1
|
Liu Z, Yang Y, Fang H, Cen B, Fan Y, Li J, Wang L, He S. Single-cell and spatial analyses reveal the effect of VSIG4 +S100A10 +TAMs on the immunosuppression of glioblastoma and anti-PD-1 immunotherapy. Int J Biol Macromol 2025; 308:142415. [PMID: 40127797 DOI: 10.1016/j.ijbiomac.2025.142415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Therapeutic strategies aiming at the tumor immune microenvironment (TIME) hold promise for glioblastoma (GBM) treatment. However, adjuvant immunotherapies targeting checkpoint inhibitors just prove effective for a selected group of GBM patients. The extensive involvement of GBM-associated macrophages highlights their potential role in tumor behavior. In-depth exploration of the impact of macrophages on the efficacy of immunotherapy is crucial for enhancing treatment outcomes. In this study, we conducted a comprehensive analysis using bulk RNA-seq, single-cell RNA sequencing (scRNA-seq), and spatial transcriptomics to explore the heterogeneity of tumor-associated macrophages (TAMs) in GBM. Flow cytometry was employed to investigate the effects of VSIG4 on TAM phenotypes, and co-culture cellular assays were performed to evaluate its contribution to GBM malignancy. Integrating 16 patient samples, we examined the immunological significance of VSIG4+S100A10+TAMs. VSIG4 expression on macrophages is significantly upregulated and correlated with the TIME, promoting the polarization of macrophages towards M2 and facilitating GBM progression. Spatial transcriptomics and human samples multiplex immunofluorescence (mIF) confirmed the co-localization of VSIG4+S100A10+TAMs with various T cells, resulting in the inhibition of T cell immune responses and a reduction in anti-tumor immunity. Our findings demonstrate for the first time that VSIG4+S100A10+TAM is an independent prognostic indicator of poor outcome for GBM and markedly accumulates in patients exhibiting non-responsiveness to anti-PD-1 immunotherapy. Targeting this specific bifunctional subgroup can potentially open up new avenues for the immunotherapy of GBM.
Collapse
Affiliation(s)
- Ziyuan Liu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yufan Yang
- National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haiting Fang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bohong Cen
- National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yiqi Fan
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jianlong Li
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Lijie Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Shuai He
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China; National Medical Products Administration Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
2
|
Yu KKH, Basu S, Baquer G, Ahn R, Gantchev J, Jindal S, Regan MS, Abou-Mrad Z, Prabhu MC, Williams MJ, D'Souza AD, Malinowski SW, Hopland K, Elhanati Y, Stopka SA, Stortchevoi A, Couturier C, He Z, Sun J, Chen Y, Espejo AB, Chow KH, Yerrum S, Kao PL, Kerrigan BP, Norberg L, Nielsen D, Puduvalli VK, Huse J, Beroukhim R, Kim BYS, Goswami S, Boire A, Frisken S, Cima MJ, Holdhoff M, Lucas CHG, Bettegowda C, Levine SS, Bale TA, Brennan C, Reardon DA, Lang FF, Chiocca EA, Ligon KL, White FM, Sharma P, Tabar V, Agar NYR. Investigative needle core biopsies support multimodal deep-data generation in glioblastoma. Nat Commun 2025; 16:3957. [PMID: 40295505 PMCID: PMC12037860 DOI: 10.1038/s41467-025-58452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain cancer with few effective therapies. Stereotactic needle biopsies are routinely used for diagnosis; however, the feasibility and utility of investigative biopsies to monitor treatment response remains ill-defined. Here, we demonstrate the depth of data generation possible from routine stereotactic needle core biopsies and perform highly resolved multi-omics analyses, including single-cell RNA sequencing, spatial transcriptomics, metabolomics, proteomics, phosphoproteomics, T-cell clonotype analysis, and MHC Class I immunopeptidomics on standard biopsy tissue obtained intra-operatively. We also examine biopsies taken from different locations and provide a framework for measuring spatial and genomic heterogeneity. Finally, we investigate the utility of stereotactic biopsies as a method for generating patient-derived xenograft (PDX) models. Multimodal dataset integration highlights spatially mapped immune cell-associated metabolic pathways and validates inferred cell-cell ligand-receptor interactions. In conclusion, investigative biopsies provide data-rich insight into disease processes and may be useful in evaluating treatment responses.
Collapse
Affiliation(s)
- Kenny K H Yu
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sreyashi Basu
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryuhjin Ahn
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer Gantchev
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonali Jindal
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zaki Abou-Mrad
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael C Prabhu
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc J Williams
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia D D'Souza
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seth W Malinowski
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelsey Hopland
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuval Elhanati
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexei Stortchevoi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles Couturier
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhong He
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingjing Sun
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yulong Chen
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexsandra B Espejo
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kin Hoe Chow
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Smitha Yerrum
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pei-Lun Kao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brittany Parker Kerrigan
- Department of Neurosurgery, The Brain Tumor Center, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa Norberg
- Department of Anatomic Pathology, The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Douglas Nielsen
- Department of Anatomic Pathology, The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The Brain Tumor Center, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Huse
- Department of Anatomic Pathology, Division of Pathology-Lab Medicine Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rameen Beroukhim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The Brain Tumor Center, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangeeta Goswami
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adrienne Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Frisken
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Cima
- Department of Materials Science and Engineering, Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stuart S Levine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David A Reardon
- Department of Medical Oncology, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Frederick F Lang
- Department of Neurosurgery, The Brain Tumor Center, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith L Ligon
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Forest M White
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Padmanee Sharma
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Shahani A, Slika H, Elbeltagy A, Lee A, Peters C, Dotson T, Raj D, Tyler B. The epigenetic mechanisms involved in the treatment resistance of glioblastoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:12. [PMID: 40201311 PMCID: PMC11977385 DOI: 10.20517/cdr.2024.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 04/10/2025]
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor with almost inevitable recurrence despite multimodal management with surgical resection and radio-chemotherapy. While several genetic, proteomic, cellular, and anatomic factors interplay to drive recurrence and promote treatment resistance, the epigenetic component remains among the most versatile and heterogeneous of these factors. Herein, the epigenetic landscape of GBM refers to a myriad of modifications and processes that can alter gene expression without altering the genetic code of cancer cells. These processes encompass DNA methylation, histone modification, chromatin remodeling, and non-coding RNA molecules, all of which have been found to be implicated in augmenting the tumor's aggressive behavior and driving its resistance to therapeutics. This review aims to delve into the underlying interactions that mediate this role for each of these epigenetic components. Further, it discusses the two-way relationship between epigenetic modifications and tumor heterogeneity and plasticity, which are crucial to effectively treat GBM. Finally, we build on the previous characterization of epigenetic modifications and interactions to explore specific targets that have been investigated for the development of promising therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
4
|
Seong M, Bak-Gordon P, Liu Z, Canoll PD, Manley JL. Splicing dysregulation in glioblastoma alters the function of cell migration-related genes. Glia 2025; 73:251-270. [PMID: 39448549 DOI: 10.1002/glia.24630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Glioblastoma (GBM) has a poor prognosis with a high recurrence and low survival rate. Previous RNA-seq analyses have revealed that alternative splicing (AS) plays a role in GBM progression. Here, we present a novel AS analysis method (Semi-Q) and describe its use to identify GBM-specific AS events. We analyzed RNA-seq data from normal brain (NB), normal human astrocytes (NHAs) and GBM samples, and found that comparison between NHA and GBM was especially informative. Importantly, this analysis revealed that genes encoding cell migration-related proteins, including filamins (FLNs) and actinins (ACTNs), were among those most affected by differential AS. Functional assays revealed that dysregulated AS of FLNA, B and C transcripts produced protein isoforms that not only altered transcription of cell proliferation-related genes but also led to enhanced cell migration, resistance to cell death and/or mitochondrial respiratory function, while a dysregulated AS isoform of ACTN4 enhanced cell migration. Together, our results indicate that cell migration and actin cytoskeleton-related genes are differentially regulated by AS in GBM, supporting a role for AS in facilitating tumor growth and invasiveness.
Collapse
Affiliation(s)
- Minu Seong
- Department of Biological Science, Columbia University, New York, New York, USA
| | - Pedro Bak-Gordon
- Department of Biological Science, Columbia University, New York, New York, USA
| | - Zhaoqi Liu
- Department of Systems Biology, Columbia University, New York, New York, USA
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Peter D Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - James L Manley
- Department of Biological Science, Columbia University, New York, New York, USA
| |
Collapse
|
5
|
Wood J, Smith SJ, Castellanos-Uribe M, Lourdusamy A, May ST, Barrett DA, Grundy RG, Kim DH, Rahman R. Metabolomic characterisation of the glioblastoma invasive margin reveals a region-specific signature. Heliyon 2025; 11:e41309. [PMID: 39816516 PMCID: PMC11732679 DOI: 10.1016/j.heliyon.2024.e41309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Isocitrate dehydrogenase wild-type glioblastoma (GBM) is characterised by a heterogeneous genetic landscape resulting from dynamic competition between tumour subclones to survive selective pressures. Improvements in metabolite identification and metabolome coverage have led to increased interest in clinically relevant applications of metabolomics. Here, we use liquid chromatography-mass spectrometry and gene expression microarray to profile integrated intratumour metabolic heterogeneity, as a direct functional readout of adaptive responses of subclones to the tumour microenvironment. Multi-region surgical sampling was performed on five adult GBM patients based on pre-operative brain imaging and fluorescence-guided surgery. Polar and hydrophobic metabolites extracted from tumour fragments were assessed, followed by putative assignment of metabolite identifications based on retention times and molecular mass. Class discrimination between tumour regions through showed clear separation of tumour regions based on polar metabolite profiles. Metabolic pathway assignments revealed several significantly altered metabolites between the tumour core and invasive region to be associated with purine and pyrimidine metabolism. This proof-of-principle study assesses intratumour heterogeneity through mass spectrometry-based metabolite profiling of multi-region biopsies. Bioinformatic interpretation of the GBM metabolome has highlighted the invasive region to be biologically distinct compared to tumour core and revealed putative drug-targetable metabolic pathways associated with purine and pyrimidine metabolism.
Collapse
Affiliation(s)
- James Wood
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | - Stuart J. Smith
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | | | - Anbarasu Lourdusamy
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | - Sean T. May
- Nottingham Arabidopsis Stock Centre, School of Biosciences, University of Nottingham, UK
| | - David A. Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, UK
| | - Richard G. Grundy
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, UK
| |
Collapse
|
6
|
Ispirjan M, Marx S, Freund E, Fleck SK, Baldauf J, Roessler K, Schroeder HW, Bekeschus S. Markers of tumor-associated macrophages and microglia exhibit high intratumoral heterogeneity in human glioblastoma tissue. Oncoimmunology 2024; 13:2425124. [PMID: 39523551 PMCID: PMC11556281 DOI: 10.1080/2162402x.2024.2425124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Human glioblastoma multiforme (GBM) is a highly aggressive tumor with insufficient therapies available. Especially, novel concepts of immune therapies fail due to a complex immunosuppressive microenvironment, high mutational rates, and inter-patient variations. The intratumoral heterogeneity is currently not sufficiently investigated. METHODS Biopsies from six different locations were taken in a cohort of 16 GBM patients who underwent surgery. The tissue slides were analyzed utilizing high-content imaging microscopy and algorithm-based image quantification. Several immune markers for macrophage and microglia subpopulations were investigated. Flow cytometry was used to validate key results. Besides the surface marker, cytokines were measured and categorized based on their heterogenicity and overall expression. RESULTS M2-like antigens, including CD204, CD163, Arg1, and CSF1R, showed comparatively higher expression, with GFAP displaying the least intratumoral heterogeneity. In contrast, anti-tumor-macrophage-like antigens, such as PSGL-1, CD16, CD68, and MHC-II, exhibited low overall expression and concurrent high intratumoral heterogeneity. CD16 and PSGL-1 were the most heterogeneous antigens. High expression levels were observed for cytokines IL-6, VEGF, and CCL-2. VILIP-a was revealed to differentiate most in principle component analysis. Cytokines with the lowest overall expression, such as TGF-β1, β-NGF, TNF-α, and TREM1, showed low intratumoral heterogeneity, in contrast to βNGF, TNF-α, and IL-18, which displayed high heterogeneity despite low expression. CONCLUSION The study showed high intratumoral heterogeneity in GBM, emphasizing the need for a more detailed understanding of the tumor microenvironment. The described findings could be essential for future personalized treatment strategies and the implementation of reliable diagnostics in GBM.
