1
|
Matsumoto S, Kogure Y, Ono S, Numata T, Endo T. Msp1 and Pex19-Pex3 cooperate to achieve correct localization of Pex15 to peroxisomes. FEBS J 2025. [PMID: 40344504 DOI: 10.1111/febs.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/14/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Yeast Msp1 is a dual-localized AAA-ATPase on the mitochondrial outer membrane (OM) and peroxisomal membrane. We previously showed that Msp1 transfers mistargeted tail-anchored (TA) proteins from mitochondria to the endoplasmic reticulum (ER) for degradation or delivery to their original destinations. However, the mechanism by which Msp1 in mitochondria and peroxisomes handles authentic peroxisomal TA proteins remains unclear. We show that newly synthesized Pex15 is targeted to peroxisomes primarily via the Pex19- and Pex3-dependent pathway. Mistargeted Pex15 on the mitochondrial OM is extracted by mitochondrial Msp1 and transferred to the ER via the guided-entry of TA proteins pathway for degradation or to peroxisomes via the Pex19-Pex3 pathway. Intriguingly, endogenous Pex15 localized in peroxisomes is also extracted from the membranes by peroxisomal Msp1 but returns to peroxisomes via the Pex19-Pex3 pathway. These results suggest that correct Pex15 localization to peroxisomes relies on not only the initial targeting by Pex19-Pex3 but also the constant re-routing by Msp1 and Pex19-Pex3.
Collapse
Affiliation(s)
- Shunsuke Matsumoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiki Kogure
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Suzuka Ono
- Faculty of Life Sciences, Kyoto Sangyo University, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Japan
- Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| |
Collapse
|
2
|
Balzarini M, Kim J, Weidberg H. Quality control of un-imported mitochondrial proteins at a glance. J Cell Sci 2025; 138:jcs263757. [PMID: 40351165 DOI: 10.1242/jcs.263757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Mitochondria are metabolic hubs that are essential for cellular homeostasis. Most mitochondrial proteins are translated in the cytosol and imported into the organelle. However, import machineries can become overwhelmed or disrupted by physiological demands, mitochondrial damage or diseases, such as metabolic and neurodegenerative disorders. Impaired import affects mitochondrial function and causes un-imported pre-proteins to accumulate not only in the cytosol but also in other compartments, including the endoplasmic reticulum and nucleus. Quality control pathways have evolved to mitigate the accumulation of these mistargeted proteins and prevent proteotoxicity. In this Cell Science at a Glance article and the accompanying poster, we summarize the fate of un-imported mitochondrial proteins and the compartment-specific quality control pathways that regulate them.
Collapse
Affiliation(s)
- Megan Balzarini
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John Kim
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hilla Weidberg
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Aravindan N, Vitali DG, Breuer J, Oberst J, Zalckvar E, Schuldiner M, Rapaport D. Mpf1 affects the dual distribution of tail-anchored proteins between mitochondria and peroxisomes. EMBO Rep 2025; 26:2622-2653. [PMID: 40175596 PMCID: PMC12116889 DOI: 10.1038/s44319-025-00440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
Most cellular proteins require targeting to a distinct cellular compartment to function properly. A subset of proteins is distributed to two or more destinations in the cell and little is known about the mechanisms controlling the process of dual/multiple targeting. Here, we provide insight into the mechanism of dual targeting of proteins between mitochondria and peroxisomes. We perform a high throughput microscopy screen in which we visualize the location of the model tail-anchored proteins Fis1 and Gem1 in the background of mutants in virtually all yeast genes. This screen identifies three proteins, whose absence results in a higher portion of the tail-anchored proteins in peroxisomes: the two paralogues Tom70, Tom71, and the uncharacterized gene YNL144C that we rename mitochondria and peroxisomes factor 1 (Mpf1). We characterize Mpf1 to be an unstable protein that associates with the cytosolic face of the mitochondrial outer membrane. Furthermore, our study uncovers a unique contribution of Tom71 to the regulation of dual targeting. Collectively, our study reveals, for the first time, factors that influence the dual targeting of proteins between mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Nitya Aravindan
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Daniela G Vitali
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Julia Breuer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jessica Oberst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Walter IR, Smith BA, Castanzo D, Wohlever ML. Overcoming fluorescence loss in mEOS-based AAA+ unfoldase reporters through covalent linkage. Protein Expr Purif 2025; 232:106724. [PMID: 40306474 DOI: 10.1016/j.pep.2025.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Recent work has demonstrated that the soluble photoconvertable fluorescent protein mEOS can be a reporter for AAA+ (ATPases Associated with diverse cellular Activities) unfoldase activity. Given that many AAA+ proteins process membrane proteins, we sought to adapt mEOS for use with membrane protein substrates. However, direct genetic fusion of mEOS to a membrane protein completely abolished fluorescence, severely limiting the utility of mEOS for studying AAA+ proteins. To circumvent this challenge, we separately purified mEOS and multiple different AAA+ degrons, including a transmembrane domain. We then covalently linked mEOS and the degrons via Sortase. This innovative approach preserves mEOS fluorescence and photoconversion, even upon linkage to a transmembrane domain. Together, this work offers a broadly applicable platform for the study of membrane associated AAA+ proteins.
Collapse
Affiliation(s)
- Isabella R Walter
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH, 43606, USA
| | - Baylee A Smith
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH, 43606, USA
| | - Dominic Castanzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA; Institute of Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Matthew L Wohlever
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH, 43606, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
5
|
Du X, Xu Z, Lu J, Chen Y, Gao X, Zhang J, He C, Huang L, Guo W, Cui Y, Wang X, Ai J, Li L, Cui Y, Liu Y, Fu J, Gu R, Wang J, Wang G. A LTR retrotransposon insertion leads to leafy phenotype in maize by elevating ZmOM66 expression. Nat Commun 2025; 16:3152. [PMID: 40175370 PMCID: PMC11965440 DOI: 10.1038/s41467-025-57811-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/04/2025] [Indexed: 04/04/2025] Open
Abstract
Leafy (Lfy1) is a classical dominant mutant showing more leaf number above primary ear and later flowering time in maize, but the causal gene together with its underlying genetic mechanism are unknown. Here, we report the cloning of Lfy1 mutant, and find that a retrotransposon insertion leads to leafy phenotype by elevating expression of its neighboring gene ZmOM66. ZmOM66 encodes an AAA+ ATPase that locate in mitochondria and interacts with itself. ZmOM66 overexpression affects the starch degradation, as well as contents of glucose, pyruvic acid, trehalose-6-phosphate, and TCA cycle related amino acids, and influences expression patterns of circadian clock genes. Moreover, expressions of floral related genes, including photoperiod regulated gene ZmPHYB1, integrator genes ZCN7, ZNC8 and ZCN12, and floral meristem identity genes ZMM4, ZMM15, and MASD67, are also significantly decreased by ZmOM66 overexpression. These results deepen our understanding of the regulatory mechanism of floral transition and leaf number in plant.
Collapse
Affiliation(s)
- Xuemei Du
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhuoyi Xu
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiawen Lu
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan Chen
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinpeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Cheng He
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Liying Huang
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wei Guo
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yangbo Cui
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaoli Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junmin Ai
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Li Li
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yu Cui
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Riliang Gu
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Jianhua Wang
- State Key Laboratory of Maize Bio-Breeding, Frontiers Science Center for Molecular Design Breeding, Beijing Innovation Center for Crop Seed Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Guoying Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
6
|
Gaur D, Acquaviva B, Wohlever ML. An Msp1-Protease Chimera Captures Transient AAA+ Interactions and Unveils Ost4 Mislocalization Errors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646376. [PMID: 40236206 PMCID: PMC11996533 DOI: 10.1101/2025.03.31.646376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Membrane protein homeostasis (proteostasis) is essential for maintaining the integrity of eukaryotic organelles. Msp1 is a membrane anchored AAA+ (ATPase Associated with cellular Activities) protein that maintains mitochondrial proteostasis by extracting aberrant proteins from the outer mitochondrial membrane. A comprehensive understanding of the physiological roles of Msp1 has been hindered because AAA+ proteins interact with substrates transiently and common strategies to stabilize this interaction lead to undesirable mitochondrial phenotypes. To circumvent these drawbacks, we fused catalytically active Msp1 to the inactivated protease domain of the AAA+ protease Yme1. The resulting chimera sequesters substrates in the catalytically inactive degradation chamber formed by the protease domain. We performed mass spectrometry analysis with the Msp1-protease chimera and identified the signal anchored protein Ost4 as a novel Msp1 substrate. Topology experiments show that Ost4 adopts mixed orientations when mislocalized to mitochondria and that Msp1 extracts mislocalized Ost4 regardless of orientation. Together, this work develops new tools for capturing transient interactions with AAA+ proteins, identifies new Msp1 substrates, and shows a surprising error in targeting of Ost4.
Collapse
|
7
|
Jackson J, Becker T. Unclogging of the TOM complex under import stress. Biol Chem 2025:hsz-2025-0110. [PMID: 40148274 DOI: 10.1515/hsz-2025-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Mitochondrial functions and biogenesis depend on the import of more than 1,000 proteins which are synthesized as precursor proteins on cytosolic ribosomes. Mitochondrial protein translocases sort the precursor proteins into the mitochondrial sub-compartments: outer and inner membrane, the intermembrane space and the matrix. The translocase of the outer mitochondrial membrane (TOM complex) constitutes the major import site for most of these precursor proteins. Defective protein translocases, premature folding of the precursor, or depletion of the membrane potential can cause clogging of the TOM channel by a precursor protein. This clogging impairs further protein import and leads to accumulation of precursor proteins in the cell that perturbates protein homeostasis, leading to proteotoxic stress in the cell. Therefore, unclogging of the translocon is critical for maintaining mitochondrial and cellular function. Ubiquitylation and AAA-ATPases play a central role in the extraction of the precursor proteins to deliver them to the proteasome for degradation. Here we summarize our understanding of the molecular mechanisms that remove such translocation-stalled precursor proteins from the translocation channel to regenerate the TOM complex for protein import.
