1
|
Satow R, Kashiwaba Y, Okao M, Takano S, Aiga Y, Yoneda A, Hosomichi K, Fukami K. Zic family member 5 promotes RIO kinase 3 expression to enhance pancreatic cancer survival. FEBS J 2025. [PMID: 40318167 DOI: 10.1111/febs.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/06/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with few effective therapies available. We previously determined the essential role of Zic family member 5 (ZIC5) in the survival of PDAC cells. In this study, we showed that targeting ZIC5 can effectively shrink PDAC tumors treated with gemcitabine in vivo and investigated the molecular mechanisms involved. When tumor-bearing mice were injected intravenously with ZIC5-targeting small interfering RNA, tumor volume was significantly reduced by gemcitabine treatment. RNA-sequencing analysis was used to identify the genes affected by ZIC5 knockdown. Among these, we selected the genes whose mRNA expression levels correlated with that of ZIC5 in pancreatic cancer and those associated with poor prognosis in patients with pancreatic cancer. Further analysis revealed that RIO kinase 3 (RIOK3) promotes PDAC cell survival, whereas ALDH3B1, PTGES, and TUFT1 contribute to gemcitabine resistance in MiaPaca-2 cells. We identified RIOK3 as a direct target gene of ZIC5 using ChIP and luciferase assays. Furthermore, stable expression of RIOK3 in PANC-1 cells reversed the reduction in cell number following ZIC5 knockdown. These findings highlight RIOK3 as a critical target of ZIC5, which is involved in survival signaling in PDAC cells.
Collapse
Affiliation(s)
- Reiko Satow
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Yuki Kashiwaba
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Misaki Okao
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Shin Takano
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Yuna Aiga
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Atsuko Yoneda
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Japan
| |
Collapse
|
2
|
Chang IY, Boo HJ, Hyun JW, Yoon SP. The feasible role of soluble E‑cadherin in spheroidogenesis of HCT116 colorectal cancer cells, a candidate biomarker for liquid biopsy. Oncol Lett 2025; 29:245. [PMID: 40182609 PMCID: PMC11967162 DOI: 10.3892/ol.2025.14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Although E-cadherin is known as a tumor suppressor via its effects on cell to cell adhesion, the effects of E-cadherin on malignant transformation have not yet been thoroughly investigated. In the present study, after malignant transformation was induced by spheroid formation in a fetal bovine serum-supplemented environment, the effects of soluble E-cadherin on the spheroidogenesis of colorectal cancer cells were investigated. E-cadherin knock-out (KO) was performed in HCT116 cells, targeting exon 3 of the CDH1 gene. A cell viability assay was performed to determine the proliferation and viability of wild type and CDH1 KO HCT116 cells after treatment with anticancer drugs. Spheroidogenesis was compared with or without exogenous E-cadherin, antibody against the ectodomain of E-cadherin (DECMA-1) and PD98059 treatment. In addition, morphometry, immunocytochemistry and western blotting were performed. Soluble E-cadherin in culture media was measured using an enzyme-linked immunosorbent assay. Firstly, CDH1 KO was confirmed by western blotting. Notably, the proliferation and viability of cells following treatment with 5-fluorouracil, epidermal growth factor receptor inhibitor and src kinase inhibitor were similar between the cell lines. Exogenous E-cadherin or DECMA-1 treatment did not affect spheroidogenesis, although long-term maintenance was slightly disturbed in CDH1 KO spheroids compared with that in wild type spheroids. In addition, E-cadherin was increased in spheroid culture as compared with that in conventional culture. Soluble E-cadherin was increased in a time-dependent manner, particularly in wild type HCT116 cells. PD98059 inhibited ERK activation and enhanced E-cadherin expression in conventional culture without affecting spheroidogenesis. These results suggested that soluble E-cadherin may be considered as a biomarker for colorectal cancer, although exogenous E-cadherin might not have a further role in malignant transformation.
Collapse
Affiliation(s)
- In-Youb Chang
- Department of Anatomy, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Hye-Jin Boo
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Sang-Pil Yoon
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Department of Anatomy, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
3
|
Wu Y, Yu Y, Li D, Dai Y, Wu J, Zhang Z, Pan H, Chen W, Li R, Hu L. CDH1 genetic variants and its aberrant expression are the risk factors for colorectal cancer metastasis. BMC Gastroenterol 2025; 25:214. [PMID: 40169954 PMCID: PMC11963351 DOI: 10.1186/s12876-025-03797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/18/2025] [Indexed: 04/03/2025] Open
Abstract
E-cadherin, encoded by the CDH1 gene, plays an essential role in epithelial cellular adhesion, and the loss of it has been reported to be associated with tumor progression and metastasis, potentially offer a glimpse in to the development of colorectal cancer. The present study aimed to explore effect of CDH1-160 polymorphism, CDH1 transcription and its protein E-cadherin expression on colorectal cancer, meanwhile uncovering the underlying mechanism. Specimens from cancer loci, adjacent cancer tissue, and distal normal tissue from colorectal cancer patients were collected for Hematoxylin-eosin staining to detect the histopathological change of colorectal mucosa. Direct sequencing and Quantitative Real-Time PCR were used to detect the CDH1 genotype and its mRNA expression, respectively. E-cadherin expression was detected using the ElivisionTM plus method. As a result, we found that the A allele of the CDH1-160 may be a protective gene against colorectal cancer, and the C > A polymorphism may regulate its transcription activity and expression of E-cadherin. The decrease of the CDH1 mRNA transcription level and the absence of E-cadherin on the cytomembrane may promote intestinal mucosal carcinogenesis and accelerate cancer cell metastasis. Deficiency of cytomembrane expression of E-cadherin protein may have some early warning signs for malignant lesions of the gut mucosa.