Collapse
Affiliation(s)
- Mikael Ispirjan
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sascha Marx
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Steffen K. Fleck
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
| | - Joerg Baldauf
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
| | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Henry W.S. Schroeder
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
7
|
Pappalardo XG, Jansen G, Amaradio M, Costanza J, Umeton R, Guarino F, De Pinto V, Oliver SG, Messina A, Nicosia G. Inferring gene regulatory networks of ALS from blood transcriptome profiles. Heliyon 2024; 10:e40696. [PMID: 39687198 PMCID: PMC11648123 DOI: 10.1016/j.heliyon.2024.e40696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
One of the most robust approaches to the prediction of causal driver genes of complex diseases is to apply reverse engineering methods to infer a gene regulatory network (GRN) from gene expression profiles (GEPs). In this work, we analysed 794 GEPs of 1117 human whole-blood samples from Amyotrophic Lateral Sclerosis (ALS) patients and healthy subjects reported in the GSE112681 dataset. GRNs for ALS and healthy individuals were reconstructed by ARACNe-AP (Algorithm for the Reconstruction of Accurate Cellular Networks - Adaptive Partitioning). In order to examine phenotypic differences in the ALS population surveyed, several datasets were built by arranging GEPs according to sex, spinal or bulbar onset, and survival time. The designed reverse engineering methodology identified a significant number of potential ALS-promoting mechanisms and putative transcriptional biomarkers that were previously unknown. In particular, the characterization of ALS phenotypic networks by pathway enrichment analysis has identified a gender-specific disease signature, namely network activation related to the radiation damage response, reported in the networks of bulbar and female ALS patients. Also, focusing on a smaller interaction network, we selected some hub genes to investigate their inferred pathological and healthy subnetworks. The inferred GRNs revealed the interconnection of the four selected hub genes (TP53, SOD1, ALS2, VDAC3) with p53-mediated pathways, suggesting the potential neurovascular response to ALS neuroinflammation. In addition to being well consistent with literature data, our results provide a novel integrated view of ALS transcriptional regulators, expanding information on the possible mechanisms underlying ALS and also offering important insights for diagnostic purposes and for developing possible therapies for a disease yet incurable.
Collapse
Affiliation(s)
- Xena G. Pappalardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giorgio Jansen
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Matteo Amaradio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Jole Costanza
- The National Institute of Molecular Genetics “Romeo and Enrica Invernizzi”, Milano, Italy
| | - Renato Umeton
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- National Institute of Biostructures and Biosystems, Section of Catania, Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- National Institute of Biostructures and Biosystems, Section of Catania, Catania, Italy
| | | | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
- National Institute of Biostructures and Biosystems, Section of Catania, Catania, Italy
| | - Giuseppe Nicosia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
de los Angeles Becerra Rodriguez M, Gonzalez Muñoz E, Moore T. Oligodendrocyte-specific expression of PSG8- AS1 suggests a role in myelination with prognostic value in oligodendroglioma. Noncoding RNA Res 2024; 9:1061-1068. [PMID: 39022681 PMCID: PMC11254506 DOI: 10.1016/j.ncrna.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The segmentally duplicated Pregnancy-specific glycoprotein (PSG) locus on chromosome 19q13 may be one of the most rapidly evolving in the human genome. It comprises ten coding genes (PSG1-9, 11) and one predominantly non-coding gene (PSG10) that are expressed in the placenta and gut, in addition to several poorly characterized long non-coding RNAs. We report that long non-coding RNA PSG8-AS1 has an oligodendrocyte-specific expression pattern and is co-expressed with genes encoding key myelin constituents. PSG8-AS1 exhibits two peaks of expression during human brain development coinciding with the most active periods of oligodendrogenesis and myelination. PSG8-AS1 orthologs were found in the genomes of several primates but significant expression was found only in the human, suggesting a recent evolutionary origin of its proposed role in myelination. Additionally, because co-deletion of chromosomes 1p/19q is a genomic marker of oligodendroglioma, expression of PSG8-AS1 was examined in these tumors. PSG8-AS1 may be a promising diagnostic biomarker for glioma, with prognostic value in oligodendroglioma.
Collapse
Affiliation(s)
- Maria de los Angeles Becerra Rodriguez
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- SFI Centre for Research Training in Genomics Data Science, University College Cork, Cork, Ireland
| | - Elena Gonzalez Muñoz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590, Málaga, Spain
- Universidad de Malaga, Dpto. Biología Celular, Genética y Fisiología, 29071, Málaga, Spain
| | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Waters E, Pucci P, Rahman R, Yatsyshyna AP, Porter H, Hirst M, Gromnicova R, Kraev I, Mongiardini V, Grimaldi B, Golding J, Fillmore HL, Győrffy B, Gangadharannambiar P, Velanis CN, Heath CJ, Crea F. REST-dependent glioma progression occurs independently of the repression of the long non-coding RNA HAR1A. PLoS One 2024; 19:e0312237. [PMID: 39602392 PMCID: PMC11602025 DOI: 10.1371/journal.pone.0312237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/03/2024] [Indexed: 11/29/2024] Open
Abstract
The long non-coding RNA (lncRNA), HAR1A is emerging as a putative tumour suppressor. In non-neoplastic brain cells, REST suppresses HAR1A expression. In gliomas REST acts as an oncogene and is a potential therapeutic target. It is therefore conceivable that REST promotes glioma progression by down-regulating HAR1A. To test this hypothesis, glioma clinical databases were analysed to study: (I) HAR1A/REST correlation; (II) HAR1A and REST prognostic role; (III) molecular pathways associated with these genes. HAR1A expression and subcellular localization were studied in glioblastoma and paediatric glioma cells. REST function was also studied in these cells, by observing the effects of gene silencing on: (I) HAR1A expression; (II) cancer cell proliferation, apoptosis, migration; (III) expression of neural differentiation genes. The same phenotypes (and cell morphology) were studied in HAR1A overexpressing cells. Our results show that REST and HAR1A are negatively correlated in gliomas. Higher REST expression predicts worse prognosis in low-grade gliomas (the opposite is true for HAR1A). REST-silencing induces HAR1A upregulation. HAR1A is primarily detected in the nucleus. REST-silencing dramatically reduces cell proliferation and induces apoptosis, but HAR1A overexpression has no major effect on investigated cell phenotypes. We also show that REST regulates the expression of neural differentiation genes and that its oncogenic function is primarily HAR1A-independent.
Collapse
Affiliation(s)
- Ella Waters
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Perla Pucci
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ruman Rahman
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Anna P. Yatsyshyna
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
- Department of Human Genetics, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Harry Porter
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mark Hirst
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Radka Gromnicova
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Vera Mongiardini
- Laboratory of Molecular Medicine, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Benedetto Grimaldi
- Laboratory of Molecular Medicine, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jon Golding
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Helen L. Fillmore
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Christos N. Velanis
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Christopher J. Heath
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Francesco Crea
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, United Kingdom
| |
Collapse
|
10
|
Wang X, Sun Q, Liu T, Lu H, Lin X, Wang W, Liu Y, Huang Y, Huang G, Sun H, Chen Q, Wang J, Tian D, Yuan F, Liu L, Wang B, Gu Y, Liu B, Chen L. Single-cell multi-omics sequencing uncovers region-specific plasticity of glioblastoma for complementary therapeutic targeting. SCIENCE ADVANCES 2024; 10:eadn4306. [PMID: 39576855 PMCID: PMC11584018 DOI: 10.1126/sciadv.adn4306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Glioblastoma (GBM) cells are highly heterogeneous and invasive, leading to treatment resistance and relapse. However, the molecular regulation in and distal to tumors remains elusive. Here, we collected paired tissues from the tumor core (TC) and peritumoral brain (PTB) for integrated snRNA-seq and snATAC-seq analyses. Tumor cells infiltrating PTB from TC behave more like oligodendrocyte progenitor cells than astrocytes at the transcriptome level. Dual-omics analyses further suggest that the distal regulatory regions in the tumor genome and specific transcription factors are potential determinants of regional heterogeneity. Notably, while activator protein 1 (AP-1) is active in all GBM states, its activity declines from TC to PTB, with another transcription factor, BACH1, showing the opposite trend. Combined inhibition of AP-1 and BACH1 more efficiently attenuates the tumor progression in mice and prolongs survival than either single-target treatment. Together, our work reveals marked molecular alterations of infiltrated GBM cells and a synergy of combination therapy targeting intratumor heterogeneity in and distal to GBM.
Collapse
Affiliation(s)
- Xin Wang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- BGI Research, Hangzhou 310030, China
| | - Qian Sun
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | | | - Haoran Lu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xuyi Lin
- BGI Research, Hangzhou 310030, China
| | - Weiwen Wang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Yang Liu
- BGI Research, Hangzhou 310030, China
| | - Yunting Huang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | | | - Haixi Sun
- BGI Research, Shenzhen 518083, China
- BGI Research, Beijing 102601, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianxue Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Junmin Wang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Daofeng Tian
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Fan'en Yuan
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | | | - Bo Wang
- China National GeneBank, BGI Research, Shenzhen 518120, China
- BGI Research, Shenzhen 518083, China
| | - Ying Gu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- BGI Research, Beijing 102601, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baohui Liu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
- BGI Research, Hangzhou 310030, China
| |
Collapse
|
11
|
Liu Z, Liu J, Chen Z, Zhu X, Ding R, Huang S, Xu H. CLIC4 Is a New Biomarker for Glioma Prognosis. Biomedicines 2024; 12:2579. [PMID: 39595145 PMCID: PMC11591648 DOI: 10.3390/biomedicines12112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Chloride Intracellular Channel 4 (CLIC4) plays a versatile role in cellular functions beyond its role in primary chloride ion transport. Notably, many studies found an association between CLIC4 expression and cancers. However, the correlation between CLIC4 and glioma remains to be uncovered. METHODS A total of 3162 samples from nine public datasets were analyzed to reveal the relationship between CLIC4 expression and glioma malignancy or prognosis. Immunohistochemistry (IHC) staining was performed to examine the results in an in-house cohort. A nomogram model was constructed to predict the prognosis. Functional enrichment analysis was employed to find CLIC4-associated differentially expressed genes in glioma. Immune infiltration analysis, correlation analysis, and IHC staining were employed, aiming to examine the correlation between CLIC4 expression, immune cell infiltration, and ECM (extracellular matrix)-related genes. RESULTS The expression level of CLIC4 was correlated with the malignancy of glioma and the prognosis of patients. More aggressive gliomas and mesenchymal GBM are associated with a high expression of CLIC4. Gliomas with IDH mutation or 1p19q codeletion express a low level of CLIC4, and a high expression of CLIC4 correlates with poor prognosis. The nomogram model shows a good predictive performance. The DEGs (differentially expressed genes) in gliomas with high and low CLIC4 expression are enriched in extracellular matrix and immune functions. On the one hand, gliomas with high CLIC4 expression have a greater presence of macrophages, neutrophils, and eosinophils; on the other hand, a high CLIC4 expression in gliomas is positively associated with ECM-related genes. CONCLUSIONS Compared to glioma cells with low CLIC4 expression, gliomas with high CLIC4 expression exhibit greater malignancy and poorer prognosis. Our findings indicate that a high level of CLIC4 correlates with high expression of ECM-related genes and the infiltration of macrophages, neutrophils, and eosinophils within glioma tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Shulan Huang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.L.); (J.L.); (Z.C.); (X.Z.); (R.D.)
| | - Haitao Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Z.L.); (J.L.); (Z.C.); (X.Z.); (R.D.)
| |
Collapse
|
12
|
Hu C, Fang K, Du Q, Chen J, Wang L, Zhang J, Bai R, Wang Y. Diffusion-weighted MRI precisely predicts telomerase reverse transcriptase promoter mutation status in World Health Organization grade IV gliomas using a residual convolutional neural network. Br J Radiol 2024; 97:1806-1815. [PMID: 39152999 DOI: 10.1093/bjr/tqae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/18/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
OBJECTIVES Telomerase reverse transcriptase promoter (pTERT) mutation status plays a key role in making decisions and predicting prognoses for patients with World Health Organization (WHO) grade IV glioma. This study was conducted to assess the value of diffusion-weighted imaging (DWI) for predicting pTERT mutation status in WHO grade IV glioma. METHODS MRI data and molecular information were obtained for 266 patients with WHO grade IV glioma at the hospital and divided into training and validation sets. The ratio of training to validation set was approximately 10:3. We trained the same residual convolutional neural network (ResNet) for each MR modality, including structural MRIs (T1-weighted, T2-weighted, and contrast-enhanced T1-weighted) and DWI*, to compare the predictive capacities between DWI and conventional structural MRI. We also explored the effects of different regions of interest on pTERT mutation status prediction outcomes. RESULTS Structural MRI modalities poorly predicted the pTERT mutation status (accuracy = 51%-54%; area under the curve [AUC]=0.545-0.571), whereas DWI combined with its apparent diffusive coefficient maps yielded the best predictive performance (accuracy = 85.2%, AUC = 0.934). Including the radiological and clinical characteristics did not further improve the performance for predicting pTERT mutation status. The entire tumour volume yielded the best prediction performance. CONCLUSIONS DWI technology shows promising potential for predicting pTERT mutations in WHO grade IV glioma and should be included in the MRI protocol for WHO grade IV glioma in clinical practice. ADVANCES IN KNOWLEDGE This is the first large-scale model study to validate the predictive value of DWI for pTERT in WHO grade IV glioma.
