repressive mark in plants.
Collapse
Affiliation(s)
- Yuhao Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Kunpeng Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Universite de Strasbourg, CNRS, IBMP UPR 2357, 67000, Strasbourg, France
| | - Jun Zhu
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
27
|
Wang F, Zhao B. UBA6 and Its Bispecific Pathways for Ubiquitin and FAT10. Int J Mol Sci 2019; 20:ijms20092250. [PMID: 31067743 PMCID: PMC6539292 DOI: 10.3390/ijms20092250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Questions have been raised since the discovery of UBA6 and its significant coexistence with UBE1 in the ubiquitin–proteasome system (UPS). The facts that UBA6 has the dedicated E2 enzyme USE1 and the E1–E2 cascade can activate and transfer both ubiquitin and ubiquitin-like protein FAT10 have attracted a great deal of attention to the regulational mechanisms of the UBA6–USE1 cascade and to how FAT10 and ubiquitin differentiate with each other. This review recapitulates the latest advances in UBA6 and its bispecific UBA6–USE1 pathways for both ubiquitin and FAT10. The intricate networks of UBA6 and its interplays with ubiquitin and FAT10 are briefly reviewed, as are their individual and collective functions in diverse physiological conditions.
Collapse
Affiliation(s)
- Fengting Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
28
|
Ceccarelli DF, Ivantsiv S, Mullin AA, Coyaud E, Manczyk N, Maisonneuve P, Kurinov I, Zhao L, Go C, Gingras AC, Raught B, Cordes S, Sicheri F. FAM105A/OTULINL Is a Pseudodeubiquitinase of the OTU-Class that Localizes to the ER Membrane. Structure 2019; 27:1000-1012.e6. [PMID: 31056421 DOI: 10.1016/j.str.2019.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/23/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022]
Abstract
Pseudoenzymes have been identified across a diverse range of enzyme classes and fulfill important cellular functions. Examples of pseudoenzymes exist within ubiquitin conjugating and deubiquitinase (DUB) protein families. Here we characterize FAM105A/OTULINL, the only putative pseudodeubiquitinase of the ovarian tumor protease (OTU domain) family in humans. The crystal structure of FAM105A revealed that the OTU domain possesses structural deficiencies in both active site and substrate-binding infrastructure predicted to impair normal DUB function. We confirmed the absence of catalytic function against all ubiquitin linkages and an inability of FAM105A to bind ubiquitin compared with catalytically active FAM105B/OTULIN. FAM105A co-localized with KDEL markers and Lamin B1 at the endoplasmic reticulum (ER) and nuclear envelope, respectively. Accordingly, the FAM105A interactome exhibited significant enrichment in proteins localized to the ER/outer nuclear, Golgi and vesicular membranes. In light of undetectable deubiquitinase activity, we posit that FAM105A/OTULINL functions through its ability to mediate protein-protein interactions.
Collapse
Affiliation(s)
- Derek F Ceccarelli
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Sofiia Ivantsiv
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Amber Anne Mullin
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Noah Manczyk
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Pierre Maisonneuve
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, IL 60439, USA
| | - Liang Zhao
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Chris Go
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Sabine Cordes
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Frank Sicheri
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
29
|
Aichem A, Boehm AN, Catone N, Schmidtke G, Groettrup M. Analysis of modification and proteolytic targeting by the ubiquitin-like modifier FAT10. Methods Enzymol 2019; 618:229-256. [PMID: 30850054 DOI: 10.1016/bs.mie.2018.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ubiquitin-like modifier FAT10 (also called ubiquitin D (UBD)) interacts noncovalently with a substantial number of proteins and also gets covalently conjugated to many substrate proteins, leading to their degradation by the 26S proteasome. FAT10 comprises two loosely folded ubiquitin-like domains that are connected by a flexible linker, and this unusual structure makes it highly prone to aggregation. Here, we report methods to purify high amounts of soluble recombinant FAT10 for various uses, such as in vitro FAT10ylation assays. In addition, we describe how to generate and handle overexpressed as well as endogenous FAT10 in cellulo for use in immunoprecipitations, Western blot analyses, and FAT10 degradation studies.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland; Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Annika N Boehm
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland; Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Gunter Schmidtke
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland; Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
30
|
Bialas J, Boehm AN, Catone N, Aichem A, Groettrup M. The ubiquitin-like modifier FAT10 stimulates the activity of deubiquitylating enzyme OTUB1. J Biol Chem 2019; 294:4315-4330. [PMID: 30718280 DOI: 10.1074/jbc.ra118.005406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/16/2019] [Indexed: 11/06/2022] Open
Abstract
The deubiquitylation of target proteins is mediated by deubiquitylating enzymes (DUB) such as OTUB1, which plays an important role in immune response, cell cycle progression, and DNA repair. Within these processes, OTUB1 reduces the ubiquitylation of target proteins in two distinct ways, either by using its catalytic DUB activity or in a noncatalytic manner by inhibiting the E2-conjugating enzyme. Here, we show that the ubiquitin-like modifier FAT10 regulates OTUB1 stability and functionality in different ways. Covalent FAT10ylation of OTUB1 resulted in its proteasomal degradation, whereas a noncovalent interaction stabilized OTUB1. We provide evidence that OTUB1 interacts directly with FAT10 and the E2-conjugating enzyme USE1. This interaction strongly stimulated OTUB1 DUB activity toward Lys-48-linked diubiquitin. Furthermore, the noncovalent interaction between FAT10 and OTUB1 not only enhanced its isopeptidase activity toward Lys-48-linked ubiquitin moieties but also strengthened its noncatalytic activity in reducing Lys-63 polyubiquitylation of its target protein TRAF3 (TNF receptor-associated factor 3). Additionally, the cellular clearance of overall polyubiquitylation by OTUB1 was strongly stimulated through the presence of FAT10. The addition of FAT10 also led to an increased interaction between OTUB1 and its cognate E2 UbcH5B, implying a function of FAT10 in the inhibition of polyubiquitylation. Overall, these data indicate that FAT10 not only plays a role in covalent modification, leading its substrates to proteasomal degradation, but also regulates the stability and functionality of target proteins by interacting in a noncovalent manner. FAT10 is thereby able to exert a major influence on ubiquitylation processes.