Collapse
Affiliation(s)
- Yunbo Wu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Ying Yu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Danyan Li
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yunkai Dai
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jianyu Wu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Zijing Zhang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Huaigeng Pan
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Weijing Chen
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Ruliu Li
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Ling Hu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
4
|
Wang Z, Guan W, Ma Y, Zhou X, Song G, Wei J, Wang C. MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/β-catenin signaling pathway. BMC Cancer 2023; 23:668. [PMID: 37460940 PMCID: PMC10351167 DOI: 10.1186/s12885-023-11113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Studies have shown that microRNA-191 (miR-191) is involved in the development and progression of a variety of tumors. However, the function and mechanism of miR-191 in oral squamous cell carcinoma (OSCC) have not been clarified. METHODS The expression level of miR-191 in tumor tissues of patients with primary OSCC and OSCC cell lines were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. OSCC cells were treated with miR-191 enhancers and inhibitors to investigate the effects of elevated or decreased miR-191 expression on OSCC cells proliferation, migration, cell cycle, and tumorigenesis. The target gene of miR-191 in OSCC cells were analyzed by dual-Luciferase assay, and the downstream signaling pathway of the target genes was detected using western blot assay. RESULTS The expression of miR-191 was significantly upregulated in OSCC tissues and cell lines. Upregulation of miR-191 promoted proliferation, migration, invasion, and cell cycle progression of OSCC cells, as well as tumor growth in nude mice. Meanwhile, reduced expression of miR-191 inhibited these processes. Phospholipase C delta1 (PLCD1) expression was significantly downregulated, and negatively correlated with the expression of miR-191 in OSCC tissues. Dual-Luciferase assays showed that miR-191-5p could bind to PLCD1 mRNA and regulate PLCD1 protein expression. Western blot assay showed that the miR-191 regulated the expression of β-catenin and its downstream gene through targeting PLCD1. CONCLUSION MicroRNA-191 regulates oral squamous cell carcinoma cells growth by targeting PLCD1 via the Wnt/β-catenin signaling pathway. Thus, miR-191 may serve as a potential target for the treatment of OSCC.
Collapse
Affiliation(s)
- Zekun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wenzhao Guan
- Department of Stomatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yufeng Ma
- Department of Stomatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jianing Wei
- Department of Cardiology, Shanxi Provincial Key Laboratory of Cardiovascular Disease Diagnosis, Treatment and Clinical Pharmacology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chenyang Wang
- Department of Cardiology, Shanxi Provincial Key Laboratory of Cardiovascular Disease Diagnosis, Treatment and Clinical Pharmacology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Ubeysinghe S, Wijayaratna D, Kankanamge D, Karunarathne A. Molecular regulation of PLCβ signaling. Methods Enzymol 2023; 682:17-52. [PMID: 36948701 PMCID: PMC11863860 DOI: 10.1016/bs.mie.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Phospholipase C (PLC) enzymes convert the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2) into inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 and DAG regulate numerous downstream pathways, eliciting diverse and profound cellular changes and physiological responses. In the six PLC subfamilies in higher eukaryotes, PLCβ is intensively studied due to its prominent role in regulating crucial cellular events underlying many processes including cardiovascular and neuronal signaling, and associated pathological conditions. In addition to GαqGTP, Gβγ generated upon G protein heterotrimer dissociation also regulates PLCβ activity. Here, we not only review how Gβγ directly activates PLCβ, and also extensively modulates Gαq-mediated PLCβ activity, but also provide a structure-function overview of PLC family members. Given that Gαq and PLCβ are oncogenes, and Gβγ shows unique cell-tissue-organ specific expression profiles, Gγ subtype-dependent signaling efficacies, and distinct subcellular activities, this review proposes that Gβγ is a major regulator of Gαq-dependent and independent PLCβ signaling.
Collapse
Affiliation(s)
| | | | - Dinesh Kankanamge
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ajith Karunarathne
- Department of Chemistry, St. Louis University, St. Louis, MO, United States.
| |
Collapse
|
6
|
PLCD1-Induced DNA Damage Inhibits the Tumor Growth via Downregulating CDKs in Chondrosarcoma. JOURNAL OF ONCOLOGY 2022; 2022:4488640. [PMID: 35836489 PMCID: PMC9273466 DOI: 10.1155/2022/4488640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Purpose Typical genes for the treatment and diagnosis of high-grade chondrosarcoma are still in need. Our study aimed to explore the PLCD1 function in chondrosarcoma for further treatment. Materials and Methods Our study collected the information of 49 patients in our department. The PLCD1 expression in our cohort was detected and was compared with the TCGA database. PLCD1 knockdown and overexpression cell lines were established stably. Cell viability assay and colony formation assay were performed for cell proliferation. Flow cytometry analysis was performed for cell cycle and apoptosis. Western blotting was performed for PLCD1-related protein expression. Animal xenografts were established to verify the effect of PLCD1 in high-grade chondrosarcoma. Results Compared with the TCGA database, the relation between PLCD1 expression and the malignancy of chondrosarcoma was demonstrated. A lower PLCD1 expression was detected mainly in high-grade chondrosarcoma. PLCD1 overexpression in high-grade chondrosarcoma suppressed CDKs/cyclins and induced DNA damage causing cell cycle blocking and apoptosis. Antitumor effect of PLCD1 overexpression was verified in vivo. Conclusion Lower PLCD1 was expressed in high-grade chondrosarcoma. Overexpressed PLCD1-induced DNA damage caused cell cycle blocking and apoptosis in vitro and in vivo. PLCD1 could be a novel target in high-grade chondrosarcoma for further drug development.