Collapse
Affiliation(s)
- Congman Hu
- Department of Neurosurgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China
- Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Ke Fang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310020, China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiarui Chen
- Department of Neurosurgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China
| | - Lin Wang
- Department of Neurosurgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China
| | - Jianmin Zhang
- Department of Neurosurgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China
| | - Ruiliang Bai
- Department of Physical Medicine and Rehabilitation of the Affiliated Sir Run Run Shaw Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310020, China
- Department of Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, China
| | - Yongjie Wang
- Department of Neurosurgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
13
|
Choate KA, Pratt EPS, Jennings MJ, Winn RJ, Mann PB. IDH Mutations in Glioma: Molecular, Cellular, Diagnostic, and Clinical Implications. BIOLOGY 2024; 13:885. [PMID: 39596840 PMCID: PMC11592129 DOI: 10.3390/biology13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
In 2021, the World Health Organization classified isocitrate dehydrogenase (IDH) mutant gliomas as a distinct subgroup of tumors with genetic changes sufficient to enable a complete diagnosis. Patients with an IDH mutant glioma have improved survival which has been further enhanced by the advent of targeted therapies. IDH enzymes contribute to cellular metabolism, and mutations to specific catalytic residues result in the neomorphic production of D-2-hydroxyglutarate (D-2-HG). The accumulation of D-2-HG results in epigenetic alterations, oncogenesis and impacts the tumor microenvironment via immunological modulations. Here, we summarize the molecular, cellular, and clinical implications of IDH mutations in gliomas as well as current diagnostic techniques.
Collapse
Affiliation(s)
- Kristian A. Choate
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
| | - Evan P. S. Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| | - Robert J. Winn
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| |
Collapse
|
14
|
Zubkova AE, Yudkin DV. Regulation of HTT mRNA Biogenesis: The Norm and Pathology. Int J Mol Sci 2024; 25:11493. [PMID: 39519046 PMCID: PMC11546943 DOI: 10.3390/ijms252111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of the CAG repeat in exon 1 of the HTT gene, leading to the formation of a toxic variant of the huntingtin protein. It is a rare but severe hereditary disease for which no effective treatment method has been found yet. The primary therapeutic targets include the mutant protein and the mutant mRNA of HTT. Current clinical trial approaches in gene therapy involve the application of splice modulation, siRNA, or antisense oligonucleotides for RNA-targeted knockdown of HTT. However, these approaches do not take into account the diversity of HTT transcript isoforms in the normal conditions and in HD. In this review, we discuss the features of transcriptional regulation and processing that lead to the formation of various HTT mRNA variants, each of which may uniquely contribute to the progression of the disease. Furthermore, understanding the role of known transcription factors of HTT in pathology may aid in the development of potentially new therapeutic tools based on endogenous regulators.
Collapse
Affiliation(s)
- Alexandra E. Zubkova
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, Moscow 119048, Russia;
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Dmitry V. Yudkin
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Trubetskaya Str., 8/2, Moscow 119048, Russia;
| |
Collapse
|
15
|
Wang H, Argenziano MG, Yoon H, Boyett D, Save A, Petridis P, Savage W, Jackson P, Hawkins-Daarud A, Tran N, Hu L, Singleton KW, Paulson L, Dalahmah OA, Bruce JN, Grinband J, Swanson KR, Canoll P, Li J. Biologically informed deep neural networks provide quantitative assessment of intratumoral heterogeneity in post treatment glioblastoma. NPJ Digit Med 2024; 7:292. [PMID: 39427044 PMCID: PMC11490546 DOI: 10.1038/s41746-024-01277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of recurrent glioblastoma. This study addresses the need for non-invasive approaches to map heterogeneous landscape of histopathological alterations throughout the entire lesion for each patient. We developed BioNet, a biologically-informed neural network, to predict regional distributions of two primary tissue-specific gene modules: proliferating tumor (Pro) and reactive/inflammatory cells (Inf). BioNet significantly outperforms existing methods (p < 2e-26). In cross-validation, BioNet achieved AUCs of 0.80 (Pro) and 0.81 (Inf), with accuracies of 80% and 75%, respectively. In blind tests, BioNet achieved AUCs of 0.80 (Pro) and 0.76 (Inf), with accuracies of 81% and 74%. Competing methods had AUCs lower or around 0.6 and accuracies lower or around 70%. BioNet's voxel-level prediction maps reveal intratumoral heterogeneity, potentially improving biopsy targeting and treatment evaluation. This non-invasive approach facilitates regular monitoring and timely therapeutic adjustments, highlighting the role of ML in precision medicine.
Collapse
Affiliation(s)
- Hairong Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Hyunsoo Yoon
- Department of Industrial Engineering, Yonsei University, Seoul, South Korea
| | - Deborah Boyett
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Akshay Save
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Petros Petridis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
| | - William Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Pamela Jackson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Nhan Tran
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ, USA
| | - Leland Hu
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Kyle W Singleton
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Lisa Paulson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Osama Al Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Grinband
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jing Li
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
16
|
Michalska-Foryszewska A, Bujko M, Kwiatkowska-Miernik A, Ziemba K, Sklinda K, Walecki J, Mruk B. The peritumoral brain zone in glioblastoma: a review of the pretreatment approach. Pol J Radiol 2024; 89:e480-e487. [PMID: 39507892 PMCID: PMC11538905 DOI: 10.5114/pjr/192044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 11/08/2024] Open
Abstract
Glioblastomas are the most common and aggressive form of malignant primary brain tumors in adults. The standard treatment is surgical resection followed by radiotherapy and chemotherapy. Despite optimal treatment methods, the prognosis for patients remains poor. Preoperative determination of glioblastoma margins remains beneficial for the complete removal of the tumor mass. Radiotherapy is essential for post-surgery treatment, but radioresistance is a significant challenge contributing to high mortality rates. Advanced imaging technologies are used to analyze the changes in the peritumoral brain zone (PTZ). Consequently, they may lead to the development of novel therapeutic options, especially targeting the marginal parts of a tumor, which could improve the prognosis of glioblastoma patients. The clinical presentation of glioblastoma is heterogeneous and mostly depends on the location and size of a tumor. Glioblastomas are characterized by both intratumoral cellular heterogeneity and an extensive, diffuse infiltration into the normal tissue bordering a tumor called the PTZ. Neuroimaging techniques, such as diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), proton magnetic resonance spectroscopy (1H MRS), and chemical exchange saturation transfer (CEST) are useful methods in the evaluation of the tumor infiltration and thus the resection margin.
Collapse
Affiliation(s)
- Anna Michalska-Foryszewska
- Radiological Diagnostics Center, The National Institute of Medicine of the Ministry of Interior and Administration, Warsaw, Poland
| | - Maciej Bujko
- Department of Neurosurgery, The National Institute of Medicine of the Ministry of Interior and Administration, Warsaw, Poland
| | - Agnieszka Kwiatkowska-Miernik
- Radiological Diagnostics Center, The National Institute of Medicine of the Ministry of Interior and Administration, Warsaw, Poland
| | - Katarzyna Ziemba
- Radiological Diagnostics Center, The National Institute of Medicine of the Ministry of Interior and Administration, Warsaw, Poland
| | - Katarzyna Sklinda
- Radiological Diagnostics Center, The National Institute of Medicine of the Ministry of Interior and Administration, Warsaw, Poland
- Department of Radiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Jerzy Walecki
- Radiological Diagnostics Center, The National Institute of Medicine of the Ministry of Interior and Administration, Warsaw, Poland
| | - Bartosz Mruk
- Radiological Diagnostics Center, The National Institute of Medicine of the Ministry of Interior and Administration, Warsaw, Poland
| |
Collapse
|
17
|
Gao L, Zhang R, Zhang W, Lan Y, Li X, Cai Q, Liu J. Integrated bioinformatics analysis and experimental validation on malignant progression and immune cell infiltration of LTBP2 in gliomas. BMC Cancer 2024; 24:1252. [PMID: 39390437 PMCID: PMC11466037 DOI: 10.1186/s12885-024-12976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Gliomas are the highly aggressive brain tumor and also the most devastating human tumors. The latent TGF binding proteins (LTBP) had been found to be involved in malignant biological process and could be used as potent biomarkers in several solid tumors. While the role of LTBP family in human glioma remain to be elucidated. METHODS Normalized gene expression and corresponding clinical data of 2407 gliomas samples in public datasets were downloaded from Gliovis. Kaplan-Meier methods and Cox regression analysis was used for survival analyses.Western blot (WB) and Immunohistochemical (IHC) testing were employed to test LTBPs protein level in 154 gliomas samples. Correlation between LTBP2 expression and immune infiltration was evaluated by immunofluorescence (IF) and IHC in glioma tissues. CCK8 and flow cytometric analysis were used to detect the effect of LTBP2 on glioma cells. Orthotopic glioma- mouse models were utilized to evaluate effects in vivo. RESULTS LTBP2 mRNA level was dramatically higher in glioma samples compared with non-tumor brain tissues in XENA-TCGA_GTEx, Gill and Gravendeel datasets (all P < 0.01), and its expression positively correlated with glioma WHO grade, IDH1/2 wildtype and mesenchymal subtypes. These results were confirmed by In-house cohort which was detected by WB and IHC. We found that gliomas patients with high LTBP2 level had shorter OS than those with low LTBP2 level. LTBP2 expression significantly associated with glioma immune score (Spearman r = 0.68, P < 0.01)) and strongly correlated with infiltration degreee of macrophages both in lower grade gliomas (LGG) and GBM. Knocking down LTBP2 obviously reduced proliferation and enhanced sensitivity to temozolomide in U87 and U251 cells. Nude mice with lower expression of LTBP2 had slower tumor growth, and accompanied by less tumor-associated macrophages (TAMs) infiltration detected by IHC staining in vivo. Finally, low LTBP2 expression glioma patients who received chemotherapy survived longer than patients with high LTBP2 expression. CONCLUSION LTBP2 could be used as a prognostic marker, and high LTBP2 expression related to abundant TAMs infiltration and with a worse response to chemotherapy.
Collapse
Affiliation(s)
- Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenbin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanfang Lan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
18
|
Lenda B, Żebrowska-Nawrocka M, Balcerczak E. Comprehensive Bioinformatics Analysis Reveals the Potential Role of the hsa_circ_0001081/miR-26b-5p Axis in Regulating COL15A1 and TRIB3 within Hypoxia-Induced miRNA/mRNA Networks in Glioblastoma Cells. Biomedicines 2024; 12:2236. [PMID: 39457549 PMCID: PMC11504030 DOI: 10.3390/biomedicines12102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The intrinsic molecular heterogeneity of glioblastoma (GBM) is one of the main reasons for its resistance to conventional treatment. Mesenchymal GBM niches are associated with hypoxic signatures and a negative influence on patients' prognosis. To date, competing endogenous RNA (ceRNA) networks have been shown to have a broad impact on the progression of various cancers. In this study, we decided to construct hypoxia-specific microRNA/ messengerRNA (miRNA/mRNA) networks with a putative circular RNA (circRNA) regulatory component using available bioinformatics tools. Methods: For ceRNA network construction, we combined publicly available data deposited in the Gene Expression Omnibus (GEO) and interaction pairs obtained from miRTarBase and circBank; a differential expression analysis of GBM cells was performed with limma and deseq2. For the gene ontology (GO) enrichment analysis, we utilized clusterProfiler; GBM molecular subtype analysis was performed in the Glioma Bio Discovery Portal (Glioma-BioDP). Results: We observed that miR-26b-5p, generally considered a tumor suppressor, was upregulated under hypoxic conditions in U-87 MG cells. Moreover, miR-26b-5p could potentially inhibit TRIB3, a gene associated with tumor proliferation. Protein-protein interaction (PPI) network and GO enrichment analyses identified a hypoxia-specific subcluster enriched in collagen-associated terms, with six genes highly expressed in the mesenchymal glioma group. This subcluster included hsa_circ_0001081/miR-26b-5p-affected COL15A1, a gene downregulated in hypoxic U-87 MG cells yet highly expressed in the mesenchymal GBM subtype. Conclusions: The interplay between miR-26b-5p, COL15A1, and TRIB3 suggests a complex regulatory mechanism that may influence the extracellular matrix composition and the mesenchymal transformation in GBM. However, the precise impact of the hsa_circ_0001081/miR-26b-5p axis on collagen-associated processes in hypoxia-induced GBM cells remains unclear and warrants further investigation.