Collapse
Affiliation(s)
- Joshua Jackson
- Faculty of Medicine, 9374 Institute of Biochemistry and Molecular Biology, University of Bonn , Nußallee 11, D-53113 Bonn, Germany
| | - Thomas Becker
- Faculty of Medicine, 9374 Institute of Biochemistry and Molecular Biology, University of Bonn , Nußallee 11, D-53113 Bonn, Germany
| |
Collapse
|
8
|
Oborská-Oplová M, Geiger AG, Michel E, Klingauf-Nerurkar P, Dennerlein S, Bykov YS, Amodeo S, Schneider A, Schuldiner M, Rehling P, Panse VG. An avoidance segment resolves a lethal nuclear-mitochondrial targeting conflict during ribosome assembly. Nat Cell Biol 2025; 27:336-346. [PMID: 39890954 DOI: 10.1038/s41556-024-01588-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/27/2024] [Indexed: 02/03/2025]
Abstract
The correct sorting of nascent ribosomal proteins from the cytoplasm to the nucleus or to mitochondria for ribosome production poses a logistical challenge for cellular targeting pathways. Here we report the discovery of a conserved mitochondrial avoidance segment (MAS) within the cytosolic ribosomal protein uS5 that resolves an evolutionary lethal conflict between the nuclear and mitochondrial targeting machinery. MAS removal mistargets uS5 to the mitochondrial matrix and disrupts the assembly of the cytosolic ribosome. The resulting lethality can be rescued by impairing mitochondrial import. We show that MAS triages nuclear targeting by disabling a cryptic mitochondrial targeting activity within uS5 and thereby prevents fatal capture by mitochondria. Our findings identify MAS as an essential acquisition by the primordial eukaryote that reinforced organelle targeting fidelity while developing an endosymbiotic relationship with its mitochondrial progenitor.
Collapse
Affiliation(s)
- Michaela Oborská-Oplová
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | - Erich Michel
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Yury S Bykov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Simona Amodeo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
- Max-Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells', University of Goettingen, Goettingen, Germany
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Hsu MC, Kinefuchi H, Lei L, Kikuchi R, Yamano K, Youle RJ. Mitochondrial YME1L1 governs unoccupied protein translocase channels. Nat Cell Biol 2025; 27:309-321. [PMID: 39774271 DOI: 10.1038/s41556-024-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Mitochondrial protein import through the outer and inner membranes is key to mitochondrial biogenesis. Recent studies have explored how cells respond when import is impaired by a variety of different insults. Here, we developed a mammalian import blocking system using dihydrofolate reductase fused to the N terminus of the inner membrane protein MIC60. While stabilization of the dihydrofolate reductase domain by methotrexate inhibited endogenous mitochondrial protein import, it neither activated the transcription factor ATF4, nor was affected by ATAD1 expression or by VCP/p97 inhibition. On the other hand, notably, plugging the channel of translocase of the outer membrane) induced YME1L1, an ATP-dependent protease, to eliminate translocase of the inner membrane (TIM23) channel components TIMM17A and TIMM23. The data suggest that unoccupied TIM23 complexes expose a C-terminal degron on TIMM17A to YME1L1 for degradation. Import plugging caused a cell growth defect and loss of YME1L1 exacerbated the growth inhibition, showing the protective effect of YME1L1 activity. YME1L1 seems to play a crucial role in mitochondrial quality control to counteract precursor stalling in the translocase of the outer membrane complex and unoccupied TIM23 channels.
Collapse
Affiliation(s)
- Meng-Chieh Hsu
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Animal Science and Technology, National Taiwan University, Taipei City, Taiwan
| | - Hiroki Kinefuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Biomolecular Pathogenesis, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Linlin Lei
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Reika Kikuchi
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Biomolecular Pathogenesis, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Koji Yamano
- Department of Biomolecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
- Department of Biomolecular Pathogenesis, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan.
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Pfanner N, den Brave F, Becker T. Mitochondrial protein import stress. Nat Cell Biol 2025; 27:188-201. [PMID: 39843636 DOI: 10.1038/s41556-024-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025]
Abstract
Mitochondria have to import a large number of precursor proteins from the cytosol. Chaperones keep these proteins in a largely unfolded state and guide them to the mitochondrial import sites. Premature folding, mitochondrial stress and import defects can cause clogging of import sites and accumulation of non-imported precursors, representing a critical burden for cellular proteostasis. Here we discuss how cells respond to mitochondrial protein import stress by regenerating clogged import sites and inducing stress responses. The mitochondrial protein import machinery has a dual role by serving as sensor for detecting mitochondrial dysfunction and inducing stress-response pathways. The production of chaperones that fold or sequester precursor proteins in deposits is induced and the proteasomal activity is increased to remove the excess precursor proteins. Together, these pathways reveal how mitochondria are tightly integrated into a cellular proteostasis and stress response network to maintain cell viability.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMB, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
11
|
Kaushik P, Herrmann JM, Hansen KG. MitoStores: stress-induced aggregation of mitochondrial proteins. Biol Chem 2025:hsz-2024-0148. [PMID: 39828945 DOI: 10.1515/hsz-2024-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and post-translationally imported into mitochondria. If the rate of protein synthesis exceeds the capacity of the mitochondrial import machinery, precursor proteins can transiently accumulate in the cytosol. The cytosolic accumulation of mitochondrial precursors jeopardizes cellular protein homeostasis (proteostasis) and can be the cause of diseases. In order to prevent these toxic effects, most non-imported precursors are rapidly degraded by the ubiquitin-proteasome system. However, cells employ a second layer of defense which is the facilitated sequestration of mitochondrial precursor proteins in transient protein aggregates. The formation of such structures is triggered by nucleation factors such as small heat shock proteins. Disaggregases and chaperones can liberate precursors from cytosolic aggregates to pass them on to the mitochondrial import machinery or, under persistent stress conditions, to the proteasome for degradation. Owing to their role as transient buffering systems, these aggregates were referred to as MitoStores. This review articles provides a general overview about the MitoStore concept and the early stages in mitochondrial protein biogenesis in yeast and, in cases where aspects differ, in mammalian cells.
Collapse
Affiliation(s)
- Pragya Kaushik
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| | - Katja G Hansen
- Cell Biology, 26562 RPTU University of Kaiserslautern , Erwin-Schrödinger-Strasse 13, D-67663 Kaiserslautern, Germany
| |
Collapse
|
12
|
Walter IR, Smith BA, Castanzo D, Wohlever ML. Overcoming Fluorescence Loss in mEOS-based AAA+ Unfoldase Reporters Through Covalent Linkage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633048. [PMID: 39868159 PMCID: PMC11761053 DOI: 10.1101/2025.01.14.633048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Recent work has demonstrated that the soluble photoconvertable fluorescent protein mEOS can be a reporter for AAA+ (ATPases Associated with diverse cellular Activities) unfoldase activity. Given that many AAA+ proteins process membrane proteins, we sought to adapt mEOS for use with membrane protein substrates. However, direct genetic fusion of mEOS to a membrane protein completely abolished fluorescence, severely limiting the utility of mEOS for studying AAA+ proteins. To circumvent this challenge, we separately purified mEOS and a AAA+ degron, covalently linked them via Sortase, and photoconverted the linked construct. This innovative approach preserves fluorescence and enables functional analysis, offering a broadly applicable platform for the study of membrane associated AAA+ proteins.
Collapse
Affiliation(s)
- Isabella R Walter
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606
| | - Baylee A Smith
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606
| | - Dominic Castanzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Institute of Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Matthew L Wohlever
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, OH 43606
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261
| |
Collapse
|
13
|
Verhoeven N, Oshima Y, Cartier E, Bippes CC, Neutzner A, Boyman L, Karbowski M. Outer mitochondrial membrane E3 Ub ligase MARCH5 controls de novo peroxisome biogenesis. Dev Cell 2025; 60:40-50.e5. [PMID: 39423819 PMCID: PMC11706706 DOI: 10.1016/j.devcel.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/03/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
We report that the outer mitochondrial membrane (OMM)-associated E3 Ub ligase MARCH5 is vital for generating mitochondria-derived pre-peroxisomes. In human immortalized cells, MARCH5 knockout leads to the accumulation of immature peroxisomes, reduced fatty-acid-induced peroxisomal biogenesis, and abnormal peroxisome biogenesis in MARCH5/Pex14 and MARCH5/Pex3 dko cells. Upon fatty-acid-induced peroxisomal biogenesis, MARCH5 redistributes to peroxisomes, and ubiquitination activity-deficient mutants of MARCH5 accumulate on peroxisomes containing high levels of the OMM protein Tom20 (mitochondria-derived pre-peroxisomes). Similarly, depletion of peroxisome biogenesis factor Pex14 leads to the accumulation of MARCH5- and Tom20-positive pre-peroxisomes, whereas no peroxisomes are detected in MARCH5/Pex14 dko cells. Inconsistent with MARCH5 merely acting as a quality factor, mitochondrial decline is not evident in tested models. Furthermore, reduced expression of peroxisomal proteins is detected in MARCH5-/- cells, whereas some of these proteins are stabilized in peroxisome biogenesis deficiency models lacking MARCH5 expression. Thus, MARCH5 is central for mitochondria-dependent peroxisome biogenesis.
