1
|
d'Errico P, Früholz I, Meyer-Luehmann M, Vlachos A. Neuroprotective and plasticity promoting effects of repetitive transcranial magnetic stimulation (rTMS): A role for microglia. Brain Stimul 2025; 18:810-821. [PMID: 40118248 DOI: 10.1016/j.brs.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to modulate neocortical excitability, with expanding applications in neurological and psychiatric disorders. However, the cellular and molecular mechanisms underlying its effects, particularly the role of microglia -the resident immune cells of the central nervous system- remain poorly understood. This review synthesizes recent findings on how different rTMS protocols influence microglial function under physiological conditions and in disease models. Emerging evidence indicates that rTMS modulates microglial activation, promoting neuroprotective and plasticity-enhancing processes not only in models of brain disorders, such as Alzheimer's and Parkinson's disease, but also in healthy neural circuits. While much of the current research has focused on the inflammatory profile of microglia, critical aspects such as activity-dependent synaptic remodeling, phagocytic activity, and process motility remain underexplored. Given the substantial heterogeneity of microglial responses across brain regions, age, and sex, as well as their differential roles in health and disease, a deeper understanding of their involvement in rTMS-induced plasticity is essential. Future studies should integrate selective microglial manipulation and advanced structural, functional, and molecular profiling techniques to clarify their causal involvement. Addressing these gaps will be pivotal in optimizing rTMS protocols and maximizing its therapeutic potential across a spectrum of neurological and neuropsychiatric conditions.
Collapse
Affiliation(s)
- Paolo d'Errico
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Iris Früholz
- Department of Neurology, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Lu H, Garg S, Lenz M, Vlachos A. Repetitive magnetic stimulation with iTBS600 induces persistent structural and functional plasticity in mouse organotypic slice cultures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639712. [PMID: 40060641 PMCID: PMC11888255 DOI: 10.1101/2025.02.23.639712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) is well known for its ability to induce synaptic plasticity, yet its impact on structural and functional remodeling within stimulated networks remains unclear. This study investigates the cellular and network-level mechanisms of rTMS-induced plasticity using a clinically approved 600-pulse intermittent theta burst stimulation (iTBS600) protocol applied to organotypic brain tissue cultures. Methods We applied iTBS600 to entorhino-hippocampal organotypic tissue cultures and conducted a 24-hour analysis using c-Fos immunostaining, whole-cell patch-clamp recordings, time-lapse imaging of dendritic spines, and calcium imaging. Results We observed long-term potentiation (LTP) of excitatory synapses in dentate granule cells, characterized by increased mEPSC frequencies and spine remodeling over time. c-Fos expression in the dentate gyrus was transient and exhibited a clear sensitivity to the orientation of the induced electric field, suggesting a direction-dependent induction of plasticity. Structural remodeling of dendritic spines was temporally linked to enhanced synaptic strength, while spontaneous firing rates remained stable during the early phase in the dentate gyrus, indicating the engagement of homeostatic mechanisms. Despite the widespread electric field generated by rTMS, its effects were spatially and temporally precise, driving Hebbian plasticity and region-specific spine dynamics. Conclusions These findings provide mechanistic insights into how rTMS-induced LTP promotes targeted plasticity while preserving network stability. Understanding these interactions may help refine stimulation protocols to optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79104 Freiburg, Germany
- Present address: Institute for Advanced Simulation (IAS), Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Shreyash Garg
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Present address: Hertie Institute for AI in Brain Health, University of Tübingen, Germany
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Present address: Hannover Medical School, Institute of Neuroanatomy and Cell Biology, 30625 Hannover, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Liao C, Dua AN, Wojtasiewicz C, Liston C, Kwan AC. Structural neural plasticity evoked by rapid-acting antidepressant interventions. Nat Rev Neurosci 2025; 26:101-114. [PMID: 39558048 PMCID: PMC11892022 DOI: 10.1038/s41583-024-00876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/20/2024]
Abstract
A feature in the pathophysiology of major depressive disorder (MDD), a mood disorder, is the impairment of excitatory synapses in the prefrontal cortex. Intriguingly, different types of treatment with fairly rapid antidepressant effects (within days or a few weeks), such as ketamine, electroconvulsive therapy and non-invasive neurostimulation, seem to converge on enhancement of neural plasticity. However, the forms and mechanisms of plasticity that link antidepressant interventions to the restoration of excitatory synaptic function are still unknown. In this Review, we highlight preclinical research from the past 15 years showing that ketamine and psychedelic drugs can trigger the growth of dendritic spines in cortical pyramidal neurons. We compare the longitudinal effects of various psychoactive drugs on neuronal rewiring, and we highlight rapid onset and sustained time course as notable characteristics for putative rapid-acting antidepressant drugs. Furthermore, we consider gaps in the current understanding of drug-evoked in vivo structural plasticity. We also discuss the prospects of using synaptic remodelling to understand other antidepressant interventions, such as repetitive transcranial magnetic stimulation. Finally, we conclude that structural neural plasticity can provide unique insights into the neurobiological actions of psychoactive drugs and antidepressant interventions.
Collapse
Affiliation(s)
- Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Alisha N Dua
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Sundaram P, Dong C, Makaroff S, Okada Y. How conductivity boundaries influence the electric field induced by transcranial magnetic stimulation in in vitro experiments. Brain Stimul 2024; 17:1034-1044. [PMID: 39142380 PMCID: PMC11586064 DOI: 10.1016/j.brs.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Although transcranial magnetic stimulation (TMS) has become a valuable method for non-invasive brain stimulation, the cellular basis of TMS activation of neurons is still not fully understood. In vitro preparations have been used to understand the biophysical mechanisms of TMS, but in many cases these studies have encountered substantial difficulties in activating neurons. OBJECTIVE/HYPOTHESIS The hypothesis of this work is that conductivity boundaries can have large effects on the electric field in commonly used in vitro preparations. Our goal was to analyze the resulting difficulties in in vitro TMS using a simulation study, using a charge-based boundary element model. METHODS We decomposed the total electric field into the sum of the primary electric field, which only depends on coil geometry and current, and the secondary electric field arising from conductivity boundaries, which strongly depends on tissue and chamber geometry. We investigated the effect of the conductivity boundaries on the electric field strength for a variety of in vitro experimental settings to determine the sources of difficulty. RESULTS We showed that conductivity boundaries can have large effects on the electric field in in vitro preparations. Depending on the geometry of the air-saline and the saline-tissue interfaces, the secondary electric field can significantly enhance, or attenuate the primary electric field, resulting in a much stronger or weaker total electric field inside the tissue; we showed this using a realistic preparation. Submerged chambers are generally much more efficient than interface chambers since the secondary field due to the thin film of saline covering the tissue in the interface chamber opposes the primary field and significantly reduces the total field in the tissue placed in the interface chamber. The relative dimensions of the chamber and the TMS coil critically determine the total field; the popular setup with a large coil and a small chamber is particularly sub-optimal because the secondary field due to the air-chamber boundary opposes the primary field, thereby attenuating the total field. The form factor (length vs width) of the tissue in the direction of the induced field can be important since a relatively narrow tissue enhances the total field at the saline-tissue boundary. CONCLUSIONS Overall, we found that the total electric field in the tissue is higher in submerged chambers, higher if the chamber size is larger than the coil and if the shorter tissue dimension is in the direction of the electric field. Decomposing the total field into the primary and secondary fields is useful for designing in vitro experiments and interpreting the results.
Collapse
Affiliation(s)
- Padmavathi Sundaram
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Chunling Dong
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sergey Makaroff
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Worcester Polytechnic Institute, Worcester, MA, USA
| | - Yoshio Okada
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Eysel UT, Jancke D. Induction of excitatory brain state governs plastic functional changes in visual cortical topology. Brain Struct Funct 2024; 229:531-547. [PMID: 38041743 PMCID: PMC10978694 DOI: 10.1007/s00429-023-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Adult visual plasticity underlying local remodeling of the cortical circuitry in vivo appears to be associated with a spatiotemporal pattern of strongly increased spontaneous and evoked activity of populations of cells. Here we review and discuss pioneering work by us and others about principles of plasticity in the adult visual cortex, starting with our study which showed that a confined lesion in the cat retina causes increased excitability in the affected region in the primary visual cortex accompanied by fine-tuned restructuring of neuronal function. The underlying remodeling processes was further visualized with voltage-sensitive dye (VSD) imaging that allowed a direct tracking of retinal lesion-induced reorganization across horizontal cortical circuitries. Nowadays, application of noninvasive stimulation methods pursues the idea further of increased cortical excitability along with decreased inhibition as key factors for the induction of adult cortical plasticity. We used high-frequency transcranial magnetic stimulation (TMS), for the first time in combination with VSD optical imaging, and provided evidence that TMS-amplified excitability across large pools of neurons forms the basis for noninvasively targeting reorganization of orientation maps in the visual cortex. Our review has been compiled on the basis of these four own studies, which we discuss in the context of historical developments in the field of visual cortical plasticity and the current state of the literature. Overall, we suggest markers of LTP-like cortical changes at mesoscopic population level as a main driving force for the induction of visual plasticity in the adult. Elevations in excitability that predispose towards cortical plasticity are most likely a common property of all cortical modalities. Thus, interventions that increase cortical excitability are a promising starting point to drive perceptual and potentially motor learning in therapeutic applications.
