1
|
Uechi L, Vasudevan S, Vilenski D, Branciamore S, Frankhouser D, O'Meally D, Meshinchi S, Marcucci G, Kuo YH, Rockne R, Kravchenko-Balasha N. Transcriptome free energy can serve as a dynamic patient-specific biomarker in acute myeloid leukemia. NPJ Syst Biol Appl 2024; 10:32. [PMID: 38527998 DOI: 10.1038/s41540-024-00352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Acute myeloid leukemia (AML) is prevalent in both adult and pediatric patients. Despite advances in patient categorization, the heterogeneity of AML remains a challenge. Recent studies have explored the use of gene expression data to enhance AML diagnosis and prognosis, however, alternative approaches rooted in physics and chemistry may provide another level of insight into AML transformation. Utilizing publicly available databases, we analyze 884 human and mouse blood and bone marrow samples. We employ a personalized medicine strategy, combining state-transition theory and surprisal analysis, to assess the RNA transcriptome of individual patients. The transcriptome is transformed into physical parameters that represent each sample's steady state and the free energy change (FEC) from that steady state, which is the state with the lowest free energy.We found the transcriptome steady state was invariant across normal and AML samples. FEC, representing active molecular processes, varied significantly between samples and was used to create patient-specific barcodes to characterize the biology of the disease. We discovered that AML samples that were in a transition state had the highest FEC. This disease state may be characterized as the most unstable and hence the most therapeutically targetable since a change in free energy is a thermodynamic requirement for disease progression. We also found that distinct sets of ongoing processes may be at the root of otherwise similar clinical phenotypes, implying that our integrated analysis of transcriptome profiles may facilitate a personalized medicine approach to cure AML and restore a steady state in each patient.
Collapse
Affiliation(s)
- Lisa Uechi
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Swetha Vasudevan
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem, 91120, Israel
| | - Daniela Vilenski
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem, 91120, Israel
| | - Sergio Branciamore
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - David Frankhouser
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Denis O'Meally
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, D5-112, Seattle, WA, 98109, USA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Ya-Huei Kuo
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Russell Rockne
- Division of Mathematical Oncology and Computational Systems Biology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O.B. 12272, Ein Kerem, Jerusalem, 91120, Israel.
| |
Collapse
|
2
|
Slika H, Karimov Z, Alimonti P, Abou-Mrad T, De Fazio E, Alomari S, Tyler B. Preclinical Models and Technologies in Glioblastoma Research: Evolution, Current State, and Future Avenues. Int J Mol Sci 2023; 24:16316. [PMID: 38003507 PMCID: PMC10671665 DOI: 10.3390/ijms242216316] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is the most common malignant primary central nervous system tumor and one of the most debilitating cancers. The prognosis of patients with glioblastoma remains poor, and the management of this tumor, both in its primary and recurrent forms, remains suboptimal. Despite the tremendous efforts that are being put forward by the research community to discover novel efficacious therapeutic agents and modalities, no major paradigm shifts have been established in the field in the last decade. However, this does not mirror the abundance of relevant findings and discoveries made in preclinical glioblastoma research. Hence, developing and utilizing appropriate preclinical models that faithfully recapitulate the characteristics and behavior of human glioblastoma is of utmost importance. Herein, we offer a holistic picture of the evolution of preclinical models of glioblastoma. We further elaborate on the commonly used in vitro and vivo models, delving into their development, favorable characteristics, shortcomings, and areas of potential improvement, which aids researchers in designing future experiments and utilizing the most suitable models. Additionally, this review explores progress in the fields of humanized and immunotolerant mouse models, genetically engineered animal models, 3D in vitro models, and microfluidics and highlights promising avenues for the future of preclinical glioblastoma research.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Ziya Karimov
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
- Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Tatiana Abou-Mrad
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emerson De Fazio
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| |
Collapse
|
3
|
Li L, Su H, Ji Y, Zhu F, Deng J, Bai X, Li H, Liu X, Luo Y, Lin B, Liu T, Lu Y. Deciphering Cell-Cell Interactions with Integrative Single-Cell Secretion Profiling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301018. [PMID: 37186381 PMCID: PMC10323649 DOI: 10.1002/advs.202301018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Cell-cell interactions are the fundamental behaviors to regulate cellular activities. A comprehensive evaluation of intercellular interactions requires direct profiling of various signaling behaviors simultaneously at the single-cell level, which remains lacking. Herein, an integrative single-cell secretion analysis platform is presented to profile different secreted factors (four proteins, three extracellular vesicles (EV) phenotypes), spatial distances, and migration information (distances and direction) simultaneously from high-throughput paired single cells using an antibody-barcode microchip. Applying the platform to analyze the tumor-stromal and tumor-immune interactions with the human oral squamous cell carcinoma (OSCC) cell lines and primary OSCC cells reveals that the initial distances between cells would determine their migratory distances and direction to approach stable organization. The cell-cell in close proximity enhances protein secretions while attenuating EV secretions. Migration has a more profound correlation with protein secretions than EV secretions, in which absolute migration distance affects protein secretions significantly but not the direction. These findings highlight the significance of spatial organization in regulating cell signaling behaviors and demonstrate that the integrative single-cell secretion profiling platform is well-suited for a comprehensive dissection of intercellular communication and interactions, providing new avenues for understanding cell-cell interaction biology and how different signaling behaviors coordinate within the tumor microenvironment.
Collapse
Affiliation(s)
- Linmei Li
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Key Laboratory for Reactive Chemistry on Solid SurfacesInstitute of Physical ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haoran Su
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
- College of StomatologyDalian Medical UniversityDalianLiaoning116044China
| | - Yahui Ji
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Fengjiao Zhu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Jiu Deng
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Xue Bai
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Huibing Li
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Xianming Liu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Yong Luo
- School of Pharmaceutical Science and TechnologyDalian University of TechnologyDalianLiaoning116024China
| | - Bingcheng Lin
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Tingjiao Liu
- Department of Oral PathologyShanghai Stomatological Hospital & School of StomatologyFudan UniversityTianjin Road No.2, Huangpu DistrictShanghai200001China
- Shanghai Key Laboratory of Craniomaxillofacial Development and DiseasesFudan UniversityTianjin Road No.2, Huangpu DistrictShanghai200001China
| | - Yao Lu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| |
Collapse
|
4
|
Jung Y, Son M, Nam YR, Choi J, Heath JR, Yang S. Microfluidic Single-Cell Proteomics Assay Chip: Lung Cancer Cell Line Case Study. MICROMACHINES 2021; 12:mi12101147. [PMID: 34683198 PMCID: PMC8541572 DOI: 10.3390/mi12101147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Cancer is a dynamic disease involving constant changes. With these changes, cancer cells become heterogeneous, resulting in varying sensitivity to chemotherapy. The heterogeneity of cancer cells plays a key role in chemotherapy resistance and cancer recurrence. Therefore, for effective treatment, cancer cells need to be analyzed at the single-cell level by monitoring various proteins and investigating their heterogeneity. We propose a microfluidic chip for a single-cell proteomics assay that is capable of analyzing complex cellular signaling systems to reveal the heterogeneity of cancer cells. The single-cell assay chip comprises (i) microchambers (n = 1376) for manipulating single cancer cells, (ii) micropumps for rapid single-cell lysis, and (iii) barcode immunosensors for detecting nine different secretory and intracellular proteins to reveal the correlation among cancer-related proteins. Using this chip, the single-cell proteomics of a lung cancer cell line, which may be easily masked in bulk analysis, were evaluated. By comparing changes in the level of protein secretion and heterogeneity in response to combinations of four anti-cancer drugs, this study suggests a new method for selecting the best combination of anti-cancer drugs. Subsequent preclinical and clinical trials should enable this platform to become applicable for patient-customized therapies.
Collapse
Affiliation(s)
- Yugyung Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.J.); (M.S.); (Y.R.N.)
| | - Minkook Son
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.J.); (M.S.); (Y.R.N.)
| | - Yu Ri Nam
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.J.); (M.S.); (Y.R.N.)
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jongchan Choi
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Institute for Systems Biology, Seattle, WA 98109, USA;
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA 98109, USA;
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Sung Yang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.J.); (M.S.); (Y.R.N.)