Collapse
Affiliation(s)
- Bartosz Lenda
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.Ż.-N.); (E.B.)
| | | | | |
Collapse
|
19
|
Banu MA, Dovas A, Argenziano MG, Zhao W, Sperring CP, Cuervo Grajal H, Liu Z, Higgins DM, Amini M, Pereira B, Ye LF, Mahajan A, Humala N, Furnari JL, Upadhyayula PS, Zandkarimi F, Nguyen TT, Teasley D, Wu PB, Hai L, Karan C, Dowdy T, Razavilar A, Siegelin MD, Kitajewski J, Larion M, Bruce JN, Stockwell BR, Sims PA, Canoll P. A cell state-specific metabolic vulnerability to GPX4-dependent ferroptosis in glioblastoma. EMBO J 2024; 43:4492-4521. [PMID: 39192032 PMCID: PMC11480389 DOI: 10.1038/s44318-024-00176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 08/29/2024] Open
Abstract
Glioma cells hijack developmental programs to control cell state. Here, we uncover a glioma cell state-specific metabolic liability that can be therapeutically targeted. To model cell conditions at brain tumor inception, we generated genetically engineered murine gliomas, with deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling astrocyte differentiation during brain development. N1IC tumors harbored quiescent astrocyte-like transformed cell populations while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. Further, N1IC transformed cells exhibited increased mitochondrial lipid peroxidation, high ROS production and depletion of reduced glutathione. This altered mitochondrial phenotype rendered the astrocyte-like, quiescent populations more sensitive to pharmacologic or genetic inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Treatment of patient-derived early-passage cell lines and glioma slice cultures generated from surgical samples with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles. Collectively, these findings reveal a specific therapeutic vulnerability to ferroptosis linked to mitochondrial redox imbalance in a subpopulation of quiescent astrocyte-like glioma cells resistant to standard forms of treatment.
Collapse
Affiliation(s)
- Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Zhouzerui Liu
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dominique Mo Higgins
- Department of Neurological Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Misha Amini
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ling F Ye
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia L Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences, Department of Chemistry and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Trang Tt Nguyen
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Damian Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter B Wu
- Department of Neurological Surgery, UCLA Geffen School of Medicine, Los Angeles, CA, USA
| | - Li Hai
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Charles Karan
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | | | - Aida Razavilar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jan Kitajewski
- University of Illinois Cancer Center, Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA
| | | | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Peter A Sims
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Peter Canoll
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Dadario NB, Boyett DM, Teasley DE, Chabot PJ, Winans NJ, Argenziano MG, Sperring CP, Canoll P, Bruce JN. Unveiling the Inflammatory Landscape of Recurrent Glioblastoma through Histological-Based Assessments. Cancers (Basel) 2024; 16:3283. [PMID: 39409905 PMCID: PMC11476027 DOI: 10.3390/cancers16193283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The glioblastoma (GBM) tumor microenvironment consists of a heterogeneous mixture of neoplastic and non-neoplastic cells, including immune cells. Tumor recurrence following standard-of-care therapy results in a rich landscape of inflammatory cells throughout the glioma-infiltrated cortex. Immune cells consisting of glioma-associated macrophages and microglia (GAMMs) overwhelmingly constitute the bulk of the recurrent glioblastoma (rGBM) microenvironment, in comparison to the highly cellular and proliferative tumor microenvironment characteristic of primary GBM. These immune cells dynamically interact within the tumor microenvironment and can contribute to disease progression and therapy resistance while also providing novel targets for emerging immunotherapies. Within these varying contexts, histological-based assessments of immune cells in rGBM, including immunohistochemistry (IHC) and immunofluorescence (IF), offer a critical way to visualize and examine the inflammatory landscape. Here, we exhaustively review the available body of literature on the inflammatory landscape in rGBM as identified through histological-based assessments. We highlight the heterogeneity of immune cells throughout the glioma-infiltrated cortex with a focus on microglia and macrophages, drawing insights from canonical and novel immune-cell histological markers to estimate cell phenotypes and function. Lastly, we discuss opportunities for immunomodulatory treatments aiming to harness the inflammatory landscape in rGBM.
Collapse
Affiliation(s)
- Nicholas B. Dadario
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Deborah M. Boyett
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Damian E. Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Peter J. Chabot
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Nathan J. Winans
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Michael G. Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Colin P. Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Peter Canoll
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| |
Collapse
|
21
|
Sipos D, Debreczeni-Máté Z, Ritter Z, Freihat O, Simon M, Kovács Á. Complex Diagnostic Challenges in Glioblastoma: The Role of 18F-FDOPA PET Imaging. Pharmaceuticals (Basel) 2024; 17:1215. [PMID: 39338377 PMCID: PMC11434841 DOI: 10.3390/ph17091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) remains one of the most aggressive and lethal forms of brain cancer, characterized by rapid proliferation and diffuse infiltration into the surrounding brain tissues. Despite advancements in therapeutic approaches, the prognosis for GBM patients is poor, with median survival times rarely exceeding 15 months post-diagnosis. An accurate diagnosis, treatment planning, and monitoring are crucial for improving patient outcomes. Core imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are indispensable in the initial diagnosis and ongoing management of GBM. Histopathology remains the gold standard for definitive diagnoses, guiding treatment by providing molecular and genetic insights into the tumor. Advanced imaging modalities, particularly positron emission tomography (PET), play a pivotal role in the management of GBM. Among these, 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-FDOPA) PET has emerged as a powerful tool due to its superior specificity and sensitivity in detecting GBM and monitoring treatment responses. This introduction provides a comprehensive overview of the multifaceted role of 18F-FDOPA PET in GBM, covering its diagnostic accuracy, potential as a biomarker, integration into clinical workflows, impact on patient outcomes, technological and methodological advancements, comparative effectiveness with other PET tracers, and its cost-effectiveness in clinical practice. Through these perspectives, we aim to underscore the significant contributions of 18F-FDOPA PET to the evolving landscape of GBM management and its potential to enhance both clinical and economic outcomes for patients afflicted with this formidable disease.
Collapse
Affiliation(s)
- David Sipos
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Guba Sándor Street 40, 7400 Kaposvár, Hungary
| | - Zsanett Debreczeni-Máté
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - Zsombor Ritter
- Department of Medical Imaging, Medical School, University of Pécs, 7621 Pécs, Hungary
| | - Omar Freihat
- Department of Public Health, College of Health Science, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Mihály Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Kovács
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
22
|
Vindstad BE, Skjulsvik AJ, Pedersen LK, Berntsen EM, Solheim OS, Ingebrigtsen T, Reinertsen I, Johansen H, Eikenes L, Karlberg AM. Histomolecular Validation of [ 18F]-FACBC in Gliomas Using Image-Localized Biopsies. Cancers (Basel) 2024; 16:2581. [PMID: 39061219 PMCID: PMC11275162 DOI: 10.3390/cancers16142581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Gliomas have a heterogeneous nature, and identifying the most aggressive parts of the tumor and defining tumor borders are important for histomolecular diagnosis, surgical resection, and radiation therapy planning. This study evaluated [18F]-FACBC PET for glioma tissue classification. METHODS Pre-surgical [18F]-FACBC PET/MR images were used during surgery and image-localized biopsy sampling in patients with high- and low-grade glioma. TBR was compared to histomolecular results to determine optimal threshold values, sensitivity, specificity, and AUC values for the classification of tumor tissue. Additionally, PET volumes were determined in patients with glioblastoma based on the optimal threshold. [18F]-FACBC PET volumes and diagnostic accuracy were compared to ce-T1 MRI. In total, 48 biopsies from 17 patients were analyzed. RESULTS [18F]-FACBC had low uptake in non-glioblastoma tumors, but overall higher sensitivity and specificity for the classification of tumor tissue (0.63 and 0.57) than ce-T1 MRI (0.24 and 0.43). Additionally, [18F]-FACBC TBR was an excellent classifier for IDH1-wildtype tumor tissue (AUC: 0.83, 95% CI: 0.71-0.96). In glioblastoma patients, PET tumor volumes were on average eight times larger than ce-T1 MRI volumes and included 87.5% of tumor-positive biopsies compared to 31.5% for ce-T1 MRI. CONCLUSION The addition of [18F]-FACBC PET to conventional MRI could improve tumor classification and volume delineation.
Collapse
Affiliation(s)
- Benedikte Emilie Vindstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Anne Jarstein Skjulsvik
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Lars Kjelsberg Pedersen
- Department of Neurosurgery, Ophthalmology and Otorhinolaryngology, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Erik Magnus Berntsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Ole Skeidsvoll Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Tor Ingebrigtsen
- Department of Neurosurgery, Ophthalmology and Otorhinolaryngology, University Hospital of North Norway, 9019 Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway
| | - Ingerid Reinertsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Health Research, SINTEF Digital, 7034 Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
| | - Anna Maria Karlberg
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7030 Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
23
|
Richardson TE, Walker JM, Hambardzumyan D, Brem S, Hatanpaa KJ, Viapiano MS, Pai B, Umphlett M, Becher OJ, Snuderl M, McBrayer SK, Abdullah KG, Tsankova NM. Genetic and epigenetic instability as an underlying driver of progression and aggressive behavior in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:5. [PMID: 39012509 PMCID: PMC11252228 DOI: 10.1007/s00401-024-02761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
In recent years, the classification of adult-type diffuse gliomas has undergone a revolution, wherein specific molecular features now represent defining diagnostic criteria of IDH-wild-type glioblastomas, IDH-mutant astrocytomas, and IDH-mutant 1p/19q-codeleted oligodendrogliomas. With the introduction of the 2021 WHO CNS classification, additional molecular alterations are now integrated into the grading of these tumors, given equal weight to traditional histologic features. However, there remains a great deal of heterogeneity in patient outcome even within these established tumor subclassifications that is unexplained by currently codified molecular alterations, particularly in the IDH-mutant astrocytoma category. There is also significant intercellular genetic and epigenetic heterogeneity and plasticity with resulting phenotypic heterogeneity, making these tumors remarkably adaptable and robust, and presenting a significant barrier to the design of effective therapeutics. Herein, we review the mechanisms and consequences of genetic and epigenetic instability, including chromosomal instability (CIN), microsatellite instability (MSI)/mismatch repair (MMR) deficits, and epigenetic instability, in the underlying biology, tumorigenesis, and progression of IDH-mutant astrocytomas. We also discuss the contribution of recent high-resolution transcriptomics studies toward defining tumor heterogeneity with single-cell resolution. While intratumoral heterogeneity is a well-known feature of diffuse gliomas, the contribution of these various processes has only recently been considered as a potential driver of tumor aggressiveness. CIN has an independent, adverse effect on patient survival, similar to the effect of histologic grade and homozygous CDKN2A deletion, while MMR mutation is only associated with poor overall survival in univariate analysis but is highly correlated with higher histologic/molecular grade and other aggressive features. These forms of genomic instability, which may significantly affect the natural progression of these tumors, response to therapy, and ultimately clinical outcome for patients, are potentially measurable features which could aid in diagnosis, grading, prognosis, and development of personalized therapeutics.
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA.
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimmo J Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Balagopal Pai
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY, 10016, USA
| | - Samuel K McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA, 15213, USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA, 15232, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, Annenberg Building, 15.238, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
24
|
Park J, Nam DH, Kim D, Chung YJ. RPS24 alternative splicing is a marker of cancer progression and epithelial-mesenchymal transition. Sci Rep 2024; 14:13246. [PMID: 38853173 PMCID: PMC11162997 DOI: 10.1038/s41598-024-63976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
Although alternative splicing (AS) is a major mechanism that adds diversity to gene expression patterns, its precise role in generating variability in ribosomal proteins, known as ribosomal heterogeneity, remains unclear. The ribosomal protein S24 (RPS24) gene, encoding a ribosomal component, undergoes AS; however, in-depth studies have been challenging because of three microexons between exons 4 and 6. We conducted a detailed analysis of RPS24 AS isoforms using a direct approach to investigate the splicing junctions related to these microexons, focusing on four AS isoforms. Each of these isoforms showed tissue specificity and relative differences in expression among cancer types. Significant differences in the proportions of these RPS24 AS isoforms between cancerous and normal tissues across diverse cancer types were also observed. Our study highlighted a significant correlation between the expression levels of a specific RPS24 AS isoform and the epithelial-mesenchymal transition process in lung and breast cancers. Our research contributes to a better understanding of the intricate regulatory mechanisms governing AS of ribosomal protein genes and highlights the biological implications of RPS24 AS isoforms in tissue development and tumorigenesis.
Collapse
Affiliation(s)
- Jiyeon Park
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul, 137-701, Republic of Korea
| | - Da Hae Nam
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dokyeong Kim
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul, 137-701, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul, 137-701, Republic of Korea.