Collapse
Affiliation(s)
- Johanna Bialas
- From the Division of Immunology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany and.,the Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Annika N Boehm
- From the Division of Immunology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany and.,the Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Nicola Catone
- the Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Annette Aichem
- From the Division of Immunology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany and .,the Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Marcus Groettrup
- From the Division of Immunology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany and.,the Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| |
Collapse
|
31
|
Zhang CY, Sun J, Wang X, Wang CF, Zeng XD. Clinicopathological significance of human leukocyte antigen F-associated transcript 10 expression in colorectal cancer. World J Gastrointest Oncol 2019; 11:9-16. [PMID: 30984346 PMCID: PMC6451929 DOI: 10.4251/wjgo.v11.i1.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract. The worldwide mortality rate of CRC is about one half of its morbidity. Ubiquitin is a key regulatory factor in the cell cycle and widely exists in eukaryotes. Human leukocyte antigen F-associated transcript 10 (FAT10), known as diubiquitin, is an 18 kDa protein with 29% and 36% homology with the N and C termini of ubiquitin. The function of FAT10 has not been fully elucidated, and some studies have shown that it plays an important role in various cell processes.
AIM To examine FAT10 expression and to analyze the relationship between FAT10 expression and the clinicopathological parameters of CRC.
METHODS FAT10 expression in 61 cases of CRC and para-cancer colorectal tissues was measured by immunohistochemistry and Western blotting. The relationship between FAT10 expression and clinicopathological parameters of CRC was statistically analyzed.
RESULTS Immunohistochemical analysis showed that the positive rate of FAT10 expression in CRC (63.93%) was significantly higher than that in tumor-adjacent tissues (9.84%, P < 0.05) and normal colorectal mucosal tissue (1.64%, P < 0.05). Western blotting also indicated that FAT10 expression was significantly higher in CRC than in tumor-adjacent tissue (P < 0.05). FAT10 expression was closely associated with clinical stage and lymphatic spread of CRC. FAT10 expression also positively correlated with p53 expression.
CONCLUSION FAT10 expression is highly upregulated in CRC. FAT10 expression is closely associated with clinical stage and lymphatic spread of CRC.
Collapse
Affiliation(s)
- Chun-Yang Zhang
- Department of Emergency Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Jie Sun
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Xing Wang
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Cui-Fang Wang
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Xian-Dong Zeng
- Department of Surgical Oncology, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| |
Collapse
|
32
|
Yan J, Lei J, Chen L, Deng H, Dong D, Jin T, Liu X, Yuan R, Qiu Y, Ge J, Peng X, Shao J. Human Leukocyte Antigen F Locus Adjacent Transcript 10 Overexpression Disturbs WISP1 Protein and mRNA Expression to Promote Hepatocellular Carcinoma Progression. Hepatology 2018; 68:2268-2284. [PMID: 29790184 DOI: 10.1002/hep.30105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/12/2018] [Indexed: 12/19/2022]
Abstract
Recently, studies on transcriptome-proteome relationships have revealed mRNA/protein expression discordance for certain genes and speculated that protein posttranslational modification (PTM) may be involved. However, there is currently no evidence to support this hypothesis. Wnt-induced secreted protein-1 (WISP1) is the downstream target gene of β-catenin and plays an important role in tumorigenesis and progression, but the expression and role of WISP1 in different tumor types are controversial. Here, we first confirmed that WISP1 protein expression was significantly down-regulated in hepatocellular carcinoma (HCC) tissue and could be an independent predictor of poor prognosis for patients with HCC. In vivo and in vitro evidence was provided that WISP1 can suppress HCC cell proliferation. Further studies have found that low WISP1 protein expression was related to expression of human leukocyte antigen F locus adjacent transcript 10 (FAT10), a specific ubiquitin-like protein with both degradation and stabilization functions, which plays an important role in PTM. FAT10 overexpression facilitated WISP1 degradation by FAT10ylation to decrease WISP1 protein expression, thus promoting HCC proliferation. Interestingly, we found and demonstrated that FAT10 overexpression could result in WISP1 protein/mRNA expression discordance, with protein expression decreasing while mRNA expression increased. The underlying mechanism is that FAT10 exerts substrate stabilization and degradation functions simultaneously, while FAT10 overexpression promotes WISP1 mRNA expression by stabilizing β-catenin and directly degrades WISP1 protein. Conclusion: Our study demonstrated that overexpression of FAT10 results in expression discordance between WISP1 protein and mRNA, thereby promoting HCC progression by down-regulating WISP1 protein expression.