Collapse
|
7
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Dissecting the Mechanism of Action of Spiperone-A Candidate for Drug Repurposing for Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14030776. [PMID: 35159043 PMCID: PMC8834219 DOI: 10.3390/cancers14030776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite advances in primary and adjuvant treatments, approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease. Thus, alternative and more effective therapeutic approaches are expected to be developed. Drug repurposing is increasing interest in cancer therapy, as it represents a cheaper and faster alternative strategy to de novo drug synthesis. Psychiatric medications are promising as a new generation of antitumor drugs. Here, we demonstrate that spiperone—a licensed drug for the treatment of schizophrenia—induces apoptosis in CRC cells. Our data reveal that spiperone’s cytotoxicity in CRC cells is mediated by phospholipase C activation, intracellular calcium homeostasis dysregulation, and irreversible endoplasmic reticulum stress induction, resulting in lipid metabolism alteration and Golgi apparatus damage. By identifying new targetable pathways in CRC cells, our findings represent a promising starting point for the design of novel therapeutic strategies for CRC. Abstract Approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease, highlighting the need for novel therapeutic strategies. Drug repurposing is attracting increasing attention because, compared to traditional de novo drug discovery processes, it may reduce drug development periods and costs. Epidemiological and preclinical evidence support the antitumor activity of antipsychotic drugs. Herein, we dissect the mechanism of action of the typical antipsychotic spiperone in CRC. Spiperone can reduce the clonogenic potential of stem-like CRC cells (CRC-SCs) and induce cell cycle arrest and apoptosis, in both differentiated and CRC-SCs, at clinically relevant concentrations whose toxicity is negligible for non-neoplastic cells. Analysis of intracellular Ca2+ kinetics upon spiperone treatment revealed a massive phospholipase C (PLC)-dependent endoplasmic reticulum (ER) Ca2+ release, resulting in ER Ca2+ homeostasis disruption. RNA sequencing revealed unfolded protein response (UPR) activation, ER stress, and induction of apoptosis, along with IRE1-dependent decay of mRNA (RIDD) activation. Lipidomic analysis showed a significant alteration of lipid profile and, in particular, of sphingolipids. Damage to the Golgi apparatus was also observed. Our data suggest that spiperone can represent an effective drug in the treatment of CRC, and that ER stress induction, along with lipid metabolism alteration, represents effective druggable pathways in CRC.
Collapse
|
9
|
Ding W, Ma Y, Zhu W, Pu W, Zhang J, Qian F, Zhou Y, Deng Y, Guo S, Wang J, Zhou X. MICA ∗012:01 Allele Facilitates the Metastasis of KRAS-Mutant Colorectal Cancer. Front Genet 2020; 11:511. [PMID: 32528529 PMCID: PMC7264413 DOI: 10.3389/fgene.2020.00511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/27/2020] [Indexed: 01/06/2023] Open
Abstract
Major histocompatibility complex (HLA) class I chain-related protein A (MICA) regulates immune surveillance through activation of NKG2D (natural killer group 2D) receptor. However, the genetic association, potential function, and predictive ability of MICA alleles with colorectal cancer (CRC) prognosis remain undefined. In this study, we characterized MICA alleles in tissue samples from 104 patients with CRC and 536 healthy controls and carried out genetic association studies by molecular and clinical CRC phenotypes. Preliminary sequence analysis revealed that MICA ∗009:01 or ∗049 alleles were significantly decreased in patients with CRC (p = 0.0049), and further stratification analysis indicated that MICA ∗012:01 allele was associated with patients with CRC and carrying KRAS codon 12 mutation (p = 0.027). The functional consequences of MICA alleles were examined via transfected CRC cell lines which showed that overexpression of MICA ∗012:01 enhanced the proliferation, invasion, and metastatic phenotype of CRC. Preliminary analysis of disease-free survival time in patients with and without MICA ∗012:01 suggest this allele may be predictive for poor prognosis of patients with KRAS codon 12 mutated CRC, as no somatic mutation of MICA gene was detected in CRC tumors compared to paracancerous tissues. Our study indicates that MICA ∗012:01 allele is associated with KRAS-mutated CRC, facilitates CRC invasion and metastasis, and possibly reduces the survival of patients with KRAS-mutated CRC.
Collapse
Affiliation(s)
- Weifeng Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,McGovern Medical School, The University of Texas, Houston, TX, United States
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Weifeng Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Weilin Pu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Qian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Youlang Zhou
- Department of Hand Surgery, The Hand Surgery Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Deng
- Department of Ophthalmology of Children, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaodong Zhou
- McGovern Medical School, The University of Texas, Houston, TX, United States
| |
Collapse
|
10
|
Prognostic Value of Poorly Differentiated Clusters in Liver Metastatic Lesions of Colorectal Carcinoma. Am J Surg Pathol 2020; 43:1341-1348. [PMID: 31318710 DOI: 10.1097/pas.0000000000001329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Colorectal liver metastasis (CRLM) is the most common pattern of metastases or recurrence in colorectal carcinoma; however, no robust pathologic prognostic factors have been identified. This study aimed to verify the prognostic value of poorly differentiated clusters (PDC) in liver metastatic lesions and to clarify the correlation between PDC in liver metastatic lesions (PDC) and the primary tumor histology. Consecutive patients who underwent resection for CRLM were pathologically reviewed. PDC was defined as cancer clusters comprising ≥5 cancer cells and lacking glandular formation and was quantifiably graded as G1 (<5 clusters), G2 (5 to 9 clusters), and G3 (≥10 clusters) based on the highest number of clusters observed under ×20 magnification. The cohort comprised 204 patients. PDC was classified as G1, G2, and G3 for 68, 69, and 67 patients, respectively, and it was significantly associated with PDC grade in the primary tumor (P<0.001). Among the potential prognostic factors, tumor budding in the primary tumor, PDC in the primary tumor, the number of liver metastases, extrahepatic metastasis, and PDC significantly influenced overall survival (OS) after CRLM resection. According to the PDC grade, the 5-year OS rates were 68.9%, 48.3%, and 39.5% for G1, G2, and G3 (P<0.001), respectively. Multivariate analysis for OS showed that PDC grade, tumor budding in the primary tumor, the number of liver metastasis and extrahepatic metastasis were independent prognostic factors. In conclusion, there is a correlation in the PDC grade between the primary tumor and liver metastatic lesion, and PDC grade could be a promising new prognostic factor after CRLM resection.