Collapse
Affiliation(s)
- Ulf T Eysel
- Department of Neurophysiology, Ruhr University Bochum, 44780, Bochum, Germany.
| | - Dirk Jancke
- Optical Imaging Group, Institut für Neuroinformatik, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
6
|
Perera ND, Alekseichuk I, Shirinpour S, Wischnewski M, Linn G, Masiello K, Butler B, Russ BE, Schroeder CE, Falchier A, Opitz A. Dissociation of Centrally and Peripherally Induced Transcranial Magnetic Stimulation Effects in Nonhuman Primates. J Neurosci 2023; 43:8649-8662. [PMID: 37852789 PMCID: PMC10727178 DOI: 10.1523/jneurosci.1016-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that is rapidly growing in popularity for studying causal brain-behavior relationships. However, its dose-dependent centrally induced neural mechanisms and peripherally induced sensory costimulation effects remain debated. Understanding how TMS stimulation parameters affect brain responses is vital for the rational design of TMS protocols. Studying these mechanisms in humans is challenging because of the limited spatiotemporal resolution of available noninvasive neuroimaging methods. Here, we leverage invasive recordings of local field potentials in a male and a female nonhuman primate (rhesus macaque) to study TMS mesoscale responses. We demonstrate that early TMS-evoked potentials show a sigmoidal dose-response curve with stimulation intensity. We further show that stimulation responses are spatially specific. We use several control conditions to dissociate centrally induced neural responses from auditory and somatosensory coactivation. These results provide crucial evidence regarding TMS neural effects at the brain circuit level. Our findings are highly relevant for interpreting human TMS studies and biomarker developments for TMS target engagement in clinical applications.SIGNIFICANCE STATEMENT Transcranial magnetic stimulation (TMS) is a widely used noninvasive brain stimulation method to stimulate the human brain. To advance its utility for clinical applications, a clear understanding of its underlying physiological mechanisms is crucial. Here, we perform invasive electrophysiological recordings in the nonhuman primate brain during TMS, achieving a spatiotemporal precision not available in human EEG experiments. We find that evoked potentials are dose dependent and spatially specific, and can be separated from peripheral stimulation effects. This means that TMS-evoked responses can indicate a direct physiological stimulation response. Our work has important implications for the interpretation of human TMS-EEG recordings and biomarker development.
Collapse
Affiliation(s)
- Nipun D Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gary Linn
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York 10016
| | - Kurt Masiello
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Brent Butler
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Brian E Russ
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Charles E Schroeder
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032
- Department of Neurosurgery, The Neurological Institute of New York, Columbia University Irving Medical Center, New York, New York 10032
| | - Arnaud Falchier
- Translational Neuroscience Lab Division, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York 10016
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
7
|
Dufor T, Lohof AM, Sherrard RM. Magnetic Stimulation as a Therapeutic Approach for Brain Modulation and Repair: Underlying Molecular and Cellular Mechanisms. Int J Mol Sci 2023; 24:16456. [PMID: 38003643 PMCID: PMC10671429 DOI: 10.3390/ijms242216456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological and psychiatric diseases generally have no cure, so innovative non-pharmacological treatments, including non-invasive brain stimulation, are interesting therapeutic tools as they aim to trigger intrinsic neural repair mechanisms. A common brain stimulation technique involves the application of pulsed magnetic fields to affected brain regions. However, investigations of magnetic brain stimulation are complicated by the use of many different stimulation parameters. Magnetic brain stimulation is usually divided into two poorly connected approaches: (1) clinically used high-intensity stimulation (0.5-2 Tesla, T) and (2) experimental or epidemiologically studied low-intensity stimulation (μT-mT). Human tests of both approaches are reported to have beneficial outcomes, but the underlying biology is unclear, and thus optimal stimulation parameters remain ill defined. Here, we aim to bring together what is known about the biology of magnetic brain stimulation from human, animal, and in vitro studies. We identify the common effects of different stimulation protocols; show how different types of pulsed magnetic fields interact with nervous tissue; and describe cellular mechanisms underlying their effects-from intracellular signalling cascades, through synaptic plasticity and the modulation of network activity, to long-term structural changes in neural circuits. Recent advances in magneto-biology show clear mechanisms that may explain low-intensity stimulation effects in the brain. With its large breadth of stimulation parameters, not available to high-intensity stimulation, low-intensity focal magnetic stimulation becomes a potentially powerful treatment tool for human application.
Collapse
Affiliation(s)
- Tom Dufor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ann M. Lohof
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| | - Rachel M. Sherrard
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| |
Collapse
|
8
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. PLoS Comput Biol 2023; 19:e1011027. [PMID: 37956202 PMCID: PMC10681319 DOI: 10.1371/journal.pcbi.1011027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/27/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms of long-term effects remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity among excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). Particularly, the feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced structural reorganization, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Dinse HR, Höffken O, Tegenthoff M. Cortical excitability in human somatosensory and visual cortex: implications for plasticity and learning - a minireview. Front Hum Neurosci 2023; 17:1235487. [PMID: 37662638 PMCID: PMC10469727 DOI: 10.3389/fnhum.2023.1235487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The balance of excitation and inhibition plays a key role in plasticity and learning. A frequently used, reliable approach to assess intracortical inhibition relies on measuring paired-pulse behavior. Moreover, recent developments of magnetic resonance spectroscopy allows measuring GABA and glutamate concentrations. We give an overview about approaches employed to obtain information about excitatory states in human participants and discuss their putative relation. We summarize paired-pulse techniques and basic findings characterizing paired-pulse suppression in somatosensory (SI) and (VI) visual areas. Paired-pulse suppression describes the effect of paired sensory stimulation at short interstimulus intervals where the cortical response to the second stimulus is significantly suppressed. Simultaneous assessments of paired-pulse suppression in SI and VI indicated that cortical excitability is not a global phenomenon, but instead reflects the properties of local sensory processing. We review studies using non-invasive brain stimulation and perceptual learning experiments that assessed both perceptual changes and accompanying changes of cortical excitability in parallel. Independent of the nature of the excitation/inhibition marker used these data imply a close relationship between altered excitability and altered performance. These results suggest a framework where increased or decreased excitability is linked with improved or impaired perceptual performance. Recent findings have expanded the potential role of cortical excitability by demonstrating that inhibition markers such as GABA concentrations, paired-pulse suppression or alpha power predict to a substantial degree subsequent perceptual learning outcome. This opens the door for a targeted intervention where subsequent plasticity and learning processes are enhanced by altering prior baseline states of excitability.
Collapse
|
10
|
Belov V, Kozyrev V, Singh A, Sacchet MD, Goya-Maldonado R. Subject-specific whole-brain parcellations of nodes and boundaries are modulated differently under 10 Hz rTMS. Sci Rep 2023; 13:12615. [PMID: 37537227 PMCID: PMC10400653 DOI: 10.1038/s41598-023-38946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has gained considerable importance in the treatment of neuropsychiatric disorders, including major depression. However, it is not yet understood how rTMS alters brain's functional connectivity. Here we report changes in functional connectivity captured by resting state functional magnetic resonance imaging (rsfMRI) within the first hour after 10 Hz rTMS. We apply subject-specific parcellation schemes to detect changes (1) in network nodes, where the strongest functional connectivity of regions is observed, and (2) in network boundaries, where functional transitions between regions occur. We use support vector machine (SVM), a widely used machine learning algorithm that is robust and effective, for the classification and characterization of time intervals of changes in node and boundary maps. Our results reveal that changes in connectivity at the boundaries are slower and more complex than in those observed in the nodes, but of similar magnitude according to accuracy confidence intervals. These results were strongest in the posterior cingulate cortex and precuneus. As network boundaries are indeed under-investigated in comparison to nodes in connectomics research, our results highlight their contribution to functional adjustments to rTMS.
Collapse
Affiliation(s)
- Vladimir Belov
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany
| | - Vladislav Kozyrev
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany.
| |
Collapse
|
11
|
Lin SHN, Lien YR, Shibata K, Sasaki Y, Watanabe T, Lin CP, Chang LH. The phase of plasticity-induced neurochemical changes of high-frequency repetitive transcranial magnetic stimulation are different from visual perceptual learning. Sci Rep 2023; 13:5720. [PMID: 37029245 PMCID: PMC10082079 DOI: 10.1038/s41598-023-32985-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/09/2023] Open
Abstract
Numerous studies have found that repetitive transcranial magnetic stimulation (rTMS) modulates plasticity. rTMS has often been used to change neural networks underlying learning, often under the assumption that the mechanism of rTMS-induced plasticity should be highly similar to that associated with learning. The presence of visual perceptual learning (VPL) reveals the plasticity of early visual systems, which is formed through multiple phases. Hence, we tested how high-frequency (HF) rTMS and VPL modulate the effect of visual plasticity by investigating neurometabolic changes in early visual areas. We employed an excitatory-to-inhibitory (E/I) ratio, which refers to glutamate concentration divided by GABA+ concentration, as an index of the degree of plasticity. We compared neurotransmitter concentration changes after applying HF rTMS to the visual cortex with those after training in a visual task, in otherwise identical procedures. Both the time courses of the E/I ratios and neurotransmitter contributions to the E/I ratio significantly differed between HF rTMS and training conditions. The peak E/I ratio occurred 3.5 h after HF rTMS with decreased GABA+, whereas the peak E/I ratio occurred 0.5 h after visual training with increased glutamate. Furthermore, HF rTMS temporally decreased the thresholds for detecting phosphene and perceiving low-contrast stimuli, indicating increased visual plasticity. These results suggest that plasticity in early visual areas induced by HF rTMS is not as involved in the early phase of development of VPL that occurs during and immediately after training.