Collapse
Affiliation(s)
- Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Jun Lei
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Huan Deng
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dingxiang Dong
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Tao Jin
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Xiuxia Liu
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Rongfa Yuan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Yumin Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Jin Ge
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Jianghua Shao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| |
Collapse
|
33
|
Zou Y, Ouyang Q, Wei W, Yang S, Zhang Y, Yang W. FAT10 promotes the invasion and migration of breast cancer cell through stabilization of ZEB2. Biochem Biophys Res Commun 2018; 506:563-570. [PMID: 30361097 DOI: 10.1016/j.bbrc.2018.10.109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
FAT10, an ubiquitin-like protein, functions as a potential tumor promoter in several caners. However, the function and clinical significance of FAT10 in breast cancer (BC) remains unclear. Here, we found that high FAT10 expression was detected frequently in primary BC tissues, and was closely associated with malignant phenotype and shorter survival among the BC patients. Multivariate analyses also revealed that FAT10 overexpression was independent prognostic factors for poor outcome of patients with BC. Function assay demonstrated that FAT10 knockdown significantly inhibited the metastasis abilities and the epithelial-mesenchymal transition (EMT) of breast cancer cell. Further investigation revealed that FAT10 directly bound ZEB2 and decreased its ubiquitination to enhance the protein stability of ZEB2 in BC cells. Moreover, our data shown that the pro-metastasis effect of FAT10 in BC is partially dependent on ZEB2 enhancement. Collectively, our data suggest that FAT10 plays a crucial oncogenic role in BC metastasis, and we provide a novel evidence that FAT10 may be serve as a prognostic and therapeutic target for BC patients.
Collapse
Affiliation(s)
- Yufeng Zou
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Qianwen Ouyang
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Wensong Wei
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Shixin Yang
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Yan Zhang
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
34
|
Aichem A, Anders S, Catone N, Rößler P, Stotz S, Berg A, Schwab R, Scheuermann S, Bialas J, Schütz-Stoffregen MC, Schmidtke G, Peter C, Groettrup M, Wiesner S. The structure of the ubiquitin-like modifier FAT10 reveals an alternative targeting mechanism for proteasomal degradation. Nat Commun 2018; 9:3321. [PMID: 30127417 PMCID: PMC6102260 DOI: 10.1038/s41467-018-05776-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 01/06/2023] Open
Abstract
FAT10 is a ubiquitin-like modifier that directly targets proteins for proteasomal degradation. Here, we report the high-resolution structures of the two individual ubiquitin-like domains (UBD) of FAT10 that are joined by a flexible linker. While the UBDs of FAT10 show the typical ubiquitin-fold, their surfaces are entirely different from each other and from ubiquitin explaining their unique binding specificities. Deletion of the linker abrogates FAT10-conjugation while its mutation blocks auto-FAT10ylation of the FAT10-conjugating enzyme USE1 but not bulk conjugate formation. FAT10- but not ubiquitin-mediated degradation is independent of the segregase VCP/p97 in the presence but not the absence of FAT10’s unstructured N-terminal heptapeptide. Stabilization of the FAT10 UBDs strongly decelerates degradation suggesting that the intrinsic instability of FAT10 together with its disordered N-terminus enables the rapid, joint degradation of FAT10 and its substrates without the need for FAT10 de-conjugation and partial substrate unfolding. The ubiquitin-like modifier FAT10 is composed of two ubiquitin-like domains (UBDs). Here the authors present the FAT10 UBD structures and show that the unstructured FAT10 N-terminal heptapeptide together with the poor stability of FAT10 facilitate the rapid proteasomal targeting of FAT10 along with its substrates.