Collapse
Affiliation(s)
- Nicolas Verhoeven
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yumiko Oshima
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Etienne Cartier
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Yan HH, He JJ, Fu C, Chen JH, Tang AH. ATAD1 Regulates Neuronal Development and Synapse Formation Through Tuning Mitochondrial Function. Int J Mol Sci 2024; 26:44. [PMID: 39795902 PMCID: PMC11719905 DOI: 10.3390/ijms26010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Mitochondrial function is essential for synaptic function. ATAD1, an AAA+ protease involved in mitochondrial quality control, governs fission-fusion dynamics within the organelle. However, the distribution and functional role of ATAD1 in neurons remain poorly understood. In this study, we demonstrate that ATAD1 is primarily localized to mitochondria in dendrites and, to a lesser extent, in spines in cultured hippocampal neurons. We found that ATAD1 deficiency disrupts the mitochondrial fission-fusion balance, resulting in mitochondrial fragmentation. This deficiency also impairs dendritic branching, hinders dendritic spine maturation, and reduces glutamatergic synaptic transmission in hippocampal neuron. To further investigate the underlying mechanism, we employed an ATP hydrolysis-deficient mutant of ATAD1 to rescue the neuronal deficits associated with ATAD1 loss. We discovered that the synaptic deficits are independent of the mitochondrial morphology changes but rely on its ATP hydrolysis. Furthermore, we show that ATAD1 loss leads to impaired mitochondrial function, including decreased ATP production, impaired membrane potential, and elevated oxidative stress. In conclusion, our results provide evidence that ATAD1 is crucial for maintaining mitochondrial function and regulating neurodevelopment and synaptic function.
Collapse
Affiliation(s)
- Hao-Hao Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.-H.Y.); (J.-J.H.); (C.F.)
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
- Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Jia-Jia He
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.-H.Y.); (J.-J.H.); (C.F.)
| | - Chuanhai Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.-H.Y.); (J.-J.H.); (C.F.)
| | - Jia-Hui Chen
- Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Ai-Hui Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.-H.Y.); (J.-J.H.); (C.F.)
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
- Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
15
|
Pines O, Horwitz M, Herrmann JM. Privileged proteins with a second residence: dual targeting and conditional re-routing of mitochondrial proteins. FEBS J 2024; 291:5379-5393. [PMID: 38857249 PMCID: PMC11653698 DOI: 10.1111/febs.17191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Almost all mitochondrial proteins are encoded by nuclear genes and synthesized in the cytosol as precursor proteins. Signals in the amino acid sequence of these precursors ensure their targeting and translocation into mitochondria. However, in many cases, only a certain fraction of a specific protein is transported into mitochondria, while the rest either remains in the cytosol or undergoes reverse translocation to the cytosol, and can populate other cellular compartments. This phenomenon is called dual localization which can be instigated by different mechanisms. These include alternative start or stop codons, differential transcripts, and ambiguous or competing targeting sequences. In many cases, dual localization might serve as an economic strategy to reduce the number of required genes; for example, when the same groups of enzymes are required both in mitochondria and chloroplasts or both in mitochondria and the nucleus/cytoplasm. Such cases frequently employ ambiguous targeting sequences to distribute proteins between both organelles. However, alternative localizations can also be used for signaling, for example when non-imported precursors serve as mitophagy signals or when they represent transcription factors in the nucleus to induce the mitochondrial unfolded stress response. This review provides an overview regarding the mechanisms and the physiological consequences of dual targeting.
Collapse
Affiliation(s)
- Ophry Pines
- Microbiology and Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Margalit Horwitz
- Microbiology and Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
16
|
Dar MA, Louder R, Cortes M, Chen R, Ma Q, Chakrabarti M, Umanah GKE, Dawson TM, Dawson VL. Cryo-EM Structure of AAA + ATPase Thorase Reveals Novel Helical Filament Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624887. [PMID: 39605435 PMCID: PMC11601504 DOI: 10.1101/2024.11.22.624887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The AAA+ ( A TPases a ssociated with a variety of cellular a ctivities) ATPase, Thorase, also known as ATAD1, plays multiple roles in synaptic plasticity, mitochondrial quality control and mTOR signaling through disassembling protein complexes like AMPAR and mTORC1 in an ATP-dependent manner. The Oligomerization of Thorase is crucial for its disassembly and remodeling functions. We show that wild-type Thorase forms long helical filaments in vitro , dependent on ATP binding but not hydrolysis. We report the Cryogenic Electron Microscopy (cryo-EM) structure of the Thorase filament at a resolution of 4 Å, revealing the dimeric arrangement of the basic repeating unit that is formed through a distinct interface compared to the hexameric MSP1/ATAD1E193Q assembly. Structure-guided mutagenesis confirms the role of critical amino acid residues required for filament formation, oligomerization and disassembly of mTORC1 protein complex. Together, our data reveals a novel filament structure of Thorase and provides critical information that elucidates the mechanism underlying Thorase filament formation and Thorase-mediated disassembly of the mTORC1 complex.
Collapse
|
17
|
Wang N, Xing J, Su X, Pan J, Chen H, Shi L, Si L, Yang W, Li M. Architecture of the ATP-driven motor for protein import into chloroplasts. MOLECULAR PLANT 2024; 17:1702-1718. [PMID: 39327731 DOI: 10.1016/j.molp.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Thousands of nuclear-encoded proteins are transported into chloroplasts through the TOC-TIC translocon that spans the chloroplast envelope membranes. A motor complex pulls the translocated proteins out of the TOC-TIC complex into the chloroplast stroma by hydrolyzing ATP. The Orf2971-FtsHi complex has been suggested to serve as the ATP-hydrolyzing motor in Chlamydomonas reinhardtii, but little is known about its architecture and assembly. Here, we report the 3.2-Å resolution structure of the Chlamydomonas Orf2971-FtsHi complex. The 20-subunit complex spans the chloroplast inner envelope, with two bulky modules protruding into the intermembrane space and stromal matrix. Six subunits form a hetero-hexamer that potentially provides the pulling force through ATP hydrolysis. The remaining subunits, including potential enzymes/chaperones, likely facilitate the complex assembly and regulate its proper function. Taken together, our results provide the structural foundation for a mechanistic understanding of chloroplast protein translocation.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiale Xing
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaodong Su
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Junting Pan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing 100093, China; Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hui Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lifang Shi
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Long Si
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing, China; China National Botanical Garden, Beijing 100093, China; Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Mei Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
18
|
Fresenius HL, Gaur D, Smith B, Acquaviva B, Wohlever ML. The AAA+ protein Msp1 recognizes substrates by a hydrophobic mismatch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.11.548587. [PMID: 37502992 PMCID: PMC10369969 DOI: 10.1101/2023.07.11.548587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
An essential aspect of protein quality control is enzymatic removal of membrane proteins from the lipid bilayer. Failures in this essential cellular process are associated with neurodegenerative diseases and cancer. Msp1 is a AAA+ (ATPases Associated with diverse cellular Activities) protein that removes mistargeted proteins from the outer mitochondrial membrane (OMM). How Msp1 selectively recognizes and extracts substrates within the complex OMM ecosystem, and the role of the lipid bilayer on these processes is unknown. Here, we describe the development of fully defined, rapid, and quantitative extraction assay that retains physiological substrate selectivity. Using this new assay, we systematically modified both substrates and the lipid environment to demonstrate that Msp1 recognizes substrates by a hydrophobic mismatch between the substrate TMD and the lipid bilayer. We further demonstrate that the rate limiting step in Msp1 activity is extraction of the TMD from the lipid bilayer. Together, these results provide foundational insights into how the lipid bilayer influences AAA+ mediated membrane protein extraction.
Collapse
Affiliation(s)
- Heidi L. Fresenius
- Previously at University of Toledo, Department of Chemistry & Biochemistry
| | - Deepika Gaur
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| | - Baylee Smith
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| | | | - Matthew L. Wohlever
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| |
Collapse
|
19
|
Smith B, Gaur D, Walker N, Walter I, Wohlever ML. Energetic requirements and mechanistic plasticity in Msp1-mediated substrate extraction from lipid bilayers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614443. [PMID: 39386490 PMCID: PMC11463475 DOI: 10.1101/2024.09.23.614443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
AAA+ proteins are essential molecular motors involved in numerous cellular processes, yet their mechanism of action in extracting membrane proteins from lipid bilayers remains poorly understood. One roadblock for mechanistic studies is the inability to generate subunit specific mutations within these hexameric proteins. Using the mitochondrial AAA+ protein Msp1 as a model, we created covalently linked dimers with varying combinations of wild type and catalytically inactive E193Q mutations. The wide range of ATPase rates in these constructs allows us to probe how Msp1 uses the energy from ATP hydrolysis to perform the thermodynamically unfavorable task of removing a transmembrane helix (TMH) from a lipid bilayer. Our in vitro and in vivo assays reveal a non-linear relationship between ATP hydrolysis and membrane protein extraction, suggesting a minimum ATP hydrolysis rate is required for effective TMH extraction. While structural data often supports a sequential clockwise/2-residue step (SC/2R) mechanism for ATP hydrolysis, our biochemical evidence suggests mechanistic plasticity in how Msp1 coordinates ATP hydrolysis between subunits, potentially allowing for robustness in processing challenging substrates. This study enhances our understanding of how Msp1 coordinates ATP hydrolysis to drive mechanical work and provides foundational insights about the minimum energetic requirements for TMH extraction and the coordination of ATP hydrolysis in AAA+ proteins.