Collapse
|
11
|
Abstract
Phospholipase C (PLC) family members constitute a family of diverse enzymes. Thirteen different family members have been cloned. These family members have unique structures that mediate various functions. Although PLC family members all appear to signal through the bi-products of cleaving phospholipids, it is clear that each family member, and at times each isoform, contributes to unique cellular functions. This chapter provides a review of the current literature on PLC. In addition, references have been provided for more in-depth information regarding areas that are not discussed including tyrosine kinase activation of PLC. Understanding the roles of the individual PLC enzymes, and their distinct cellular functions, will lead to a better understanding of the physiological roles of these enzymes in the development of diseases and the maintenance of homeostasis.
Collapse
|
12
|
Zhou X, Liao X, Wang X, Huang K, Yang C, Yu T, Han C, Zhu G, Su H, Han Q, Chen Z, Huang J, Gong Y, Ruan G, Ye X, Peng T. Noteworthy prognostic value of phospholipase C delta genes in early stage pancreatic ductal adenocarcinoma patients after pancreaticoduodenectomy and potential molecular mechanisms. Cancer Med 2019; 9:859-871. [PMID: 31808619 PMCID: PMC6997088 DOI: 10.1002/cam4.2699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
The purpose of this investigation was to explore the prognostic value of phospholipase C delta (PLCD) genes in early stage pancreatic ductal adenocarcinoma (PDAC) and its potential molecular mechanisms. The prognostic value of PLCD genes in early stage PDAC was assessed using the Kaplan-Meier method and multivariate Cox proportional hazards regression model. Genome-wide correlation analysis was performed on PLCD3 to identify the highly correlated genes in the transcriptome. Then, PLCD3 and these correlated genes together underwent a bioinformatics analysis to elucidate the potential molecular biological functions of PLCD3 in PDAC. PLCD1 and PLCD3 are significantly overexpressed in PDAC. In PDAC patients, PLCD3 is overexpressed in certain groups of people with a history of alcoholism (P = .032). High expression of PLCD3 was found to be associated with lower overall survival (OS) of patients with early stage PDAC (P = .020; adjusted P = .016). A combination of PLCD3 and clinical variables was able to better predict the outcome of patients with early stage PDAC. These clinical variables are histological grade (P = .001; adjusted P = .001), targeted molecular therapy (P < .001; adjusted P < .001), radiation therapy (P = .002; adjusted P = .039), and residual resection (P = .001; adjusted P = .002). The bioinformatics analysis revealed that PLCD3 is associated with angiogenesis, intracellular signal transduction, and regulation of cell proliferation. In conclusion, PLCD3 may be a potential prognostic biomarker for early stage PDAC.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Quanfa Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zijun Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jianlv Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yizhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guotian Ruan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
13
|
Dino P, D'Anna C, Sangiorgi C, Di Sano C, Di Vincenzo S, Ferraro M, Pace E. Cigarette smoke extract modulates E-Cadherin, Claudin-1 and miR-21 and promotes cancer invasiveness in human colorectal adenocarcinoma cells. Toxicol Lett 2019; 317:102-109. [PMID: 31574306 DOI: 10.1016/j.toxlet.2019.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/13/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cigarette smoke is considered a risk factor for lung and colorectal cancer. A convincing link between epithelial-to-mesenchymal transition (EMT) with colorectal cancer progression and therapeutic resistance has emerged. Deregulated expression of E-Cadherin and Claudin-1 and increased miR-21 expression and invasiveness represent hallmarks of EMT. The effects of cigarette smoke exposure on EMT in colorectal adenocarcinoma cells are largely unknown. AIM The aim of the study is to evaluate the effect of cigarette smoke extract (CSE) on miR-21, Claudin-1 and E-Cadherin, molecules associated to EMT in colorectal cancer cells. METHODS A human colorectal adenocarcinoma cell line (Caco-2) was treated with CSE at different concentration (5% and 10%) and for different time points (3 h and 24 h). Metabolic activity (by MTS assay), cell necrosis/cell apoptosis (evaluating Propidium Iodide/Annexin V expression by flow cytometry), miR-21, Claudin-1 and E-Cadherin gene expression were evaluated by Real time PCR. Cell permeability, actin polymerization and cancer cell migration was assessed by Trans-Epitelial Electrical Resistance (TEER), Phalloidin expression and matrigel system, respectively. RESULTS CSE at all the tested concentrations and at all time points reduced cell necrosis. CSE at 10% increased miR-21 and reduced the metabolic activity, cell necrosis, Claudin-1 and E-cadherin mRNA at 3 h. Cell permeability, actin polymerization and cancer cell migration were all increased upon CSE exposure. CONCLUSION These results showed that CSE increasing miR-21, Claudin-1 and E-Cadherin and enhancing the aggressiveness of cancer cells, may concur to colorectal cancer progression.