Collapse
Affiliation(s)
- Annette Aichem
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Samira Anders
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Philip Rößler
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Sophie Stotz
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Andrej Berg
- Computational and Theoretical Chemistry, Department of Chemistry, University of Konstanz, Konstanz, D-78457, Germany
| | - Ricarda Schwab
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Sophia Scheuermann
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Johanna Bialas
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Mira C Schütz-Stoffregen
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany.,Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Gunter Schmidtke
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Christine Peter
- Computational and Theoretical Chemistry, Department of Chemistry, University of Konstanz, Konstanz, D-78457, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany. .,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland.
| | - Silke Wiesner
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany. .,Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany.
| |
Collapse
|
35
|
Jia Y, French B, Tillman B, French S. Different roles of FAT10, FOXO1, and ADRA2A in hepatocellular carcinoma tumorigenesis in patients with alcoholic steatohepatitis (ASH) vs non-alcoholic steatohepatitis (NASH). Exp Mol Pathol 2018; 105:144-149. [PMID: 30009772 DOI: 10.1016/j.yexmp.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second leading cause of cancer related deaths worldwide. Among others, non-alcoholic steatohepatitis (NASH) and alcoholic steatohepatitis (ASH) are the two major risk factors as both of them may develop cirrhosis and hepatocellular carcinoma (HCC) if left untreated. However, patients with NASH progress to HCC at a rate around 0.5% annually, while 3-10% ASH patients may progress to HCC annually. The present study is to demonstrate the molecular differences in oncogenesis pathway between NASH and ASH. By using immunofluorescence study and quantitating the fluorescence intensity morphometrically in liver biopsied specimens from NASH and ASH patients, the protein expression of candidate molecules within hepatocytes cytoplasm are studied, including two HCC-related molecules FAT10 and FOXO1, and one GPCR pathway related molecule ADRA2A. Compared with the control group patients, the expression levels of all the molecules were upregulated in the ASH group of patients (p < 0.001 in all molecules), while FAT10 and ADRA2A were upregulated, FOXO1 did not change in the NASH group of patients. The most important finding is that compared with the ASH group of patients, the expression levels of all three molecules were significantly lower than in the NASH group of patients (p < 0.001 in all molecules). These results confirmed our previous finding that there are significant differences of molecules change in ASH compared to NASH. Thus, we conclude that there are significantly different molecules and pathways involved during the pathogenesis of HCC development in ASH compared to NASH which could help explain why the tumorigenic rate is different in ASH and NASH.
Collapse
Affiliation(s)
- Yue Jia
- Harbor-UCLA Medical Center, Department of Pathology, Torrance, CA 90502, United States.
| | - Barbara French
- Harbor-UCLA Medical Center, Department of Pathology, Torrance, CA 90502, United States
| | - Brittany Tillman
- Harbor-UCLA Medical Center, Department of Pathology, Torrance, CA 90502, United States
| | - Samuel French
- Harbor-UCLA Medical Center, Department of Pathology, Torrance, CA 90502, United States
| |
Collapse
|
36
|
Investigating the Promoter of FAT10 Gene in HCC Patients. Genes (Basel) 2018; 9:genes9070319. [PMID: 29949944 PMCID: PMC6070910 DOI: 10.3390/genes9070319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
FAT10, which is also known as diubiquitin, has been implicated to play important roles in immune regulation and tumorigenesis. Its expression is up-regulated in the tumors of Hepatocellular Carcinoma (HCC) and other cancer patients. High levels of FAT10 in cells have been shown to result in increased mitotic non-disjunction and chromosome instability, leading to tumorigenesis. To evaluate whether the aberrant up-regulation of the FAT10 gene in the tumors of HCC patients is due to mutations or the aberrant methylation of CG dinucleotides at the FAT10 promoter, sequencing and methylation-specific sequencing of the promoter of FAT10 was performed. No mutations were found that could explain the differential expression of FAT10 between the tumor and non-tumorous tissues of HCC patients. However, six single nucleotide polymorphisms (SNPs), including one that has not been previously reported, were identified at the promoter of the FAT10 gene. Different haplotypes of these SNPs were found to significantly mediate different FAT10 promoter activities. Consistent with the experimental observation, differential FAT10 expression in the tumors of HCC patients carrying haplotype 1 was generally higher than those carrying haplotype II. Notably, the methylation status of this promoter was found to correlate with FAT10 expression levels. Hence, the aberrant overexpression of the FAT10 gene in the tumors of HCC patients is likely due to aberrant methylation, rather than mutations at the FAT10 promoter.