Collapse
Affiliation(s)
- Shang-Hua N Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun R Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Yuka Sasaki
- Department of Cognitive, Linguistics, and Psychological Sciences, Brown University, Providence, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistics, and Psychological Sciences, Brown University, Providence, USA
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hung Chang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
12
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533396. [PMID: 36993387 PMCID: PMC10055183 DOI: 10.1101/2023.03.20.533396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity between excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). The feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced homeostatic structural plasticity, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, Classen J, Davare M, Di Lazzaro V, Fox PT, Hallett M, Karabanov AN, Kesselheim J, Beck MM, Koch G, Liebetanz D, Meunier S, Miniussi C, Paulus W, Peterchev AV, Popa T, Ridding MC, Thielscher A, Ziemann U, Rothwell JC, Ugawa Y. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol 2022; 140:59-97. [PMID: 35738037 PMCID: PMC9753778 DOI: 10.1016/j.clinph.2022.04.022] [Citation(s) in RCA: 215] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022]
Abstract
Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization. The induced electric field is influenced by the conductive properties of the tissue compartments and is strongest in the superficial parts of the targeted cortical gyri and underlying white matter. TMS likely targets axons of both excitatory and inhibitory neurons. The propensity of individual axons to fire an action potential in response to TMS depends on their geometry, myelination and spatial relation to the imposed electric field and the physiological state of the neuron. The latter is determined by its transsynaptic dendritic and somatic inputs, intrinsic membrane potential and firing rate. Modeling work suggests that the primary target of TMS is axonal terminals in the crown top and lip regions of cortical gyri. The induced electric field may additionally excite bends of myelinated axons in the juxtacortical white matter below the gyral crown. Neuronal excitation spreads ortho- and antidromically along the stimulated axons and causes secondary excitation of connected neuronal populations within local intracortical microcircuits in the target area. Axonal and transsynaptic spread of excitation also occurs along cortico-cortical and cortico-subcortical connections, impacting on neuronal activity in the targeted network. Both local and remote neural excitation depend critically on the functional state of the stimulated target area and network. TMS also causes substantial direct co-stimulation of the peripheral nervous system. Peripheral co-excitation propagates centrally in auditory and somatosensory networks, but also produces brain responses in other networks subserving multisensory integration, orienting or arousal. The complexity of the response to TMS warrants cautious interpretation of its physiological and behavioural consequences, and a deeper understanding of the mechanistic underpinnings of TMS will be critical for advancing it as a scientific and therapeutic tool.
Collapse
Affiliation(s)
- Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Robert Chen
- Krembil Brain Institute, University Health Network and Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marco Davare
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anke N Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition and Exercise, University of Copenhagen, Copenhagen, Denmark
| | - Janine Kesselheim
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mikkel M Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Non-invasive Brain Stimulation Unit, Laboratorio di NeurologiaClinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sabine Meunier
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS 4 UMR 7225, Institut du Cerveau, F-75013, Paris, France
| | - Carlo Miniussi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di DioFatebenefratelli, Brescia, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
| | - Traian Popa
- Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Centre, Advanced Clinical Research Centre, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
14
|
Rafiei F, Rahnev D. TMS Does Not Increase BOLD Activity at the Site of Stimulation: A Review of All Concurrent TMS-fMRI Studies. eNeuro 2022; 9:ENEURO.0163-22.2022. [PMID: 35981879 PMCID: PMC9410768 DOI: 10.1523/eneuro.0163-22.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is widely used for understanding brain function in neurologically intact subjects and for the treatment of various disorders. However, the precise neurophysiological effects of TMS at the site of stimulation remain poorly understood. The local effects of TMS can be studied using concurrent TMS-functional magnetic resonance imaging (fMRI), a technique where TMS is delivered during fMRI scanning. However, although concurrent TMS-fMRI was developed over 20 years ago and dozens of studies have used this technique, there is still no consensus on whether TMS increases blood oxygen level-dependent (BOLD) activity at the site of stimulation. To address this question, here we review all previous concurrent TMS-fMRI studies that reported analyses of BOLD activity at the target location. We find evidence that TMS increases local BOLD activity when stimulating the primary motor (M1) and visual (V1) cortices but that these effects are likely driven by the downstream consequences of TMS (finger twitches and phosphenes). However, TMS does not appear to increase BOLD activity at the site of stimulation for areas outside of the M1 and V1 when conducted at rest. We examine the possible reasons for such lack of BOLD signal increase based on recent work in nonhuman animals. We argue that the current evidence points to TMS inducing periods of increased and decreased neuronal firing that mostly cancel each other out and therefore lead to no change in the overall BOLD signal.
Collapse
Affiliation(s)
- Farshad Rafiei
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30313
| | - Dobromir Rahnev
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30313
| |
Collapse
|
15
|
Meng Q, Nguyen H, Vrana A, Baldwin S, Li CQ, Giles A, Wang J, Yang Y, Lu H. A high-density theta burst paradigm enhances the aftereffects of transcranial magnetic stimulation: Evidence from focal stimulation of rat motor cortex. Brain Stimul 2022; 15:833-842. [DOI: 10.1016/j.brs.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
|
16
|
Eydi-Baygi M, Aflakseir A, Imani M, Goodarzi MA, Harirchian MH. Mindfulness-based cognitive therapy combined with repetitive transracial magnetic stimulation (rTMS) on information processing and working memory of patients with multiple sclerosis. CASPIAN JOURNAL OF INTERNAL MEDICINE 2022; 13:607-616. [PMID: 35974943 PMCID: PMC9348202 DOI: 10.22088/cjim.13.3.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/28/2021] [Accepted: 09/20/2021] [Indexed: 10/31/2022]
Abstract
Background MS is a demyelinating disease that can result in significant disability. Along with physical complications, this disease is associated with significant psychological complications, including cognitive decline. Therefore, this study aimed to determine the efficacy of mindfulness-based cognitive therapy in combination with rTMS on information processing and working memory in patients with MS. Methods The current study used a single-case experimental design and included a follow-up (A-B-A). The statistical population of the present study was all MS patients in Tehran who referred to Imam Khomeini Hospital in Tehran in 2020. The present study sample consisted of 5 MS patients selected by the sampling methods available. Subjects were assessed three times before, during, and after the intervention using the Zahlen-Verbindongs and n-back tests in the two-back position. Subjects received cognitive therapy based on mindfulness and rTMS at a frequency of 10 Hz. Visual and graphical recovery percentage and effect size methods were used to analyze the data. Results The current study's findings indicate that combining mindfulness with rTMS has a beneficial effect on the information processing and working memory of MS patients. Overall, 67.24% recovered following the intervention stage, 53.64% recovered following the follow-up for information processing, 104.04% recovered following the intervention stage, and 76.98% recovered following the follow-up for working memory. Conclusion The study shows the effect of mindfulness combined with rTMS on cognitive problems in MS patients. Significant improvements in MS patients' information processing, working memory, and therapeutic outcomes were observed throughout the follow-up period.
Collapse
Affiliation(s)
- Majid Eydi-Baygi
- Department of Clinical Psychology, Faculty of Psychology and Education Sciences, Shiraz University, Shiraz, Iran
| | - Abdolaziz Aflakseir
- Department of Clinical Psychology, Faculty of Psychology and Education Sciences, Shiraz University, Shiraz, Iran,Correspondence: Abdolaziz Aflakseir, Department of Clinical psychology, Faculty of Psychology and Education Sciences, Shiraz University, Eram Blvd., Eram, Shiraz, Iran. E-mail: , Tel: 0098 7136276708, Fax: 0098 7136286441
| | - Mehdi Imani
- Department of Clinical Psychology, Faculty of Psychology and Education Sciences, Shiraz University, Shiraz, Iran
| | - Mohammad Ali Goodarzi
- Department of Clinical Psychology, Faculty of Psychology and Education Sciences, Shiraz University, Shiraz, Iran
| | - Mohammad Hossein Harirchian
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Mercer Lindsay N, Chen C, Gilam G, Mackey S, Scherrer G. Brain circuits for pain and its treatment. Sci Transl Med 2021; 13:eabj7360. [PMID: 34757810 DOI: 10.1126/scitranslmed.abj7360] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nicole Mercer Lindsay
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biology, CNC Program, Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Chong Chen
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gadi Gilam
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,New York Stem Cell Foundation-Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Lehmann SJ, Corneil BD. Completing the puzzle: Why studies in non-human primates are needed to better understand the effects of non-invasive brain stimulation. Neurosci Biobehav Rev 2021; 132:1074-1085. [PMID: 34742722 DOI: 10.1016/j.neubiorev.2021.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 10/31/2021] [Indexed: 11/27/2022]
Abstract
Brain stimulation is a core method in neuroscience. Numerous non-invasive brain stimulation (NIBS) techniques are currently in use in basic and clinical research, and recent advances promise the ability to non-invasively access deep brain structures. While encouraging, there is a surprising gap in our understanding of precisely how NIBS perturbs neural activity throughout an interconnected network, and how such perturbed neural activity ultimately links to behaviour. In this review, we will consider why non-human primate (NHP) models of NIBS are ideally situated to address this gap in knowledge, and why the oculomotor network that moves our line of sight offers a particularly valuable platform in which to empirically test hypothesis regarding NIBS-induced changes in brain and behaviour. NHP models of NIBS will enable investigation of the complex, dynamic effects of brain stimulation across multiple hierarchically interconnected brain areas, networks, and effectors. By establishing such links between brain and behavioural output, work in NHPs can help optimize experimental and therapeutic approaches, improve NIBS efficacy, and reduce side-effects of NIBS.