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Correspondence:
| |
Collapse
|
5
|
Komarova K, Remacle F, Levine RD. Surprisal of a quantum state: Dynamics, compact representation, and coherence effects. J Chem Phys 2020; 153:214105. [DOI: 10.1063/5.0030272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- K. Komarova
- The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - F. Remacle
- The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Theoretical Physical Chemistry, UR MolSys B6c, University of Liège, B4000 Liège, Belgium
| | - R. D. Levine
- The Fritz Haber Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Antibody Arrays: Barcode Technology. Methods Mol Biol 2020. [PMID: 33237411 DOI: 10.1007/978-1-0716-1064-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Antibody microarray is a fundamental, high-content technology for analyzing biomarkers with a multiplexity even at the proteomic level. Recent advancement in this field has driven the antibody array into a new territory related with single-cell analysis. Here we describe a flow pattern-based method for producing a high-density barcode antibody microarray for the detection of proteins in fluidic samples and in single cells. The antibody microarray is fabricated by a perpendicularly oriented flow patterning of single-stranded barcode DNAs, which are then converted into DNA-antibody conjugates. Compared to conventional microarrays, this barcode antibody microarray features a simple and high-throughput assay while achieving both high sensitivity and specificity. This barcode technology provides new clues for developing next-generation antibody microarrays and can be widely used in protein biomarker discovery, cell signaling network analysis, and disease diagnosis and prognosis.
Collapse
|
7
|
Su Y, Chen D, Lausted C, Yuan D, Choi J, Dai C, Voillet V, Scherler K, Troisch P, Duvvuri VR, Baloni P, Qin G, Smith B, Kornilov S, Rostomily C, Xu A, Li J, Dong S, Rothchild A, Zhou J, Murray K, Edmark R, Hong S, Jones L, Zhou Y, Roper R, Mackay S, O'Mahony DS, Dale CR, Wallick JA, Algren HA, Michael ZA, Magis A, Wei W, Price ND, Huang S, Subramanian N, Wang K, Hadlock J, Hood L, Aderem A, Bluestone JA, Lanier LL, Greenberg P, Gottardo R, Davis MM, Goldman JD, Heath JR. Multiomic Immunophenotyping of COVID-19 Patients Reveals Early Infection Trajectories. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.27.224063. [PMID: 32766585 PMCID: PMC7402042 DOI: 10.1101/2020.07.27.224063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Host immune responses play central roles in controlling SARS-CoV2 infection, yet remain incompletely characterized and understood. Here, we present a comprehensive immune response map spanning 454 proteins and 847 metabolites in plasma integrated with single-cell multi-omic assays of PBMCs in which whole transcriptome, 192 surface proteins, and T and B cell receptor sequence were co-analyzed within the context of clinical measures from 50 COVID19 patient samples. Our study reveals novel cellular subpopulations, such as proliferative exhausted CD8 + and CD4 + T cells, and cytotoxic CD4 + T cells, that may be features of severe COVID-19 infection. We condensed over 1 million immune features into a single immune response axis that independently aligns with many clinical features and is also strongly associated with disease severity. Our study represents an important resource towards understanding the heterogeneous immune responses of COVID-19 patients and may provide key information for informing therapeutic development.
Collapse
|
8
|
Yang L, George J, Wang J. Deep Profiling of Cellular Heterogeneity by Emerging Single-Cell Proteomic Technologies. Proteomics 2020; 20:e1900226. [PMID: 31729152 PMCID: PMC7225074 DOI: 10.1002/pmic.201900226] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/14/2019] [Indexed: 12/20/2022]
Abstract
The ability to comprehensively profile cellular heterogeneity in functional proteome is crucial in advancing the understanding of cell behavior, organism development, and disease mechanisms. Conventional bulk measurement by averaging the biological responses across a population often loses the information of cellular variations. Single-cell proteomic technologies are becoming increasingly important to understand and discern cellular heterogeneity. The well-established methods for single-cell protein analysis based on flow cytometry and fluorescence microscopy are limited by the low multiplexing ability owing to the spectra overlap of fluorophores for labeling antibodies. Recent advances in mass spectrometry (MS), microchip, and reiterative staining-based techniques for single-cell proteomics have enabled the evaluation of cellular heterogeneity with high throughput, increased multiplexity, and improved sensitivity. In this review, the principles, developments, advantages, and limitations of these advanced technologies in analysis of single-cell proteins, along with their biological applications to study cellular heterogeneity, are described. At last, the remaining challenges, possible strategies, and future opportunities that will facilitate the improvement and broad applications of single-cell proteomic technologies in cell biology and medical research are discussed.
Collapse
Affiliation(s)
- Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
| | - Justin George
- Department of Chemistry, State University of New York, University at Albany, Albany, NY 12222
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794
| |
Collapse
|
9
|
Su Y, Ko ME, Cheng H, Zhu R, Xue M, Wang J, Lee JW, Frankiw L, Xu A, Wong S, Robert L, Takata K, Yuan D, Lu Y, Huang S, Ribas A, Levine R, Nolan GP, Wei W, Plevritis SK, Li G, Baltimore D, Heath JR. Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line. Nat Commun 2020; 11:2345. [PMID: 32393797 PMCID: PMC7214418 DOI: 10.1038/s41467-020-15956-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
The determination of individual cell trajectories through a high-dimensional cell-state space is an outstanding challenge for understanding biological changes ranging from cellular differentiation to epigenetic responses of diseased cells upon drugging. We integrate experiments and theory to determine the trajectories that single BRAFV600E mutant melanoma cancer cells take between drug-naive and drug-tolerant states. Although single-cell omics tools can yield snapshots of the cell-state landscape, the determination of individual cell trajectories through that space can be confounded by stochastic cell-state switching. We assayed for a panel of signaling, phenotypic, and metabolic regulators at points across 5 days of drug treatment to uncover a cell-state landscape with two paths connecting drug-naive and drug-tolerant states. The trajectory a given cell takes depends upon the drug-naive level of a lineage-restricted transcription factor. Each trajectory exhibits unique druggable susceptibilities, thus updating the paradigm of adaptive resistance development in an isogenic cell population.
Collapse
Affiliation(s)
- Yapeng Su
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Institute for Systems Biology, Seattle, Washington, USA
| | - Melissa E Ko
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA
| | - Hanjun Cheng
- Institute for Systems Biology, Seattle, Washington, USA
| | - Ronghui Zhu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Min Xue
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
- Department of Chemistry, University of California, Riverside, Riverside, California, USA
| | - Jessica Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Jihoon W Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Luke Frankiw
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Alexander Xu
- Institute for Systems Biology, Seattle, Washington, USA
| | - Stephanie Wong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Lidia Robert
- Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Kaitlyn Takata
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Dan Yuan
- Institute for Systems Biology, Seattle, Washington, USA
| | - Yue Lu
- Institute for Systems Biology, Seattle, Washington, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Antoni Ribas
- Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Department of Surgery, UCLA, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Raphael Levine
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
- The Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
| | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Wei Wei
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | | | - Guideng Li
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Suzhou Institute of Systems Medicine, Suzhou, China.
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
- Institute for Systems Biology, Seattle, Washington, USA.
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA.
| |
Collapse
|
10
|
Dagan H, Flashner-Abramson E, Vasudevan S, Jubran MR, Cohen E, Kravchenko-Balasha N. Exploring Alzheimer's Disease Molecular Variability via Calculation of Personalized Transcriptional Signatures. Biomolecules 2020; 10:biom10040503. [PMID: 32225014 PMCID: PMC7226317 DOI: 10.3390/biom10040503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Despite huge investments and major efforts to develop remedies for Alzheimer’s disease (AD) in the past decades, AD remains incurable. While evidence for molecular and phenotypic variability in AD have been accumulating, AD research still heavily relies on the search for AD-specific genetic/protein biomarkers that are expected to exhibit repetitive patterns throughout all patients. Thus, the classification of AD patients to different categories is expected to set the basis for the development of therapies that will be beneficial for subpopulations of patients. Here we explore the molecular heterogeneity among a large cohort of AD and non-demented brain samples, aiming to address the question whether AD-specific molecular biomarkers can progress our understanding of the disease and advance the development of anti-AD therapeutics. We studied 951 brain samples, obtained from up to 17 brain regions of 85 AD patients and 22 non-demented subjects. Utilizing an information-theoretic approach, we deciphered the brain sample-specific structures of altered transcriptional networks. Our in-depth analysis revealed that 7 subnetworks were repetitive in the 737 diseased and 214 non-demented brain samples. Each sample was characterized by a subset consisting of ~1–3 subnetworks out of 7, generating 52 distinct altered transcriptional signatures that characterized the 951 samples. We show that 30 different altered transcriptional signatures characterized solely AD samples and were not found in any of the non-demented samples. In contrast, the rest of the signatures characterized different subsets of sample types, demonstrating the high molecular variability and complexity of gene expression in AD. Importantly, different AD patients exhibiting similar expression levels of AD biomarkers harbored distinct altered transcriptional networks. Our results emphasize the need to expand the biomarker-based stratification to patient-specific transcriptional signature identification for improved AD diagnosis and for the development of subclass-specific future treatment.