Collapse
Affiliation(s)
- P Dino
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - C D'Anna
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - C Sangiorgi
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - C Di Sano
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - S Di Vincenzo
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - M Ferraro
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - E Pace
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy.
| |
Collapse
|
14
|
T-blocker: a simple and robust probe-free quantitative PCR assay to detect somatic mutations down to 0.1% frequency. Biotechniques 2019; 65:205-210. [PMID: 30284934 DOI: 10.2144/btn-2018-0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have developed a simple and robust probe-free quantitative PCR (qPCR) assay method that can detect minor mutant alleles with a frequency as low as 0.1% in a heterogeneous sample by introducing a novel T-blocker concept to the allele-specific PCR method. Four new KRAS and BRAF mutation detection assays were developed and their performance was demonstrated by testing a large number of replicates, utilizing a customized PCR protocol. Highly efficient and specific mutant amplification in conjunction with selective wild-type suppression by the T-blocker concept enabled 0.1% detection sensitivity using the intercalating dye-based qPCR chemistry instead of more complex target-specific dye-labeled probes. Excellent consistency in sensitivity and specificity of the T-blocker assay concept was demonstrated.
Collapse
|
15
|
Xiang Q, He X, Mu J, Mu H, Zhou D, Tang J, Xiao Q, Jiang Y, Ren G, Xiang T, Peng W. The phosphoinositide hydrolase phospholipase C delta1 inhibits epithelial-mesenchymal transition and is silenced in colorectal cancer. J Cell Physiol 2019; 234:13906-13916. [PMID: 30618183 DOI: 10.1002/jcp.28073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
In this study, we found that the phospholipase C delta1 (PLCD1) protein expression is reduced in colorectal tumor tissues compared with paired surgical margin tissues. PLCD1-promoted CpG methylation was detected in 29/64 (45%) primary colorectal tumors, but not in nontumor tissues. The PLCD1 RNA expression was also reduced in three out of six cell lines, due to PLCD1 methylation. The ectopic expression of PLCD1 resulted in inhibited proliferation and attenuated migration of colorectal tumor cells, yet promoted colorectal tumor cell apoptosis in vitro. We also observed that PLCD1 suppressed proliferation and promoted apoptosis in vivo. In addition, PLCD1 induced G1/S phase cell cycle arrest. Furthermore, we found that PLCD1 led to the downregulation of several factors downstream of β-catenin, including c-Myc and cyclin D1, which are generally known to be promoters of tumorigenesis. This downregulation was caused by an upregulation of E-cadherin in colorectal tumor cells. Our findings provide insights into the role of PLCD1 as a tumor suppressor gene in colorectal cancer (CRC), and demonstrate that it plays significant roles in proliferation, migration, invasion, cell cycle progression, and epithelial-mesenchymal transition. On the basis of these results, tumor-specific methylation of PLCD1 could be used as a novel biomarker for early detection and prognostic prediction in CRC.
Collapse
Affiliation(s)
- Qin Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian He
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haixi Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dishu Zhou
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Jiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Wallis D, Li K, Lui H, Hu K, Chen MJ, Li J, Kang J, Das S, Korf BR, Kesterson RA. Neurofibromin (NF1) genetic variant structure-function analyses using a full-length mouse cDNA. Hum Mutat 2018. [PMID: 29522274 DOI: 10.1002/humu.23421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurofibromatosis type 1 (NF1) is caused by pathogenic variants or mutations in the NF1 gene that encodes neurofibromin. We describe here a new approach to determining the functional consequences of NF1 genetic variants. We established a heterologous cell culture expression system using a full-length mouse Nf1 cDNA (mNf1) and human cell lines. We demonstrate that the full-length murine cDNA produces a > 250 kDa neurofibromin protein that is capable of modulating Ras signaling. We created mutant cDNAs representing NF1 patient variants with different clinically relevant phenotypes, and assessed their ability to produce mature neurofibromin and restore Nf1 activity in NF1-/- cells. These cDNAs represent variants in multiple protein domains and various types of clinically relevant predicted variants. This approach will help advance research on neurofibromin structure and function, determine pathogenicity for missense variants, and allow for the development of activity assays and variant-directed therapeutics.
Collapse
Affiliation(s)
- Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Kairong Li
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Hui Lui
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Ke Hu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Mei-Jan Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Jing Li
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Jungsoon Kang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Shamik Das
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
17
|
Bao Y, Guo H, Lu Y, Feng W, Sun X, Tang C, Wang X, Shen M. Blocking hepatic metastases of colon cancer cells using an shRNA against Rac1 delivered by activatable cell-penetrating peptide. Oncotarget 2018; 7:77183-77195. [PMID: 27791203 PMCID: PMC5363579 DOI: 10.18632/oncotarget.12854] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/14/2016] [Indexed: 12/27/2022] Open
Abstract
Hepatic metastasis is one of the critical progressions of colon cancer. Blocking this process is key to prolonging survival time in cancer patients. Studies on activatable cell-penetrating peptides (dtACPPs) have demonstrated their potential as gene carriers. It showed high tumor cell-targeting specificity and transfection efficiency and low cytotoxicity in the in vitro settings of drug delivery. However, using this system to silence target genes to inhibit metastasis in colorectal cancer cells has not been widely reported and requires further investigation. In this study, we observed that expression of Rac1, a key molecule for cytoskeletal reorganization, was higher in hepatic metastatic tumor tissue compared with prime colon cancer tissue and that patients with high Rac1-expressing colon cancer showed shorter survival time. Base on these findings, we created dtACPP-PEG-DGL (dtACPPD)/shRac1 nanoparticles and demonstrated that they downregulated Rac1 expression in colon cancer cells. Moreover, we observed inhibitory effects on migration, invasion and adhesion in HCT116 colorectal cancer cells in vitro, and our results showed that Rac1 regulated colon cancer cell matrix adhesion through the regulation of cytofilament dynamics. Moreover, mechanically, repression of Rac1 inhibiting cells migration and invasion by enhancing cell to cell adhesion and reducing cell to extracellular matrix adhesion. Furthermore, when atCDPPD/shRac1 nanoparticles were administered intravenously to a HCT116 xenograft model, significant tumor metastasis to the liver was inhibited. Our results suggest that atCDPP/shRac1 nanoparticles may enable the blockade of hepatic metastasis in colon cancer.