Collapse
|
37
|
Zhou Q, Peng X, Liu X, Chen L, Xiong Q, Shen Y, Xie J, Xu Z, Huang L, Hu J, Wan R, Hong K. FAT10 attenuates hypoxia-induced cardiomyocyte apoptosis by stabilizing caveolin-3. J Mol Cell Cardiol 2018; 116:115-124. [DOI: 10.1016/j.yjmcc.2018.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 01/06/2023]
|
38
|
GRP78 Promotes Hepatocellular Carcinoma proliferation by increasing FAT10 expression through the NF-κB pathway. Exp Cell Res 2018; 365:1-11. [PMID: 29458176 DOI: 10.1016/j.yexcr.2018.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
Glucose-regulated protein 78(GRP78) and the ubiquitin-like protein FAT10 each promote proliferation in hepatocellular carcinoma(HCC). However, the relationship of GRP78 and FAT10 in HCC proliferation are still not known. In this study, we found that GRP78 and FAT10 were significantly overexpressed in HCC tissues compare with adjacent non-cancerous tissues, and a positive correlation was found between their expression and associated proliferation characteristics. High expression of GRP78 and FAT10 were positively correlated with tumor proliferation and poor prognosis in HCC. Moreover, GRP78 knockdown reduced FAT10 expression and suppressed HCC proliferation in vitro and in vivo. The effects of GRP78 knockdown were rescued by FAT10 up-regulation, whereas FAT10 knockdown reduced HCC proliferation enhanced by GRP78 up-regulation. Furthermore, GRP78 modulated FAT10 expression by regulating the NF-κB pathway, direct activation of the NF-κB pathway increased the expression of FAT10, a gene counteracting the tumor suppressor p53. Taken together, these results suggest that this newly identified GRP78-NF-κB-FAT10 axis will provide novel insight into the understanding of the regulatory mechanisms of proliferation in human HCC.
Collapse
|
39
|
The 20S immunoproteasome and constitutive proteasome bind with the same affinity to PA28αβ and equally degrade FAT10. Mol Immunol 2017; 113:22-30. [PMID: 29208314 DOI: 10.1016/j.molimm.2017.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 11/22/2022]
Abstract
The 20S immunoproteasome (IP) is an interferon(IFN)-γ - and tumor necrosis factor (TNF) -inducible variant of the 20S constitutive proteasome (CP) in which all its peptidolytically active subunits β1, β2, and β5 are replaced by their cytokine inducible homologues β1i (LMP2), β2i (MECL-1), and β5i (LMP7). These subunit replacements alter the cleavage specificity of the proteasome and the spectrum of proteasome-generated peptide ligands of MHC class I molecules. In addition to antigen processing, the IP has recently been shown to serve unique functions in the generation of pro-inflammatory T helper cell subtypes and cytokines as well as in the pathogenesis of autoimmune diseases, but the mechanistic involvement of the IP in these processes has remained elusive. In this study we investigated whether the IP differs from the CP in the interaction with two IFN-γ/TNF inducible factors: the 11S proteasome regulator PA28αβ and the ubiquitin-like modifier FAT10 (ubiquitin D). Using thermophoresis, we determined the affinity of PA28αβ for the CP and IP to be 12.2nM +/- 2.8nM and 15.3nM +/- 2.7nM, respectively, which is virtually identical. Also the activation of the peptidolytic activities of the IP and CP by PA28αβ did not differ. For FAT10 we determined the degradation kinetics in cycloheximide chase experiments in cells expressing almost exclusively IP or CP as well as in IFN-γ stimulated and unstimulated cells and found no differences between the degradation rates. Taken together, we conclude that neither differences in the binding strength to, nor activation by PA28αβ, nor a difference in the rate of FAT10-mediated degradation can account for distinct functional capabilities of the IP as compared to the CP.
Collapse
|
40
|
Wang Z, Zhu WG, Xu X. Ubiquitin-like modifications in the DNA damage response. Mutat Res 2017; 803-805:56-75. [PMID: 28734548 DOI: 10.1016/j.mrfmmm.2017.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Genomic DNA is damaged at an extremely high frequency by both endogenous and environmental factors. An improper response to DNA damage can lead to genome instability, accelerate the aging process and ultimately cause various human diseases, including cancers and neurodegenerative disorders. The mechanisms that underlie the cellular DNA damage response (DDR) are complex and are regulated at many levels, including at the level of post-translational modification (PTM). Since the discovery of ubiquitin in 1975 and ubiquitylation as a form of PTM in the early 1980s, a number of ubiquitin-like modifiers (UBLs) have been identified, including small ubiquitin-like modifiers (SUMOs), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), interferon-stimulated gene 15 (ISG15), human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10), ubiquitin-fold modifier 1 (UFRM1), URM1 ubiquitin-related modifier-1 (URM1), autophagy-related protein 12 (ATG12), autophagy-related protein 8 (ATG8), fan ubiquitin-like protein 1 (FUB1) and histone mono-ubiquitylation 1 (HUB1). All of these modifiers have known roles in the cellular response to various forms of stress, and delineating their underlying molecular mechanisms and functions is fundamental in enhancing our understanding of human disease and longevity. To date, however, the molecular mechanisms and functions of these UBLs in the DDR remain largely unknown. This review summarizes the current status of PTMs by UBLs in the DDR and their implication in cancer diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Zhifeng Wang
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China; Beijing Key Laboratory of DNA Damage Response, Capital Normal University College of Life Sciences, Beijing 100048, China.