Collapse
Affiliation(s)
- Sebastian J Lehmann
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada.
| | - Brian D Corneil
- Department of Physiology and Pharmacology, Western University, London, Ontario, N6A 5B7, Canada; Department of Psychology, Western University, London, Ontario, N6A 5B7, Canada; Robarts Research Institute, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
19
|
Roy C, Goyal N, Shreekantiah U, Ram D. Does single session transcranial magnetic stimulation alter fractional anisotropy in obsessive-compulsive disorder? A preliminary observation. Psychiatry Res 2021; 301:113970. [PMID: 33984823 DOI: 10.1016/j.psychres.2021.113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 04/21/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Chandramouli Roy
- K.S. Mani Centre for Cognitive Neurosciences and fMRI Centre, Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| | - Nishant Goyal
- K.S. Mani Centre for Cognitive Neurosciences and fMRI Centre, Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| | - Umesh Shreekantiah
- K.S. Mani Centre for Cognitive Neurosciences and fMRI Centre, Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India.
| | - Daya Ram
- K.S. Mani Centre for Cognitive Neurosciences and fMRI Centre, Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| |
Collapse
|
20
|
Rafiei F, Safrin M, Wokke ME, Lau H, Rahnev D. Transcranial magnetic stimulation alters multivoxel patterns in the absence of overall activity changes. Hum Brain Mapp 2021; 42:3804-3820. [PMID: 33991165 PMCID: PMC8288086 DOI: 10.1002/hbm.25466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has become one of the major tools for establishing the causal role of specific brain regions in perceptual, motor, and cognitive processes. Nevertheless, a persistent limitation of the technique is the lack of clarity regarding its precise effects on neural activity. Here, we examined the effects of TMS intensity and frequency on concurrently recorded blood‐oxygen‐level‐dependent (BOLD) signals at the site of stimulation. In two experiments, we delivered TMS to the dorsolateral prefrontal cortex in human subjects of both sexes. In Experiment 1, we delivered a series of pulses at high (100% of motor threshold) or low (50% of motor threshold) intensity, whereas, in Experiment 2, we always used high intensity but delivered stimulation at four different frequencies (5, 8.33, 12.5, and 25 Hz). We found that the TMS intensity and frequency could be reliably decoded using multivariate analysis techniques even though TMS had no effect on the overall BOLD activity at the site of stimulation in either experiment. These results provide important insight into the mechanisms through which TMS influences neural activity.
Collapse
Affiliation(s)
- Farshad Rafiei
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Martin Safrin
- School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Martijn E Wokke
- Programs in Psychology and Biology, The Graduate Center of the City University of New York, New York, New York, USA
| | - Hakwan Lau
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA.,The Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Dobromir Rahnev
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Jin Z, Xie K, Ni X, Jin DG, Zhang J, Li L. Transcranial magnetic stimulation over the right dorsolateral prefrontal cortex modulates visuospatial distractor suppression. Eur J Neurosci 2021; 53:3394-3403. [PMID: 33650122 PMCID: PMC8252778 DOI: 10.1111/ejn.15164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/08/2023]
Abstract
Visual selective attention allows us to filter relevant inputs from irrelevant inputs during visual processing. In contrast to rich research exploring how the brain facilitates task‐relevant inputs, less is known about how the brain suppresses irrelevant inputs. In this study, we used transcranial magnetic stimulation (TMS) to investigate the causal role of the right dorsolateral prefrontal cortex (DLPFC), a crucial brain area for attentional control, in distractor suppression. Specifically, 10‐Hz repetitive TMS (rTMS) was applied to the right DLPFC and Vertex at the stimuli onset (stimuli‐onset TMS) or 500 ms prior to the stimuli onset (prestimuli TMS). In a variant of the Posner cueing task, participants were instructed to identify the shape of a white target while ignoring a white or colored distractor whose location was either cued in advance or uncued. As anticipated, either the location cue or the colored distractor led to faster responses. Notably, the location cueing effect was eliminated by stimuli‐onset TMS to the right DLPFC, but not by prestimuli TMS. Further analyses showed that stimuli‐onset TMS quickened responses to uncued trials, and this TMS effect was derived from the inhibition at the distractor in both visual fields. In addition, TMS over the right DLPFC had no specific effect on the colored distractor compared to the white one. Considered collectively, these findings indicate that the DLPFC plays a crucial role in visuospatial distractor suppression and acts upon stimuli presentation. Besides, it seems the DLPFC contributes more to location‐based distractor suppression than to color‐based one.
Collapse
Affiliation(s)
- Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ke Xie
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuejin Ni
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong-Gang Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjun Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
22
|
Lloyd JO, Chisholm KI, Oehle B, Jones MG, Okine BN, Al-Kaisy A, Lambru G, McMahon SB, Andreou AP. Cortical Mechanisms of Single-Pulse Transcranial Magnetic Stimulation in Migraine. Neurotherapeutics 2020; 17:1973-1987. [PMID: 32632772 PMCID: PMC7851313 DOI: 10.1007/s13311-020-00879-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Single-pulse transcranial magnetic stimulation (sTMS) of the occipital cortex is an effective migraine treatment. However, its mechanism of action and cortical effects of sTMS in migraine are yet to be elucidated. Using calcium imaging and GCaMP-expressing mice, sTMS did not depolarise neurons and had no effect on vascular tone. Pre-treatment with sTMS, however, significantly affected some characteristics of the cortical spreading depression (CSD) wave, the correlate of migraine aura. sTMS inhibited spontaneous neuronal firing in the visual cortex in a dose-dependent manner and attenuated L-glutamate-evoked firing, but not in the presence of GABAA/B antagonists. In the CSD model, sTMS increased the CSD electrical threshold, but not in the presence of GABAA/B antagonists. We first report here that sTMS at intensities similar to those used in the treatment of migraine, unlike traditional sTMS applied in other neurological fields, does not excite cortical neurons but it reduces spontaneous cortical neuronal activity and suppresses the migraine aura biological substrate, potentially by interacting with GABAergic circuits.
Collapse
Affiliation(s)
- Joseph O Lloyd
- Headache Research-Wolfson CARD, Guy's Campus, King's College London, London, UK
| | - Kim I Chisholm
- Department of Neurorestoration, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Beatrice Oehle
- Department of Neurorestoration, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Martyn G Jones
- Department of Neurorestoration, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
- Zenith Neurotech Ltd, London, UK
| | - Bright N Okine
- Headache Research-Wolfson CARD, Guy's Campus, King's College London, London, UK
| | - Adnan Al-Kaisy
- Pain Management and Neuromodulation Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK
| | - Giorgio Lambru
- Headache Research-Wolfson CARD, Guy's Campus, King's College London, London, UK
- Headache Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK
| | - Stephen B McMahon
- Department of Neurorestoration, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Anna P Andreou
- Headache Research-Wolfson CARD, Guy's Campus, King's College London, London, UK.
- Headache Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK.
| |
Collapse
|
23
|
Etkin A, Maron-Katz A, Wu W, Fonzo GA, Huemer J, Vértes PE, Patenaude B, Richiardi J, Goodkind MS, Keller CJ, Ramos-Cejudo J, Zaiko YV, Peng KK, Shpigel E, Longwell P, Toll RT, Thompson A, Zack S, Gonzalez B, Edelstein R, Chen J, Akingbade I, Weiss E, Hart R, Mann S, Durkin K, Baete SH, Boada FE, Genfi A, Autea J, Newman J, Oathes DJ, Lindley SE, Abu-Amara D, Arnow BA, Crossley N, Hallmayer J, Fossati S, Rothbaum BO, Marmar CR, Bullmore ET, O'Hara R. Using fMRI connectivity to define a treatment-resistant form of post-traumatic stress disorder. Sci Transl Med 2020; 11:11/486/eaal3236. [PMID: 30944165 DOI: 10.1126/scitranslmed.aal3236] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/01/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
A mechanistic understanding of the pathology of psychiatric disorders has been hampered by extensive heterogeneity in biology, symptoms, and behavior within diagnostic categories that are defined subjectively. We investigated whether leveraging individual differences in information-processing impairments in patients with post-traumatic stress disorder (PTSD) could reveal phenotypes within the disorder. We found that a subgroup of patients with PTSD from two independent cohorts displayed both aberrant functional connectivity within the ventral attention network (VAN) as revealed by functional magnetic resonance imaging (fMRI) neuroimaging and impaired verbal memory on a word list learning task. This combined phenotype was not associated with differences in symptoms or comorbidities, but nonetheless could be used to predict a poor response to psychotherapy, the best-validated treatment for PTSD. Using concurrent focal noninvasive transcranial magnetic stimulation and electroencephalography, we then identified alterations in neural signal flow in the VAN that were evoked by direct stimulation of that network. These alterations were associated with individual differences in functional fMRI connectivity within the VAN. Our findings define specific neurobiological mechanisms in a subgroup of patients with PTSD that could contribute to the poor response to psychotherapy.