Collapse
Affiliation(s)
- Baylee Smith
- University of Pittsburgh, Department of Cell Biology
- Previously at University of Toledo, Department of Chemistry and Biochemistry
| | - Deepika Gaur
- University of Pittsburgh, Department of Cell Biology
- Previously at University of Toledo, Department of Chemistry and Biochemistry
| | - Nathan Walker
- University of Pittsburgh, Department of Cell Biology
- University of Illinois, Department of Microbiology
| | - Isabella Walter
- University of Pittsburgh, Department of Cell Biology
- Ohio State University, Department of Molecular Genetics
| | - Matthew L. Wohlever
- University of Pittsburgh, Department of Cell Biology
- Previously at University of Toledo, Department of Chemistry and Biochemistry
| |
Collapse
|
20
|
Borgert L, Becker T, den Brave F. Conserved quality control mechanisms of mitochondrial protein import. J Inherit Metab Dis 2024; 47:903-916. [PMID: 38790152 DOI: 10.1002/jimd.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria carry out essential functions for the cell, including energy production, various biosynthesis pathways, formation of co-factors and cellular signalling in apoptosis and inflammation. The functionality of mitochondria requires the import of about 900-1300 proteins from the cytosol in baker's yeast Saccharomyces cerevisiae and human cells, respectively. The vast majority of these proteins pass the outer membrane in a largely unfolded state through the translocase of the outer mitochondrial membrane (TOM) complex. Subsequently, specific protein translocases sort the precursor proteins into the outer and inner membranes, the intermembrane space and matrix. Premature folding of mitochondrial precursor proteins, defects in the mitochondrial protein translocases or a reduction of the membrane potential across the inner mitochondrial membrane can cause stalling of precursors at the protein import apparatus. Consequently, the translocon is clogged and non-imported precursor proteins accumulate in the cell, which in turn leads to proteotoxic stress and eventually cell death. To prevent such stress situations, quality control mechanisms remove non-imported precursor proteins from the TOM channel. The highly conserved ubiquitin-proteasome system of the cytosol plays a critical role in this process. Thus, the surveillance of protein import via the TOM complex involves the coordinated activity of mitochondria-localized and cytosolic proteins to prevent proteotoxic stress in the cell.
Collapse
Affiliation(s)
- Lion Borgert
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Fabian den Brave
- Faculty of Medicine, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Kim J, Goldstein M, Zecchel L, Ghorayeb R, Maxwell CA, Weidberg H. ATAD1 prevents clogging of TOM and damage caused by un-imported mitochondrial proteins. Cell Rep 2024; 43:114473. [PMID: 39024102 DOI: 10.1016/j.celrep.2024.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/26/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
Mitochondria require the constant import of nuclear-encoded proteins for proper functioning. Impaired protein import not only depletes mitochondria of essential factors but also leads to toxic accumulation of un-imported proteins outside the organelle. Here, we investigate the consequences of impaired mitochondrial protein import in human cells. We demonstrate that un-imported proteins can clog the mitochondrial translocase of the outer membrane (TOM). ATAD1, a mitochondrial ATPase, removes clogged proteins from TOM to clear the entry gate into the mitochondria. ATAD1 interacts with both TOM and stalled proteins, and its knockout results in extensive accumulation of mitochondrial precursors as well as decreased protein import. Increased ATAD1 expression contributes to improved fitness of cells with inefficient mitochondrial protein import. Overall, we demonstrate the importance of the ATAD1 quality control pathway in surveilling protein import and its contribution to cellular health.
Collapse
Affiliation(s)
- John Kim
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Madeleine Goldstein
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lauren Zecchel
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Ghorayeb
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada; Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Hilla Weidberg
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Matsumoto S, Ono S, Endo T. Analysis of protein trafficking between mitochondria and the endoplasmic reticulum by fluorescence microscopy. Methods Enzymol 2024; 707:153-171. [PMID: 39488373 DOI: 10.1016/bs.mie.2024.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Precise protein localization is essential for normal cellular functions. However, recent studies have revealed that protein targeting is error-prone, and tail-anchored proteins mistargeted to mitochondria are transferred to the endoplasmic reticulum (ER) by an ATPase Msp1 (yeast)/ATAD1 (human) in the mitochondrial outer membrane for further quality examination in the ER to determine their fate, degradation or re-targeting. Analysis of the inter-organelle transfer of proteins requires a combination of time-lapse fluorescence microscopy and a system to achieve regulation of the protein levels of both transfer substrates and factors regulating the transfer in a coordinated manner at precise timing. This can be achieved by using a promoter switch for expression and acute depletion of involved factors through the degron-based proteasome system. In this chapter, we will describe methods to analyze inter-organelle protein transfer by fluorescence microscope within living yeast cells, by using the example of Msp1-mediated transfer of mistargeted proteins from mitochondria to the ER.
Collapse
Affiliation(s)
- Shunsuke Matsumoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Suzuka Ono
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan.
| |
Collapse
|
23
|
Yang EJN, Liao PC, Pon L. Mitochondrial protein and organelle quality control-Lessons from budding yeast. IUBMB Life 2024; 76:72-87. [PMID: 37731280 PMCID: PMC10842221 DOI: 10.1002/iub.2783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Mitochondria are essential for normal cellular function and have emerged as key aging determinants. Indeed, defects in mitochondrial function have been linked to cardiovascular, skeletal muscle and neurodegenerative diseases, premature aging, and age-linked diseases. Here, we describe mechanisms for mitochondrial protein and organelle quality control. These surveillance mechanisms mediate repair or degradation of damaged or mistargeted mitochondrial proteins, segregate mitochondria based on their functional state during asymmetric cell division, and modulate cellular fitness, the response to stress, and lifespan control in yeast and other eukaryotes.
Collapse
Affiliation(s)
- Emily Jie-Ning Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Pin-Chao Liao
- Institute of Molecular Medicine & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30013
| | - Liza Pon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
24
|
Bittner E, Stehlik T, Lam J, Dimitrov L, Heimerl T, Schöck I, Harberding J, Dornes A, Heymons N, Bange G, Schuldiner M, Zalckvar E, Bölker M, Schekman R, Freitag J. Proteins that carry dual targeting signals can act as tethers between peroxisomes and partner organelles. PLoS Biol 2024; 22:e3002508. [PMID: 38377076 PMCID: PMC10906886 DOI: 10.1371/journal.pbio.3002508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/01/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Peroxisomes are organelles with crucial functions in oxidative metabolism. To correctly target to peroxisomes, proteins require specialized targeting signals. A mystery in the field is the sorting of proteins that carry a targeting signal for peroxisomes and as well as for other organelles, such as mitochondria or the endoplasmic reticulum (ER). Exploring several of these proteins in fungal model systems, we observed that they can act as tethers bridging organelles together to create contact sites. We show that in Saccharomyces cerevisiae this mode of tethering involves the peroxisome import machinery, the ER-mitochondria encounter structure (ERMES) at mitochondria and the guided entry of tail-anchored proteins (GET) pathway at the ER. Our findings introduce a previously unexplored concept of how dual affinity proteins can regulate organelle attachment and communication.
Collapse
Affiliation(s)
- Elena Bittner
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Jason Lam
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Lazar Dimitrov
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Thomas Heimerl
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Isabelle Schöck
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Jannik Harberding
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Anita Dornes
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Nikola Heymons
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Randy Schekman
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
25
|
Zhou Q, Yang Y, Xu Z, Deng K, Zhang Z, Hao J, Li N, Wang Y, Wang Z, Chen H, Yang Y, Xiao F, Zhang X, Gao S, Li Y. ATAD1 inhibits hepatitis C virus infection by removing the viral TA-protein NS5B from mitochondria. EMBO Rep 2023; 24:e56614. [PMID: 37789674 PMCID: PMC10626439 DOI: 10.15252/embr.202256614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
ATPase family AAA domain-containing protein 1 (ATAD1) maintains mitochondrial homeostasis by removing mislocalized tail-anchored (TA) proteins from the mitochondrial outer membrane (MOM). Hepatitis C virus (HCV) infection induces mitochondrial fragmentation, and viral NS5B protein is a TA protein. Here, we investigate whether ATAD1 plays a role in regulating HCV infection. We find that HCV infection has no effect on ATAD1 expression, but knockout of ATAD1 significantly enhances HCV infection; this enhancement is suppressed by ATAD1 complementation. NS5B partially localizes to mitochondria, dependent on its transmembrane domain (TMD), and induces mitochondrial fragmentation, which is further enhanced by ATAD1 knockout. ATAD1 interacts with NS5B, dependent on its three internal domains (TMD, pore-loop 1, and pore-loop 2), and induces the proteasomal degradation of NS5B. In addition, we provide evidence that ATAD1 augments the antiviral function of MAVS upon HCV infection. Taken together, we show that the mitochondrial quality control exerted by ATAD1 can be extended to a novel antiviral function through the extraction of the viral TA-protein NS5B from the mitochondrial outer membrane.