Collapse
Affiliation(s)
- Hila Dagan
- The Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University, Jerusalem 9190416, Israel;
| | - Efrat Flashner-Abramson
- Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.F.-A.); (S.V.); (M.R.J.)
| | - Swetha Vasudevan
- Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.F.-A.); (S.V.); (M.R.J.)
| | - Maria R. Jubran
- Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.F.-A.); (S.V.); (M.R.J.)
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel—Canada, The Hebrew University School of Medicine, Jerusalem 9112102, Israel;
| | - Nataly Kravchenko-Balasha
- Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (E.F.-A.); (S.V.); (M.R.J.)
- Correspondence:
| |
Collapse
|
11
|
Kravchenko-Balasha N. Translating Cancer Molecular Variability into Personalized Information Using Bulk and Single Cell Approaches. Proteomics 2020; 20:e1900227. [PMID: 32072740 DOI: 10.1002/pmic.201900227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/13/2020] [Indexed: 12/17/2022]
Abstract
Cancer research is striving toward new frontiers of assigning the correct personalized drug(s) to a given patient. However, extensive tumor heterogeneity poses a major obstacle. Tumors of the same type often respond differently to therapy, due to patient-specific molecular aberrations and/or untargeted tumor subpopulations. It is frequently not possible to determine a priori which patients will respond to a certain therapy or how an efficient patient-specific combined therapy should be designed. Large-scale datasets have been growing at an accelerated pace and various technologies and analytical tools for single cell and bulk level analyses are being developed to extract significant individualized signals from such heterogeneous data. However, personalized therapies that dramatically alter the course of the disease remain scarce, and most tumors still respond poorly to medical care. In this review, the basic concepts of bulk and single cell approaches are discussed, as well as their emerging role in individualized designs of drug therapies, including the advantages and limitations of their applications in personalized medicine.
Collapse
Affiliation(s)
- Nataly Kravchenko-Balasha
- Department for Bio-Medical Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| |
Collapse
|
12
|
Dissecting the role of crosstalk between glioblastoma subpopulations in tumor cell spreading. Oncogenesis 2020; 9:11. [PMID: 32024816 PMCID: PMC7002777 DOI: 10.1038/s41389-020-0199-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 11/14/2022] Open
Abstract
Glioblastoma (GBM) is a highly infiltrative brain cancer, which is thus difficult to operate. GBM cells frequently harbor Epidermal Growth Factor Receptor amplification (EGFRwt) and/or activating mutation (EGFRvIII), generating at least two different cellular subpopulations within the tumor. We examined the relationship between the diffusive architectures of GBM tumors and the paracrine interactions between those subpopulations. Our aim was to shed light on what drives GBM cells to reach large cell–cell distances, and whether this characteristic can be manipulated. We established a methodology that quantifies the infiltration abilities of cancer cells through computation of cell–cell separation distance distributions in 3D. We found that aggressive EGFRvIII cells modulate the migration and infiltrative properties of EGFRwt cells. EGFRvIII cells secrete HGF and IL6, leading to enhanced activity of Src protein in EGFRwt cells, and rendering EGFRwt cells higher velocity and augmented ability to spread. Src inhibitor, dasatinib, at low non-toxic concentrations, reduced the infiltrative properties of EGFRvIII/EGFRwt neurospheres. Furthermore, dasatinib treatment induced compact multicellular microstructure packing of EGFRvIII/EGFRwt cells, impairing their ability to spread. Prevention of cellular infiltration or induction of compact microstructures may assist the detection of GBM tumors and tumor remnants in the brains and improve their surgical removal.
Collapse
|
13
|
Chen P, Chen D, Li S, Ou X, Liu BF. Microfluidics towards single cell resolution protein analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Flashner-Abramson E, Vasudevan S, Adejumobi IA, Sonnenblick A, Kravchenko-Balasha N. Decoding cancer heterogeneity: studying patient-specific signaling signatures towards personalized cancer therapy. Theranostics 2019; 9:5149-5165. [PMID: 31410207 PMCID: PMC6691586 DOI: 10.7150/thno.31657] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/05/2019] [Indexed: 01/25/2023] Open
Abstract
The past years have witnessed a rapid increase in the amount of large-scale tumor datasets. The challenge has now become to find a way to obtain useful information from these masses of data that will allow to determine which combination of FDA-approved drugs is best suited to treat the specific tumor. Various statistical analyses are being developed to extract significant signals from cancer datasets. However, tumors are still being assigned to pre-defined categories (breast luminal A, triple negative, etc.), conceptually contradicting the vast heterogeneity that is known to exist among tumors, and likely overlooking unique tumors that must be addressed and treated individually. We present herein an approach based on information theory that, rather than searches for what makes a tumor similar to other tumors, addresses tumors individually and unbiasedly, and impartially decodes the critical patient-specific molecular network reorganization in every tumor. Methods: Using a large dataset obtained from ~3500 tumors of 11 types we decipher the altered protein network structure in each tumor, namely the patient-specific signaling signature. Each signature can harbor several altered protein subnetworks. We suggest that simultaneous targeting of central proteins from every altered subnetwork is essential to efficiently disturb the altered signaling in each tumor. We experimentally validate our ability to dissect sample-specific signaling signatures and to rationally design personalized drug combinations. Results: We unraveled a surprisingly simple order that underlies the extreme apparent complexity of tumor tissues, demonstrating that only 17 altered protein subnetworks characterize ~3500 tumors of 11 types. Each tumor was described by a specific subset of 1-4 subnetworks out of 17, i.e. a tumor-specific altered signaling signature. We show that the majority of tumor-specific signaling signatures are extremely rare, and are shared by only 5 tumors or less, supporting a personalized, comprehensive study of tumors in order to design the optimal combination therapy for every patient. We validate the results by confirming that the processes identified in the 11 original cancer types characterize patients harboring a different cancer type as well. We show experimentally, using different cancer cell lines, that the individualized combination therapies predicted by us achieved higher rates of killing than the clinically prescribed treatments. Conclusions: We present a new strategy to deal with the inter-tumor heterogeneity and to break down the high complexity of cancer systems into simple, easy to crack, patient-specific signaling signatures that guide the rational design of personalized drug therapies.
Collapse
|
15
|
Cedillo-Alcantar DF, Han YD, Choi J, Garcia-Cordero JL, Revzin A. Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes. Anal Chem 2019; 91:5133-5141. [PMID: 30834743 DOI: 10.1021/acs.analchem.8b05689] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ability to detect multiple analytes in a small sample volume has significance for numerous areas of research, including organs-on-chip, small animal experiments, and neonatology. The objective of this study was to develop an automated microfluidics platform for multiplexed detection of analytes in microliter sample volumes. This platform employed computer-controlled microvalves to create laminar co-flows of sample and assay reagent solutions. It also contained valve-regulated cross-junction for discretizing sample/reagent mixtures into water-in-oil droplets. Microfluidic automation allowed us to control parameters related to frequency of droplet generation and the number of droplets of the same composition, as well as the size of droplets. Each droplet represented an individual enzymatic assay carried out in a sub-nanoliter (0.8 nL) volume reactor. An enzymatic reaction involving target analyte and assay reagents produced colorimetric or fluorescent signals in droplets. Importantly, intensity of optical signal was proportional to the concentration of analyte in question. This microfluidic bioanalysis platform was used in conjunction with commercial "mix-detect" assays for glucose, total bile acids, and lactate dehydrogenase (LDH). After characterizing these assays individually, we demonstrated sensitive multiplexed detection of three analytes from as little as 3 μL. In fact, this volume was sufficient to generate multiple repeat droplets for each of the three biochemical assays as well as positive control droplets, confirming the quality of assay reagents and negative control droplets to help with background subtraction. One potential application for this microfluidic bioanalysis platform involves sampling cell-conditioned media in organ-on-chip devices. To highlight this application, hepatocyte spheroids were established in microfluidic devices, injured on-chip by exposure to lipotoxic agent (palmitate), and then connected to the bioanalysis module for daily monitoring of changes in cytotoxicity (LDH), energy metabolism (glucose), and liver function (total bile acids). Microfluidic in-droplet assays revealed increased levels of LDH as well as reduction in bile acid synthesis-results that were consistent with hepatic injury. Importantly, these experiments highlighted the fact that in-droplet assays were sufficiently sensitive to detect changes in functional output of a relatively small (∼100) number of hepatocyte spheroids cultured in a microfluidic device. Moving forward, we foresee increasing the multiplexing capability of this technology and applying this platform to other biological/medical scenarios where detection of multiple analytes from a small sample volume is desired.