Collapse
Affiliation(s)
- Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA. .,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA.,Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Adi Maron-Katz
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA.,Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Wei Wu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA.,Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,School of Automation Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA.,Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Julia Huemer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA
| | - Petra E Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 0SZ, UK.,School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK.,The Alan Turing Institute, London NW1 2DB, UK
| | - Brian Patenaude
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA.,Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Jonas Richiardi
- Department of Medical Radiology, Lausanne University Hospital, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Madeleine S Goodkind
- New Mexico Veterans Affairs Healthcare System, Albuquerque, NM 87108, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA.,Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Jaime Ramos-Cejudo
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,Department of Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Yevgeniya V Zaiko
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA
| | - Kathy K Peng
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA
| | - Emmanuel Shpigel
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA.,Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Parker Longwell
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA.,Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Russ T Toll
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA.,Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Allison Thompson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Sanno Zack
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Bryan Gonzalez
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,Department of Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Raleigh Edelstein
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA.,Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Jingyun Chen
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,Department of Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Irene Akingbade
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA.,Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Elizabeth Weiss
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA
| | - Roland Hart
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,Department of Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Silas Mann
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,Department of Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Kathleen Durkin
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,Department of Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Steven H Baete
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,New Mexico Veterans Affairs Healthcare System, Albuquerque, NM 87108, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Fernando E Boada
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,Center for Advanced Imaging Innovation and Research (CAI2R), NYU School of Medicine, New York, NY 10016, USA.,Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY 10016, USA
| | - Afia Genfi
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,Department of Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Jillian Autea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA.,Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Jennifer Newman
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,Department of Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Steven E Lindley
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA
| | - Duna Abu-Amara
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,Department of Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Bruce A Arnow
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Nicolas Crossley
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, 6513677 Santiago, Chile.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Wu Tsai Neurosciences Institute at Stanford, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA
| | - Silvia Fossati
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,Department of Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Barbara O Rothbaum
- Trauma and Anxiety Recovery Program, Department of Psychiatry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Charles R Marmar
- Steven and Alexandra Cohen Veterans Center for Post-traumatic Stress and Traumatic Brain Injury, New York University Langone School of Medicine, New York, NY 10016, USA.,Department of Psychiatry, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Edward T Bullmore
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 0SZ, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK.,ImmunoPsychiatry, Alternative Discovery and Development, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.,Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94394, USA
| |
Collapse
|
24
|
Global connectivity and local excitability changes underlie antidepressant effects of repetitive transcranial magnetic stimulation. Neuropsychopharmacology 2020; 45:1018-1025. [PMID: 32053828 PMCID: PMC7162876 DOI: 10.1038/s41386-020-0633-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a commonly- used treatment for major depressive disorder (MDD). However, our understanding of the mechanism by which TMS exerts its antidepressant effect is minimal. Furthermore, we lack brain signals that can be used to predict and track clinical outcome. Such signals would allow for treatment stratification and optimization. Here, we performed a randomized, sham-controlled clinical trial and measured electrophysiological, neuroimaging, and clinical changes before and after rTMS. Patients (N = 36) were randomized to receive either active or sham rTMS to the left dorsolateral prefrontal cortex (dlPFC) for 20 consecutive weekdays. To capture the rTMS-driven changes in connectivity and causal excitability, resting fMRI and TMS/EEG were performed before and after the treatment. Baseline causal connectivity differences between depressed patients and healthy controls were also evaluated with concurrent TMS/fMRI. We found that active, but not sham rTMS elicited (1) an increase in dlPFC global connectivity, (2) induction of negative dlPFC-amygdala connectivity, and (3) local and distributed changes in TMS/EEG potentials. Global connectivity changes predicted clinical outcome, while both global connectivity and TMS/EEG changes tracked clinical outcome. In patients but not healthy participants, we observed a perturbed inhibitory effect of the dlPFC on the amygdala. Taken together, rTMS induced lasting connectivity and excitability changes from the site of stimulation, such that after active treatment, the dlPFC appeared better able to engage in top-down control of the amygdala. These measures of network functioning both predicted and tracked clinical outcome, potentially opening the door to treatment optimization.
Collapse
|
25
|
Usami K, Milsap GW, Korzeniewska A, Collard MJ, Wang Y, Lesser RP, Anderson WS, Crone NE. Cortical Responses to Input From Distant Areas are Modulated by Local Spontaneous Alpha/Beta Oscillations. Cereb Cortex 2020; 29:777-787. [PMID: 29373641 DOI: 10.1093/cercor/bhx361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 01/13/2023] Open
Abstract
Any given area in human cortex may receive input from multiple, functionally heterogeneous areas, potentially representing different processing threads. Alpha (8-13 Hz) and beta oscillations (13-20 Hz) have been hypothesized by other investigators to gate local cortical processing, but their influence on cortical responses to input from other cortical areas is unknown. To study this, we measured the effect of local oscillatory power and phase on cortical responses elicited by single-pulse electrical stimulation (SPES) at distant cortical sites, in awake human subjects implanted with intracranial electrodes for epilepsy surgery. In 4 out of 5 subjects, the amplitudes of corticocortical evoked potentials (CCEPs) elicited by distant SPES were reproducibly modulated by the power, but not the phase, of local oscillations in alpha and beta frequencies. Specifically, CCEP amplitudes were higher when average oscillatory power just before distant SPES (-110 to -10 ms) was high. This effect was observed in only a subset (0-33%) of sites with CCEPs and, like the CCEPs themselves, varied with stimulation at different distant sites. Our results suggest that although alpha and beta oscillations may gate local processing, they may also enhance the responsiveness of cortex to input from distant cortical sites.
Collapse
Affiliation(s)
- Kiyohide Usami
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Griffin W Milsap
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maxwell J Collard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Ronald P Lesser
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Hautasaari P, McLellan S, Koskio M, Pesonen H, Tarkka IM. Acute Exercise Modulates Pain-induced Response on Sensorimotor Cortex ∼20 Hz Oscillation. Neuroscience 2020; 429:46-55. [DOI: 10.1016/j.neuroscience.2019.12.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/13/2019] [Accepted: 12/28/2019] [Indexed: 01/29/2023]
|
27
|
Pisano F, Marangolo P. Looking at ancillary systems for verb recovery: Evidence from non-invasive brain stimulation. Brain Cogn 2020; 139:105515. [PMID: 31902738 DOI: 10.1016/j.bandc.2019.105515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 11/17/2022]
Abstract
Several behavioural and neuroimaging studies have suggested that the language function is not restricted into the left areas but it involves regions not predicted by the classical language model. Accordingly, the Embodied Cognition theory postulates a close interaction between the language and the motor system. Indeed, it has been shown that non-invasive brain stimulation (NIBS) is effective for language recovery also when applied over sensorimotor regions, such as the motor cortex, the cerebellum and the spinal cord. We will review a series of NIBS studies in post-stroke aphasic people aimed to assess the impact of NIBS on verb recovery. We first present results which, following the classical assumption of the Broca's area as the key region for verb processing, have shown that the modulation over this area is efficacious for verb improvement. Then, we will present experiments which, according to Embodied Cognition, have directly investigated through NIBS the role of different sensorimotor regions in enhancing verb production. Since verbs play a crucial role for sentence construction which are most often impaired in the aphasic population, we believe that these results have important clinical implications. Indeed, they address the possibility that different structures might support verb processing.
Collapse
Affiliation(s)
- F Pisano
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy; IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - P Marangolo
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy; IRCCS, Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
28
|
|
29
|
Hyperexcitability and impaired intracortical inhibition in patients with fragile-X syndrome. Transl Psychiatry 2019; 9:312. [PMID: 31748507 PMCID: PMC6868148 DOI: 10.1038/s41398-019-0650-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/08/2019] [Accepted: 11/01/2019] [Indexed: 01/10/2023] Open
Abstract
Fragile-X syndrome (FXS) is characterized by neurological and psychiatric problems symptomatic of cortical hyperexcitability. Recent animal studies identified deficient γ-aminobutyricacid (GABA) inhibition as a key mechanism for hyperexcitability in FXS, but the GABA system remains largely unexplored in humans with the disorder. The primary objective of this study was to assess GABA-mediated inhibition and its relationship with hyperexcitability in patients with FXS. Transcranial magnetic stimulation (TMS) was used to assess cortical and corticospinal inhibitory and excitatory mechanisms in 18 patients with a molecular diagnosis of FXS and 18 healthy controls. GABA-mediated inhibition was measured with short-interval intracortical inhibition (GABAA), long-interval intracortical inhibition (GABAB), and the corticospinal silent period (GABAA+B). Net intracortical facilitation involving glutamate was assessed with intracortical facilitation, and corticospinal excitability was measured with the resting motor threshold. Results showed that FXS patients had significantly reduced short-interval intracortical inhibition, increased long-interval intracortical inhibition, and increased intracortical facilitation compared to healthy controls. In the FXS group, reduced short-interval intracortical inhibition was associated with heightened intracortical facilitation. Taken together, these results suggest that reduced GABAA inhibition is a plausible mechanism underlying cortical hyperexcitability in patients with FXS. These findings closely match those observed in animal models, supporting the translational validity of these markers for clinical research.
Collapse
|
30
|
Usami K, Korzeniewska A, Matsumoto R, Kobayashi K, Hitomi T, Matsuhashi M, Kunieda T, Mikuni N, Kikuchi T, Yoshida K, Miyamoto S, Takahashi R, Ikeda A, Crone NE. The neural tides of sleep and consciousness revealed by single-pulse electrical brain stimulation. Sleep 2019; 42:zsz050. [PMID: 30794319 PMCID: PMC6559171 DOI: 10.1093/sleep/zsz050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
Wakefulness and sleep arise from global changes in brain physiology that may also govern the flow of neural activity between cortical regions responsible for perceptual processing versus planning and action. To test whether and how the sleep/wake cycle affects the overall propagation of neural activity in large-scale brain networks, we applied single-pulse electrical stimulation (SPES) in patients implanted with intracranial EEG electrodes for epilepsy surgery. SPES elicited cortico-cortical spectral responses at high-gamma frequencies (CCSRHG, 80-150 Hz), which indexes changes in neuronal population firing rates. Using event-related causality (ERC) analysis, we found that the overall patterns of neural propagation among sites with CCSRHG were different during wakefulness and different sleep stages. For example, stimulation of frontal lobe elicited greater propagation toward parietal lobe during slow-wave sleep than during wakefulness. During REM sleep, we observed a decrease in propagation within frontal lobe, and an increase in propagation within parietal lobe, elicited by frontal and parietal stimulation, respectively. These biases in the directionality of large-scale cortical network dynamics during REM sleep could potentially account for some of the unique experiential aspects of this sleep stage. Together these findings suggest that the regulation of conscious awareness and sleep is associated with differences in the balance of neural propagation across large-scale frontal-parietal networks.