Collapse
Affiliation(s)
- Ying Bao
- Department of Surgery, First Affiliated Hospital, Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Huihui Guo
- Department of Surgery, First Affiliated Hospital, Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Yongliang Lu
- Department of Medicine, Huzhou University, Huzhou, 313000, China
| | - Wenming Feng
- Department of Surgery, First Affiliated Hospital, Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Xinrong Sun
- Department of Surgery, First Affiliated Hospital, Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Chengwu Tang
- Department of Surgery, First Affiliated Hospital, Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Xiang Wang
- Department of Surgery, First Affiliated Hospital, Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Mo Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University,Wenzhou, 325000, China
| |
Collapse
|
18
|
Caetano BFR, Tablas MB, Pereira NEF, de Moura NA, Carvalho RF, Rodrigues MAM, Barbisan LF. Capsaicin reduces genotoxicity, colonic cell proliferation and preneoplastic lesions induced by 1,2-dimethylhydrazine in rats. Toxicol Appl Pharmacol 2018; 338:93-102. [DOI: 10.1016/j.taap.2017.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/20/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
|
19
|
Satow R, Inagaki S, Kato C, Shimozawa M, Fukami K. Identification of zinc finger protein of the cerebellum 5 as a survival factor of prostate and colorectal cancer cells. Cancer Sci 2017; 108:2405-2412. [PMID: 29024195 PMCID: PMC5715345 DOI: 10.1111/cas.13419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Identification of specific drug targets is very important for cancer therapy. We recently identified zinc finger protein of the cerebellum 5 (ZIC5) as a factor that promotes melanoma aggressiveness by platelet-derived growth factor D (PDGFD) expression. However, its roles in other cancer types remain largely unknown. Here we determined the roles of ZIC5 in prostate cancer (PCa) and colorectal cancer (CRC) cells. Results showed that ZIC5 was highly expressed in CRC and dedifferentiated PCa tissues, whereas little expression was observed in relevant normal tissues. Knockdown of ZIC5 decreased proliferation of several PCa and CRC cell lines with induction of cell death. ZIC5 knockdown significantly suppressed PDGFD expression transcriptionally, and PDGFD suppression also decreased proliferation of PCa and CRC cell lines. In addition, suppression of ZIC5 or PDGFD expression decreased levels of phosphorylated focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) which are associated with PCa and CRC aggressiveness. Furthermore, knockdown of ZIC5 or PDGFD enhanced death of PCa and CRC cells induced by the anti-cancer drugs docetaxel or oxaliplatin, respectively. These results suggest that ZIC5 and PDGFD promote survival of PCa and CRC cells by enhancing FAK and STAT3 activity, and that the roles of ZIC5 are consistent across several cancer types.
Collapse
Affiliation(s)
- Reiko Satow
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Shota Inagaki
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Chiaki Kato
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Makoto Shimozawa
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
20
|
Shimozawa M, Anzai S, Satow R, Fukami K. Phospholipase C δ1 negatively regulates autophagy in colorectal cancer cells. Biochem Biophys Res Commun 2017; 488:578-583. [PMID: 28528980 DOI: 10.1016/j.bbrc.2017.05.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Kirsten rat sarcoma viral oncogene homolog (KRAS) is frequently mutated in CRC, and KRAS mutations promote cell motility, growth, and survival. We previously revealed that the expression of phospholipase C (PLC) δ1, one of the most basal PLCs, is down-regulated in colon adenocarcinoma, and that the KRAS signaling pathway suppresses PLCδ1 expression. Although recent studies revealed that KRAS mutations activate autophagy in cancer cells, a relation between PLCδ1 and autophagy remains unclear. Here, we found that PLCδ1 overexpression suppresses the formation of autophagosomes, which are key structures of autophagy, whereas endogenous PLCδ1 knockdown increases autophagosome formation in CRC cells. We also showed that PLCδ1 overexpression promotes cell death under nutrient deprivation. Furthermore, PLCδ1 overexpression suppresses the autophagy induced by the anti-cancer drug oxaliplatin and promotes cell death under oxaliplatin treatment. These data suggest that PLCδ1 negatively regulates autophagy, and PLCδ1 suppression contributes to the tolerance of CRC cells harboring KRAS mutations to nutrient deprivation and anti-cancer drug treatment.