Collapse
Affiliation(s)
- Diana F Cedillo-Alcantar
- Unidad Monterrey , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Vía del Conocimiento 201 , Parque PIIT, Apodaca , Nuevo León CP 66628 , México.,Mayo Clinic , Rochester , Minnesota 55905 , United States
| | - Yong Duk Han
- Mayo Clinic , Rochester , Minnesota 55905 , United States
| | - Jonghoon Choi
- Mayo Clinic , Rochester , Minnesota 55905 , United States
| | - Jose L Garcia-Cordero
- Unidad Monterrey , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Vía del Conocimiento 201 , Parque PIIT, Apodaca , Nuevo León CP 66628 , México
| | | |
Collapse
|
16
|
Abstract
Single-cell omics studies provide unique information regarding cellular heterogeneity at various levels of the molecular biology central dogma. This knowledge facilitates a deeper understanding of how underlying molecular and architectural changes alter cell behavior, development, and disease processes. The emerging microchip-based tools for single-cell omics analysis are enabling the evaluation of cellular omics with high throughput, improved sensitivity, and reduced cost. We review state-of-the-art microchip platforms for profiling genomics, epigenomics, transcriptomics, proteomics, metabolomics, and multi-omics at single-cell resolution. We also discuss the background of and challenges in the analysis of each molecular layer and integration of multiple levels of omics data, as well as how microchip-based methodologies benefit these fields. Additionally, we examine the advantages and limitations of these approaches. Looking forward, we describe additional challenges and future opportunities that will facilitate the improvement and broad adoption of single-cell omics in life science and medicine.
Collapse
Affiliation(s)
- Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| | - Amanda Finck
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA; , ,
| |
Collapse
|
17
|
Sharma P, Debinski W. Receptor-Targeted Glial Brain Tumor Therapies. Int J Mol Sci 2018; 19:E3326. [PMID: 30366424 PMCID: PMC6274942 DOI: 10.3390/ijms19113326] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022] Open
Abstract
Among primary brain tumors, malignant gliomas are notably difficult to manage. The higher-grade tumors represent an unmet need in medicine. There have been extensive efforts to implement receptor-targeted therapeutic approaches directed against gliomas. These approaches include immunotherapies, such as vaccines, adoptive immunotherapy, and passive immunotherapy. Targeted cytotoxic radio energy and pro-drug activation have been designed specifically for brain tumors. The field of targeting through receptors progressed significantly with the discovery of an interleukin 13 receptor alpha 2 (IL-13RA2) as a tumor-associated receptor over-expressed in most patients with glioblastoma (GBM) but not in normal brain. IL-13RA2 has been exploited in novel experimental therapies with very encouraging clinical responses. Other receptors are specifically over-expressed in many patients with GBM, such as EphA2 and EphA3 receptors, among others. These findings are important in view of the heterogeneity of GBM tumors and multiple tumor compartments responsible for tumor progression and resistance to therapies. The combined targeting of multiple receptors in different tumor compartments should be a preferred way to design novel receptor-targeted therapeutic approaches in gliomas.
Collapse
Affiliation(s)
- Puja Sharma
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
18
|
|
19
|
Wang Z, Wu W, Wang Z, Tang Y, Deng Y, Xu L, Tian J, Shi Q. Ex vivo expansion of circulating lung tumor cells based on one-step microfluidics-based immunomagnetic isolation. Analyst 2018; 141:3621-5. [PMID: 26887792 DOI: 10.1039/c5an02554k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We describe a one-step microfludics-based immunomagnetic isolation method to isolate CTCs directly from the whole blood of lung adenocarcinoma patients. This method avoids harsh sample preparation and enrichment steps, and therefore preserves the viability of CTCs during the in vitro isolation. Importantly, isolated, magnetic bead-bearing CTCs are concentrated in a small volume of culture medium with a high CTC density. High cell viability and culturing density promote the ex vivo expansion of limited numbers of CTCs. Expanded CTCs are characterized at the genetic, protein and metabolic levels.
Collapse
Affiliation(s)
- Zhihua Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Wenjun Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Zhuo Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Ying Tang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Yuliang Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Ling Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jianhui Tian
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qihui Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China. and State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, China and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Modena MM, Chawla K, Misun PM, Hierlemann A. Smart Cell Culture Systems: Integration of Sensors and Actuators into Microphysiological Systems. ACS Chem Biol 2018; 13:1767-1784. [PMID: 29381325 PMCID: PMC5959007 DOI: 10.1021/acschembio.7b01029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Technological advances in microfabrication techniques in combination with organotypic cell and tissue models have enabled the realization of microphysiological systems capable of recapitulating aspects of human physiology in vitro with great fidelity. Concurrently, a number of analysis techniques has been developed to probe and characterize these model systems. However, many assays are still performed off-line, which severely compromises the possibility of obtaining real-time information from the samples under examination, and which also limits the use of these platforms in high-throughput analysis. In this review, we focus on sensing and actuation schemes that have already been established or offer great potential to provide in situ detection or manipulation of relevant cell or tissue samples in microphysiological platforms. We will first describe methods that can be integrated in a straightforward way and that offer potential multiplexing and/or parallelization of sensing and actuation functions. These methods include electrical impedance spectroscopy, electrochemical biosensors, and the use of surface acoustic waves for manipulation and analysis of cells, tissue, and multicellular organisms. In the second part, we will describe two sensor approaches based on surface-plasmon resonance and mechanical resonators that have recently provided new characterization features for biological samples, although technological limitations for use in high-throughput applications still exist.
Collapse
Affiliation(s)
- Mario M. Modena
- ETH Zürich, Department of Biosystems Science and Engineering,
Bio Engineering Laboratory, Basel, Switzerland
| | - Ketki Chawla
- ETH Zürich, Department of Biosystems Science and Engineering,
Bio Engineering Laboratory, Basel, Switzerland
| | - Patrick M. Misun
- ETH Zürich, Department of Biosystems Science and Engineering,
Bio Engineering Laboratory, Basel, Switzerland
| | - Andreas Hierlemann
- ETH Zürich, Department of Biosystems Science and Engineering,
Bio Engineering Laboratory, Basel, Switzerland
| |
Collapse
|
21
|
Personalized disease signatures through information-theoretic compaction of big cancer data. Proc Natl Acad Sci U S A 2018; 115:7694-7699. [PMID: 29976841 DOI: 10.1073/pnas.1804214115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Every individual cancer develops and grows in its own specific way, giving rise to a recognized need for the development of personalized cancer diagnostics. This suggested that the identification of patient-specific oncogene markers would be an effective diagnostics approach. However, tumors that are classified as similar according to the expression levels of certain oncogenes can eventually demonstrate divergent responses to treatment. This implies that the information gained from the identification of tumor-specific biomarkers is still not sufficient. We present a method to quantitatively transform heterogeneous big cancer data to patient-specific transcription networks. These networks characterize the unbalanced molecular processes that deviate the tissue from the normal state. We study a number of datasets spanning five different cancer types, aiming to capture the extensive interpatient heterogeneity that exists within a specific cancer type as well as between cancers of different origins. We show that a relatively small number of altered molecular processes suffices to accurately characterize over 500 tumors, showing extreme compaction of the data. Every patient is characterized by a small specific subset of unbalanced processes. We validate the result by verifying that the processes identified characterize other cancer patients as well. We show that different patients may display similar oncogene expression levels, albeit carrying biologically distinct tumors that harbor different sets of unbalanced molecular processes. Thus, tumors may be inaccurately classified and addressed as similar. These findings highlight the need to expand the notion of tumor-specific oncogenic biomarkers to patient-specific, comprehensive transcriptional networks for improved patient-tailored diagnostics.