Collapse
Affiliation(s)
- Kiyohide Usami
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Masao Matsuhashi
- Research and Educational Unit of Leaders for Integrated Medical System, Kyoto University Graduate School of medicine, Sakyo-ku, Kyoto, Japan
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Shizukawa Toon city, Ehime, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Neurosurgery, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
31
|
Intracortical Dynamics Underlying Repetitive Stimulation Predicts Changes in Network Connectivity. J Neurosci 2019; 39:6122-6135. [PMID: 31182638 DOI: 10.1523/jneurosci.0535-19.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/12/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Targeted stimulation can be used to modulate the activity of brain networks. Previously we demonstrated that direct electrical stimulation produces predictable poststimulation changes in brain excitability. However, understanding the neural dynamics during stimulation and its relationship to poststimulation effects is limited but critical for treatment optimization. Here, we applied 10 Hz direct electrical stimulation across several cortical regions in 14 human subjects (6 males) implanted with intracranial electrodes for seizure monitoring. The stimulation train was characterized by a consistent increase in high gamma (70-170 Hz) power. Immediately post-train, low-frequency (1-8 Hz) power increased, resulting in an evoked response that was highly correlated with the neural response during stimulation. Using two measures of network connectivity, corticocortical evoked potentials (indexing effective connectivity), and theta coherence (indexing functional connectivity), we found a stronger response to stimulation in regions that were highly connected to the stimulation site. In these regions, repeated cycles of stimulation trains and rest progressively altered the stimulation response. Finally, after just 2 min (∼10%) of repetitive stimulation, we were able to predict poststimulation connectivity changes with high discriminability. Together, this work reveals a relationship between stimulation dynamics and poststimulation connectivity changes in humans. Thus, measuring neural activity during stimulation can inform future plasticity-inducing protocols.SIGNIFICANCE STATEMENT Brain stimulation tools have the potential to revolutionize the treatment of neuropsychiatric disorders. Despite the widespread use of brain stimulation techniques such as transcranial magnetic stimulation, the therapeutic efficacy of these technologies remains suboptimal. This is in part because of a lack of understanding of the dynamic neural changes that occur during stimulation. In this study, we provide the first detailed characterization of neural activity during plasticity induction through intracranial electrode stimulation and recording in 14 medication-resistant epilepsy patients. These results fill a missing gap in our understanding of stimulation-induced plasticity in humans. In the longer-term, these data will also guide our translational efforts toward non-invasive, personalized, closed-loop neuromodulation therapy for neurological and psychiatric disorders in humans.
Collapse
|
32
|
Abstract
Transcranial magnetic stimulation (TMS) holds promise as a tool for noninvasively facilitating plastic changes in cortical networks. However, highly resolved visualization of its modulatory effects remains elusive because current neuroimaging techniques applicable in humans are limited in spatiotemporal resolution. Here we used an imaging approach with voltage-sensitive dye and tracked, at submillimeter range, TMS-induced plastic changes across cat primary visual cortex. We show that high-frequency 10-Hz TMS induces a state where visual cortical maps are transiently “destabilized.” In turn, the cortex was sensitized to a bias in input—here imposed by prolonged exposure to a single visual orientation—and primed to relearn connectivity patterns. These findings implicate an early post-TMS time window for promising therapeutic interventions through TMS. Transcranial magnetic stimulation (TMS) has become a popular clinical method to modify cortical processing. The events underlying TMS-induced functional changes remain, however, largely unknown because current noninvasive recording methods lack spatiotemporal resolution or are incompatible with the strong TMS-associated electrical field. In particular, an answer to the question of how the relatively unspecific nature of TMS stimulation leads to specific neuronal reorganization, as well as a detailed picture of TMS-triggered reorganization of functional brain modules, is missing. Here we used real-time optical imaging in an animal experimental setting to track, at submillimeter range, TMS-induced functional changes in visual feature maps over several square millimeters of the brain’s surface. We show that high-frequency TMS creates a transient cortical state with increased excitability and increased response variability, which opens a time window for enhanced plasticity. Visual stimulation (i.e., 30 min of passive exposure) with a single orientation applied during this TMS-induced permissive period led to enlarged imprinting of the chosen orientation on the visual map across visual cortex. This reorganization was stable for hours and was characterized by a systematic shift in orientation preference toward the trained orientation. Thus, TMS can noninvasively trigger a targeted large-scale remodeling of fundamentally mature functional architecture in early sensory cortex.
Collapse
|
33
|
Osanai H, Minusa S, Tateno T. Micro-coil-induced Inhomogeneous Electric Field Produces sound-driven-like Neural Responses in Microcircuits of the Mouse Auditory Cortex In Vivo. Neuroscience 2018; 371:346-370. [DOI: 10.1016/j.neuroscience.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022]
|
34
|
Repetitive Transcranial Magnetic Stimulation, Cognition, and Multiple Sclerosis: An Overview. Behav Neurol 2018; 2018:8584653. [PMID: 29568339 PMCID: PMC5822759 DOI: 10.1155/2018/8584653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/07/2017] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) affects cognition in the majority of patients. A major aspect of the disease is brain volume loss (BVL), present in all phases and types (relapsing and progressive) of the disease and linked to both motor and cognitive disabilities. Due to the lack of effective pharmacological treatments for cognition, cognitive rehabilitation and other nonpharmacological interventions such as repetitive transcranial magnetic stimulation (rTMS) have recently emerged and their potential role in functional connectivity is studied. With recently developed advanced neuroimaging and neurophysiological techniques, changes related to alterations of the brain's functional connectivity can be detected. In this overview, we focus on the brain's functional reorganization in MS, theoretical and practical aspects of rTMS utilization in humans, and its potential therapeutic role in treating cognitively impaired MS patients.
Collapse
|
35
|
Li B, Virtanen JP, Oeltermann A, Schwarz C, Giese MA, Ziemann U, Benali A. Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation. eLife 2017; 6:30552. [PMID: 29165241 PMCID: PMC5722613 DOI: 10.7554/elife.30552] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/17/2017] [Indexed: 12/23/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8–1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6–300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain. Being able to tap into someone’s brain activity by holding loops of wires above their head sounds a little like the stuff of science fiction. And yet this technique, known as transcranial magnetic stimulation or TMS, is used in research and to treat many brain disorders. TMS emits a pulsed magnetic field that induces tiny electrical currents in the underlying brain tissue, activating that region of the brain. But exactly how these currents affect the individual neurons and networks within activated brain regions remains unclear. The main reason for this is that we cannot use conventional electrode-based techniques to study neuronal activity during TMS because its strong electromagnetic interferences mask the signals from the electrodes. Several groups have found ways to overcome this problem. However, their methods are technically demanding and specific to one single animal model –limitations that could present an obstacle for many laboratories. Li et al. therefore set out to develop a simple and widely accessible method to study neuronal activities under TMS. The resulting method makes it possible to measure the activity of individual neurons roughly 1/1,000th of a second after applying TMS. To show that the technique works, Li et al. induced small movements in the forelimbs of rats by applying TMS to the brain region that controls the forelimbs, while measuring the activity of neurons at the same time. This revealed, for the first time, how the neurons responsible for the forelimb movements responded to TMS. The observed TMS-triggered neuronal activity continued long after the TMS pulse had ended. The activity also varied depending on the direction of TMS-induced currents in the brain. This new method opens up the possibility to conveniently study – in rodents or other animals – how TMS procedures that are used in patients affect neuronal activity. Li et al. hope this will make it easier to develop, study and refine these procedures, and lead to advances in TMS therapies.
Collapse
Affiliation(s)
- Bingshuo Li
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Section on Computational Sensomotorics, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Graduate Training Centre/International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Juha P Virtanen
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Section on Computational Sensomotorics, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Axel Oeltermann
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Cornelius Schwarz
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Martin A Giese
- Section on Computational Sensomotorics, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Alia Benali
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Section on Computational Sensomotorics, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Crosson B, Hampstead BM, Krishnamurthy LC, Krishnamurthy V, McGregor KM, Nocera JR, Roberts S, Rodriguez AD, Tran SM. Advances in neurocognitive rehabilitation research from 1992 to 2017: The ascension of neural plasticity. Neuropsychology 2017; 31:900-920. [PMID: 28857600 DOI: 10.1037/neu0000396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The last 25 years have seen profound changes in neurocognitive rehabilitation that continue to motivate its evolution. Although the concept of nervous system plasticity was discussed by William James (1890), the foundation for experience-based plasticity had not reached the critical empirical mass to seriously impact rehabilitation research until after 1992. The objective of this review is to describe how the emergence of neural plasticity has changed neurocognitive rehabilitation research. METHOD The important developments included (a) introduction of a widely available tool that could measure brain plasticity (i.e., functional MRI); (b) development of new structural imaging techniques that could define limits of and opportunities for neural plasticity; (c) deployment of noninvasive brain stimulation to leverage neural plasticity for rehabilitation; (d) growth of a literature indicating that exercise has positively impacts neural plasticity, especially for older persons; and (e) enhancement of neural plasticity by creating interventions that generalize beyond the boundaries of treatment activities. Given the massive literature, each of these areas is developed by example. RESULTS The expanding influence of neural plasticity has provided new models and tools for neurocognitive rehabilitation in neural injuries and disorders, as well as methods for measuring neural plasticity and predicting its limits and opportunities. Early clinical trials have provided very encouraging results. CONCLUSION Now that neural plasticity has gained a firm foothold, it will continue to influence the evolution of neurocognitive rehabilitation research for the next 25 years and advance rehabilitation for neural injuries and disease. (PsycINFO Database Record
Collapse
Affiliation(s)
- Bruce Crosson
- Veterans Affairs Rehabilitation Research and Development Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center
| | - Benjamin M Hampstead
- Neuropsychology Section, Department of Mental Health Services, Veterans Affairs Ann Arbor Healthcare Systems
| | | | | | | | | | | | - Amy D Rodriguez
- Atlanta Veterans Affairs Rehabilitation Research and Development Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center
| | | |
Collapse
|
37
|
Jancke D. Catching the voltage gradient-asymmetric boost of cortical spread generates motion signals across visual cortex: a brief review with special thanks to Amiram Grinvald. NEUROPHOTONICS 2017; 4:031206. [PMID: 28217713 PMCID: PMC5301132 DOI: 10.1117/1.nph.4.3.031206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Wide-field voltage imaging is unique in its capability to capture snapshots of activity-across the full gradient of average changes in membrane potentials from subthreshold to suprathreshold levels-of hundreds of thousands of superficial cortical neurons that are simultaneously active. Here, I highlight two examples where voltage-sensitive dye imaging (VSDI) was exploited to track gradual space-time changes of activity within milliseconds across several millimeters of cortex at submillimeter resolution: the line-motion condition, measured in Amiram Grinvald's Laboratory more than 10 years ago and-coming full circle running VSDI in my laboratory-another motion-inducing condition, in which two neighboring stimuli counterchange luminance simultaneously. In both examples, cortical spread is asymmetrically boosted, creating suprathreshold activity drawn out over primary visual cortex. These rapidly propagating waves may integrate brain signals that encode motion independent of direction-selective circuits.