Collapse
Affiliation(s)
- Makoto Shimozawa
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo 192-0392, Japan
| | - Sakiho Anzai
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo 192-0392, Japan
| | - Reiko Satow
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo 192-0392, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo 192-0392, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
21
|
Rigoutsos I, Lee SK, Nam SY, Anfossi S, Pasculli B, Pichler M, Jing Y, Rodriguez-Aguayo C, Telonis AG, Rossi S, Ivan C, Catela Ivkovic T, Fabris L, Clark PM, Ling H, Shimizu M, Redis RS, Shah MY, Zhang X, Okugawa Y, Jung EJ, Tsirigos A, Huang L, Ferdin J, Gafà R, Spizzo R, Nicoloso MS, Paranjape AN, Shariati M, Tiron A, Yeh JJ, Teruel-Montoya R, Xiao L, Melo SA, Menter D, Jiang ZQ, Flores ER, Negrini M, Goel A, Bar-Eli M, Mani SA, Liu CG, Lopez-Berestein G, Berindan-Neagoe I, Esteller M, Kopetz S, Lanza G, Calin GA. N-BLR, a primate-specific non-coding transcript leads to colorectal cancer invasion and migration. Genome Biol 2017; 18:98. [PMID: 28535802 PMCID: PMC5442648 DOI: 10.1186/s13059-017-1224-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background Non-coding RNAs have been drawing increasing attention in recent years as functional data suggest that they play important roles in key cellular processes. N-BLR is a primate-specific long non-coding RNA that modulates the epithelial-to-mesenchymal transition, facilitates cell migration, and increases colorectal cancer invasion. Results We performed multivariate analyses of data from two independent cohorts of colorectal cancer patients and show that the abundance of N-BLR is associated with tumor stage, invasion potential, and overall patient survival. Through in vitro and in vivo experiments we found that N-BLR facilitates migration primarily via crosstalk with E-cadherin and ZEB1. We showed that this crosstalk is mediated by a pyknon, a short ~20 nucleotide-long DNA motif contained in the N-BLR transcript and is targeted by members of the miR-200 family. In light of these findings, we used a microarray to investigate the expression patterns of other pyknon-containing genomic loci. We found multiple such loci that are differentially transcribed between healthy and diseased tissues in colorectal cancer and chronic lymphocytic leukemia. Moreover, we identified several new loci whose expression correlates with the colorectal cancer patients’ overall survival. Conclusions The primate-specific N-BLR is a novel molecular contributor to the complex mechanisms that underlie metastasis in colorectal cancer and a potential novel biomarker for this disease. The presence of a functional pyknon within N-BLR and the related finding that many more pyknon-containing genomic loci in the human genome exhibit tissue-specific and disease-specific expression suggests the possibility of an alternative class of biomarkers and therapeutic targets that are primate-specific. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1224-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.
| | - Sang Kil Lee
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Institute of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Su Youn Nam
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Gastroenterology, Department of Internal Medicine, Kyungpook National University Medical School, Daegu, Korea
| | - Simone Anfossi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Pasculli
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Martin Pichler
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Division of Oncology, Medical University of Graz, Graz, Austria
| | - Yi Jing
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA interference and non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aristeidis G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Simona Rossi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Institute of Oncology Research (IOR), Research Division of the Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA interference and non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Catela Ivkovic
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Linda Fabris
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter M Clark
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Masayoshi Shimizu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roxana S Redis
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: ProQR Therapeutics, Leiden, Netherlands
| | - Maitri Y Shah
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinna Zhang
- Center for RNA interference and non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research, and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Eun Jung Jung
- Department of Surgery, School of Medicine, Gyeongsang National University, Jin-ju, South Korea
| | | | - Li Huang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jana Ferdin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Roberta Gafà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Riccardo Spizzo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: CRO, National Cancer Institute, 33081, Aviano, Italy
| | - Milena S Nicoloso
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: CRO, National Cancer Institute, 33081, Aviano, Italy
| | - Anurag N Paranjape
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: National Cancer Institute, Bethesda, MD, USA
| | - Maryam Shariati
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aida Tiron
- Department of Medicine, Nassau University Medical Center, 2201 Hempstead Tpke, East Meadow, NY, 11554, USA
| | - Jen Jen Yeh
- Departments of Surgery and Pharmacology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raul Teruel-Montoya
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBEER (CB15/00055), Murcia, Spain
| | - Lianchun Xiao
- Division of Quantitative Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonia A Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and Ipatimup - Institute of Pathology and Molecular Immunology of the University of Porto, 4200, Porto, Portugal.,Department of Pathology, Faculty of Medicine of Porto University, 4200-319, Porto, Portugal
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhi-Qin Jiang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elsa R Flores
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ajay Goel
- Center for Gastrointestinal Research, and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Menashe Bar-Eli
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang Gong Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA interference and non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Medfuture, Cluj-Napoca, Romania.,Research Center for Advanced Medicine - University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania.,Department of Functional Genomics, Proteomics and Experimental Pathology- The Oncology Institute " Prof Dr. Ion Chiricuta, Cluj-Napoca, Romania
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giovanni Lanza
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Center for RNA interference and non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Shao Q, Luo X, Yang D, Wang C, Cheng Q, Xiang T, Ren G. Phospholipase Cδ1 suppresses cell migration and invasion of breast cancer cells by modulating KIF3A-mediated ERK1/2/β- catenin/MMP7 signalling. Oncotarget 2017; 8:29056-29066. [PMID: 28423710 PMCID: PMC5438712 DOI: 10.18632/oncotarget.16072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
Phospholipase C δ1 (PLCD1) encodes an enzyme involved in energy metabolism, calcium homeostasis and intracellular movement. It is located at 3p22 in a region that is frequently deleted in multiple cancers, and the PLCD1 enzyme is a potential tumour suppressor in breast cancer that inhibits matrix metalloprotease (MMP) 7, but the detailed mechanism remains elusive. In this study, we found that PLCD1 was downregulated in breast cancers, and the gain-or-loss functional assay revealed that PLCD1 inhibited cell migration and invasion in vitro via the ERK1/2/β-catenin/MMP7 signalling pathway. Furthermore, KIF3A was identified as a downstream mediator of PLCD1, and there was an inverse correlation between the expression of PLCD1 and KIF3A. Knockdown of KIF3A expression alone suppressed cell migration and invasion, and attenuated ERK1/2/β-catenin/MMP7 signalling that was reactivated by knocking down PLCD1 in vitro. Collectively, our findings suggest that PLCD1 acts as a tumour suppressor, by KIF3A-mediated suppression of ERK1/2/β-catenin/MMP7 signalling, at least in part, in breast cancer.