Collapse
|
22
|
Logun M, Zhao W, Mao L, Karumbaiah L. Microfluidics in Malignant Glioma Research and Precision Medicine. ADVANCED BIOSYSTEMS 2018; 2:1700221. [PMID: 29780878 PMCID: PMC5959050 DOI: 10.1002/adbi.201700221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 01/09/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive form of brain cancer that has no effective treatments and a prognosis of only 12-15 months. Microfluidic technologies deliver microscale control of fluids and cells, and have aided cancer therapy as point-of-care devices for the diagnosis of breast and prostate cancers. However, a few microfluidic devices are developed to study malignant glioma. The ability of these platforms to accurately replicate the complex microenvironmental and extracellular conditions prevailing in the brain and facilitate the measurement of biological phenomena with high resolution and in a high-throughput manner could prove useful for studying glioma progression. These attributes, coupled with their relatively simple fabrication process, make them attractive for use as point-of-care diagnostic devices for detection and treatment of GBM. Here, the current issues that plague GBM research and treatment, as well as the current state of the art in glioma detection and therapy, are reviewed. Finally, opportunities are identified for implementing microfluidic technologies into research and diagnostics to facilitate the rapid detection and better therapeutic targeting of GBM.
Collapse
Affiliation(s)
- Meghan Logun
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 425 River Road, Athens, GA 30602-2771, USA
| | - Wujun Zhao
- Department of Chemistry, University of Georgia, Athens, GA 30602-2771, USA
| | - Leidong Mao
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602-2771, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 425 River Road, Athens, GA 30602-2771, USA
| |
Collapse
|
23
|
Xue Q, Bettini E, Paczkowski P, Ng C, Kaiser A, McConnell T, Kodrasi O, Quigley MF, Heath J, Fan R, Mackay S, Dudley ME, Kassim SH, Zhou J. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. J Immunother Cancer 2017; 5:85. [PMID: 29157295 PMCID: PMC5697351 DOI: 10.1186/s40425-017-0293-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022] Open
Abstract
Background It remains challenging to characterize the functional attributes of chimeric antigen receptor (CAR)-engineered T cell product targeting CD19 related to potency and immunotoxicity ex vivo, despite promising in vivo efficacy in patients with B cell malignancies. Methods We employed a single-cell, 16-plex cytokine microfluidics device and new analysis techniques to evaluate the functional profile of CD19 CAR-T cells upon antigen-specific stimulation. CAR-T cells were manufactured from human PBMCs transfected with the lentivirus encoding the CD19-BB-z transgene and expanded with anti-CD3/anti-CD28 coated beads. The enriched CAR-T cells were stimulated with anti-CAR or control IgG beads, stained with anti-CD4 RPE and anti-CD8 Alexa Fluor 647 antibodies, and incubated for 16 h in a single-cell barcode chip (SCBC). Each SCBC contains ~12,000 microchambers, covered with a glass slide that was pre-patterned with a complete copy of a 16-plex antibody array. Protein secretions from single CAR-T cells were captured and subsequently analyzed using proprietary software and new visualization methods. Results We demonstrate a new method for single-cell profiling of CD19 CAR-T pre-infusion products prepared from 4 healthy donors. CAR-T single cells exhibited a marked heterogeneity of cytokine secretions and polyfunctional (2+ cytokine) subsets specific to anti-CAR bead stimulation. The breadth of responses includes anti-tumor effector (Granzyme B, IFN-γ, MIP-1α, TNF-α), stimulatory (GM-CSF, IL-2, IL-8), regulatory (IL-4, IL-13, IL-22), and inflammatory (IL-6, IL-17A) functions. Furthermore, we developed two new bioinformatics tools for more effective polyfunctional subset visualization and comparison between donors. Conclusions Single-cell, multiplexed, proteomic profiling of CD19 CAR-T product reveals a diverse landscape of immune effector response of CD19 CAR-T cells to antigen-specific challenge, providing a new platform for capturing CAR-T product data for correlative analysis. Additionally, such high dimensional data requires new visualization methods to further define precise polyfunctional response differences in these products. The presented biomarker capture and analysis system provides a more sensitive and comprehensive functional assessment of CAR-T pre-infusion products and may provide insights into the safety and efficacy of CAR-T cell therapy. Electronic supplementary material The online version of this article (10.1186/s40425-017-0293-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiong Xue
- Novartis Pharmaceuticals, 64 Sidney Street, Cambridge, MA, 02139, USA. .,Present Address: Novartis Institute of BioMedical Research, 300 Technology Square, Cambridge, MA, 02139, USA.
| | - Emily Bettini
- IsoPlexis Corporation, 35 NE Industrial Rd, Branford, CT, 06405, USA
| | | | - Colin Ng
- IsoPlexis Corporation, 35 NE Industrial Rd, Branford, CT, 06405, USA
| | - Alaina Kaiser
- IsoPlexis Corporation, 35 NE Industrial Rd, Branford, CT, 06405, USA
| | - Timothy McConnell
- IsoPlexis Corporation, 35 NE Industrial Rd, Branford, CT, 06405, USA
| | - Olja Kodrasi
- Novartis Pharmaceuticals, 64 Sidney Street, Cambridge, MA, 02139, USA.,Present Address: Novartis Institute of BioMedical Research, 64 Sidney street, Cambridge, MA, 02139, USA
| | - Máire F Quigley
- Novartis Pharmaceuticals, 64 Sidney Street, Cambridge, MA, 02139, USA.,Present Address: Novartis Pharmaceuticals, 45 Sidney Street, Cambridge, MA, 02139, USA
| | - James Heath
- NanoSystems Biology Cancer Center, Division of Chemistry, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Sean Mackay
- IsoPlexis Corporation, 35 NE Industrial Rd, Branford, CT, 06405, USA
| | - Mark E Dudley
- Novartis Pharmaceuticals, 64 Sidney Street, Cambridge, MA, 02139, USA.,Present Address: Adaptimmune, 351 Rouse Blvd, Philadelphia, PA, 19112, USA
| | - Sadik H Kassim
- Novartis Pharmaceuticals, 64 Sidney Street, Cambridge, MA, 02139, USA.,Present Address: Mustang Bio, 95 Sawyer Road, Waltham, MA, 02453, USA
| | - Jing Zhou
- IsoPlexis Corporation, 35 NE Industrial Rd, Branford, CT, 06405, USA.
| |
Collapse
|
24
|
Su Y, Shi Q, Wei W. Single cell proteomics in biomedicine: High-dimensional data acquisition, visualization, and analysis. Proteomics 2017; 17. [PMID: 28128880 DOI: 10.1002/pmic.201600267] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/11/2022]
Abstract
New insights on cellular heterogeneity in the last decade provoke the development of a variety of single cell omics tools at a lightning pace. The resultant high-dimensional single cell data generated by these tools require new theoretical approaches and analytical algorithms for effective visualization and interpretation. In this review, we briefly survey the state-of-the-art single cell proteomic tools with a particular focus on data acquisition and quantification, followed by an elaboration of a number of statistical and computational approaches developed to date for dissecting the high-dimensional single cell data. The underlying assumptions, unique features, and limitations of the analytical methods with the designated biological questions they seek to answer will be discussed. Particular attention will be given to those information theoretical approaches that are anchored in a set of first principles of physics and can yield detailed (and often surprising) predictions.