Collapse
Affiliation(s)
- Dirk Jancke
- Ruhr University Bochum, Optical Imaging Group, Institut für Neuroinformatik, Bochum, Germany
| |
Collapse
|
38
|
Chemla S, Muller L, Reynaud A, Takerkart S, Destexhe A, Chavane F. Improving voltage-sensitive dye imaging: with a little help from computational approaches. NEUROPHOTONICS 2017; 4:031215. [PMID: 28573154 PMCID: PMC5438098 DOI: 10.1117/1.nph.4.3.031215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/24/2017] [Indexed: 05/29/2023]
Abstract
Voltage-sensitive dye imaging (VSDI) is a key neurophysiological recording tool because it reaches brain scales that remain inaccessible to other techniques. The development of this technique from in vitro to the behaving nonhuman primate has only been made possible thanks to the long-lasting, visionary work of Amiram Grinvald. This work has opened new scientific perspectives to the great benefit to the neuroscience community. However, this unprecedented technique remains largely under-utilized, and many future possibilities await for VSDI to reveal new functional operations. One reason why this tool has not been used extensively is the inherent complexity of the signal. For instance, the signal reflects mainly the subthreshold neuronal population response and is not linked to spiking activity in a straightforward manner. Second, VSDI gives access to intracortical recurrent dynamics that are intrinsically complex and therefore nontrivial to process. Computational approaches are thus necessary to promote our understanding and optimal use of this powerful technique. Here, we review such approaches, from computational models to dissect the mechanisms and origin of the recorded signal, to advanced signal processing methods to unravel new neuronal interactions at mesoscopic scale. Only a stronger development of interdisciplinary approaches can bridge micro- to macroscales.
Collapse
Affiliation(s)
- Sandrine Chemla
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| | - Lyle Muller
- Salk Institute for Biological Studies, Computational Neurobiology Laboratory, La Jolla, California, United States
| | - Alexandre Reynaud
- McGill University, McGill Vision Research, Department of Ophthalmology, Montreal, Quebec, Canada
| | - Sylvain Takerkart
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| | - Alain Destexhe
- Unit for Neurosciences, Information and Complexity (UNIC), Centre National de la Recherche Scientifique (CNRS), UPR-3293, Gif-sur-Yvette, France
- The European Institute for Theoretical Neuroscience (EITN), Paris, France
| | - Frédéric Chavane
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), UMR-7289 Institut de Neurosciences de la Timone, Marseille, France
| |
Collapse
|
39
|
Kobayashi B, Cook IA, Hunter AM, Minzenberg MJ, Krantz DE, Leuchter AF. Can neurophysiologic measures serve as biomarkers for the efficacy of repetitive transcranial magnetic stimulation treatment of major depressive disorder? Int Rev Psychiatry 2017; 29:98-114. [PMID: 28362541 DOI: 10.1080/09540261.2017.1297697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for Major Depressive Disorder (MDD). There are clinical data that support the efficacy of many different approaches to rTMS treatment, and it remains unclear what combination of stimulation parameters is optimal to relieve depressive symptoms. Because of the costs and complexity of studies that would be necessary to explore and compare the large number of combinations of rTMS treatment parameters, it would be useful to establish reliable surrogate biomarkers of treatment efficacy that could be used to compare different approaches to treatment. This study reviews the evidence that neurophysiologic measures of cortical excitability could be used as biomarkers for screening different rTMS treatment paradigms. It examines evidence that: (1) changes in excitability are related to the mechanism of action of rTMS; (2) rTMS has consistent effects on measures of excitability that could constitute reliable biomarkers; and (3) changes in excitability are related to the outcomes of rTMS treatment of MDD. An increasing body of evidence indicates that these neurophysiologic measures have the potential to serve as reliable biomarkers for screening different approaches to rTMS treatment of MDD.
Collapse
Affiliation(s)
- Brian Kobayashi
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Ian A Cook
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA.,d Department of Bioengineering , University of California Los Angeles , Los Angeles , CA , USA
| | - Aimee M Hunter
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Michael J Minzenberg
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - David E Krantz
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Andrew F Leuchter
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| |
Collapse
|
40
|
Selective TMS-induced modulation of functional connectivity correlates with changes in behavior. Neuroimage 2017; 149:361-378. [DOI: 10.1016/j.neuroimage.2017.01.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/06/2017] [Accepted: 01/30/2017] [Indexed: 11/19/2022] Open
|
41
|
van Lamsweerde AE, Johnson JS. Assessing the Effect of Early Visual Cortex Transcranial Magnetic Stimulation on Working Memory Consolidation. J Cogn Neurosci 2017; 29:1226-1238. [PMID: 28253081 DOI: 10.1162/jocn_a_01113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.
Collapse
|
42
|
Immediate Effects of Repetitive Magnetic Stimulation on Single Cortical Pyramidal Neurons. PLoS One 2017; 12:e0170528. [PMID: 28114421 PMCID: PMC5256952 DOI: 10.1371/journal.pone.0170528] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/18/2016] [Indexed: 11/19/2022] Open
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) has been successfully used as a non-invasive therapeutic intervention for several neurological disorders in the clinic as well as an investigative tool for basic neuroscience. rTMS has been shown to induce long-term changes in neuronal circuits in vivo. Such long-term effects of rTMS have been investigated using behavioral, imaging, electrophysiological, and molecular approaches, but there is limited understanding of the immediate effects of TMS on neurons. We investigated the immediate effects of high frequency (20 Hz) rTMS on the activity of cortical neurons in an effort to understand the underlying cellular mechanisms activated by rTMS. We used whole-cell patch-clamp recordings in acute rat brain slices and calcium imaging of cultured primary neurons to examine changes in neuronal activity and intracellular calcium respectively. Our results indicate that each TMS pulse caused an immediate and transient activation of voltage gated sodium channels (9.6 ± 1.8 nA at -45 mV, p value < 0.01) in neurons. Short 500 ms 20 Hz rTMS stimulation induced action potentials in a subpopulation of neurons, and significantly increased the steady state current of the neurons at near threshold voltages (at -45 mV: before TMS: I = 130 ± 17 pA, during TMS: I = 215 ± 23 pA, p value = 0.001). rTMS stimulation also led to a delayed increase in intracellular calcium (153.88 ± 61.94% increase from baseline). These results show that rTMS has an immediate and cumulative effect on neuronal activity and intracellular calcium levels, and suggest that rTMS may enhance neuronal responses when combined with an additional motor, sensory or cognitive stimulus. Thus, these results could be translated to optimize rTMS protocols for clinical as well as basic science applications.
Collapse
|
43
|
Lenz M, Vlachos A. Releasing the Cortical Brake by Non-Invasive Electromagnetic Stimulation? rTMS Induces LTD of GABAergic Neurotransmission. Front Neural Circuits 2016; 10:96. [PMID: 27965542 PMCID: PMC5124712 DOI: 10.3389/fncir.2016.00096] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022] Open
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is a non-invasive brain stimulation technique which modulates cortical excitability beyond the stimulation period. However, despite its clinical use rTMS-based therapies which prevent or reduce disabilities in a functionally significant and sustained manner are scarce. It remains unclear how rTMS-mediated changes in cortical excitability, which are not task- or input-specific, exert beneficial effects in some healthy subjects and patients. While experimental evidence exists that repetitive magnetic stimulation (rMS) is linked to the induction of long-term potentiation (LTP) of excitatory neurotransmission, less attention has been dedicated to rTMS-induced structural, functional and molecular adaptations at inhibitory synapses. In this review article we provide a concise overview on basic neuroscience research, which reveals an important role of local disinhibitory networks in promoting associative learning and memory. These studies suggest that a reduction in inhibitory neurotransmission facilitates the expression of associative plasticity in cortical networks under physiological conditions. Hence, it is interesting to speculate that rTMS may act by decreasing GABAergic neurotransmission onto cortical principal neurons. Indeed, evidence has been provided that rTMS is capable of modulating inhibitory networks. Consistent with this suggestion recent basic science work discloses that a 10 Hz rTMS protocol reduces GABAergic synaptic strength on principal neurons. These findings support a model in which rTMS-induced long-term depression (LTD) of GABAergic synaptic strength mediates changes in excitation/inhibition-balance of cortical networks, which may in turn facilitate (or restore) the ability of stimulated networks to express input- and task-specific associative synaptic plasticity.