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Arrieta VA, Gould A, Kim KS, Habashy KJ, Dmello C, Vázquez-Cervantes GI, Palacín-Aliana I, McManus G, Amidei C, Gomez C, Dhiantravan S, Chen L, Zhang DY, Saganty R, Cholak ME, Pandey S, McCord M, McCortney K, Castro B, Ward R, Muzzio M, Bouchoux G, Desseaux C, Canney M, Carpentier A, Zhang B, Miska JM, Lesniak MS, Horbinski CM, Lukas RV, Stupp R, Lee-Chang C, Sonabend AM. Ultrasound-mediated delivery of doxorubicin to the brain results in immune modulation and improved responses to PD-1 blockade in gliomas. Nat Commun 2024; 15:4698. [PMID: 38844770 PMCID: PMC11156895 DOI: 10.1038/s41467-024-48326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Given the marginal penetration of most drugs across the blood-brain barrier, the efficacy of various agents remains limited for glioblastoma (GBM). Here we employ low-intensity pulsed ultrasound (LIPU) and intravenously administered microbubbles (MB) to open the blood-brain barrier and increase the concentration of liposomal doxorubicin and PD-1 blocking antibodies (aPD-1). We report results on a cohort of 4 GBM patients and preclinical models treated with this approach. LIPU/MB increases the concentration of doxorubicin by 2-fold and 3.9-fold in the human and murine brains two days after sonication, respectively. Similarly, LIPU/MB-mediated blood-brain barrier disruption leads to a 6-fold and a 2-fold increase in aPD-1 concentrations in murine brains and peritumoral brain regions from GBM patients treated with pembrolizumab, respectively. Doxorubicin and aPD-1 delivered with LIPU/MB upregulate major histocompatibility complex (MHC) class I and II in tumor cells. Increased brain concentrations of doxorubicin achieved by LIPU/MB elicit IFN-γ and MHC class I expression in microglia and macrophages. Doxorubicin and aPD-1 delivered with LIPU/MB results in the long-term survival of most glioma-bearing mice, which rely on myeloid cells and lymphocytes for their efficacy. Overall, this translational study supports the utility of LIPU/MB to potentiate the antitumoral activities of doxorubicin and aPD-1 for GBM.
Collapse
Affiliation(s)
- Víctor A Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Andrew Gould
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kwang-Soo Kim
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karl J Habashy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gustavo I Vázquez-Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Irina Palacín-Aliana
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Deparment of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Graysen McManus
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christina Amidei
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cristal Gomez
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Silpol Dhiantravan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Y Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ruth Saganty
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Meghan E Cholak
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Surya Pandey
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Matthew McCord
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Deparment of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rachel Ward
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miguel Muzzio
- Life Sciences Group, IIT Research Institute, Chicago, IL, USA
| | | | | | | | - Alexandre Carpentier
- Sorbonne Université, Inserm, CNRS, UMR S 1127, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurochirurgie, Paris, France
| | - Bin Zhang
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason M Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rimas V Lukas
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
26
|
Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann JE, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN, Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Göller PC, Sahm F, Menstel JA, Zimmer DN, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH, Hänzelmann S, Ricklefs FL. A prognostic neural epigenetic signature in high-grade glioma. Nat Med 2024; 30:1622-1635. [PMID: 38760585 PMCID: PMC11186787 DOI: 10.1038/s41591-024-02969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Helena Bode
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Jütten
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
- Department of Neurosurgery, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina J Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | - Patrick N Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Pauline C Göller
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Joelle Aline Menstel
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - David Niklas Zimmer
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | | | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Dana Silverbush
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Volker Hovestadt
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mario L Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
- Translational Neurosurgery, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
27
|
Cheng YL, Banu MA, Zhao W, Rosenfeld SS, Canoll P, Sims PA. Multiplexed single-cell lineage tracing of mitotic kinesin inhibitor resistance in glioblastoma. Cell Rep 2024; 43:114139. [PMID: 38652658 PMCID: PMC11199018 DOI: 10.1016/j.celrep.2024.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Glioblastoma (GBM) is a deadly brain tumor, and the kinesin motor KIF11 is an attractive therapeutic target with roles in proliferation and invasion. Resistance to KIF11 inhibitors, which has mainly been studied in animal models, presents significant challenges. We use lineage-tracing barcodes and single-cell RNA sequencing to analyze resistance in patient-derived GBM neurospheres treated with ispinesib, a potent KIF11 inhibitor. Similar to GBM progression in patients, untreated cells lose their neural lineage identity and become mesenchymal, which is associated with poor prognosis. Conversely, cells subjected to long-term ispinesib treatment exhibit a proneural phenotype. We generate patient-derived xenografts and show that ispinesib-resistant cells form less aggressive tumors in vivo, even in the absence of drug. Moreover, treatment of human ex vivo GBM slices with ispinesib demonstrates phenotypic alignment with in vitro responses, underscoring the clinical relevance of our findings. Finally, using retrospective lineage tracing, we identify drugs that are synergistic with ispinesib.
Collapse
Affiliation(s)
- Yim Ling Cheng
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenting Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
28
|
Xing Z, Wang C, Yang W, She D, Yang X, Cao D. Predicting glioblastoma recurrence using multiparametric MR imaging of non-enhancing peritumoral regions at baseline. Heliyon 2024; 10:e30411. [PMID: 38711642 PMCID: PMC11070862 DOI: 10.1016/j.heliyon.2024.e30411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Background To assess the feasibility of multiparametric magnetic resonance imaging in predicting tumor recurrence in nonenhancing peritumoral regions in patients with glioblastoma at baseline. Methods Fifty-eight patients with recurrent glioblastoma underwent multiparametric magnetic resonance imaging, including T2-weighted fluid-attenuated inversion recovery, diffusion-weighted imaging, and dynamic susceptibility contrast perfusion-weighted imaging. Nonenhancing peritumoral regions with glioblastoma recurrence were identified by coregistering preoperative and post-recurrent magnetic resonance images. Regions of interest were placed in nonenhancing peritumoral regions with and without tumor recurrence to calculate the apparent diffusion coefficient value, and relative ratios of T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and cerebral blood volume values. Results Significant lower relative T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and relative apparent diffusion coefficient but higher relative cerebral blood volume values were found in the nonenhancing peritumoral regions with tumor recurrence than without recurrence (all P < 0.05). The threshold values ≥ 0.89 for relative cerebral blood volume provide the optimal performance for predicting the nonenhancing peritumoral regions with future tumor recurrence, with the sensitivity, specificity, and accuracy of 84.7%, 83.6%, and 85.8%, respectively. The combination of relative T2-weighted fluid-attenuated inversion recovery signal intensity, apparent diffusion coefficient, and relative cerebral blood volume can provide better predictive performance than relative cerebral blood volume (P = 0.015). Conclusion The combined use of T2-weighted fluid-attenuated inversion recovery, diffusion-weighted imaging, and dynamic susceptibility contrast perfusion-weighted imaging can effectively estimate the risk of future tumor recurrence at baseline.
Collapse
Affiliation(s)
- Zhen Xing
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Cong Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wen Yang
- The Webb Schools, Claremont, CA, 91711, USA
| | - Dejun She
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Xiefeng Yang
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Dairong Cao
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Department of Radiology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| |
Collapse
|
29
|
Xu C, Hou P, Li X, Xiao M, Zhang Z, Li Z, Xu J, Liu G, Tan Y, Fang C. Comprehensive understanding of glioblastoma molecular phenotypes: classification, characteristics, and transition. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0510. [PMID: 38712813 PMCID: PMC11131044 DOI: 10.20892/j.issn.2095-3941.2023.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Among central nervous system-associated malignancies, glioblastoma (GBM) is the most common and has the highest mortality rate. The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide. In precision medicine, research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity, as well as the refractory nature of GBM toward therapy. Deep understanding of the different molecular expression patterns of GBM subtypes is critical. Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes. The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors. These subtypes also exhibit high plasticity in their regulatory pathways, oncogene expression, tumor microenvironment alterations, and differential responses to standard therapy. Herein, we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype. Furthermore, we review the mesenchymal transition mechanisms of GBM under various regulators.
Collapse
Affiliation(s)
- Can Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Pengyu Hou
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Xiang Li
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Menglin Xiao
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Ziqi Zhang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Ziru Li
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Jianglong Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Guoming Liu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Yanli Tan
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding 07100, China
| | - Chuan Fang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| |
Collapse
|
30
|
Kenchappa R, Radnai L, Young EJ, Zarco N, Lin L, Dovas A, Meyer CT, Haddock A, Hall A, Canoll P, Cameron MD, Nagaiah NK, Rumbaugh G, Griffin PR, Kamenecka TM, Miller CA, Rosenfeld SS. MT-125 Inhibits Non-Muscle Myosin IIA and IIB, Synergizes with Oncogenic Kinase Inhibitors, and Prolongs Survival in Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591399. [PMID: 38746089 PMCID: PMC11092436 DOI: 10.1101/2024.04.27.591399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We have identified a NMIIA and IIB-specific small molecule inhibitor, MT-125, and have studied its effects in GBM. MT-125 has high brain penetrance and retention and an excellent safety profile; blocks GBM invasion and cytokinesis, consistent with the known roles of NMII; and prolongs survival as a single agent in murine GBM models. MT-125 increases signaling along both the PDGFR- and MAPK-driven pathways through a mechanism that involves the upregulation of reactive oxygen species, and it synergizes with FDA-approved PDGFR and mTOR inhibitors in vitro . Combining MT-125 with sunitinib, a PDGFR inhibitor, or paxalisib, a combined PI3 Kinase/mTOR inhibitor significantly improves survival in orthotopic GBM models over either drug alone, and in the case of sunitinib, markedly prolongs survival in ∼40% of mice. Our results provide a powerful rationale for developing NMII targeting strategies to treat cancer and demonstrate that MT-125 has strong clinical potential for the treatment of GBM. Highlights MT-125 is a highly specific small molecule inhibitor of non-muscle myosin IIA and IIB, is well-tolerated, and achieves therapeutic concentrations in the brain with systemic dosing.Treating preclinical models of glioblastoma with MT-125 produces durable improvements in survival.MT-125 stimulates PDGFR- and MAPK-driven signaling in glioblastoma and increases dependency on these pathways.Combining MT-125 with an FDA-approved PDGFR inhibitor in a mouse GBM model synergizes to improve median survival over either drug alone, and produces tumor free, prolonged survival in over 40% of mice.
Collapse
|
31
|
Grishin A, Achkasova K, Kukhnina L, Sharova V, Ostapyuk M, Yashin K. Peritumoral Brain Zone in Astrocytoma: Morphology, Molecular Aspects, and Clinical Manifestations (Review). Sovrem Tekhnologii Med 2024; 16:79-88. [PMID: 39539752 PMCID: PMC11556047 DOI: 10.17691/stm2024.16.2.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 11/16/2024] Open
Abstract
A peritumoral brain zone is an area between a tumor and nontumorous brain tissue with tumor cell infiltration. The identification of this area is sufficiently difficult due to the lack of clear morphological or some other criteria. Besides, its dimensions may vary considerably. In the present review, we have analyzed the available data on the morphological structure and metabolism of peritumoral zone in astrocytomes, and considered the main molecular and genetic aspects and clinical manifestations. Exploration of the peritumoral zone is of great importance for determining the extent of resection to prevent recurrence and to reveal the causes and mechanisms of continued tumor growth.
Collapse
Affiliation(s)
- A.S. Grishin
- Pathologist, Pathological Anatomy Unit, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Assistant, Department of Pathological Anatomy; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - K.A. Achkasova
- Junior Researcher, Laboratory of Optical Coherence Tomography, Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - L.S. Kukhnina
- Student; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - V.A. Sharova
- Student; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M.V. Ostapyuk
- Neurosurgeon, Neurosurgery Unit, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Assistant, M.V. Kolokoltsev Department of Traumatology, Orthopedics, and Neurosurgery; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - K.S. Yashin
- MD, PhD, Neurosurgeon, Neurosurgery Unit, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Assistant, M.V. Kolokoltsev Department of Traumatology, Orthopedics, and Neurosurgery; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Oncologist, Outpatient Department; Nizhny Novgorod Regional Oncologic Dispensary, 11/1 Delovaya St., Nizhny Novgorod, 603163, Russia
| |
Collapse
|
32
|
Cubillos P, Ditzer N, Kolodziejczyk A, Schwenk G, Hoffmann J, Schütze TM, Derihaci RP, Birdir C, Köllner JE, Petzold A, Sarov M, Martin U, Long KR, Wimberger P, Albert M. The growth factor EPIREGULIN promotes basal progenitor cell proliferation in the developing neocortex. EMBO J 2024; 43:1388-1419. [PMID: 38514807 PMCID: PMC11021537 DOI: 10.1038/s44318-024-00068-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Neocortex expansion during evolution is linked to higher numbers of neurons, which are thought to result from increased proliferative capacity and neurogenic potential of basal progenitor cells during development. Here, we show that EREG, encoding the growth factor EPIREGULIN, is expressed in the human developing neocortex and in gorilla cerebral organoids, but not in the mouse neocortex. Addition of EPIREGULIN to the mouse neocortex increases proliferation of basal progenitor cells, whereas EREG ablation in human cortical organoids reduces proliferation in the subventricular zone. Treatment of cortical organoids with EPIREGULIN promotes a further increase in proliferation of gorilla but not of human basal progenitor cells. EPIREGULIN competes with the epidermal growth factor (EGF) to promote proliferation, and inhibition of the EGF receptor abrogates the EPIREGULIN-mediated increase in basal progenitor cells. Finally, we identify putative cis-regulatory elements that may contribute to the observed inter-species differences in EREG expression. Our findings suggest that species-specific regulation of EPIREGULIN expression may contribute to the increased neocortex size of primates by providing a tunable pro-proliferative signal to basal progenitor cells in the subventricular zone.