Collapse
Affiliation(s)
- Yapeng Su
- NanoSystems Biology Cancer Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Qihui Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wei
- NanoSystems Biology Cancer Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
25
|
Moerman PG, Moyses HW, van der Wee EB, Grier DG, van Blaaderen A, Kegel WK, Groenewold J, Brujic J. Solute-mediated interactions between active droplets. Phys Rev E 2017; 96:032607. [PMID: 29346965 DOI: 10.1103/physreve.96.032607] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Indexed: 06/07/2023]
Abstract
Concentration gradients play a critical role in embryogenesis, bacterial locomotion, as well as the motility of active particles. Particles develop concentration profiles around them by dissolution, adsorption, or the reactivity of surface species. These gradients change the surface energy of the particles, driving both their self-propulsion and governing their interactions. Here, we uncover a regime in which solute gradients mediate interactions between slowly dissolving droplets without causing autophoresis. This decoupling allows us to directly measure the steady-state, repulsive force, which scales with interparticle distance as F∼1/r^{2}. Our results show that the dissolution process is diffusion rather than reaction rate limited, and the theoretical model captures the dependence of the interactions on droplet size and solute concentration, using a single fit parameter, l=16±3nm, which corresponds to the length scale of a swollen micelle. Our results shed light on the out-of-equilibrium behavior of particles with surface reactivity.
Collapse
Affiliation(s)
- Pepijn G Moerman
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
- Debye Institute for Nanomaterials Science, Utrecht University, 3584 Utrecht, The Netherlands
| | - Henrique W Moyses
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
| | - Ernest B van der Wee
- Debye Institute for Nanomaterials Science, Utrecht University, 3584 Utrecht, The Netherlands
| | - David G Grier
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
| | - Alfons van Blaaderen
- Debye Institute for Nanomaterials Science, Utrecht University, 3584 Utrecht, The Netherlands
| | - Willem K Kegel
- Debye Institute for Nanomaterials Science, Utrecht University, 3584 Utrecht, The Netherlands
| | - Jan Groenewold
- Debye Institute for Nanomaterials Science, Utrecht University, 3584 Utrecht, The Netherlands
- Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Jasna Brujic
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA
| |
Collapse
|
26
|
Huang L, Michael SA, Chen Y, Wu H. Current Advances in Highly Multiplexed Antibody-Based Single-Cell Proteomic Measurements. Chem Asian J 2017; 12:1680-1691. [PMID: 28493387 DOI: 10.1002/asia.201700404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/08/2017] [Indexed: 12/29/2022]
Abstract
Single-cell measurements have played a critical role in revealing the complex signaling dynamics and heterogeneity present in cells, but there is still much to learn. Measuring samples from bulk populations of cells often masks the information and dynamics present in subsets of cells. Common single-cell protein studies rely on fluorescent microscopy and flow cytometry but are limited in multiplexing ability owing to spectral overlap. Recently, technology advancements in single-cell proteomics have allowed highly multiplexed measurement of multiple parameters simultaneously by using barcoded microfluidic enzyme-linked immunosorbent assays and mass cytometry techniques. In this review, we will describe recent work around multiparameter single-cell protein measurements and critically analyze the techniques.
Collapse
Affiliation(s)
- Lu Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Sean A Michael
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yangfan Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
27
|
Heidar-Zadeh F, Vinogradov I, Ayers PW. Hirshfeld partitioning from non-extensive entropies. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2077-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Fancher S, Mugler A. Fundamental Limits to Collective Concentration Sensing in Cell Populations. PHYSICAL REVIEW LETTERS 2017; 118:078101. [PMID: 28256844 DOI: 10.1103/physrevlett.118.078101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Indexed: 06/06/2023]
Abstract
The precision of concentration sensing is improved when cells communicate. Here we derive the physical limits to concentration sensing for cells that communicate over short distances by directly exchanging small molecules (juxtacrine signaling), or over longer distances by secreting and sensing a diffusive messenger molecule (autocrine signaling). In the latter case, we find that the optimal cell spacing can be large, due to a trade-off between maintaining communication strength and reducing signal cross-correlations. This leads to the surprising result that sparsely packed communicating cells sense concentrations more precisely than densely packed communicating cells. We compare our results to data from a wide variety of communicating cell types.
Collapse
Affiliation(s)
- Sean Fancher
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
29
|
George J, Wang J. Assay of Genome-Wide Transcriptome and Secreted Proteins on the Same Single Immune Cells by Microfluidics and RNA Sequencing. Anal Chem 2016; 88:10309-10315. [PMID: 27626628 DOI: 10.1021/acs.analchem.6b03214] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Given vast heterogeneity of immune cells, searching for gene expression and transcriptional networks belonging to specific cellular functions such as cytokine production has been challenging. To overcome this limitation, we developed a splittable single-cell microchip that integrates a high-density antibody array for cytokine protein detection, while the same single cells with protein profiles can be subsequently sequenced to obtain the genome-wide transcriptome. Combined with bioinformatics algorithms, we discovered a subgroup of highly coexpressed genes correlating with TNFα secretion in mouse macrophage cells. This technology and the data analysis may lead to an unprecedented understanding of regulation mechanisms of the immune system and have the potential to impact disease treatment and drug discovery.
Collapse
Affiliation(s)
- Justin George
- Multiplex Biotechnology Laboratory, Department of Chemistry, University at Albany, State University of New York , Albany, New York 12222, United States
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Chemistry, University at Albany, State University of New York , Albany, New York 12222, United States.,Cancer Research Center, University at Albany, State University of New York , Rensselaer, New York 12144, United States
| |
Collapse
|
30
|
Stand-Sit Microchip for High-Throughput, Multiplexed Analysis of Single Cancer Cells. Sci Rep 2016; 6:32505. [PMID: 27581736 PMCID: PMC5007481 DOI: 10.1038/srep32505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular heterogeneity in function and response to therapeutics has been a major challenge in cancer treatment. The complex nature of tumor systems calls for the development of advanced multiplexed single-cell tools that can address the heterogeneity issue. However, to date such tools are only available in a laboratory setting and don’t have the portability to meet the needs in point-of-care cancer diagnostics. Towards that application, we have developed a portable single-cell system that is comprised of a microchip and an adjustable clamp, so on-chip operation only needs pipetting and adjusting of clamping force. Up to 10 proteins can be quantitated from each cell with hundreds of single-cell assays performed in parallel from one chip operation. We validated the technology and analyzed the oncogenic signatures of cancer stem cells by quantitating both aldehyde dehydrogenase (ALDH) activities and 5 signaling proteins in single MDA-MB-231 breast cancer cells. The technology has also been used to investigate the PI3K pathway activities of brain cancer cells expressing mutant epidermal growth factor receptor (EGFR) after drug intervention targeting EGFR signaling. Our portable single-cell system will potentially have broad application in the preclinical and clinical settings for cancer diagnosis in the future.
Collapse
|
31
|
Abstract
INTRODUCTION Cellular heterogeneity has challenged current cancer therapeutics and hindered the discovery and development of cancer drugs. The heterogeneity in functional proteome is of particular interest because many cancer drugs are developed to target signaling proteins. The complex nature of tumor systems calls for more advanced multiplexed single-cell tools to address the heterogeneity issue. AREA COVERED Over the past five years, there are a few single-cell functional proteomics tools introduced with unprecedented multiplexity and performance that are transforming the oncology field. Those tools are generally categorized as cytometry-based tools and microfluidics-based tools, and we discuss the representatives in both categories. Expert commentary: The single-cell tools have provided an avenue to understand the multifaceted differences of cancer cells, the complex signaling networks, and the relationship of intercellular interaction and tumor architecture. We also provide an outlook of single-cell tools in five years and the challenges to address before a greater impact on oncology can be made.
Collapse
Affiliation(s)
- Jun Wang
- a Multiplex Biotechnology Laboratory, Department of Chemistry , University at Albany, State University of New York , Albany , NY , USA.,b Cancer Research Center , University at Albany, State University of New York , Rensselaer , NY , USA
| | - Fan Yang
- a Multiplex Biotechnology Laboratory, Department of Chemistry , University at Albany, State University of New York , Albany , NY , USA
| |
Collapse
|
32
|
Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement. Proc Natl Acad Sci U S A 2016; 113:5520-5. [PMID: 27140641 DOI: 10.1073/pnas.1602171113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Controlling cell migration is important in tissue engineering and medicine. Cell motility depends on factors such as nutrient concentration gradients and soluble factor signaling. In particular, cell-cell signaling can depend on cell-cell separation distance and can influence cellular arrangements in bulk cultures. Here, we seek a physical-based approach, which identifies a potential governed by cell-cell signaling that induces a directed cell-cell motion. A single-cell barcode chip (SCBC) was used to experimentally interrogate secreted proteins in hundreds of isolated glioblastoma brain cancer cell pairs and to monitor their relative motions over time. We used these trajectories to identify a range of cell-cell separation distances where the signaling was most stable. We then used a thermodynamics-motivated analysis of secreted protein levels to characterize free-energy changes for different cell-cell distances. We show that glioblastoma cell-cell movement can be described as Brownian motion biased by cell-cell potential. To demonstrate that the free-energy potential as determined by the signaling is the driver of motion, we inhibited two proteins most involved in maintaining the free-energy gradient. Following inhibition, cell pairs showed an essentially random Brownian motion, similar to the case for untreated, isolated single cells.