Collapse
Affiliation(s)
- Qing Zhou
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Technology Center, China Tobacco Henan Industrial Co., LtdZhengzhouChina
- Department of Infectious DiseasesThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yuhao Yang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Zhanxue Xu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Kai Deng
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Zhenzhen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Jiawei Hao
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ni Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Department of Infectious DiseasesThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yanling Wang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Ziwen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Haihang Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Yang Yang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
| | - Fei Xiao
- Department of Infectious DiseaseThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Xiaohong Zhang
- Department of Infectious DiseasesThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yi‐Ping Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Department of Infectious DiseasesThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
- Department of Infectious DiseaseThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| |
Collapse
|
26
|
Gerber M, Suppanz I, Oeljeklaus S, Niemann M, Käser S, Warscheid B, Schneider A, Dewar CE. A Msp1-containing complex removes orphaned proteins in the mitochondrial outer membrane of T. brucei. Life Sci Alliance 2023; 6:e202302004. [PMID: 37586887 PMCID: PMC10432679 DOI: 10.26508/lsa.202302004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
The AAA-ATPase Msp1 extracts mislocalised outer membrane proteins and thus contributes to mitochondrial proteostasis. Using pulldown experiments, we show that trypanosomal Msp1 localises to both glycosomes and the mitochondrial outer membrane, where it forms a complex with four outer membrane proteins. The trypanosome-specific pATOM36 mediates complex assembly of α-helically anchored mitochondrial outer membrane proteins such as protein translocase subunits. Inhibition of their assembly triggers a pathway that results in the proteasomal digestion of unassembled substrates. Using inducible single, double, and triple RNAi cell lines combined with proteomic analyses, we demonstrate that not only Msp1 but also the trypanosomal homolog of the AAA-ATPase VCP are implicated in this quality control pathway. Moreover, in the absence of VCP three out of the four Msp1-interacting mitochondrial proteins are required for efficient proteasomal digestion of pATOM36 substrates, suggesting they act in concert with Msp1. pATOM36 is a functional analog of the yeast mitochondrial import complex complex and possibly of human mitochondrial animal-specific carrier homolog 2, suggesting that similar mitochondrial quality control pathways linked to Msp1 might also exist in yeast and humans.
Collapse
Affiliation(s)
- Markus Gerber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Ida Suppanz
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Moritz Niemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sandro Käser
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Institute for Advanced Study (Wissenschaftskolleg) Berlin, Berlin, Germany
| | - Caroline E Dewar
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Rödl S, Herrmann JM. The role of the proteasome in mitochondrial protein quality control. IUBMB Life 2023; 75:868-879. [PMID: 37178401 DOI: 10.1002/iub.2734] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The abundance of each cellular protein is dynamically adjusted to the prevailing metabolic and stress conditions by modulation of their synthesis and degradation rates. The proteasome represents the major machinery for the degradation of proteins in eukaryotic cells. How the ubiquitin-proteasome system (UPS) controls protein levels and removes superfluous and damaged proteins from the cytosol and the nucleus is well characterized. However, recent studies showed that the proteasome also plays a crucial role in mitochondrial protein quality control. This mitochondria-associated degradation (MAD) thereby acts on two layers: first, the proteasome removes mature, functionally compromised or mis-localized proteins from the mitochondrial surface; and second, the proteasome cleanses the mitochondrial import pore of import intermediates of nascent proteins that are stalled during translocation. In this review, we provide an overview about the components and their specific functions that facilitate proteasomal degradation of mitochondrial proteins in the yeast Saccharomyces cerevisiae. Thereby we explain how the proteasome, in conjunction with a set of intramitochondrial proteases, maintains mitochondrial protein homeostasis and dynamically adapts the levels of mitochondrial proteins to specific conditions.
Collapse
Affiliation(s)
- Saskia Rödl
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
28
|
Homberg B, Rehling P, Cruz-Zaragoza LD. The multifaceted mitochondrial OXA insertase. Trends Cell Biol 2023; 33:765-772. [PMID: 36863885 DOI: 10.1016/j.tcb.2023.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and transported into mitochondria by protein translocases. Yet, mitochondria contain their own genome and gene expression system, which generates proteins that are inserted in the inner membrane by the oxidase assembly (OXA) insertase. OXA contributes to targeting proteins from both genetic origins. Recent data provides insights into how OXA cooperates with the mitochondrial ribosome during synthesis of mitochondrial-encoded proteins. A picture of OXA emerges in which it coordinates insertion of OXPHOS core subunits and their assembly into protein complexes but also participates in the biogenesis of select imported proteins. These functions position the OXA as a multifunctional protein insertase that facilitates protein transport, assembly, and stability at the inner membrane.
Collapse
Affiliation(s)
- Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), 37073 University of Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, 37075 Göttingen, Germany; Max Planck Institute for Multidisciplinary Science, 37077 Göttingen, Germany.
| | | |
Collapse
|
29
|
Verhoeven N, Oshima Y, Cartier E, Neutzner A, Boyman L, Karbowski M. Outer mitochondrial membrane E3 Ub ligase MARCH5 controls mitochondrial steps in peroxisome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555756. [PMID: 37693581 PMCID: PMC10491203 DOI: 10.1101/2023.08.31.555756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Peroxisome de novo biogenesis requires yet unidentified mitochondrial proteins. We report that the outer mitochondrial membrane (OMM)-associated E3 Ub ligase MARCH5 is vital for generating mitochondria-derived pre-peroxisomes. MARCH5 knockout results in accumulation of immature peroxisomes and lower expression of various peroxisomal proteins. Upon fatty acid-induced peroxisomal biogenesis, MARCH5 redistributes to newly formed peroxisomes; the peroxisomal biogenesis under these conditions is inhibited in MARCH5 knockout cells. MARCH5 activity-deficient mutants are stalled on peroxisomes and induce accumulation of peroxisomes containing high levels of the OMM protein Tom20 (mitochondria-derived pre-peroxisomes). Furthermore, depletion of peroxisome biogenesis factor Pex14 leads to the formation of MARCH5- and Tom20-positive peroxisomes, while no peroxisomes are detected in Pex14/MARCH5 dko cells. Reexpression of WT, but not MARCH5 mutants, restores Tom20-positive pre-peroxisomes in Pex14/MARCH5 dko cells. Thus, MARCH5 acts upstream of Pex14 in mitochondrial steps of peroxisome biogenesis. Our data validate the hybrid, mitochondria-dependent model of peroxisome biogenesis and reveal that MARCH5 is an essential mitochondrial protein in this process. Summary The authors found that mitochondrial E3 Ub ligase MARCH5 controls the formation of mitochondria-derived pre-peroxisomes. The data support the hybrid, mitochondria-dependent model of peroxisome biogenesis and reveal that MARCH5 is an essential mitochondrial protein in this process.
Collapse
|
30
|
Anton V, Buntenbroich I, Simões T, Joaquim M, Müller L, Buettner R, Odenthal M, Hoppe T, Escobar-Henriques M. E4 ubiquitin ligase promotes mitofusin turnover and mitochondrial stress response. Mol Cell 2023; 83:2976-2990.e9. [PMID: 37595558 PMCID: PMC10434984 DOI: 10.1016/j.molcel.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
Ubiquitin-dependent control of mitochondrial dynamics is important for protein quality and neuronal integrity. Mitofusins, mitochondrial fusion factors, can integrate cellular stress through their ubiquitylation, which is carried out by multiple E3 enzymes in response to many different stimuli. However, the molecular mechanisms that enable coordinated responses are largely unknown. Here we show that yeast Ufd2, a conserved ubiquitin chain-elongating E4 enzyme, is required for mitochondrial shape adjustments. Under various stresses, Ufd2 translocates to mitochondria and triggers mitofusin ubiquitylation. This elongates ubiquitin chains on mitofusin and promotes its proteasomal degradation, leading to mitochondrial fragmentation. Ufd2 and its human homologue UBE4B also target mitofusin mutants associated with Charcot-Marie-Tooth disease, a hereditary sensory and motor neuropathy characterized by progressive loss of the peripheral nerves. This underscores the pathophysiological importance of E4-mediated ubiquitylation in neurodegeneration. In summary, we identify E4-dependent mitochondrial stress adaptation by linking various metabolic processes to mitochondrial fusion and fission dynamics.
Collapse
Affiliation(s)
- Vincent Anton
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Ira Buntenbroich
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Tânia Simões
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mariana Joaquim
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Leonie Müller
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Reinhard Buettner
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; Institute of Pathology, Medical Faculty, University Hospital, University of Cologne, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; Institute of Pathology, Medical Faculty, University Hospital, University of Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
| |
Collapse
|
31
|
Pleiner T, Hazu M, Pinton Tomaleri G, Nguyen VN, Januszyk K, Voorhees RM. A selectivity filter in the ER membrane protein complex limits protein misinsertion at the ER. J Cell Biol 2023; 222:e202212007. [PMID: 37199759 PMCID: PMC10200711 DOI: 10.1083/jcb.202212007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Tail-anchored (TA) proteins play essential roles in mammalian cells, and their accurate localization is critical for proteostasis. Biophysical similarities lead to mistargeting of mitochondrial TA proteins to the ER, where they are delivered to the insertase, the ER membrane protein complex (EMC). Leveraging an improved structural model of the human EMC, we used mutagenesis and site-specific crosslinking to map the path of a TA protein from its cytosolic capture by methionine-rich loops to its membrane insertion through a hydrophilic vestibule. Positively charged residues at the entrance to the vestibule function as a selectivity filter that uses charge-repulsion to reject mitochondrial TA proteins. Similarly, this selectivity filter retains the positively charged soluble domains of multipass substrates in the cytosol, thereby ensuring they adopt the correct topology and enforcing the "positive-inside" rule. Substrate discrimination by the EMC provides a biochemical explanation for one role of charge in TA protein sorting and protects compartment integrity by limiting protein misinsertion.