Collapse
Affiliation(s)
- Paula Cubillos
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Nora Ditzer
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Annika Kolodziejczyk
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Gustav Schwenk
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Janine Hoffmann
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Theresa M Schütze
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Razvan P Derihaci
- Department of Gynecology and Obstetrics, TU Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, 01307, Dresden, Germany
| | - Cahit Birdir
- Department of Gynecology and Obstetrics, TU Dresden, 01307, Dresden, Germany
- Center for feto/neonatal Health, TU Dresden, 01307, Dresden, Germany
| | - Johannes Em Köllner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover, Germany
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, TU Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, 01307, Dresden, Germany
| | - Mareike Albert
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany.
| |
Collapse
|
33
|
Wang H, Argenziano MG, Yoon H, Boyett D, Save A, Petridis P, Savage W, Jackson P, Hawkins-Daarud A, Tran N, Hu L, Al Dalahmah O, Bruce JN, Grinband J, Swanson KR, Canoll P, Li J. Biologically-informed deep neural networks provide quantitative assessment of intratumoral heterogeneity in post-treatment glioblastoma. RESEARCH SQUARE 2024:rs.3.rs-3891425. [PMID: 38585856 PMCID: PMC10996806 DOI: 10.21203/rs.3.rs-3891425/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of glioblastoma (GBM). This heterogeneity is further exacerbated during GBM recurrence, as treatment-induced reactive changes produce additional intratumoral heterogeneity that is ambiguous to differentiate on clinical imaging. There is an urgent need to develop non-invasive approaches to map the heterogeneous landscape of histopathological alterations throughout the entire lesion for each patient. We propose to predictively fuse Magnetic Resonance Imaging (MRI) with the underlying intratumoral heterogeneity in recurrent GBM using machine learning (ML) by leveraging image-localized biopsies with their associated locoregional MRI features. To this end, we develop BioNet, a biologically-informed neural network model, to predict regional distributions of three tissue-specific gene modules: proliferating tumor, reactive/inflammatory cells, and infiltrated brain tissue. BioNet offers valuable insights into the integration of multiple implicit and qualitative biological domain knowledge, which are challenging to describe in mathematical formulations. BioNet performs significantly better than a range of existing methods on cross-validation and blind test datasets. Voxel-level prediction maps of the gene modules by BioNet help reveal intratumoral heterogeneity, which can improve surgical targeting of confirmatory biopsies and evaluation of neuro-oncological treatment effectiveness. The non-invasive nature of the approach can potentially facilitate regular monitoring of the gene modules over time, and making timely therapeutic adjustment. These results also highlight the emerging role of ML in precision medicine.
Collapse
Affiliation(s)
- Hairong Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Hyunsoo Yoon
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Deborah Boyett
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Akshay Save
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Petros Petridis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
| | - William Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Pamela Jackson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Nhan Tran
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ, USA
| | - Leland Hu
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Osama Al Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Grinband
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jing Li
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
34
|
BV H, Jolly MK. Proneural-mesenchymal antagonism dominates the patterns of phenotypic heterogeneity in glioblastoma. iScience 2024; 27:109184. [PMID: 38433919 PMCID: PMC10905000 DOI: 10.1016/j.isci.2024.109184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/31/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
The aggressive nature of glioblastoma (GBM) - one of the deadliest forms of brain tumors - is majorly attributed to underlying phenotypic heterogeneity. Early attempts to classify this heterogeneity at a transcriptomic level in TCGA GBM cohort proposed the existence of four distinct molecular subtypes: Proneural, Neural, Classical, and Mesenchymal. Further, a single-cell RNA sequencing (scRNA-seq) analysis of primary tumors also reported similar four subtypes mimicking neurodevelopmental lineages. However, it remains unclear whether these four subtypes identified via bulk and single-cell transcriptomics are mutually exclusive or not. Here, we perform pairwise correlations among individual genes and gene signatures corresponding to these proposed subtypes and show that the subtypes are not distinctly mutually antagonistic in either TCGA or scRNA-seq data. We observed that the proneural (or neural progenitor-like)-mesenchymal axis is the most prominent antagonistic pair, with the other two subtypes lying on this spectrum. These results are reinforced through a meta-analysis of over 100 single-cell and bulk transcriptomic datasets as well as in terms of functional association with metabolic switching, cell cycle, and immune evasion pathways. Finally, this proneural-mesenchymal antagonistic trend percolates to the association of relevant transcription factors with patient survival. These results suggest rethinking GBM phenotypic characterization for more effective therapeutic targeting efforts.
Collapse
Affiliation(s)
- Harshavardhan BV
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
35
|
De Fazio E, Pittarello M, Gans A, Ghosh B, Slika H, Alimonti P, Tyler B. Intrinsic and Microenvironmental Drivers of Glioblastoma Invasion. Int J Mol Sci 2024; 25:2563. [PMID: 38473812 PMCID: PMC10932253 DOI: 10.3390/ijms25052563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Gliomas are diffusely infiltrating brain tumors whose prognosis is strongly influenced by their extent of invasion into the surrounding brain tissue. While lower-grade gliomas present more circumscribed borders, high-grade gliomas are aggressive tumors with widespread brain infiltration and dissemination. Glioblastoma (GBM) is known for its high invasiveness and association with poor prognosis. Its low survival rate is due to the certainty of its recurrence, caused by microscopic brain infiltration which makes surgical eradication unattainable. New insights into GBM biology at the single-cell level have enabled the identification of mechanisms exploited by glioma cells for brain invasion. In this review, we explore the current understanding of several molecular pathways and mechanisms used by tumor cells to invade normal brain tissue. We address the intrinsic biological drivers of tumor cell invasion, by tackling how tumor cells interact with each other and with the tumor microenvironment (TME). We focus on the recently discovered neuronal niche in the TME, including local as well as distant neurons, contributing to glioma growth and invasion. We then address the mechanisms of invasion promoted by astrocytes and immune cells. Finally, we review the current literature on the therapeutic targeting of the molecular mechanisms of invasion.
Collapse
Affiliation(s)
- Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
| | - Matilde Pittarello
- Department of Medicine, Humanitas University School of Medicine, 20089 Rozzano, Italy;
| | - Alessandro Gans
- Department of Neurology, University of Milan, 20122 Milan, Italy;
| | - Bikona Ghosh
- School of Medicine and Surgery, Dhaka Medical College, Dhaka 1000, Bangladesh;
| | - Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Paolo Alimonti
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy; (E.D.F.); (P.A.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
36
|
Zhang L, Qu X, Xu Y. Molecular and immunological features of TREM1 and its emergence as a prognostic indicator in glioma. Front Immunol 2024; 15:1324010. [PMID: 38370418 PMCID: PMC10869492 DOI: 10.3389/fimmu.2024.1324010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM1), which belongs to the Ig-like superfamily expressed on myeloid cells, is reportedly involved in various diseases but has rarely been studied in glioma. In this study, the prognostic value and functional roles of TREM2 in glioma were analyzed. TERM1 was observed to be significantly upregulated in GBM compared to in other grade gliomas and was associated with poor prognosis. Increased TREM1 accompanied distinct mutation and amplification of driver oncogenes. Moreover, gene ontology and KEGG analyses showed that TREM1 might play a role in immunologic biological processes in glioma. TREM1 was also found to be tightly correlated with immune checkpoint molecules. xCell research revealed a link between TREM1 expression and multiple immune cell types, especially monocytes and macrophages. Single-cell analysis and immunofluorescence results showed that macrophages expressed TREM1. In vitro, inhibition of TREM1 signaling could result in a decrease in tumor-promoting effects of monocytes/TAMs. In summary, TREM1 may be a potential independent prognostic factor and immune target, which might provide new avenues to improve the efficacy of immunotherapy in glioma patients.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| |
Collapse
|
37
|
Zhang J, Zhao L, Xuan S, Liu Z, Weng Z, Wang Y, Dai K, Gu A, Zhao P. Global analysis of iron metabolism-related genes identifies potential mechanisms of gliomagenesis and reveals novel targets. CNS Neurosci Ther 2024; 30:e14386. [PMID: 37545464 PMCID: PMC10848104 DOI: 10.1111/cns.14386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/16/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023] Open
Abstract
AIMS This study aimed to investigate key regulators of aberrant iron metabolism in gliomas, and evaluate their effect on biological functions and clinical translational relevance. METHODS We used transcriptomic data from multiple cross-platform glioma cohorts to identify key iron metabolism-related genes (IMRGs) based on a series of bioinformatic and machine learning methods. The associations between IMRGs and prognosis, mesenchymal phenotype, and genomic alterations were analyzed in silico. The performance of the IMRGs-based signature in predicting temozolomide (TMZ) treatment sensitivity was evaluated. In vitro and in vivo experiments were used to explore the biological functions of these key IMRGs. RESULTS HMOX1, LTF, and STEAP3 were identified as the most essential IMRGs in gliomas. The expression levels of these genes were strongly related to clinicopathological and molecular features. The robust IMRG-based gene signature could be used for prognosis prediction. These genes facilitate mesenchymal transformation, driver gene mutations, and oncogenic alterations in gliomas. The gene signature was also associated with TMZ resistance. HMOX1, LTF, and STEAP3 knockdown in glioma cells significantly reduced cell proliferation, colony formation, migration, and malignant invasion. CONCLUSION The study presented a comprehensive view of key regulators underpinning iron metabolism in gliomas and provided new insights into novel therapeutic approaches.
Collapse
Affiliation(s)
- Jiayue Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Liang Zhao
- Department of NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Shurui Xuan
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhiyuan Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public HealthNanjing Medical UniversityNanjingChina
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global Health, Nanjing Medical UniversityNanjingChina
| | - Yu Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kexiang Dai
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public HealthNanjing Medical UniversityNanjingChina
- Key Laboratory of Modern Toxicology of Ministry of EducationCenter for Global Health, Nanjing Medical UniversityNanjingChina
| | - Peng Zhao
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
38
|
Patel KS, Tessema KK, Kawaguchi R, Dudley L, Alvarado AG, Muthukrishnan SD, Perryman T, Hagiwara A, Swarup V, Liau LM, Wang AC, Yong W, Geschwind DH, Nakano I, Goldman SA, Everson RG, Ellingson BM, Kornblum HI. Single-nucleus expression characterization of non-enhancing region of recurrent high-grade glioma. Neurooncol Adv 2024; 6:vdae005. [PMID: 38616896 PMCID: PMC11012612 DOI: 10.1093/noajnl/vdae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Background Non-enhancing (NE) infiltrating tumor cells beyond the contrast-enhancing (CE) bulk of tumor are potential propagators of recurrence after gross total resection of high-grade glioma. Methods We leveraged single-nucleus RNA sequencing on 15 specimens from recurrent high-grade gliomas (n = 5) to compare prospectively identified biopsy specimens acquired from CE and NE regions. Additionally, 24 CE and 22 NE biopsies had immunohistochemical staining to validate RNA findings. Results Tumor cells in NE regions are enriched in neural progenitor cell-like cellular states, while CE regions are enriched in mesenchymal-like states. NE glioma cells have similar proportions of proliferative and putative glioma stem cells relative to CE regions, without significant differences in % Ki-67 staining. Tumor cells in NE regions exhibit upregulation of genes previously associated with lower grade gliomas. Our findings in recurrent GBM paralleled some of the findings in a re-analysis of a dataset from primary GBM. Cell-, gene-, and pathway-level analyses of the tumor microenvironment in the NE region reveal relative downregulation of tumor-mediated neovascularization and cell-mediated immune response, but increased glioma-to-nonpathological cell interactions. Conclusions This comprehensive analysis illustrates differing tumor and nontumor landscapes of CE and NE regions in high-grade gliomas, highlighting the NE region as an area harboring likely initiators of recurrence in a pro-tumor microenvironment and identifying possible targets for future design of NE-specific adjuvant therapy. These findings also support the aggressive approach to resection of tumor-bearing NE regions.