Collapse
|
33
|
Kravchenko-Balasha N, Johnson H, White FM, Heath JR, Levine RD. A Thermodynamic-Based Interpretation of Protein Expression Heterogeneity in Different Glioblastoma Multiforme Tumors Identifies Tumor-Specific Unbalanced Processes. J Phys Chem B 2016; 120:5990-7. [PMID: 27035264 DOI: 10.1021/acs.jpcb.6b01692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We describe a thermodynamic-motivated, information theoretic analysis of proteomic data collected from a series of 8 glioblastoma multiforme (GBM) tumors. GBMs are considered here as prototypes of heterogeneous cancers. That heterogeneity is viewed here as manifesting in different unbalanced biological processes that are associated with thermodynamic-like constraints. The analysis yields a molecular description of a stable steady state that is common across all tumors. It also resolves molecular descriptions of unbalanced processes that are shared by several tumors, such as hyperactivated phosphoprotein signaling networks. Further, it resolves unbalanced processes that provide unique classifiers of tumor subgroups. The results of the theoretical interpretation are compared against those of statistical multivariate methods and are shown to provide a superior level of resolution for identifying unbalanced processes in GBM tumors. The identification of specific constraints for each GBM tumor suggests tumor-specific combination therapies that may reverse this imbalance.
Collapse
Affiliation(s)
- Nataly Kravchenko-Balasha
- NanoSystems Biology Cancer Center, Division of Chemistry, Caltech , Pasadena, California 91125, United States.,Bio-Medical Sciences Department, The Faculty of Dental Medicine, The Hebrew University of Jerusalem , Jerusalem 9112001, Israel
| | - Hannah Johnson
- Signaling Programme, The Babraham Institute , Cambridge CB22 3AT, United Kingdom
| | - Forest M White
- Department of Biological Engineering, MIT , Cambridge, Massachusetts 02139, United States
| | - James R Heath
- NanoSystems Biology Cancer Center, Division of Chemistry, Caltech , Pasadena, California 91125, United States
| | - R D Levine
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine and Department of Chemistry and Biochemistry, UCLA , Los Angeles, California 90095, United States.,The Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
34
|
D'Asti E, Chennakrishnaiah S, Lee TH, Rak J. Extracellular Vesicles in Brain Tumor Progression. Cell Mol Neurobiol 2016; 36:383-407. [PMID: 26993504 PMCID: PMC11482376 DOI: 10.1007/s10571-015-0296-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/24/2015] [Indexed: 12/18/2022]
Abstract
Brain tumors can be viewed as multicellular 'ecosystems' with increasingly recognized cellular complexity and systemic impact. While the emerging diversity of malignant disease entities affecting brain tissues is often described in reference to their signature alterations within the cellular genome and epigenome, arguably these cell-intrinsic changes can be regarded as hardwired adaptations to a variety of cell-extrinsic microenvironmental circumstances. Conversely, oncogenic events influence the microenvironment through their impact on the cellular secretome, including emission of membranous structures known as extracellular vesicles (EVs). EVs serve as unique carriers of bioactive lipids, secretable and non-secretable proteins, mRNA, non-coding RNA, and DNA and constitute pathway(s) of extracellular exit of molecules into the intercellular space, biofluids, and blood. EVs are also highly heterogeneous as reflected in their nomenclature (exosomes, microvesicles, microparticles) attempting to capture their diverse origin, as well as structural, molecular, and functional properties. While EVs may act as a mechanism of molecular expulsion, their non-random uptake by heterologous cellular recipients defines their unique roles in the intercellular communication, horizontal molecular transfer, and biological activity. In the central nervous system, EVs have been implicated as mediators of homeostasis and repair, while in cancer they may act as regulators of cell growth, clonogenicity, angiogenesis, thrombosis, and reciprocal tumor-stromal interactions. EVs produced by specific brain tumor cell types may contain the corresponding oncogenic drivers, such as epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma (and hence are often referred to as 'oncosomes'). Through this mechanism, mutant oncoproteins and nucleic acids may be transferred horizontally between cellular populations altering their individual and collective phenotypes. Oncogenic pathways also impact the emission rates, types, cargo, and biogenesis of EVs, as reflected by preliminary analyses pointing to differences in profiles of EV-regulating genes (vesiculome) between molecular subtypes of glioblastoma, and in other brain tumors. Molecular regulators of vesiculation can also act as oncogenes. These intimate connections suggest the context-specific roles of different EV subsets in the progression of specific brain tumors. Advanced efforts are underway to capture these events through the use of EVs circulating in biofluids as biomarker reservoirs and to guide diagnostic and therapeutic decisions.
Collapse
Affiliation(s)
- Esterina D'Asti
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Shilpa Chennakrishnaiah
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Tae Hoon Lee
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Janusz Rak
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
35
|
Poovathingal SK, Kravchenko-Balasha N, Shin YS, Levine RD, Heath JR. Critical Points in Tumorigenesis: A Carcinogen-Initiated Phase Transition Analyzed via Single-Cell Proteomics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1425-31. [PMID: 26780498 PMCID: PMC4886749 DOI: 10.1002/smll.201501178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/09/2015] [Indexed: 05/06/2023]
Abstract
A kinetic, single-cell proteomic study of chemically induced carcinogenesis is interpreted by treating the single-cell data as fluctuations of an open system transitioning between different steady states. In analogy to a first-order transition, phase coexistence and the loss of degrees of freedom are observed. The transition is detected well before the appearance of the traditional biomarker of the carcinogenic transformation.
Collapse
Affiliation(s)
- Suresh Kumar Poovathingal
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, 1200 E. California Blvd, Pasadena, CA, 91125, USA
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
| | - Nataly Kravchenko-Balasha
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, 1200 E. California Blvd, Pasadena, CA, 91125, USA
- Department of Bio-Medical Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Young Shik Shin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, 1200 E. California Blvd, Pasadena, CA, 91125, USA
| | - Raphael David Levine
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, 1200 E. California Blvd, Pasadena, CA, 91125, USA
| |
Collapse
|
36
|
Heath JR, Ribas A, Mischel PS. Single-cell analysis tools for drug discovery and development. Nat Rev Drug Discov 2016; 15:204-16. [PMID: 26669673 PMCID: PMC4883669 DOI: 10.1038/nrd.2015.16] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed.
Collapse
Affiliation(s)
- James R Heath
- California Institute of Technology Division of Chemistry and Chemical Engineering, MC 127-72, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - Antoni Ribas
- Department of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research San Diego, Department of Pathology and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
37
|
Ramirez LS, Wang J. Flow-pattern Guided Fabrication of High-density Barcode Antibody Microarray. J Vis Exp 2016. [PMID: 26780370 DOI: 10.3791/53644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antibody microarray as a well-developed technology is currently challenged by a few other established or emerging high-throughput technologies. In this report, we renovate the antibody microarray technology by using a novel approach for manufacturing and by introducing new features. The fabrication of our high-density antibody microarray is accomplished through perpendicularly oriented flow-patterning of single stranded DNAs and subsequent conversion mediated by DNA-antibody conjugates. This protocol outlines the critical steps in flow-patterning DNA, producing and purifying DNA-antibody conjugates, and assessing the quality of the fabricated microarray. The uniformity and sensitivity are comparable with conventional microarrays, while our microarray fabrication does not require the assistance of an array printer and can be performed in most research laboratories. The other major advantage is that the size of our microarray units is 10 times smaller than that of printed arrays, offering the unique capability of analyzing functional proteins from single cells when interfacing with generic microchip designs. This barcode technology can be widely employed in biomarker detection, cell signaling studies, tissue engineering, and a variety of clinical applications.