Collapse
Affiliation(s)
- Tino Pleiner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Vy N. Nguyen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kurt Januszyk
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rebecca M. Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
32
|
Abstract
Peroxisomes are involved in a multitude of metabolic and catabolic pathways, as well as the innate immune system. Their dysfunction is linked to severe peroxisome-specific diseases, as well as cancer and neurodegenerative diseases. To ensure the ability of peroxisomes to fulfill their many roles in the organism, more than 100 different proteins are post-translationally imported into the peroxisomal membrane and matrix, and their functionality must be closely monitored. In this Review, we briefly discuss the import of peroxisomal membrane proteins, and we emphasize an updated view of both classical and alternative peroxisomal matrix protein import pathways. We highlight different quality control pathways that ensure the degradation of dysfunctional peroxisomal proteins. Finally, we compare peroxisomal matrix protein import with other systems that transport folded proteins across membranes, in particular the twin-arginine translocation (Tat) system and the nuclear pore.
Collapse
Affiliation(s)
- Markus Rudowitz
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Ralf Erdmann
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
33
|
He J, Liu K, Wu Y, Zhao C, Yan S, Chen JH, Hu L, Wang D, Zheng F, Wei W, Xu C, Huang C, Liu X, Yao X, Ding L, Fang Z, Tang AH, Fu C. The AAA-ATPase Yta4/ATAD1 interacts with the mitochondrial divisome to inhibit mitochondrial fission. PLoS Biol 2023; 21:e3002247. [PMID: 37590302 PMCID: PMC10465003 DOI: 10.1371/journal.pbio.3002247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/29/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023] Open
Abstract
Mitochondria are in a constant balance of fusion and fission. Excessive fission or deficient fusion leads to mitochondrial fragmentation, causing mitochondrial dysfunction and physiological disorders. How the cell prevents excessive fission of mitochondria is not well understood. Here, we report that the fission yeast AAA-ATPase Yta4, which is the homolog of budding yeast Msp1 responsible for clearing mistargeted tail-anchored (TA) proteins on mitochondria, plays a critical role in preventing excessive mitochondrial fission. The absence of Yta4 leads to mild mitochondrial fragmentation in a Dnm1-dependent manner but severe mitochondrial fragmentation upon induction of mitochondrial depolarization. Overexpression of Yta4 delocalizes the receptor proteins of Dnm1, i.e., Fis1 (a TA protein) and Mdv1 (the bridging protein between Fis1 and Dnm1), from mitochondria and reduces the localization of Dnm1 to mitochondria. The effect of Yta4 overexpression on Fis1 and Mdv1, but not Dnm1, depends on the ATPase and translocase activities of Yta4. Moreover, Yta4 interacts with Dnm1, Mdv1, and Fis1. In addition, Yta4 competes with Dnm1 for binding Mdv1 and decreases the affinity of Dnm1 for GTP and inhibits Dnm1 assembly in vitro. These findings suggest a model, in which Yta4 inhibits mitochondrial fission by inhibiting the function of the mitochondrial divisome composed of Fis1, Mdv1, and Dnm1. Therefore, the present work reveals an uncharacterized molecular mechanism underlying the inhibition of mitochondrial fission.
Collapse
Affiliation(s)
- Jiajia He
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ke Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yifan Wu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chenhui Zhao
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaijie Yan
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jia-Hui Chen
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Lizhu Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fan Zheng
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenfan Wei
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chao Xu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengdong Huang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lijun Ding
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Ai-Hui Tang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
34
|
Abstract
Protein translocases, such as the bacterial SecY complex, the Sec61 complex of the endoplasmic reticulum (ER) and the mitochondrial translocases, facilitate the transport of proteins across membranes. In addition, they catalyze the insertion of integral membrane proteins into the lipid bilayer. Several membrane insertases cooperate with these translocases, thereby promoting the topogenesis, folding and assembly of membrane proteins. Oxa1 and BamA family members serve as core components in the two major classes of membrane insertases. They facilitate the integration of proteins with α-helical transmembrane domains and of β-barrel proteins into lipid bilayers, respectively. Members of the Oxa1 family were initially found in the internal membranes of bacteria, mitochondria and chloroplasts. Recent studies, however, also identified several Oxa1-type insertases in the ER, where they serve as catalytically active core subunits in the ER membrane protein complex (EMC), the guided entry of tail-anchored (GET) and the GET- and EMC-like (GEL) complex. The outer membrane of bacteria, mitochondria and chloroplasts contain β-barrel proteins, which are inserted by members of the BamA family. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of these different types of membrane insertases and discuss their function.
Collapse
Affiliation(s)
- Büsra Kizmaz
- Cell Biology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | | |
Collapse
|
35
|
Luo H, Jiao Q, Shen C, Shao C, Xie J, Chen Y, Feng X, Zhang X. Unraveling the roles of endoplasmic reticulum-associated degradation in metabolic disorders. Front Endocrinol (Lausanne) 2023; 14:1123769. [PMID: 37455916 PMCID: PMC10339828 DOI: 10.3389/fendo.2023.1123769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Misfolded proteins retained in the endoplasmic reticulum cause many human diseases. ER-associated degradation (ERAD) is one of the protein quality and quantity control system located at ER, which is responsible for translocating the misfolded proteins or properly folded but excess proteins out of the ER for proteasomal degradation. Recent studies have revealed that mice with ERAD deficiency in specific cell types exhibit impaired metabolism homeostasis and metabolic diseases. Here, we highlight the ERAD physiological functions in metabolic disorders in a substrate-dependent and cell type-specific manner.
Collapse
Affiliation(s)
- Hui Luo
- *Correspondence: Hui Luo, ; Xingwei Zhang,
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Josefson R, Kumar N, Hao X, Liu B, Nyström T. The GET pathway is a major bottleneck for maintaining proteostasis in Saccharomyces cerevisiae. Sci Rep 2023; 13:9285. [PMID: 37286562 DOI: 10.1038/s41598-023-35666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
A hallmark of aging in a variety of organisms is a breakdown of proteostasis and an ensuing accumulation of protein aggregates and inclusions. However, it is not clear if the proteostasis network suffers from a uniform breakdown during aging or if some distinct components act as bottlenecks especially sensitive to functional decline. Here, we report on a genome-wide, unbiased, screen for single genes in young cells of budding yeast required to keep the proteome aggregate-free under non-stress conditions as a means to identify potential proteostasis bottlenecks. We found that the GET pathway, required for the insertion of tail-anchored (TA) membrane proteins in the endoplasmic reticulum, is such a bottleneck as single mutations in either GET3, GET2 or GET1 caused accumulation of cytosolic Hsp104- and mitochondria-associated aggregates in nearly all cells when growing at 30 °C (non-stress condition). Further, results generated by a second screen identifying proteins aggregating in GET mutants and analyzing the behavior of cytosolic reporters of misfolding, suggest that there is a general collapse in proteostasis in GET mutants that affects other proteins than TA proteins.
Collapse
Affiliation(s)
- Rebecca Josefson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Navinder Kumar
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
37
|
Onishi M, Kubota M, Duan L, Tian Y, Okamoto K. The GET pathway serves to activate Atg32-mediated mitophagy by ER targeting of the Ppg1-Far complex. Life Sci Alliance 2023; 6:e202201640. [PMID: 36697253 PMCID: PMC9880027 DOI: 10.26508/lsa.202201640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Mitophagy removes defective or superfluous mitochondria via selective autophagy. In yeast, the pro-mitophagic protein Atg32 localizes to the mitochondrial surface and interacts with the scaffold protein Atg11 to promote degradation of mitochondria. Although Atg32-Atg11 interactions are thought to be stabilized by Atg32 phosphorylation, how this posttranslational modification is regulated remains obscure. Here, we show that cells lacking the guided entry of the tail-anchored protein (GET) pathway exhibit reduced Atg32 phosphorylation and Atg32-Atg11 interactions, which can be rescued by additional loss of the ER-resident Ppg1-Far complex, a multi-subunit phosphatase negatively acting in mitophagy. In GET-deficient cells, Ppg1-Far is predominantly localized to mitochondria. An artificial ER anchoring of Ppg1-Far in GET-deficient cells significantly ameliorates defects in Atg32-Atg11 interactions and mitophagy. Moreover, disruption of GET and Msp1, an AAA-ATPase that extracts non-mitochondrial proteins localized to the mitochondrial surface, elicits synthetic defects in mitophagy. Collectively, we propose that the GET pathway mediates ER targeting of Ppg1-Far, thereby preventing dysregulated suppression of mitophagy activation.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Mitsutaka Kubota
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Lan Duan
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuan Tian
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
38
|
McKenna MJ, Shao S. The Endoplasmic Reticulum and the Fidelity of Nascent Protein Localization. Cold Spring Harb Perspect Biol 2023; 15:a041249. [PMID: 36041782 PMCID: PMC9979852 DOI: 10.1101/cshperspect.a041249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-fidelity protein localization is essential to define the identities and functions of different organelles and to maintain cellular homeostasis. Accurate localization of nascent proteins requires specific protein targeting pathways as well as quality control (QC) mechanisms to remove mislocalized proteins. The endoplasmic reticulum (ER) is the first destination for approximately one-third of the eukaryotic proteome and a major site of protein biosynthesis and QC. In mammalian cells, trafficking from the ER provides nascent proteins access to the extracellular space and essentially every cellular membrane and organelle except for mitochondria and possibly peroxisomes. Here, we discuss the biosynthetic mechanisms that deliver nascent proteins to the ER and the QC mechanisms that interface with the ER to correct or degrade mislocalized proteins.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
39
|
Guna A, Hazu M, Pinton Tomaleri G, Voorhees RM. A TAle of Two Pathways: Tail-Anchored Protein Insertion at the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:a041252. [PMID: 36041783 PMCID: PMC9979854 DOI: 10.1101/cshperspect.a041252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tail-anchored (TA) proteins are an essential class of integral membrane proteins required for many aspects of cellular physiology. TA proteins contain a single carboxy-terminal transmembrane domain that must be post-translationally recognized, guided to, and ultimately inserted into the correct cellular compartment. The majority of TA proteins begin their biogenesis in the endoplasmic reticulum (ER) and utilize two parallel strategies for targeting and insertion: the guided-entry of tail-anchored proteins (GET) and ER-membrane protein complex (EMC) pathways. Here we focus on how these two sets of machinery target, transfer, and insert TAs into the lipid bilayer in close collaboration with quality control machinery. Additionally, we highlight the unifying features of the insertion process as revealed by recent structures of the GET and EMC membrane protein complexes.