Collapse
Affiliation(s)
- Kunal S Patel
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kaleab K Tessema
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Lindsey Dudley
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Alvaro G Alvarado
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sree Deepthi Muthukrishnan
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Travis Perryman
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory (BTIL), Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, UCI School of Biological Sciences, Irvine, California, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anthony C Wang
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - William Yong
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Hokuto Social Medical Corporation, Hokuto Hospital, Hokuto, Japan
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
- Faculty of Health and Medical Sciences, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Richard G Everson
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Benjamin M Ellingson
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Harley I Kornblum
- The Intellectual and Developmental Disabilities Research Center and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Departments of Pediatrics, Psychiatry, and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
39
|
Yu KKH, Basu S, Baquer G, Ahn R, Gantchev J, Jindal S, Regan MS, Abou-Mrad Z, Prabhu MC, Williams MJ, D'Souza AD, Malinowski SW, Hopland K, Elhanati Y, Stopka SA, Stortchevoi A, He Z, Sun J, Chen Y, Espejo AB, Chow KH, Yerrum S, Kao PL, Kerrigan BP, Norberg L, Nielsen D, Puduvalli VK, Huse J, Beroukhim R, Kim YSB, Goswami S, Boire A, Frisken S, Cima MJ, Holdhoff M, Lucas CHG, Bettegowda C, Levine SS, Bale TA, Brennan C, Reardon DA, Lang FF, Antonio Chiocca E, Ligon KL, White FM, Sharma P, Tabar V, Agar NYR. Investigative needle core biopsies for multi-omics in Glioblastoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.29.23300541. [PMID: 38234840 PMCID: PMC10793534 DOI: 10.1101/2023.12.29.23300541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Glioblastoma (GBM) is a primary brain cancer with an abysmal prognosis and few effective therapies. The ability to investigate the tumor microenvironment before and during treatment would greatly enhance both understanding of disease response and progression, as well as the delivery and impact of therapeutics. Stereotactic biopsies are a routine surgical procedure performed primarily for diagnostic histopathologic purposes. The role of investigative biopsies - tissue sampling for the purpose of understanding tumor microenvironmental responses to treatment using integrated multi-modal molecular analyses ('Multi-omics") has yet to be defined. Secondly, it is unknown whether comparatively small tissue samples from brain biopsies can yield sufficient information with such methods. Here we adapt stereotactic needle core biopsy tissue in two separate patients. In the first patient with recurrent GBM we performed highly resolved multi-omics analysis methods including single cell RNA sequencing, spatial-transcriptomics, metabolomics, proteomics, phosphoproteomics, T-cell clonotype analysis, and MHC Class I immunopeptidomics from biopsy tissue that was obtained from a single procedure. In a second patient we analyzed multi-regional core biopsies to decipher spatial and genomic variance. We also investigated the utility of stereotactic biopsies as a method for generating patient derived xenograft models in a separate patient cohort. Dataset integration across modalities showed good correspondence between spatial modalities, highlighted immune cell associated metabolic pathways and revealed poor correlation between RNA expression and the tumor MHC Class I immunopeptidome. In conclusion, stereotactic needle biopsy cores are of sufficient quality to generate multi-omics data, provide data rich insight into a patient's disease process and tumor immune microenvironment and can be of value in evaluating treatment responses. One sentence summary Integrative multi-omics analysis of stereotactic needle core biopsies in glioblastoma.
Collapse
|
40
|
Urcuyo JC, Curtin L, Langworthy JM, De Leon G, Anderies B, Singleton KW, Hawkins-Daarud A, Jackson PR, Bond KM, Ranjbar S, Lassiter-Morris Y, Clark-Swanson KR, Paulson LE, Sereduk C, Mrugala MM, Porter AB, Baxter L, Salomao M, Donev K, Hudson M, Meyer J, Zeeshan Q, Sattur M, Patra DP, Jones BA, Rahme RJ, Neal MT, Patel N, Kouloumberis P, Turkmani AH, Lyons M, Krishna C, Zimmerman RS, Bendok BR, Tran NL, Hu LS, Swanson KR. Image-localized biopsy mapping of brain tumor heterogeneity: A single-center study protocol. PLoS One 2023; 18:e0287767. [PMID: 38117803 PMCID: PMC10732423 DOI: 10.1371/journal.pone.0287767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/13/2023] [Indexed: 12/22/2023] Open
Abstract
Brain cancers pose a novel set of difficulties due to the limited accessibility of human brain tumor tissue. For this reason, clinical decision-making relies heavily on MR imaging interpretation, yet the mapping between MRI features and underlying biology remains ambiguous. Standard (clinical) tissue sampling fails to capture the full heterogeneity of the disease. Biopsies are required to obtain a pathological diagnosis and are predominantly taken from the tumor core, which often has different traits to the surrounding invasive tumor that typically leads to recurrent disease. One approach to solving this issue is to characterize the spatial heterogeneity of molecular, genetic, and cellular features of glioma through the intraoperative collection of multiple image-localized biopsy samples paired with multi-parametric MRIs. We have adopted this approach and are currently actively enrolling patients for our 'Image-Based Mapping of Brain Tumors' study. Patients are eligible for this research study (IRB #16-002424) if they are 18 years or older and undergoing surgical intervention for a brain lesion. Once identified, candidate patients receive dynamic susceptibility contrast (DSC) perfusion MRI and diffusion tensor imaging (DTI), in addition to standard sequences (T1, T1Gd, T2, T2-FLAIR) at their presurgical scan. During surgery, sample anatomical locations are tracked using neuronavigation. The collected specimens from this research study are used to capture the intra-tumoral heterogeneity across brain tumors including quantification of genetic aberrations through whole-exome and RNA sequencing as well as other tissue analysis techniques. To date, these data (made available through a public portal) have been used to generate, test, and validate predictive regional maps of the spatial distribution of tumor cell density and/or treatment-related key genetic marker status to identify biopsy and/or treatment targets based on insight from the entire tumor makeup. This type of methodology, when delivered within clinically feasible time frames, has the potential to further inform medical decision-making by improving surgical intervention, radiation, and targeted drug therapy for patients with glioma.
Collapse
Affiliation(s)
- Javier C Urcuyo
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Lee Curtin
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Jazlynn M. Langworthy
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Gustavo De Leon
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Barrett Anderies
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Kyle W. Singleton
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Pamela R. Jackson
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Kamila M. Bond
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Sara Ranjbar
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Yvette Lassiter-Morris
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Kamala R. Clark-Swanson
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Lisa E. Paulson
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Chris Sereduk
- Department of Cancer Biology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Maciej M. Mrugala
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Oncology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Alyx B. Porter
- Department of Neurology, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Oncology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Leslie Baxter
- Department of Neurophysiology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Marcela Salomao
- Department of Pathology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Kliment Donev
- Department of Pathology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Miles Hudson
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Jenna Meyer
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Qazi Zeeshan
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Mithun Sattur
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Devi P. Patra
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Breck A. Jones
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Rudy J. Rahme
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Matthew T. Neal
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Naresh Patel
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Pelagia Kouloumberis
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Ali H. Turkmani
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Mark Lyons
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Chandan Krishna
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Richard S. Zimmerman
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Bernard R. Bendok
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Nhan L. Tran
- Department of Cancer Biology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Leland S. Hu
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Kristin R. Swanson
- Mathematical NeuroOncology Lab, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Cancer Biology, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, United States of America
| |
Collapse
|
41
|
Lewis EM, Mao L, Wang L, Swanson KR, Barajas RF, Li J, Tran NL, Hu LS, Plaisier CL. Revealing the biology behind MRI signatures in high grade glioma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.08.23299733. [PMID: 38168377 PMCID: PMC10760280 DOI: 10.1101/2023.12.08.23299733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Magnetic resonance imaging (MRI) measurements are routinely collected during the treatment of high-grade gliomas (HGGs) to characterize tumor boundaries and guide surgical tumor resection. Using spatially matched MRI and transcriptomics we discovered HGG tumor biology captured by MRI measurements. We strategically overlaid the spatially matched omics characterizations onto a pre-existing transcriptional map of glioblastoma multiforme (GBM) to enhance the robustness of our analyses. We discovered that T1+C measurements, designed to capture vasculature and blood brain barrier (BBB) breakdown and subsequent contrast extravasation, also indirectly reveal immune cell infiltration. The disruption of the vasculature and BBB within the tumor creates a permissive infiltrative environment that enables the transmigration of anti-inflammatory macrophages into tumors. These relationships were validated through histology and enrichment of genes associated with immune cell transmigration and proliferation. Additionally, T2-weighted (T2W) and mean diffusivity (MD) measurements were associated with angiogenesis and validated using histology and enrichment of genes involved in neovascularization. Furthermore, we establish an unbiased approach for identifying additional linkages between MRI measurements and tumor biology in future studies, particularly with the integration of novel MRI techniques. Lastly, we illustrated how noninvasive MRI can be used to map HGG biology spatially across a tumor, and this provides a platform to develop diagnostics, prognostics, or treatment efficacy biomarkers to improve patient outcomes.
Collapse
Affiliation(s)
- Erika M Lewis
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Lingchao Mao
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Lujia Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kristin R Swanson
- Mathematical Neuro-Oncology Lab, Department of Neurological Surgery, Mayo Clinic, Phoenix, AZ, 85054, USA
- Department of Neurosurgery, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Ramon F Barajas
- Advanced Imaging Research Center, Oregon Health & Sciences University, USA
- Department of Radiology, Neuroradiology Section, Oregon Health & Sciences University, USA
- Knight Cancer Institute, Oregon Health & Sciences University, USA
| | - Jing Li
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Nhan L Tran
- Department of Neurosurgery, Mayo Clinic, Phoenix, AZ, 85054, USA
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Leland S Hu
- Mathematical Neuro-Oncology Lab, Department of Neurological Surgery, Mayo Clinic, Phoenix, AZ, 85054, USA
- Department of Radiology, Mayo Clinic, Phoenix, AZ, 85054, USA
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
42
|
Whitney K, Song WM, Sharma A, Dangoor DK, Farrell K, Krassner MM, Ressler HW, Christie TD, Walker RH, Nirenberg MJ, Zhang B, Frucht SJ, Riboldi GM, Crary JF, Pereira AC. Single-cell transcriptomic and neuropathologic analysis reveals dysregulation of the integrated stress response in progressive supranuclear palsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567587. [PMID: 38014079 PMCID: PMC10680842 DOI: 10.1101/2023.11.17.567587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Progressive supranuclear palsy (PSP) is a sporadic neurodegenerative tauopathy variably affecting brainstem and cortical structures and characterized by tau inclusions in neurons and glia. The precise mechanism whereby these protein aggregates lead to cell death remains unclear. To investigate the contribution of these different cellular abnormalities to PSP pathogenesis, we performed single-nucleus RNA sequencing and analyzed 45,559 high quality nuclei targeting the subthalamic nucleus and adjacent structures from human post-mortem PSP brains with varying degrees of pathology compared to controls. Cell-type specific differential expression and pathway analysis identified both common and discrete changes in numerous pathways previously implicated in PSP and other neurodegenerative disorders. This included EIF2 signaling, an adaptive pathway activated in response to diverse stressors, which was the top activated pathway in vulnerable cell types. Using immunohistochemistry, we found that activated eIF2α was positively correlated with tau pathology burden in vulnerable brain regions. Multiplex immunofluorescence localized activated eIF2α positivity to hyperphosphorylated tau (p-tau) positive neurons and ALDH1L1-positive astrocytes, supporting the increased transcriptomic EIF2 activation observed in these vulnerable cell types. In conclusion, these data provide insights into cell-type-specific pathological changes in PSP and support the hypothesis that failure of adaptive stress pathways play a mechanistic role in the pathogenesis and progression of PSP.
Collapse
|
43
|
Trevisi G, Mangiola A. Current Knowledge about the Peritumoral Microenvironment in Glioblastoma. Cancers (Basel) 2023; 15:5460. [PMID: 38001721 PMCID: PMC10670229 DOI: 10.3390/cancers15225460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is a deadly disease, with a mean overall survival of less than 2 years from diagnosis. Recurrence after gross total surgical resection and adjuvant chemo-radiotherapy almost invariably occurs within the so-called peritumoral brain zone (PBZ). The aim of this narrative review is to summarize the most relevant findings about the biological characteristics of the PBZ currently available in the medical literature. The PBZ presents several peculiar biological characteristics. The cellular landscape of this area is different from that of healthy brain tissue and is characterized by a mixture of cell types, including tumor cells (seen in about 30% of cases), angiogenesis-related endothelial cells, reactive astrocytes, glioma-associated microglia/macrophages (GAMs) with anti-inflammatory polarization, tumor-infiltrating lymphocytes (TILs) with an "exhausted" phenotype, and glioma-associated stromal cells (GASCs). From a genomic and transcriptomic point of view, compared with the tumor core and healthy brain tissue, the PBZ presents a "half-way" pattern with upregulation of genes related to angiogenesis, the extracellular matrix, and cellular senescence and with stemness features and downregulation in tumor suppressor genes. This review illustrates that the PBZ is a transition zone with a pre-malignant microenvironment that constitutes the base for GBM progression/recurrence. Understanding of the PBZ could be relevant to developing more effective treatments to prevent GBM development and recurrence.