Collapse
Affiliation(s)
- Lisa S Ramirez
- Department of Chemistry, University at Albany, State University of New York; Multiplex Biotechnology Laboratory, Cancer Research Center
| | - Jun Wang
- Department of Chemistry, University at Albany, State University of New York; Multiplex Biotechnology Laboratory, Cancer Research Center;
| |
Collapse
|
38
|
Abstract
In 2000 the United States launched the National Nanotechnology Initiative and, along with it, a well-defined set of goals for nanomedicine. This Perspective looks back at the progress made toward those goals, within the context of the changing landscape in biomedicine that has occurred over the past 15 years, and considers advances that are likely to occur during the next decade. In particular, nanotechnologies for health-related genomics and single-cell biology, inorganic and organic nanoparticles for biomedicine, and wearable nanotechnologies for wellness monitoring are briefly covered.
Collapse
Affiliation(s)
- James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
39
|
Abstract
The underlying physical properties of microfluidic tools have led to new biological insights through the development of microsystems that can manipulate, mimic and measure biology at a resolution that has not been possible with macroscale tools. Microsystems readily handle sub-microlitre volumes, precisely route predictable laminar fluid flows and match both perturbations and measurements to the length scales and timescales of biological systems. The advent of fabrication techniques that do not require highly specialized engineering facilities is fuelling the broad dissemination of microfluidic systems and their adaptation to specific biological questions. We describe how our understanding of molecular and cell biology is being and will continue to be advanced by precision microfluidic approaches and posit that microfluidic tools - in conjunction with advanced imaging, bioinformatics and molecular biology approaches - will transform biology into a precision science.
Collapse
|
40
|
Phetsouphanh C, Zaunders JJ, Kelleher AD. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells. Int J Mol Sci 2015; 16:18878-93. [PMID: 26274954 PMCID: PMC4581277 DOI: 10.3390/ijms160818878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022] Open
Abstract
A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.
Collapse
Affiliation(s)
| | - John James Zaunders
- Kirby Institute, University of New South Wales, 2031 Sydney, Australia.
- Centre for Applied Medical Research, St. Vincent's Hospital, 2010 Sydney, Australia.
| | - Anthony Dominic Kelleher
- Kirby Institute, University of New South Wales, 2031 Sydney, Australia.
- Centre for Applied Medical Research, St. Vincent's Hospital, 2010 Sydney, Australia.
| |
Collapse
|
41
|
Dura B, Voldman J. Spatially and temporally controlled immune cell interactions using microscale tools. Curr Opin Immunol 2015; 35:23-9. [DOI: 10.1016/j.coi.2015.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/29/2015] [Accepted: 05/13/2015] [Indexed: 01/08/2023]
|
42
|
Digital microfluidic immunocytochemistry in single cells. Nat Commun 2015; 6:7513. [PMID: 26104298 PMCID: PMC4491823 DOI: 10.1038/ncomms8513] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/14/2015] [Indexed: 01/06/2023] Open
Abstract
We report a new technique called Digital microfluidic Immunocytochemistry in Single Cells (DISC). DISC automates protocols for cell culture, stimulation and immunocytochemistry, enabling the interrogation of protein phosphorylation on pulsing with stimulus for as little as 3 s. DISC was used to probe the phosphorylation states of platelet-derived growth factor receptor (PDGFR) and the downstream signalling protein, Akt, to evaluate concentration- and time-dependent effects of stimulation. The high time resolution of the technique allowed for surprising new observations-for example, a 10 s pulse stimulus of a low concentration of PDGF is sufficient to cause >30% of adherent fibroblasts to commit to Akt activation. With the ability to quantitatively probe signalling events with high time resolution at the single-cell level, we propose that DISC may be an important new technique for a wide range of applications, especially for screening signalling responses of a heterogeneous cell population.
Collapse
|
43
|
Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc Natl Acad Sci U S A 2015; 112:E607-15. [PMID: 25646488 DOI: 10.1073/pnas.1416756112] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite recent advances in single-cell genomic, transcriptional, and mass-cytometric profiling, it remains a challenge to collect highly multiplexed measurements of secreted proteins from single cells for comprehensive analysis of functional states. Herein, we combine spatial and spectral encoding with polydimethylsiloxane (PDMS) microchambers for codetection of 42 immune effector proteins secreted from single cells, representing the highest multiplexing recorded to date for a single-cell secretion assay. Using this platform to profile differentiated macrophages stimulated with lipopolysaccharide (LPS), the ligand of Toll-like receptor 4 (TLR4), reveals previously unobserved deep functional heterogeneity and varying levels of pathogenic activation. Uniquely protein profiling on the same single cells before and after LPS stimulation identified a role for macrophage inhibitory factor (MIF) to potentiate the activation of LPS-induced cytokine production. Advanced clustering analysis identified functional subsets including quiescent, polyfunctional fully activated, partially activated populations with different cytokine profiles. This population architecture is conserved throughout the cell activation process and prevails as it is extended to other TLR ligands and to primary macrophages derived from a healthy donor. This work demonstrates that the phenotypically similar cell population still exhibits a large degree of intrinsic heterogeneity at the functional and cell behavior level. This technology enables full-spectrum dissection of immune functional states in response to pathogenic or environmental stimulation, and opens opportunities to quantify deep functional heterogeneity for more comprehensive and accurate immune monitoring.
Collapse
|
44
|
Remacle F, Levine RD. [Prediction of the molecular response to pertubations from single cell measurements]. Med Sci (Paris) 2014; 30:1129-35. [PMID: 25537043 DOI: 10.1051/medsci/20143012016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The response of protein signalization networks to perturbations is analysed from single cell measurements. This experimental approach allows characterizing the fluctuations in protein expression levels from cell to cell. The analysis is based on an information theoretic approach grounded in thermodynamics leading to a quantitative version of Le Chatelier principle which allows to predict the molecular response. Two systems are investigated: human macrophages subjected to lipopolysaccharide challenge, analogous to the immune response against Gram-negative bacteria and the response of the proteins involved in the mTOR signalizing network of GBM cancer cells to changes in partial oxygen pressure.
Collapse
Affiliation(s)
- Françoise Remacle
- Université de Liège, département de chimie, chimie-physique théorique, B6c, allée de la Chimie, 3, B4000 Liège, Belgique
| | - Raphael D Levine
- Crump institute for molecular imaging, department of molecular and medical pharmacology, university of California, department of chemistry and biochemistry, David Geffen school of medicine, Los Angeles, CA 90095, États-Unis
| |
Collapse
|
45
|
Elitas M, Brower K, Lu Y, Chen JJ, Fan R. A microchip platform for interrogating tumor-macrophage paracrine signaling at the single-cell level. LAB ON A CHIP 2014; 14:3582-8. [PMID: 25057779 PMCID: PMC4145007 DOI: 10.1039/c4lc00676c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
It is increasingly recognized that infiltrating immune cells contribute to the pathogenesis of a wide range of solid tumors. The paracrine signaling between the tumor and the immune cells alters the functional state of individual tumor cells and, correspondingly, the anticipated response to radiation or chemotherapies, which is of great importance to clinical oncology. Here we present a high-density microchip platform capable of measuring a panel of paracrine signals associated with heterotypic tumor-immune cell interactions in the single-cell, pair-wise manner. The device features a high-content cell capture array of 5000+ sub-nanoliter microchambers for the isolation of single and multi-cell combinations and a multi-plex antibody "barcode" array for multiplexed protein secretion analysis from each microchamber. In this work, we measured a panel of 16 proteins produced from individual glioma cells, individual macrophage cells and varying heterotypic multi-cell combinations of both on the same device. The results show changes of tumor cell functional phenotypes that cannot be explained by an additive effect from isolated single cells and, presumably, can be attributed to the paracrine signaling between macrophage and glioma cells. The protein correlation analysis reveals the key signaling nodes altered by tumor-macrophage communication. This platform enables the novel pair-wise interrogation of heterotypic cell-cell paracrine signaling at the individual cell level with an in-depth analysis of the changing functional phenotypes for different co-culture cell combinations.
Collapse
Affiliation(s)
- Meltem Elitas
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | | | |
Collapse
|