Collapse
Affiliation(s)
- Alina Guna
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
40
|
Krshnan L, van de Weijer ML, Carvalho P. Endoplasmic Reticulum-Associated Protein Degradation. Cold Spring Harb Perspect Biol 2022; 14:a041247. [PMID: 35940909 PMCID: PMC9732900 DOI: 10.1101/cshperspect.a041247] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Misfolded, potentially toxic proteins in the lumen and membrane of the endoplasmic reticulum (ER) are eliminated by proteasomes in the cytosol through ER-associated degradation (ERAD). The ERAD process involves the recognition of substrates in the lumen and membrane of the ER, their translocation into the cytosol, ubiquitination, and delivery to the proteasome for degradation. These ERAD steps are performed by membrane-embedded ubiquitin-ligase complexes of different specificity that together cover a wide range of substrates. Besides misfolded proteins, ERAD further contributes to quality control by targeting unassembled and mislocalized proteins. ERAD also targets a restricted set of folded proteins to influence critical ER functions such as sterol biosynthesis, calcium homeostasis, or ER contacts with other organelles. This review describes the ubiquitin-ligase complexes and the principles guiding protein degradation by ERAD.
Collapse
Affiliation(s)
- Logesvaran Krshnan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
41
|
Winter JM, Fresenius HL, Cunningham CN, Wei P, Keys HR, Berg J, Bott A, Yadav T, Ryan J, Sirohi D, Tripp SR, Barta P, Agarwal N, Letai A, Sabatini DM, Wohlever ML, Rutter J. Collateral deletion of the mitochondrial AAA+ ATPase ATAD1 sensitizes cancer cells to proteasome dysfunction. eLife 2022; 11:82860. [PMID: 36409067 DOI: 10.7554/elife.82860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor suppressor gene PTEN is the second most commonly deleted gene in cancer. Such deletions often include portions of the chromosome 10q23 locus beyond the bounds of PTEN itself, which frequently disrupts adjacent genes. Coincidental loss of PTEN-adjacent genes might impose vulnerabilities that could either affect patient outcome basally or be exploited therapeutically. Here, we describe how the loss of ATAD1, which is adjacent to and frequently co-deleted with PTEN, predisposes cancer cells to apoptosis triggered by proteasome dysfunction and correlates with improved survival in cancer patients. ATAD1 directly and specifically extracts the pro-apoptotic protein BIM from mitochondria to inactivate it. Cultured cells and mouse xenografts lacking ATAD1 are hypersensitive to clinically used proteasome inhibitors, which activate BIM and trigger apoptosis. This work furthers our understanding of mitochondrial protein homeostasis and could lead to new therapeutic options for the hundreds of thousands of cancer patients who have tumors with chromosome 10q23 deletion.
Collapse
Affiliation(s)
- Jacob M Winter
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Heidi L Fresenius
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, United States
| | - Corey N Cunningham
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Peng Wei
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Heather R Keys
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Jordan Berg
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Alex Bott
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Tarun Yadav
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Jeremy Ryan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Deepika Sirohi
- University of Utah and ARUP Laboratories, Salt Lake City, United States
| | - Sheryl R Tripp
- University of Utah and ARUP Laboratories, Salt Lake City, United States
| | - Paige Barta
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - David M Sabatini
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Matthew L Wohlever
- Department of Chemistry & Biochemistry, University of Toledo, Toledo, United States
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, United States.,Howard Hughes Medical Institute, Salt Lake City, United States
| |
Collapse
|
42
|
McKenna MJ, Adams BM, Chu V, Paulo JA, Shao S. ATP13A1 prevents ERAD of folding-competent mislocalized and misoriented proteins. Mol Cell 2022; 82:4277-4289.e10. [PMID: 36283413 PMCID: PMC9675726 DOI: 10.1016/j.molcel.2022.09.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
The biosynthesis of thousands of proteins requires targeting a signal sequence or transmembrane segment (TM) to the endoplasmic reticulum (ER). These hydrophobic ɑ helices must localize to the appropriate cellular membrane and integrate in the correct topology to maintain a high-fidelity proteome. Here, we show that the P5A-ATPase ATP13A1 prevents the accumulation of mislocalized and misoriented proteins, which are eliminated by different ER-associated degradation (ERAD) pathways in mammalian cells. Without ATP13A1, mitochondrial tail-anchored proteins mislocalize to the ER through the ER membrane protein complex and are cleaved by signal peptide peptidase for ERAD. ATP13A1 also facilitates the topogenesis of a subset of proteins with an N-terminal TM or signal sequence that should insert into the ER membrane with a cytosolic N terminus. Without ATP13A1, such proteins accumulate in the wrong orientation and are targeted for ERAD by distinct ubiquitin ligases. Thus, ATP13A1 prevents ERAD of diverse proteins capable of proper folding.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Benjamin M Adams
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Vincent Chu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
43
|
Chen CC, Chu PY, Lin HY. Multi-Omics Analysis Reveals Clinical Value and Possible Mechanisms of ATAD1 Down-Regulation in Human Prostate Adenocarcinoma. Life (Basel) 2022; 12:1742. [PMID: 36362897 PMCID: PMC9698943 DOI: 10.3390/life12111742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Prostate adenocarcinoma (PRAD) is the most common histological subtype of prostate cancer. Post-treatment biochemical recurrence is a challenging issue. ATAD1 (ATPase Family AAA Domain Containing 1) plays a vital role in mitochondrial proteostasis and apoptosis activity, while its clinical value in PRAD and its impact on the tumor microenvironment (TME) remain unanswered. In this study, we aimed to investigate the clinical value and possible mechanisms of ATAD1 in PRAD via multi-omics analysis. Using cBioPortal, we confirmed that ATAD1 alteration was associated with gene expression and unfavorable DFS. Deep deletion predominantly occurred in PRAD. By integrating DriverDBv3 and GEPIA2, we noted ATAD1 downregulation in PRAD tissues compared to normal tissues, associated with unfavorable DFS in PRAD patients. DNA repair genes ATM, PARP1and BRCA2 had positive associations with ATAD1 expression. We found that the generalization value of ATAD1 could be applied to other cancers such as KIRC and UCEC. In addition, LinkedOmics identified that the functional involvement of ATAD1 participates in mitochondrial structure and cell cycle progression. Using TIMER analysis, we demonstrated that ATAD1 downregulation correlated with an immunosuppressive TME. Furthermore, we accessed a GSE55062 dataset on UALCAN and discovered the involvement of ERG-mediated transcriptional repression on ATAD1 downregulation. Cross-association screening of shATAD1 efficacy vs. altered mRNAs identified 190 perturbed mRNAs. Then, functional enrichment analysis using the Metascape omics tool recognized that shATAD1-perturbed mRNAs are primarily in charge of the activation of Wnt/β-catenin pathway and lipid metabolic processes. In conclusion, multi-omics results reveal that ATAD1 downregulation is a clinical biomarker for pathological diagnosis and prognosis for patients with PRAD. Reduced ATAD1 may be involved in the enhanced activity of mitochondria and cell cycle, as well as possibly shaping an immunosuppressive TME. ERG serves as an upstream transcriptional repressor of ATAD1. Downstream mechanisms of ATAD1 are involved in Wnt/β-catenin pathway and lipid metabolic processes.
Collapse
Affiliation(s)
- Chun-Chi Chen
- Section of Urology, Departments of Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Hung-Yu Lin
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| |
Collapse
|
44
|
Karbowski M, Oshima Y, Verhoeven N. Mitochondrial proteotoxicity: implications and ubiquitin-dependent quality control mechanisms. Cell Mol Life Sci 2022; 79:574. [PMID: 36308570 PMCID: PMC11803029 DOI: 10.1007/s00018-022-04604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/04/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022]
Abstract
Through their role in energy generation and regulation of several vital pathways, including apoptosis and inflammation, mitochondria are critical for the life of eukaryotic organisms. Mitochondrial dysfunction is a major problem implicated in the etiology of many pathologies, including neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), diabetes, cardiovascular diseases, and many others. Proteotoxic stress, here defined as a reduction in bioenergetic activity induced by the accumulation of aberrant proteins in the mitochondria, is likely to be implicated in disease-linked mitochondrial and cellular decline. Various quality control pathways, such as mitochondrial unfolded protein response (mtUPR), the ubiquitin (Ub)-dependent degradation of aberrant mitochondrial proteins, and mitochondria-specific autophagy (mitophagy), respond to proteotoxic stress and eliminate defective proteins or dysfunctional mitochondria. This work provides a concise review of mechanisms by which disease-linked aberrant proteins affect mitochondrial function and an overview of mitochondrial quality control pathways that counteract mitochondrial proteotoxicity. We focus on mitochondrial quality control mechanisms relying on the Ub-mediated protein degradation, such as mitochondria-specific autophagy and the mitochondrial arm of the Ub proteasome system (UPS). We highlight the importance of a widening perspective of how these pathways protect mitochondria from proteotoxic stress to better understand mitochondrial proteotoxicity in overlapping pathophysiological pathways. Implications of these mechanisms in disease development are also briefly summarized.