Collapse
Affiliation(s)
- Gianluca Trevisi
- Department of Neurosciences, Imaging and Clinical Sciences, G. D’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
- Neurosurgical Unit, Ospedale Spirito Santo, 65122 Pescara, Italy
| | - Annunziato Mangiola
- Department of Neurosciences, Imaging and Clinical Sciences, G. D’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
44
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
45
|
Cheng YL, Banu MA, Zhao W, Rosenfeld SS, Canoll P, Sims PA. Multiplexed single-cell lineage tracing of mitotic kinesin inhibitor resistance in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.09.557001. [PMID: 37745469 PMCID: PMC10515771 DOI: 10.1101/2023.09.09.557001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Glioblastoma (GBM) is a deadly brain tumor, and the kinesin motor KIF11 is an attractive therapeutic target because of its dual roles in proliferation and invasion. The clinical utility of KIF11 inhibitors has been limited by drug resistance, which has mainly been studied in animal models. We used multiplexed lineage tracing barcodes and scRNA-seq to analyze drug resistance time courses for patient-derived GBM neurospheres treated with ispinesib, a potent KIF11 inhibitor. Similar to GBM progression in patients, untreated cells lost their neural lineage identity and transitioned to a mesenchymal phenotype, which is associated with poor prognosis. In contrast, cells subjected to long-term ispinesib treatment exhibited a proneural phenotype. We generated patient-derived xenografts to show that ispinesib-resistant cells form less aggressive tumors in vivo, even in the absence of drug. Finally, we used lineage barcodes to nominate drug combination targets by retrospective analysis of ispinesib-resistant clones in the drug-naïve setting and identified drugs that are synergistic with ispinesib.
Collapse
Affiliation(s)
- Yim Ling Cheng
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Wenting Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
46
|
García-Montaño LA, Licón-Muñoz Y, Martinez FJ, Keddari YR, Ziemke MK, Chohan MO, Piccirillo SG. Dissecting Intra-tumor Heterogeneity in the Glioblastoma Microenvironment Using Fluorescence-Guided Multiple Sampling. Mol Cancer Res 2023; 21:755-767. [PMID: 37255362 PMCID: PMC10390891 DOI: 10.1158/1541-7786.mcr-23-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The treatment of the most aggressive primary brain tumor in adults, glioblastoma (GBM), is challenging due to its heterogeneous nature, invasive potential, and poor response to chemo- and radiotherapy. As a result, GBM inevitably recurs and only a few patients survive 5 years post-diagnosis. GBM is characterized by extensive phenotypic and genetic heterogeneity, creating a diversified genetic landscape and a network of biological interactions between subclones, ultimately promoting tumor growth and therapeutic resistance. This includes spatial and temporal changes in the tumor microenvironment, which influence cellular and molecular programs in GBM and therapeutic responses. However, dissecting phenotypic and genetic heterogeneity at spatial and temporal levels is extremely challenging, and the dynamics of the GBM microenvironment cannot be captured by analysis of a single tumor sample. In this review, we discuss the current research on GBM heterogeneity, in particular, the utility and potential applications of fluorescence-guided multiple sampling to dissect phenotypic and genetic intra-tumor heterogeneity in the GBM microenvironment, identify tumor and non-tumor cell interactions and novel therapeutic targets in areas that are key for tumor growth and recurrence, and improve the molecular classification of GBM.
Collapse
Affiliation(s)
- Leopoldo A. García-Montaño
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Yamhilette Licón-Muñoz
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Frank J. Martinez
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Yasine R. Keddari
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of California, Merced, California
| | - Michael K. Ziemke
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Muhammad O. Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sara G.M. Piccirillo
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| |
Collapse
|
47
|
Bond KM, Curtin L, Hawkins-Daarud A, Urcuyo JC, De Leon G, Singleton KW, Afshari AE, Paulson LE, Sereduk CP, Smith KA, Nakaji P, Baxter LC, Patra DP, Gustafson MP, Dietz AB, Zimmerman RS, Bendok BR, Tran NL, Hu LS, Parney IF, Rubin JB, Swanson KR. Image-based models of T-cell distribution identify a clinically meaningful response to a dendritic cell vaccine in patients with glioblastoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.13.23292619. [PMID: 37503239 PMCID: PMC10370220 DOI: 10.1101/2023.07.13.23292619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
BACKGROUND Glioblastoma is an extraordinarily heterogeneous tumor, yet the current treatment paradigm is a "one size fits all" approach. Hundreds of glioblastoma clinical trials have been deemed failures because they did not extend median survival, but these cohorts are comprised of patients with diverse tumors. Current methods of assessing treatment efficacy fail to fully account for this heterogeneity. METHODS Using an image-based modeling approach, we predicted T-cell abundance from serial MRIs of patients enrolled in the dendritic cell (DC) vaccine clinical trial. T-cell predictions were quantified in both the contrast-enhancing and non-enhancing regions of the imageable tumor, and changes over time were assessed. RESULTS A subset of patients in a DC vaccine clinical trial, who had previously gone undetected, were identified as treatment responsive and benefited from prolonged survival. A mere two months after initial vaccine administration, responsive patients had a decrease in model-predicted T-cells within the contrast-enhancing region, with a simultaneous increase in the T2/FLAIR region. CONCLUSIONS In a field that has yet to see breakthrough therapies, these results highlight the value of machine learning in enhancing clinical trial assessment, improving our ability to prospectively prognosticate patient outcomes, and advancing the pursuit towards individualized medicine.
Collapse
|
48
|
Andrieux G, Das T, Griffin M, Straehle J, Paine SML, Beck J, Boerries M, Heiland DH, Smith SJ, Rahman R, Chakraborty S. Spatially resolved transcriptomic profiles reveal unique defining molecular features of infiltrative 5ALA-metabolizing cells associated with glioblastoma recurrence. Genome Med 2023; 15:48. [PMID: 37434262 PMCID: PMC10337060 DOI: 10.1186/s13073-023-01207-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Spatiotemporal heterogeneity originating from genomic and transcriptional variation was found to contribute to subtype switching in isocitrate dehydrogenase-1 wild-type glioblastoma (GBM) prior to and upon recurrence. Fluorescence-guided neurosurgical resection utilizing 5-aminolevulinic acid (5ALA) enables intraoperative visualization of infiltrative tumors outside the magnetic resonance imaging contrast-enhanced regions. The cell population and functional status of tumor responsible for enhancing 5ALA-metabolism to fluorescence-active PpIX remain elusive. The close spatial proximity of 5ALA-metabolizing (5ALA +) cells to residual disease remaining post-surgery renders 5ALA + biology an early a priori proxy of GBM recurrence, which is poorly understood. METHODS We performed spatially resolved bulk RNA profiling (SPRP) analysis of unsorted Core, Rim, Invasive margin tissue, and FACS-isolated 5ALA + /5ALA - cells from the invasive margin across IDH-wt GBM patients (N = 10) coupled with histological, radiographic, and two-photon excitation fluorescence microscopic analyses. Deconvolution of SPRP followed by functional analyses was performed using CIBEROSRTx and UCell enrichment algorithms, respectively. We further investigated the spatial architecture of 5ALA + enriched regions by analyzing spatial transcriptomics from an independent IDH-wt GBM cohort (N = 16). Lastly, we performed survival analysis using Cox Proportinal-Hazards model on large GBM cohorts. RESULTS SPRP analysis integrated with single-cell and spatial transcriptomics uncovered that the GBM molecular subtype heterogeneity is likely to manifest regionally in a cell-type-specific manner. Infiltrative 5ALA + cell population(s) harboring transcriptionally concordant GBM and myeloid cells with mesenchymal subtype, -active wound response, and glycolytic metabolic signature, was shown to reside within the invasive margin spatially distinct from the tumor core. The spatial co-localization of the infiltrating MES GBM and myeloid cells within the 5ALA + region indicates PpIX fluorescence can effectively be utilized to resect the immune reactive zone beyond the tumor core. Finally, 5ALA + gene signatures were associated with poor survival and recurrence in GBM, signifying that the transition from primary to recurrent GBM is not discrete but rather a continuum whereby primary infiltrative 5ALA + remnant tumor cells more closely resemble the eventual recurrent GBM. CONCLUSIONS Elucidating the unique molecular and cellular features of the 5ALA + population within tumor invasive margin opens up unique possibilities to develop more effective treatments to delay or block GBM recurrence, and warrants commencement of such treatments as early as possible post-surgical resection of the primary neoplasm.
Collapse
Affiliation(s)
- Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tonmoy Das
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Systems Cell-Signaling Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Michaela Griffin
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Simon M L Paine
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stuart J Smith
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Sajib Chakraborty
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Systems Cell-Signaling Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
49
|
Al-Dalahmah O, Argenziano MG, Kannan A, Mahajan A, Furnari J, Paryani F, Boyett D, Save A, Humala N, Khan F, Li J, Lu H, Sun Y, Tuddenham JF, Goldberg AR, Dovas A, Banu MA, Sudhakar T, Bush E, Lassman AB, McKhann GM, Gill BJA, Youngerman B, Sisti MB, Bruce JN, Sims PA, Menon V, Canoll P. Re-convolving the compositional landscape of primary and recurrent glioblastoma reveals prognostic and targetable tissue states. Nat Commun 2023; 14:2586. [PMID: 37142563 PMCID: PMC10160047 DOI: 10.1038/s41467-023-38186-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Glioblastoma (GBM) diffusely infiltrates the brain and intermingles with non-neoplastic brain cells, including astrocytes, neurons and microglia/myeloid cells. This complex mixture of cell types forms the biological context for therapeutic response and tumor recurrence. We used single-nucleus RNA sequencing and spatial transcriptomics to determine the cellular composition and transcriptional states in primary and recurrent glioma and identified three compositional 'tissue-states' defined by cohabitation patterns between specific subpopulations of neoplastic and non-neoplastic brain cells. These tissue-states correlated with radiographic, histopathologic, and prognostic features and were enriched in distinct metabolic pathways. Fatty acid biosynthesis was enriched in the tissue-state defined by the cohabitation of astrocyte-like/mesenchymal glioma cells, reactive astrocytes, and macrophages, and was associated with recurrent GBM and shorter survival. Treating acute slices of GBM with a fatty acid synthesis inhibitor depleted the transcriptional signature of this pernicious tissue-state. These findings point to therapies that target interdependencies in the GBM microenvironment.
Collapse
Affiliation(s)
- Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Adithya Kannan
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Julia Furnari
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Fahad Paryani
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Deborah Boyett
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Akshay Save
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Nelson Humala
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Fatima Khan
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA
| | - Juncheng Li
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA
| | - Hong Lu
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA
| | - Yu Sun
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA
| | - John F Tuddenham
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Alexander R Goldberg
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA
| | - Matei A Banu
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Tejaswi Sudhakar
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Erin Bush
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Andrew B Lassman
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Guy M McKhann
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Brian J A Gill
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Brett Youngerman
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Michael B Sisti
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Jeffrey N Bruce
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Peter A Sims
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA.
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
50
|
Niculescu VF. The evolutionary cancer genome theory and its reasoning. GENETICS IN MEDICINE OPEN 2023; 1:100809. [PMID: 39669240 PMCID: PMC11613669 DOI: 10.1016/j.gimo.2023.100809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 12/14/2024]
Abstract
Oncogenesis and the origin of cancer are still not fully understood despite the efforts of histologists, pathologists, and molecular geneticists to determine how cancer develops. Previous embryogenic and gene- and genome-based hypotheses have attempted to solve this enigma. Each of them has its kernel of truth, but a unifying, universally accepted theory is still missing. Fortunately, a unicellular cell system has been found in amoebozoans, which exhibits all the basic characteristics of the cancer life cycle and demonstrates that cancer is not a biological aberration but a consequence of molecular and cellular evolution. The impressive systemic similarities between the life cycle of Entamoeba and the life cycle of cancer demonstrate the deep homology of cancer to the amoebozoans, metazoans, and fungi ancestor that branched into the clades of Amoebozoa, Metazoa, and Fungi (AMF) and shows that the roots of oncogenesis and tumorigenesis lie in an ancient gene network, which is conserved in the genome of all metazoans and humans. This evolutionary gene network theory of cancer (evolutionary cancer genome theory) integrates previous findings and hypotheses and is one step further along the road to a universal cancer cell theory. It supports genetic cancer medicine and recommends soma-to-germ transitions-referred to as epithelial-to-mesenchymal transition in cancer-and cancer germline as potential targets. According to the evolutionary cancer genome theory, cancer exploits an ancient gene network module of premetazoan origin.
Collapse
|