| |
Collapse
|
41
|
Abstract
Ubiquitin-like proteins (Ubl's) are conjugated to target proteins or lipids to regulate their activity, stability, subcellular localization, or macromolecular interactions. Similar to ubiquitin, conjugation is achieved through a cascade of activities that are catalyzed by E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. In this review, we will summarize structural and mechanistic details of enzymes and protein cofactors that participate in Ubl conjugation cascades. Precisely, we will focus on conjugation machinery in the SUMO, NEDD8, ATG8, ATG12, URM1, UFM1, FAT10, and ISG15 pathways while referring to the ubiquitin pathway to highlight common or contrasting themes. We will also review various strategies used to trap intermediates during Ubl activation and conjugation.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States.,Howard Hughes Medical Institute, Sloan Kettering Institute , New York, New York 10021, United States
| |
Collapse
|
42
|
Tan KL, Pezzella F. Inhibition of NEDD8 and FAT10 ligase activities through the degrading enzyme NEDD8 ultimate buster 1: A potential anticancer approach. Oncol Lett 2016; 12:4287-4296. [PMID: 28101194 PMCID: PMC5228310 DOI: 10.3892/ol.2016.5232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/09/2016] [Indexed: 01/31/2023] Open
Abstract
The capabilities of tumour cells to survive through deregulated cell cycles and evade apoptosis are hallmarks of cancer. The ubiquitin-like proteins (UBL) proteasome system is important in regulating cell cycles via signaling proteins. Deregulation of the proteasomal system can lead to uncontrolled cell proliferation. The Skp, Cullin, F-box containing complex (SCF complex) is the predominant E3 ubiquitin ligase, and has diverse substrates. The ubiquitin ligase activity of the SCF complexes requires the conjugation of neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to cullin proteins. A tumour suppressor and degrading enzyme named NEDD8 ultimate buster 1 (NUB1) is able to recruit HLA-F-adjacent transcript 10 (FAT10)- and NEDD8-conjugated proteins for proteasomal degradation. Ubiquitination is associated with neddylation and FAT10ylation. Although validating the targets of UBLs, including ubiquitin, NEDD8 and FAT10, is challenging, understanding the biological significance of such substrates is an exciting research prospect. This present review discusses the interplay of these UBLs, as well as highlighting their inhibition through NUB1. Knowledge of the mechanisms by which NUB1 is able to downregulate the ubiquitin cascade via NEDD8 conjugation and the FAT10 pathway is essential. This will provide insights into potential cancer therapy that could be used to selectively suppress cancer growth.
Collapse
Affiliation(s)
- Ka-Liong Tan
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom; Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia
| | - Francesco Pezzella
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
43
|
Liu X, Chen L, Ge J, Yan C, Huang Z, Hu J, Wen C, Li M, Huang D, Qiu Y, Hao H, Yuan R, Lei J, Yu X, Shao J. The Ubiquitin-like Protein FAT10 Stabilizes eEF1A1 Expression to Promote Tumor Proliferation in a Complex Manner. Cancer Res 2016; 76:4897-4907. [PMID: 27312528 DOI: 10.1158/0008-5472.can-15-3118] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 06/04/2016] [Indexed: 11/16/2022]
Abstract
Human HLA-F adjacent transcript 10 (FAT10) is the only ubiquitin-like protein that can directly target substrates for degradation by proteasomes, but it can also stabilize the expression of certain substrates by antagonizing ubiquitination, through mechanisms as yet uncharacterized. In this study, we show how FAT10 stabilizes the translation elongation factor eEF1A1, which contributes to cancer cell proliferation. FAT10 overexpression increased expression of eEF1A1, which was sufficient to promote proliferation of cancer cells. Mechanistic investigations revealed that FAT10 competed with ubiquitin (Ub) for binding to the same lysines on eEF1A1 to form either FAT10-eEF1A1 or Ub-eEF1A1 complexes, respectively, such that FAT10 overexpression decreased Ub-eEF1A1 levels and increased FAT10-eEF1A1 levels. Overall, our work establishes a novel mechanism through which FAT10 stabilizes its substrates, advancing understanding of the biological function of FAT10 and its role in cancer. Cancer Res; 76(16); 4897-907. ©2016 AACR.