Collapse
Affiliation(s)
- Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St., Suite 104, Baltimore, MD, 21201, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yumiko Oshima
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St., Suite 104, Baltimore, MD, 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicolas Verhoeven
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St., Suite 104, Baltimore, MD, 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Bittner E, Stehlik T, Freitag J. Sharing the wealth: The versatility of proteins targeted to peroxisomes and other organelles. Front Cell Dev Biol 2022; 10:934331. [PMID: 36225313 PMCID: PMC9549241 DOI: 10.3389/fcell.2022.934331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes are eukaryotic organelles with critical functions in cellular energy and lipid metabolism. Depending on the organism, cell type, and developmental stage, they are involved in numerous other metabolic and regulatory pathways. Many peroxisomal functions require factors also relevant to other cellular compartments. Here, we review proteins shared by peroxisomes and at least one different site within the cell. We discuss the mechanisms to achieve dual targeting, their regulation, and functional consequences. Characterization of dual targeting is fundamental to understand how peroxisomes are integrated into the metabolic and regulatory circuits of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
46
|
Jeong J, Moon B, Hwang I, Lee DW. GREEN FLUORESCENT PROTEIN variants with enhanced folding are more efficiently imported into chloroplasts. PLANT PHYSIOLOGY 2022; 190:238-249. [PMID: 35699510 PMCID: PMC9434181 DOI: 10.1093/plphys/kiac291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Chloroplasts and mitochondria are subcellular organelles that evolved from cyanobacteria and α-proteobacteria, respectively. Although they have their own genomes, the majority of their proteins are encoded by nuclear genes, translated by cytosolic ribosomes, and imported via outer and inner membrane translocon complexes. The unfolding of mature regions of proteins is thought to be a prerequisite for the import of the proteins into these organelles. However, it is not fully understood how protein folding properties affect their import into these organelles. In this study, we examined the import behavior of chloroplast and mitochondrial reporters with normal green fluorescent protein (GFP) and two GFP variants with enhanced folding propensity, superfolder GFP (sfGFP) and extra-superfolder GFP (esGFP), which is folded better than sfGFP. sfGFP and esGFP were less dependent on the sequence motifs of the transit peptide (TP) and import machinery during protein import into Arabidopsis (Arabidopsis thaliana) chloroplasts, compared with normal GFP. sfGFP and esGFP were efficiently imported into chloroplasts by a mutant TP with an alanine substitution in the N-terminal MLM motif, whereas the same mutant TP showed a defect in importing normal GFP into chloroplasts. Moreover, sfGFP and esGFP were efficiently imported into plastid protein import 2 (ppi2) and heat shock protein 93-V (hsp93-V) plants, which have mutations in atToc159 and Hsp93-V, respectively. In contrast, the presequence-mediated mitochondrial import of sfGFP and esGFP was severely impaired. Based on these results, we propose that the chloroplast import machinery is more tolerant to different folding states of preproteins, whereas the mitochondrial machinery is more specialized in the translocation of unfolded preproteins.
Collapse
Affiliation(s)
- Jinseung Jeong
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, South Korea
| | - Byeongho Moon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, South Korea
| | | | | |
Collapse
|
47
|
Umanah GKE, Abalde-Atristain L, Khan MR, Mitra J, Dar MA, Chang M, Tangella K, McNamara A, Bennett S, Chen R, Aggarwal V, Cortes M, Worley PF, Ha T, Dawson TM, Dawson VL. AAA + ATPase Thorase inhibits mTOR signaling through the disassembly of the mTOR complex 1. Nat Commun 2022; 13:4836. [PMID: 35977929 PMCID: PMC9385847 DOI: 10.1038/s41467-022-32365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) signals through the mTOR complex 1 (mTORC1) and the mTOR complex 2 to maintain cellular and organismal homeostasis. Failure to finely tune mTOR activity results in metabolic dysregulation and disease. While there is substantial understanding of the molecular events leading mTORC1 activation at the lysosome, remarkably little is known about what terminates mTORC1 signaling. Here, we show that the AAA + ATPase Thorase directly binds mTOR, thereby orchestrating the disassembly and inactivation of mTORC1. Thorase disrupts the association of mTOR to Raptor at the mitochondria-lysosome interface and this action is sensitive to amino acids. Lack of Thorase causes accumulation of mTOR-Raptor complexes and altered mTORC1 disassembly/re-assembly dynamics upon changes in amino acid availability. The resulting excessive mTORC1 can be counteracted with rapamycin in vitro and in vivo. Collectively, we reveal Thorase as a key component of the mTOR pathway that disassembles and thus inhibits mTORC1.
Collapse
Affiliation(s)
- George K E Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Leire Abalde-Atristain
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Mohammed Repon Khan
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jaba Mitra
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mohamad Aasif Dar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Melissa Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kavya Tangella
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amy McNamara
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Samuel Bennett
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vasudha Aggarwal
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Marisol Cortes
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Taekjip Ha
- Departments of Biophysics and Biophysical Chemistry, Biophysics and Biomedical Engineering, JHU Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
48
|
Drwesh L, Heim B, Graf M, Kehr L, Hansen-Palmus L, Franz-Wachtel M, Macek B, Kalbacher H, Buchner J, Rapaport D. A network of cytosolic (co)chaperones promotes the biogenesis of mitochondrial signal-anchored outer membrane proteins. eLife 2022; 11:77706. [PMID: 35876647 PMCID: PMC9355564 DOI: 10.7554/elife.77706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Signal-anchored (SA) proteins are anchored into the mitochondrial outer membrane (OM) via a single transmembrane segment at their N-terminus while the bulk of the proteins is facing the cytosol. These proteins are encoded by nuclear DNA, translated on cytosolic ribosomes, and are then targeted to the organelle and inserted into its OM by import factors. Recently, research on the insertion mechanisms of these proteins into the mitochondrial OM have gained a lot of attention. In contrast, the early cytosolic steps of their biogenesis are unresolved. Using various proteins from this category and a broad set of in vivo, in organello, and in vitro assays, we reconstituted the early steps of their biogenesis. We identified a subset of molecular (co)chaperones that interact with newly synthesized SA proteins, namely, Hsp70 and Hsp90 chaperones and co-chaperones from the Hsp40 family like Ydj1 and Sis1. These interactions were mediated by the hydrophobic transmembrane segments of the SA proteins. We further demonstrate that interfering with these interactions inhibits the biogenesis of SA proteins to a various extent. Finally, we could demonstrate direct interaction of peptides corresponding to the transmembrane segments of SA proteins with the (co)chaperones and reconstitute in vitro the transfer of such peptides from the Hsp70 chaperone to the mitochondrial Tom70 receptor. Collectively, this study unravels an array of cytosolic chaperones and mitochondrial import factors that facilitates the targeting and membrane integration of mitochondrial SA proteins.
Collapse
Affiliation(s)
- Layla Drwesh
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Benjamin Heim
- Department of Chemistry, Technische Universität München, Munich, Germany
| | - Max Graf
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Linda Kehr
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Lea Hansen-Palmus
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology,, University of Tübingen, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology,, University of Tübingen, Tübingen, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Johannes Buchner
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| |
Collapse
|
49
|
Sinning I, McDowell MA. Cryo-EM insights into tail-anchored membrane protein biogenesis in eukaryotes. Curr Opin Struct Biol 2022; 75:102428. [PMID: 35850079 DOI: 10.1016/j.sbi.2022.102428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
Tail-anchored (TA) proteins are a biologically significant class of membrane proteins, which require specialised cellular pathways to insert their single C-terminal transmembrane domain into the correct membrane. Cryo-electron microscopy has recently provided new insights into the organelle-specific machineries for TA protein biogenesis. Structures of targeting and insertase complexes within the canonical guided entry of TA proteins (GET) pathway indicate how substrates are faithfully chaperoned into the endoplasmic reticulum (ER) membrane in metazoans. The core of the GET insertase is conserved within structures of the ER membrane protein complex (EMC), which acts in parallel to insert a different subset of TA proteins. Furthermore, structures of the dislocases Spf1 and Msp1 show how they remove mislocalised TA proteins from the ER and outer mitochondrial membranes respectively.
Collapse
Affiliation(s)
- Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | - Melanie A McDowell
- Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt Am Main, Germany.
| |
Collapse
|
50
|
Matsumoto S, Ono S, Shinoda S, Kakuta C, Okada S, Ito T, Numata T, Endo T. GET pathway mediates transfer of mislocalized tail-anchored proteins from mitochondria to the ER. J Cell Biol 2022; 221:213171. [PMID: 35442388 DOI: 10.1083/jcb.202104076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Tail-anchored (TA) membrane proteins have a potential risk to be mistargeted to the mitochondrial outer membrane (OM). Such mislocalized TA proteins can be extracted by the mitochondrial AAA-ATPase Msp1 from the OM and transferred to the ER for ER protein quality control involving ubiquitination by the ER-resident Doa10 complex. Yet it remains unclear how the extracted TA proteins can move to the ER crossing the aqueous cytosol and whether this transfer to the ER is essential for the clearance of mislocalized TA proteins. Here we show by time-lapse microscopy that mislocalized TA proteins, including an authentic ER-TA protein, indeed move from mitochondria to the ER in a manner strictly dependent on Msp1 expression. The Msp1-dependent mitochondria-to-ER transfer of TA proteins is blocked by defects in the GET system, and this block is not due to impaired Doa10 functions. Thus, the GET pathway facilitates the transfer of mislocalized TA proteins from mitochondria to the ER.
Collapse
Affiliation(s)
- Shunsuke Matsumoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan.,Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Suzuka Ono
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Saori Shinoda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Chika Kakuta
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Satoshi Okada
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|