Collapse
Affiliation(s)
- Maximilian Lenz
- Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Andreas Vlachos
- Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| |
Collapse
|
44
|
Matheson NA, Shemmell JBH, De Ridder D, Reynolds JNJ. Understanding the Effects of Repetitive Transcranial Magnetic Stimulation on Neuronal Circuits. Front Neural Circuits 2016; 10:67. [PMID: 27601980 PMCID: PMC4993761 DOI: 10.3389/fncir.2016.00067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/09/2016] [Indexed: 01/26/2023] Open
Affiliation(s)
- Natalie A Matheson
- Department of Anatomy, Brain Research NZ, University of Otago Dunedin, New Zealand
| | - Jon B H Shemmell
- School of Physical Education, Sport and Exercise Sciences, Brain Research NZ, University of Otago Dunedin, New Zealand
| | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, Brain Research NZ, University of Otago Dunedin, New Zealand
| | - John N J Reynolds
- Department of Anatomy, Brain Research NZ, University of Otago Dunedin, New Zealand
| |
Collapse
|
45
|
Tang A, Thickbroom G, Rodger J. Repetitive Transcranial Magnetic Stimulation of the Brain: Mechanisms from Animal and Experimental Models. Neuroscientist 2016; 23:82-94. [PMID: 26643579 DOI: 10.1177/1073858415618897] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since the development of transcranial magnetic stimulation (TMS) in the early 1980s, a range of repetitive TMS (rTMS) protocols are now available to modulate neuronal plasticity in clinical and non-clinical populations. However, despite the wide application of rTMS in humans, the mechanisms underlying rTMS-induced plasticity remain uncertain. Animal and in vitro models provide an adjunct method of investigating potential synaptic and non-synaptic mechanisms of rTMS-induced plasticity. This review summarizes in vitro experimental studies, in vivo studies with intact rodents, and preclinical models of selected neurological disorders-Parkinson's disease, depression, and stroke. We suggest that these basic research findings can contribute to the understanding of how rTMS-induced plasticity can be modulated, including novel mechanisms such as neuroprotection and neurogenesis that have significant therapeutic potential.
Collapse
Affiliation(s)
- Alexander Tang
- 1 Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Perth, Australia
| | | | - Jennifer Rodger
- 1 Experimental and Regenerative Neurosciences, School of Animal Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
46
|
Abstract
Recognizing that electrically stimulating the motor cortex could relieve chronic pain sparked development of noninvasive technologies. In transcranial magnetic stimulation (TMS), electromagnetic coils held against the scalp influence underlying cortical firing. Multiday repetitive transcranial magnetic stimulation (rTMS) can induce long-lasting, potentially therapeutic brain plasticity. Nearby ferromagnetic or electronic implants are contraindications. Adverse effects are minimal, primarily headaches. Single provoked seizures are very rare. Transcranial magnetic stimulation devices are marketed for depression and migraine in the United States and for various indications elsewhere. Although multiple studies report that high-frequency rTMS of the motor cortex reduces neuropathic pain, their quality has been insufficient to support Food and Drug Administration application. Harvard's Radcliffe Institute therefore sponsored a workshop to solicit advice from experts in TMS, pain research, and clinical trials. They recommended that researchers standardize and document all TMS parameters and improve strategies for sham and double blinding. Subjects should have common well-characterized pain conditions amenable to motor cortex rTMS and studies should be adequately powered. They recommended standardized assessment tools (eg, NIH's PROMIS) plus validated condition-specific instruments and consensus-recommended metrics (eg, IMMPACT). Outcomes should include pain intensity and qualities, patient and clinician impression of change, and proportions achieving 30% and 50% pain relief. Secondary outcomes could include function, mood, sleep, and/or quality of life. Minimum required elements include sample sources, sizes, and demographics, recruitment methods, inclusion and exclusion criteria, baseline and posttreatment means and SD, adverse effects, safety concerns, discontinuations, and medication-usage records. Outcomes should be monitored for at least 3 months after initiation with prespecified statistical analyses. Multigroup collaborations or registry studies may be needed for pivotal trials.
Collapse
|
47
|
Chemla S, Chavane F. Effects of GABAA kinetics on cortical population activity: computational studies and physiological confirmations. J Neurophysiol 2016; 115:2867-79. [PMID: 26912588 DOI: 10.1152/jn.00352.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 02/22/2016] [Indexed: 11/22/2022] Open
Abstract
Voltage-sensitive dye (VSD) imaging produces an unprecedented real-time and high-resolution mesoscopic signal to measure the cortical population activity. We have previously shown that the neuronal compartments contributions to the signal are dynamic and stimulus-dependent (Chemla S, Chavane F. Neuroimage 53: 420-438, 2010). Moreover, the VSD signal can also be strongly affected by the network state, such as in anesthetized vs. awake preparations. Here, we investigated the impact of the network state, through GABAA receptors modulation, on the VSD signal using a computational approach. We therefore systematically measured the effect of the GABAA-mediated inhibitory postsynaptic potentials (IPSPs) decay time constant (τG) on our modeled VSD response to an input stimulus of increasing strength. Our simulations suggest that τG strongly modulates the dynamics of the VSD signal, affecting the amplitude, input response function, and the transient balance of excitation and inhibition. We confirmed these predictions experimentally on awake and anesthetized monkeys, comparing VSD responses to drifting gratings stimuli of various contrasts. Lastly, one in vitro study has suggested that GABAA receptors may also be directly affected by the VSDs themselves (Mennerick S, Chisari M, Shu H, Taylor A, Vasek M, Eisenman L, Zorumski C. J Neurosci 30: 2871-2879, 2010). Our modeling approach suggests that the type of modulation described in this study would actually have a negligible influence on the population response. This study highlights that functional results acquired with different techniques and network states must be compared with caution. Biophysical models are proposed here as an adequate tool to delineate the domain of VSD data interpretation.
Collapse
Affiliation(s)
- Sandrine Chemla
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada; and
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone, UMR 7289 Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| |
Collapse
|
48
|
Stamm M, Aru J, Rutiku R, Bachmann T. Occipital long-interval paired pulse TMS leads to slow wave components in NREM sleep. Conscious Cogn 2015; 35:78-87. [DOI: 10.1016/j.concog.2015.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 11/25/2022]
|
49
|
Long-Term Spatiotemporal Reconfiguration of Neuronal Activity Revealed by Voltage-Sensitive Dye Imaging in the Cerebellar Granular Layer. Neural Plast 2015; 2015:284986. [PMID: 26294979 PMCID: PMC4532947 DOI: 10.1155/2015/284986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/21/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022] Open
Abstract
Understanding the spatiotemporal organization of long-term synaptic plasticity in neuronal networks demands techniques capable of monitoring changes in synaptic responsiveness over extended multineuronal structures. Among these techniques, voltage-sensitive dye imaging (VSD imaging) is of particular interest due to its good spatial resolution. However, improvements of the technique are needed in order to overcome limits imposed by its low signal-to-noise ratio. Here, we show that VSD imaging can detect long-term potentiation (LTP) and long-term depression (LTD) in acute cerebellar slices. Combined VSD imaging and patch-clamp recordings revealed that the most excited regions were predominantly associated with granule cells (GrCs) generating EPSP-spike complexes, while poorly responding regions were associated with GrCs generating EPSPs only. The correspondence with cellular changes occurring during LTP and LTD was highlighted by a vector representation obtained by combining amplitude with time-to-peak of VSD signals. This showed that LTP occurred in the most excited regions lying in the core of activated areas and increased the number of EPSP-spike complexes, while LTD occurred in the less excited regions lying in the surround. VSD imaging appears to be an efficient tool for investigating how synaptic plasticity contributes to the reorganization of multineuronal activity in neuronal circuits.
Collapse
|
50
|
Crosson B, McGregor KM, Nocera JR, Drucker JH, Tran SM, Butler AJ. The relevance of aging-related changes in brain function to rehabilitation in aging-related disease. Front Hum Neurosci 2015; 9:307. [PMID: 26074807 PMCID: PMC4444823 DOI: 10.3389/fnhum.2015.00307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/12/2015] [Indexed: 12/29/2022] Open
Abstract
The effects of aging on rehabilitation of aging-related diseases are rarely a design consideration in rehabilitation research. In this brief review we present strong coincidental evidence from these two fields suggesting that deficits in aging-related disease or injury are compounded by the interaction between aging-related brain changes and disease-related brain changes. Specifically, we hypothesize that some aphasia, motor, and neglect treatments using repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) in stroke patients may address the aging side of this interaction. The importance of testing this hypothesis and addressing the larger aging by aging-related disease interaction is discussed. Underlying mechanisms in aging that most likely are relevant to rehabilitation of aging-related diseases also are covered.
Collapse
Affiliation(s)
- Bruce Crosson
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA ; Department of Psychology, Georgia State University Atlanta, GA, USA ; School of Health and Rehabilitation Sciences, University of Queensland Brisbane, Qld, Australia
| | - Keith M McGregor
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA
| | - Joe R Nocera
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA
| | - Jonathan H Drucker
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA ; Department of Psychology, Emory University Atlanta, GA, USA
| | - Stella M Tran
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Psychology, Georgia State University Atlanta, GA, USA
| | - Andrew J Butler
- Department of Veterans Affairs Rehabilitation Research and Development Center of Excellence for Visual and Neurocognitive Rehabilitation (151R), Atlanta VA Medical Center Decatur, GA, USA ; Department of Physical Therapy and School of Nursing and Health Professionals, Georgia State University Atlanta, GA, USA
| |
Collapse
|