Collapse
Affiliation(s)
- Xiuxia Liu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China. Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Jin Ge
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China. Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Chen Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Zixi Huang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Junwen Hu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chongyu Wen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China. Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Ming Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China. Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Da Huang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China. Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Yumin Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China. Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Haibin Hao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China. Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Rongfa Yuan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Jun Lei
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Xin Yu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Jianghua Shao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China. Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China. Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.
| |
Collapse
|
44
|
The ubiquitin-like modifier FAT10 in cancer development. Int J Biochem Cell Biol 2016; 79:451-461. [PMID: 27393295 DOI: 10.1016/j.biocel.2016.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022]
Abstract
During the last years it has emerged that the ubiquitin-like modifier FAT10 is directly involved in cancer development. FAT10 expression is highly up-regulated by pro-inflammatory cytokines IFN-γ and TNF-α in all cell types and tissues and it was also found to be up-regulated in many cancer types such as glioma, colorectal, liver or gastric cancer. While pro-inflammatory cytokines within the tumor microenvironment probably contribute to FAT10 overexpression, an increasing body of evidence argues that pro-malignant capacities of FAT10 itself largely underlie its broad and intense overexpression in tumor tissues. FAT10 thereby regulates pathways involved in cancer development such as the NF-κB- or Wnt-signaling. Moreover, FAT10 directly interacts with and influences downstream targets such as MAD2, p53 or β-catenin, leading to enhanced survival, proliferation, invasion and metastasis formation of cancer cells but also of non-malignant cells. In this review we will provide an overview of the regulation of FAT10 expression as well as its function in carcinogenesis.
Collapse
|
45
|
Kimura M, Mizukami S, Watanabe Y, Hasegawa-Baba Y, Onda N, Yoshida T, Shibutani M. Disruption of spindle checkpoint function in rats following 28 days of repeated administration of renal carcinogens. J Toxicol Sci 2016; 41:91-104. [PMID: 26763396 DOI: 10.2131/jts.41.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We previously reported that 28-day exposure to hepatocarcinogens that facilitate cell proliferation specifically alters the expression of G1/S checkpoint-related genes and proteins, induces aberrant early expression of ubiquitin D (UBD) at the G2 phase, and increases apoptosis in the rat liver, indicating G1/S and spindle checkpoint dysfunction. The present study aimed to determine the time of onset of carcinogen-specific cell-cycle disruption after repeated administration of renal carcinogens for up to 28 days. Rats were orally administered the renal carcinogens nitrofurantoin (NFT), 1-amino-2,4-dibromoantraquinone (ADAQ), and 1,2,3-trichloropropane (TCP) or the non-carcinogenic renal toxicants 1-chloro-2-propanol, triamterene, and carboxin for 3, 7 or 28 days. Both immunohistochemical single-molecule analysis and real-time RT-PCR analysis revealed that carcinogen-specific expression changes were not observed after 28 days of administration. However, the renal carcinogens ADAQ and TCP specifically reduced the number of cells expressing phosphorylated-histone H3 at Ser10 in both UBD(+) cells and proliferating cells, suggestive of insufficient UBD expression at the M phase and early transition of proliferating cells from the M phase, without increasing apoptosis, after 28 days of administration. In contrast, NFT, which has marginal carcinogenic potential, did not induce such cellular responses. These results suggest that it may take 28 days to induce spindle checkpoint dysfunction by renal carcinogens; however, induction of apoptosis may not be essential. Thus, induction of spindle checkpoint dysfunction may be dependent on carcinogenic potential of carcinogen examined, and marginal carcinogens may not exert sufficient responses even after 28 days of administration.
Collapse
Affiliation(s)
- Masayuki Kimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | | | | | | | | | | | | |
Collapse
|
46
|
Dai B, Zhang Y, Zhang P, Pan C, Xu C, Wan W, Wu Z, Zhang J, Zhang L. Upregulation of p-Smad2 contributes to FAT10-induced oncogenic activities in glioma. Tumour Biol 2016; 37:8621-31. [DOI: 10.1007/s13277-015-4739-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/22/2015] [Indexed: 01/09/2023] Open
|
47
|
Schelpe J, Monté D, Dewitte F, Sixma TK, Rucktooa P. Structure of UBE2Z Enzyme Provides Functional Insight into Specificity in the FAT10 Protein Conjugation Machinery. J Biol Chem 2015; 291:630-9. [PMID: 26555268 PMCID: PMC4705383 DOI: 10.1074/jbc.m115.671545] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 12/05/2022] Open
Abstract
FAT10 conjugation, a post-translational modification analogous to ubiquitination, specifically requires UBA6 and UBE2Z as its activating (E1) and conjugating (E2) enzymes. Interestingly, these enzymes can also function in ubiquitination. We have determined the crystal structure of UBE2Z and report how the different domains of this E2 enzyme are organized. We further combine our structural data with mutational analyses to understand how specificity is achieved in the FAT10 conjugation pathway. We show that specificity toward UBA6 and UBE2Z lies within the C-terminal CYCI tetrapeptide in FAT10. We also demonstrate that this motif slows down transfer rates for FAT10 from UBA6 onto UBE2Z.