Collapse
Affiliation(s)
- Qing Shao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinrong Luo
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dejuan Yang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Can Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao Cheng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Ye X, Chan KC, Waters AM, Bess M, Harned A, Wei BR, Loncarek J, Luke BT, Orsburn BC, Hollinger BD, Stephens RM, Bagni R, Martinko A, Wells JA, Nissley DV, McCormick F, Whiteley G, Blonder J. Comparative proteomics of a model MCF10A-KRasG12V cell line reveals a distinct molecular signature of the KRasG12V cell surface. Oncotarget 2016; 7:86948-86971. [PMID: 27894102 PMCID: PMC5341332 DOI: 10.18632/oncotarget.13566] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
Oncogenic Ras mutants play a major role in the etiology of most aggressive and deadly carcinomas in humans. In spite of continuous efforts, effective pharmacological treatments targeting oncogenic Ras isoforms have not been developed. Cell-surface proteins represent top therapeutic targets primarily due to their accessibility and susceptibility to different modes of cancer therapy. To expand the treatment options of cancers driven by oncogenic Ras, new targets need to be identified and characterized at the surface of cancer cells expressing oncogenic Ras mutants. Here, we describe a mass spectrometry-based method for molecular profiling of the cell surface using KRasG12V transfected MCF10A (MCF10A-KRasG12V) as a model cell line of constitutively activated KRas and native MCF10A cells transduced with an empty vector (EV) as control. An extensive molecular map of the KRas surface was achieved by applying, in parallel, targeted hydrazide-based cell-surface capturing technology and global shotgun membrane proteomics to identify the proteins on the KRasG12V surface. This method allowed for integrated proteomic analysis that identified more than 500 cell-surface proteins found unique or upregulated on the surface of MCF10A-KRasG12V cells. Multistep bioinformatic processing was employed to elucidate and prioritize targets for cross-validation. Scanning electron microscopy and phenotypic cancer cell assays revealed changes at the cell surface consistent with malignant epithelial-to-mesenchymal transformation secondary to KRasG12V activation. Taken together, this dataset significantly expands the map of the KRasG12V surface and uncovers potential targets involved primarily in cell motility, cellular protrusion formation, and metastasis.
Collapse
Affiliation(s)
- Xiaoying Ye
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - King C. Chan
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Andrew M. Waters
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Matthew Bess
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Adam Harned
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Brian T. Luke
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | | | - Bradley D. Hollinger
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Robert M. Stephens
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Rachel Bagni
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Alex Martinko
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, USA
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, USA
| | - Dwight V. Nissley
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Frank McCormick
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158-9001, USA
| | - Gordon Whiteley
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Josip Blonder
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| |
Collapse
|
24
|
Satow R, Nakamura T, Kato C, Endo M, Tamura M, Batori R, Tomura S, Murayama Y, Fukami K. ZIC5 Drives Melanoma Aggressiveness by PDGFD-Mediated Activation of FAK and STAT3. Cancer Res 2016; 77:366-377. [PMID: 27671679 DOI: 10.1158/0008-5472.can-16-0991] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/27/2016] [Accepted: 09/12/2016] [Indexed: 11/16/2022]
Abstract
Insights into mechanisms of drug resistance could extend the efficacy of cancer therapy. To probe mechanisms in melanoma, we performed siRNA screening of genes that mediate the development of neural crest cells, from which melanocytes are derived. Here, we report the identification of ZIC5 as a mediator of melanoma drug resistance. ZIC5 is a transcriptional suppressor of E-cadherin expressed highly in human melanoma. ZIC5 enhanced melanoma cell proliferation, survival, drug resistance, in vivo growth and metastasis. Microarray analysis revealed that ZIC5 downstream signaling included PDGFD and FAK activation, which contributes to drug resistance by enhancing STAT3 activation. Silencing of ZIC5 or PDGFD enhanced the apoptotic effects of BRAF inhibition and blocked survival of melanoma cells resistant to BRAF inhibitors. Furthermore, inhibition of FAK or STAT3 suppressed expression of ZIC5, which was positively regulated by PDGFD, FAK, and STAT3 in a positive feedback loop. Taken together, our results identify ZIC5 and PDGFD as candidate therapeutic targets to overcome drug resistance in melanoma. Cancer Res; 77(2); 366-77. ©2016 AACR.
Collapse
Affiliation(s)
- Reiko Satow
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Hachioji-shi, Tokyo, Japan
| | - Tomomi Nakamura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Chiaki Kato
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Miku Endo
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Mana Tamura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Ryosuke Batori
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Shiori Tomura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Yumi Murayama
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan. .,AMED-CREST, Japan Agency for Medical Research and Development, Hachioji-shi, Tokyo, Japan
| |
Collapse
|
25
|
KRAS, NRAS, BRAF mutations and high counts of poorly differentiated clusters of neoplastic cells in colorectal cancer: observational analysis of 175 cases. Pathology 2016; 47:551-6. [PMID: 26352110 DOI: 10.1097/pat.0000000000000300] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel grading system based on the counting of poorly differentiated clusters (PDC) of neoplastic cells at the invasive margin and in the tumour stroma was recently introduced among the histological parameters predictive of adverse clinical outcome in colorectal cancer (CRC). The aim of this study was to correlate the histological grade based on PDC and the mutational status of KRAS, NRAS and BRAF genes in 175 consecutive CRCs. The highest PDC count under the objective lens of a ×20 microscopic field in each tumour was considered for grading assessment, so that PDC counts <5, 5-9 and ≥10 PDCs were defined grade 1, grade 2 and grade 3, respectively. Hotspots mutations were identified using the MassArray platform. Overall, there were 42 (24%) mutated tumours. Mutational status was significantly associated with high pT stage (p = 0.0021), advanced pTNM stage (p = 0.0018), nodal metastases (p = 0.006), tumour budding (p = 0.022) and high PDC grade (p = 0.0022). KRAS mutations were significantly associated with PDC grade (p = 0.0379), while BRAF mutations were associated with PDC-G3 although statistical significance was not reached. No significant associations were found between NRAS and PDC. The significant association between mutated KRAS and PDC grade suggests that KRAS mutations may be involved in the formation of PDC.
Collapse
|