Collapse
Affiliation(s)
- Julien Schelpe
- From the UMR8576 CNRS-Université de Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France and
| | - Didier Monté
- From the UMR8576 CNRS-Université de Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France and
| | - Frédérique Dewitte
- From the UMR8576 CNRS-Université de Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France and
| | - Titia K Sixma
- Division of Biochemistry and Centre for Biomedical Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Prakash Rucktooa
- From the UMR8576 CNRS-Université de Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France and Division of Biochemistry and Centre for Biomedical Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
48
|
Epigenetics and Proteomics Join Transcriptomics in the Quest for Tuberculosis Biomarkers. mBio 2015; 6:e01187-15. [PMID: 26374119 PMCID: PMC4600108 DOI: 10.1128/mbio.01187-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED An estimated one-third of the world's population is currently latently infected with Mycobacterium tuberculosis. Latent M. tuberculosis infection (LTBI) progresses into active tuberculosis (TB) disease in ~5 to 10% of infected individuals. Diagnostic and prognostic biomarkers to monitor disease progression are urgently needed to ensure better care for TB patients and to decrease the spread of TB. Biomarker development is primarily based on transcriptomics. Our understanding of biology combined with evolving technical advances in high-throughput techniques led us to investigate the possibility of additional platforms (epigenetics and proteomics) in the quest to (i) understand the biology of the TB host response and (ii) search for multiplatform biosignatures in TB. We engaged in a pilot study to interrogate the DNA methylome, transcriptome, and proteome in selected monocytes and granulocytes from TB patients and healthy LTBI participants. Our study provides first insights into the levels and sources of diversity in the epigenome and proteome among TB patients and LTBI controls, despite limitations due to small sample size. Functionally the differences between the infection phenotypes (LTBI versus active TB) observed in the different platforms were congruent, thereby suggesting regulation of function not only at the transcriptional level but also by DNA methylation and microRNA. Thus, our data argue for the development of a large-scale study of the DNA methylome, with particular attention to study design in accounting for variation based on gender, age, and cell type. IMPORTANCE DNA methylation modifies the transcriptional program of cells. We have focused on two major populations of leukocytes involved in immune response to infectious diseases, granulocytes and monocytes, both of which are professional phagocytes that engulf and kill bacteria. We have interrogated how DNA methylation, gene expression, and protein translation differ in these two cell populations between healthy individuals and patients suffering from TB. To better understand the underlying biologic mechanisms, we harnessed a statistical enrichment analysis, taking advantage of predefined and well-characterized gene sets. Not only were there clear differences on various levels between the two populations, but there were also differences between TB patients and healthy controls in the transcriptome, proteome, and, for the first time, DNA methylome in these cells. Our pilot study emphasizes the value of a large-scale study of the DNA methylome taking into account our findings.
Collapse
|
49
|
Gao Y, Theng SS, Mah WC, Lee CGL. Silibinin down-regulates FAT10 and modulate TNF-α/IFN-γ-induced chromosomal instability and apoptosis sensitivity. Biol Open 2015; 4:961-9. [PMID: 26142316 PMCID: PMC4542280 DOI: 10.1242/bio.011189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pleiotropic pro-inflammatory cytokines, TNF-α and IFN-γ (TI), play important yet diverse roles in cell survival, proliferation, and death. Recent evidence highlights FAT10 as a downstream molecule in the pathway of inflammation-induced tumorigenesis through mediating the effect of cytokines in causing numerical CIN and protecting cells from cytokines-induced cell death. cDNA microarray analysis of cells treated with TI revealed 493 deregulated genes with FAT10 being the most up-regulated (85.7-fold) gene and NF-κB being the key nodal hub of TI-response genes. Silibinin is reported to be a powerful antioxidant and has anti-C effects against various carcinomas by affecting various signaling molecules/pathways including MAPK, NF-κB and STATs. As NF-κB signaling pathway is a major mediator of the tumor-promoting activities of TI, we thus examine the effects of silibinin on TI-induced FAT10 expression and CIN. Our data showed that silibinin inhibited expression of FAT10, TI-induced chromosome instability (CIN) as well as sensitizes cells to TI-induced apoptosis. Significantly, silibinin suppressed intra-tumorally injected TNF-α-induced tumor growth. This represents the first report associating silibinin with FAT10 and demonstrating that silibinin can modulate TI-induced CIN, apoptosis sensitivity and suppressing TNF-α-induced tumor growth.
Collapse
Affiliation(s)
- Yun Gao
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 169610, Singapore
| | - Steven Setiawan Theng
- NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 119077, Singapore Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Way-Champ Mah
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 169610, Singapore NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 119077, Singapore
| | - Caroline G L Lee
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 169610, Singapore NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 119077, Singapore Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore Duke-NUS Graduate Medical School Singapore, 169547, Singapore
| |
Collapse
|
50
|
Kimura M, Abe H, Mizukami S, Tanaka T, Itahashi M, Onda N, Yoshida T, Shibutani M. Onset of hepatocarcinogen-specific cell proliferation and cell cycle aberration during the early stage of repeated hepatocarcinogen administration in rats. J Appl Toxicol 2015; 36:223-37. [DOI: 10.1002/jat.3163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/08/2015] [Accepted: 03/17/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Masayuki Kimura
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Hajime Abe
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Takeshi Tanaka
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Megu Itahashi
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Nobuhiko Onda
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
| |
Collapse
|